Christian W. Bach

University of Liverpool & EPICENTER

- In vertical structures a good only reaches the consumer via different stages.
 - Multi-Stage Distribution System: producers (often) do not sell their goods directly to final consumers but via intermediaries, wholesalers, or retailers.
 - Multi-Stage Production System: Also, the final good is often produced in several stages: from raw material to intermediate good to final product.
- Typically, firms at different stages of the vertical structure sign contracts of various types in order to reduce transaction costs, guarantee supply stability, and better co-ordinate actions.
 - In fact, such agreements and contractual provisions between vertically related firms are called vertical restraints.

- As an example consider a vertical structure between a manufacturer (M) and a retailer (R) distributing its products.
 - (Or between upstream & downstream firms or between a producer & a distributor.)
- Generally, an optimal action for one party is not necessarily optimal for the other party.
 - E.g. **M** would like **R** to make effort in marketing its products (advertising, shelves-placement, customer assistance, etc.), but such efforts and services are costly for **R**.
- M might then use contractual provisions i.e. vertical restraints
 to induce higher marketing effort from R.
- Examples: exclusive area of competence assigned to R, non-linear contracts incl. bulk discounts, minimum sale or non-competing goods obligation, take-over of R by M, etc.

- The objective of such contracts and clauses is to restrain the choices of the vertical opponent and to induce an individually more favourable outcome.
- Alternatively put, each party's actions create an externality on the other: vertical restraints assist to control these externalities.
- The task for **competition policy**: when should vertical restraints be expected to show positive or negative effects on total welfare.

- Vertical restraints can affect intra-brand competition as well as inter-brand competition.
- Intra-brand competition concerns the relationship between firms which produce and distribute the same brand.
- Inter-brand competition concerns the relationship between different vertical structures (distributing different brands).
- Here, the welfare effects are considered of vertical restraints that affect intra-brand competition, i.e. competition between several R that sell the same product or brand of a given M.
- The analysis thus abstracts from effects on competing brand producers or distributors.

Agenda

Overview on Vertical Restraints

Double Marginalization

Underprovision of Services

Other Efficiency Issues

Agenda

Overview on Vertical Restraints

Double Marginalization

Underprovision of Services

Other Efficiency Issues

- Non-Linear Pricing (also called Franchise Fee or Two-Part Tariff)
- Quantity Discounts (also called Progressive Rebates)
- Resale Price Maintenance (RPM)
- Quantity Fixing
- Exclusive Clauses
- Vertical Integration as an extreme case

- Non-linear pricing (also called franchise fee or two-part tariff) is a contract specifying a fixed amount independent of the number of units bought ("franchise fee") plus a variable component.
 - For example, to sell some fashion producer's brand, a shop might have to pay EUR 500 per year plus EUR 10 per item.
 - The effect is that the unit cost effectively paid by the shop decreases with the number of units bought from the same brand: the goal is to encourage **R** to buy more units.
- Quantity discounts (also called progressive rebates) are contracts with the same effect as non-linear pricing: the larger the quantity bought the cheaper the transaction on average.

- Resale price maintenance (RPM) fix the price at which the retailer has to sell the product.
 - Possible rationale: **M** might have different perceptions from **R** as to which price final consumers should be charged.
 - Hence, **M** might want to affect **R**'s price decision.
 - More moderate tools are retail price recommendation (RPR), price-floor (PF), or price-ceiling (PC).
- Quantity fixing specify the number of units that R should buy.
 - different forms such as quantity-forcing (QF) (R cannot buy less than a certain amount) or quantity-rationing (QR) (R cannot buy more than a certain amount).

- Exlusive clauses are exclusive agreements between **M** and **R**.
 - Exclusive territory clause (ET): there is only one **R** who can sell a certain brand within a certain geographical area.
 - Exclusive dealing (ED): R agrees to carry only the brand of a certain M.
 - Selective distribution clauses: only a certain type of R is allowed to carry M's brand (e.g. luxury goods only at high-street R).

- Vertical integration (also called vertical mergers) are mergers between M and R or take-overs of R by M, and can be seen as the extreme case of vertical restraints.
- When **M** find it difficult to use clauses that induce the behaviour they want from **R**, vertical integration might be attractive.
- M and R then belong to the same firm, so their objectives should be more easily reconciled ("agency problems could still arise").
- It is important to keep in mind that vertical mergers are often an alternative to vertical restraints.
- Thus, a firm stance against vertical restraints should be adopted, iff, vertical mergers are subject to an equally strict control.

Effectiveness of Vertical Constraints is Relative

- Note that in any market due to the nature of the transactions or due to institutional constraints – some of these vertical restraints might be effective whereas others might not be.
 - E.g. if discounts on prices cannot be observed by **M**, RPM lose their power: quantiy fixing might be more appropriate.
- Arbitrage ("buy where the price is low to resell where the price is high") might also diminish the effectiveness of vertical restraints.
 - E.g. if consumers have low search and transport costs, it is unlikely that exclusive territorial clauses would be effective.
- Also, non-linear pricing or quantity discounts might lose effectiveness, as one R could buy many units and then resell some of them to other R planning to sell low quantities.
 - Such vertical restraints are thus more effective when M can observe sales of R.

Agenda

Overview on Vertical Restraints

Double Marginalization

Underprovision of Services

Other Efficiency Issues

- If both **M** and **R** have market power, then both charge a mark-up, resulting in too high prices for the vertical structure.
- If vertical restraints were used in the extreme case vertical integration occured – prices would decrease and both producer surplus as well as welfare would increase.
- This so-called double marginalization problem is the best known example of externalities affecting vertically separated firms.
- The double marginalization problem is due to Spengler (1950).

- Suppose that M relies on R for selling to final customers.
- M sells to R according to a constant unit price ("linear pricing").
- For simplicity sake, assume that R incurs no other cost than the wholesale price.
- Being profit maximizers both firms choose the monopolistic mark-up over their own cost: M chooses w given c and R chooses p given w.
- Due to both firms adding their margins consumers are paying too high a price and are thus buying too few units from the jointly optimal viewpoint (sum of upstream and downstream profits).

- Indeed, if both firms were under the same management, the final price *p* would be chosen with only one mark-up (over the cost *c*).
- Thus, vertical integration (i.e. merger of **M** & **R**) is efficient, as it allows to internalize the externality they impose on each other.
- As a result, after the correction for this externality not only firms but also consumers gain from the merger.
- If vertical integration is not possible, different types of vertical restraints could still be used to control for this externality.
- Since double marginalization results in a too high market price a direct possibility to solve the problem is RPM (if *p* is observable).

- Quanitity forcing would give the same outcome, obliging R to increase sales to the optimal level for the integrated structure.
- Another possibility would be non-linear pricing: R can be made "residual claimant" of all the profit generated in the market.
- By setting the variable component equal to M's cost, i.e. w = c, R would effectively behave as a integrated structure, and choose the optimal final price by individual profit maximization.
- Yet, **M** can appropriate some (or even all) of **R**'s profits through the fixed component *F*: the distribution of the profits depends on the relative bargaining powers of the two firms.
- In the extreme case of **M** enjoying all bargaining power (or several **R** strongly competing to sell **M**'s product), **M** can make exactly the same profit as if it owned **R**.

- However, vertical restraints are not equivalent, if there is some uncertainty in the market (e.g. consumer demand or costs) and R is risk averse.
- \blacksquare A non-linear contract F + cq would expose **R** to risk due to demand uncertainty, since R as residual claimant is not protected against demand shocks.
- RPM gives perfect insurance under demand uncertainty, as the final price is guaranteed independently of the level of demand.
- Yet, RPM fares poorly under cost uncertainty as a shock on R's costs affect R's profits, since the price cannot be adjusted.
- Consequently, with a risk averse R RPM is better under demand uncertainty, wereas non-linear pricing under cost uncertainty.

- For simplicity it is convenient to consider double-marginalization with a monopoly both upstream and downstream.
- Yet, note that the issue of double marginalization also arises whenever only some market power exists at both levels.
- The vertical externality pushes prices above what would be optimal for the vertical structure.
- In addition to internalization via vertical merger, RPM, quantity fixing, etc. with the positive total welfare effects M can tackle the problem at its root and eliminate market power downstream.
- The higher downstream competition the lower the mark-up on top of the upstream mark-up and thus the weaker the externality. ("e.g. Bertrand downstream competition: to p = w and $w = w^M$ ")
- In fact, by reducing downstream competition e.g. by assigning exclusive territories to R the double-marginalization problem is aggravated and welfare is reduced.

Modelling Double-Marginalization

- Consider a vertical structure with **M** and **R** enjoying monopolies.
- Assume that **M** has all the bargaining power and makes a take-it-or-leave-it offer to **R** (The ensuing result is robust to different distributions of the bargaining power though).
- Consumers' demand is given by q = a p where a > 0.
- **M** has unit production cost c < a and **R** has unit cost of the whole sale price w plus a unit cost of resale (assumed 0 for simplicity).

Separation and Linear Pricing

- The game structure is as follows:
 - **M** chooses the wholesale price w.
 - **2 R** chooes the final price p.
- Via "backward induction" consider R's decision problem first

$$\max_{p} \pi_{R} = (p - w)(a - p)$$

■ First-order conditions $\frac{\partial \pi_R}{\partial p} \stackrel{!}{=} 0$ induce

$$p^* = \frac{a+w}{2}$$
 $q^* = \frac{a-w}{2}$ $\pi_R^* = \frac{(a-w)^2}{4}$

Separation and Linear Pricing

- M anticpiates the optimal decisions p^* and q^* of R.
- Hence, M's decision problem reads as

$$\max_{w} \pi_{M} = (w - c)q^{*} = (w - c)\frac{a - w}{2}$$

- First-order conditions $\frac{\partial \pi_M}{\partial w} \stackrel{!}{=} 0$ induce $w^* = \frac{a+c}{2}$
- As market outcomes of the vertical structure it follows that

$$w^* = \frac{a+c}{2}$$
 $p^* = \frac{3a+c}{4}$ $\pi_M^* = \frac{(a-c)^2}{8}$ $\pi_R^* = \frac{(a-c)^2}{16}$

■ The industry profits are $\pi_{M+R}^* = \frac{3(a-c)^2}{16}$ at equilibrium.

Vertical Integration

- Suppose now a vertical merger of M and R.
- The merged entity can both produce and sell to the consumers.
- The firm's decision problem is the standard monopoly one:

$$\max_{p} \pi_{integ} = (p - c)(a - p)$$

■ First-order conditions $\frac{\partial \pi_{integ}}{\partial n} \stackrel{!}{=} 0$ induce

$$p_{integ}^* = \frac{a+c}{2}$$
 $q_{integ}^* = \frac{a-c}{2}$ $\pi_{integ}^* = \frac{(a-c)^2}{4}$

Comparison

- As a > c it follows that $p_{integ}^* < p^*$ and thus $q_{integ}^* > q^*$.
- Hence, consumer surplus increases due to the vertical merger.
- It also holds that $\pi^*_{integ} > \pi^*_{M+R}$.
- **M** can thus always pay **R** at least π_R^* to convince **R** to take part in the merger (or **R** can give **M** at least π_M^*).
- Both firms stand to gain from merging the two vertical stages.
- Since both consumer surplus and producer surplus increase, total welfare unambiguously rises from a vertical merger.

Vertical Restraints: RPM

- Double marginalization results in too high final prices.
- Imposing $p^{RPM} = p^*_{integ} = \frac{a+c}{2}$ on the downstream firm will maximize the surplus of the vertical structure.
- The way in which **M** and **R** share the surplus will then be determined by the wholesale price w.
- If **M** has all the bargaining power, then it will fix $w = p_{integ}^* = \frac{a+c}{2}$ and get all the producer surplus.
- In general, the higher w where $w \in [c; p_{integ}^*]$ the higher the share of the surplus going to the upstream firm.

Vertical Restraints: Price-Ceiling

- An identical outcome to the one with RPM would be achieved if the upstream firm sets a PC $\bar{p} = p_{integ}^* = \frac{a+c}{2}$.
- This obliges the downstream firm to sell at a price $p \leq \overline{p}$.
- For any wholesale price $w \in [c; p_{integ}^*]$ the downstream firm would then choose precisely $p = \overline{p}$ and the actual w would – like in the case of RPM – determine the division of the surplus.

Vertical Restraints: Quantity Fixing

- The mirror image of too high a price is that there is too little a quantity sold to final consumers.
- Therefore, **M** can also restore efficiency via Quantity-Fixing by obliging **R** to buy the number of units $q_{integ}^* = \frac{a-c}{2}$.
- Equivalently, Quantity-Forcing (QF) can be used establishing that **R** should buy at least $q \ge \overline{q} = q^*_{integ}$: **R** would then also choose precisely the efficient output $q = q^*_{integ}$.
- As before, the level of the wholesale price $w \in [c; p_{integ}^*]$ determines the distribution of the producer surplus.
- If **M** has all the bargaining power, it will choose $w = p_{integ}^*$ and appropriate all the profits of the vertical structure.

Vertical Restraints: Non-Linear Pricing

- M can make R the residual claimant of all the profits generated in the market with the non-linear price scheme F + wq with w = c.
- R's decision problem is then given by

$$\max_{p} \pi_{R}^{FF} = (p - c)(a - p) - F$$

- The first-order conditions induce the same solution as under vertical integration, i.e. $p_{EE}^* = \frac{a+c}{2}$ and $q_{EE}^* = \frac{a-c}{2}$.
- The distribution of the profits (equal of the vertically integrated) profits) will then be determined by the amount of the franchise fee F, as $\pi_M^{FF} = F$ and $\pi_R^{FF} = \frac{(a-c)^2}{4} - F$.
- Note that if **M** has all the bargaining power, then $F = \frac{(a-c)^2}{4}$ and **M** appropriates all the profits generated by the vertical structure.

Agenda

Overview on Vertical Restraints

Double Marginalization

Underprovision of Services

Other Efficiency Issues

Underprovision of Services

- The vertical structure is now assumed to consist of one **M** and several **R**.
- Besides the vertical externalities between M & R there often exist horizontal externalities among the R that determine an inefficient outcome from the viewpoint of the vertical structure as a whole.
- An important example of such externalities concern the level (and quality) of services provided by the R.
- If such services cannot be perfectly appropriated by one R (i.e. spillovers benefiting other R with the same brand), then services become a public good on which the R will free-ride.
- Thus an underprovision results which reduces M's profits.
- Again vertical integration as well as certain vertical restraints might help M to solve this externality problem.

- Consider several shops selling a brand of dishwashers in a city.
- There are many activities that the shops might carry out to increase consumers' appeal for the product.
 - Advertising of the brand in the shop or hiring assistants answering potential customers' questions, illustrate the characteristics of the product, etc. are such activities.
- Such activities may make the potential customers more willing to buy the brand, but not necessarily at the shop with the activities.
- Also suppose that the **R** are located very close to each other, so that transportation costs and search costs can be neglected.

- In these circumstances it is not attractive for a given shop to exert much effort to sell the brand.
- The rival shops would have an incentive to avoid effort costs, just free-ride on the provision of services and offer a better price.
- A consumer would first visit the shop providing the services, but then buy at a shop offering the same product at the best price.
- Each shop will anticipate this and refrain from offering services that have a public good characteristic.
- Indeed, services by **R** only contribute to the brand of **M** and cannot be appropriated by the providing shop.
- The situation will be sub-optimal for M, as the brand will not be supported by services, but also for consumers, who do not receive information they value.

- Vertical restraints might restore incentives for **R** to do services.
- For instance, **M** could divide the city in different areas with exclusive **R** as distributors in each area (exclusive territories).
 - This makes it more costly for consumers to visit other shops, thus reduce the risk of undercutting by a free-rider.
 - Hence, each R would have a higher incentive to provide brand-supporting services.
- Alternatively, RPM or price-ceiling: all R in the city can be maintained by M, yet the problem of undercutting is blocked.

- Vertical integration would also solve the problem.
 - If M owned the R, then M would take into account the externality they impose on each other.
 - M would then simply prevent its shop managers from undercutting each other and reducing the level of services.
- To sum up, vertical restraints and vertical integration avoid or reduce the free-riding problem to the benefit of producer surplus and (usually also) consumer surplus.

Underprovision of Services: Reality Check

- Note that generally there are also many sales activities which can be appropriated by the respective shop.
 - Examples: credit to consumers, post-sales service by the shop, physical appearance of the shop.
 - In such cases the free-riding problem will not arise.
- In reality services of distinct types can co-exist yet the free-riding problem may affect investment decisions of a **R** to some degree.

Modelling Underprovision of Services

- Consider a vertical structure with an upstream monopolist M and two downstream duopolists R_1 and R_2 .
- The R choose their efforts ("services") and compete in prices.
- Services are assumed to increase the perceived quality of the brand but cannot be appropriated by the R providing them.
- The perceived quality is given by $u = \overline{u} + e$, where $e = e_1 + e_2$ is the sum of the efforts (services) provided by the two **R**, and \overline{u} is the basic quality level perceived by the consumers.
- The costs are $c(q,e) = wq + \frac{\mu e_i^2}{2}$ with $\mu > 1$ for the **R** i.e. for $i \in \{1,2\}$ ("fixed service costs e.g. advertising outlays / fixed in terms of output").
- Consumers' demand is q = (v + e) p.

Modelling Underprovision of Services

- Double marginalization is avoided by downstream price competition: the only externality in this model is thus the free-riding problem.
- This is because R cannot differentiate themselves via services, and are thus perceived as perfect substitutes by the consumers.
- The benchmark case of upstream and downstream separation is considered first
- Then, the effects of vertical integration and of some vertical restriants is looked at.

Separation

- In line with "backward induction" consider the downstream interaction between R_1 and R_2 first.
- By contradiction it can be shown that $p_1 = p_2 = w$ and $e_1 = e_2 = 0$.
- Consider R_1 and suppose that $e_1 > 0$.
- Because of the fixed cost of service R_1 could then only avoid losses, if $p_1 > w$.
- However, by undercutting R_2 would then get all the demand.
- It follows that $e_1 = 0$ and (by analogous reasoning) that $e_2 = 0$.
- The usual Bertrand logic yields marginal cost pricing $p_1 = p_2 = w$.

Separation

- The downstream **M** anticipates p = w and $e_1 = e_2 = 0$.
- Consumers' demand will thus be q = v w.
- M's decision problem thus reads as follows:

$$\max_{w} \pi_{M} = (w - c)(v - w)$$

First-order conditions imply that

$$w^* = \frac{v+c}{2}$$
 $q^* = \frac{v-c}{2}$ $\pi_M^* = \frac{(v-c)^2}{4}$ $p^* = \frac{v+c}{2}$ $e_1^* = e_2^* = 0$

and thus

$$PS_{sep}^* = \pi_M^* = \frac{(v-c)^2}{4}$$
 $CS_{sep}^* = \frac{(v-c)^2}{8}$ $WEL_{sep}^* = \frac{3(v-c)^2}{8}$

Vertical Integration

- Suppose that the upstream and downstream firms merge, e.g. M takes over R_1 and R_2 .
- The integrated firm's decision problem reads as follows:

$$\max_{p,e_1,e_2} \pi_{int} = (p-c)(v+e_1+e_2-p) - \mu \frac{e_1^2}{2} - \mu \frac{e_2^2}{2}$$

First-order conditions imply that

$$e_1^* = e_2^* = e_{int,i}^* = \frac{v - c}{2(\mu - 1)} \qquad p_{int}^* = \frac{\mu(v + c) - 2c}{2(\mu - 1)} \qquad q_{int}^* = \frac{\mu(v - c)}{2(\mu - 1)}$$

and thus

$$PS_{int}^* = \frac{\mu(v-c)^2}{4(\mu-1)} \qquad CS_{int}^* = \frac{\mu^2(v-c)^2}{8(\mu-1)^2} \qquad WEL_{int}^* = \frac{\mu(3\mu-2)(v-c)^2}{8(\mu-1)^2}$$

It can be seen that $WEL^*_{int} > WEL^*_{sep}$ as $\mu > 1$ and

$$WEL_{int}^* > WEL_{sep}^* = \frac{(4\mu - 3)(\nu - c)^2}{8(\mu - 1)^2} > 0$$

- In this model vertical integration allows control for the horizontal externality among R that induces an underprovision of services relative to what would be optimal for the integrated structure.
- Besides, note that it is optimal for the vertically integrated structure to have both R_1 and R_2 selling the good.
- This due to the convexity of service costs: to produce a given level of services, costs are lower if the provision is split among the two **R** rather than concentrated in one.

Vertical Restraints

- The problem under a separated structure is one of free-riding among the **R**, who are pushed to undercut each other.
- Thereby the R lose incentives to provide services.
- To restore incentives **M** has to relax competition downstream.
- In particular, a non-linear contract would not solve the problem unless accompanied by some measure reducing competition.

Exclusive Territories and Non-Linear Pricing

- Suppose that each \mathbf{R} receives a territory or exclusive competence for a certain type of customer plus a non-linear contract of the type T = wq + F with w = c.
- For simplicity it is assumed that each R can sell to half of the total number of consumers.
- Yet the overall perceived quality level of the good is determined by the sum of the R's efforts.
- Each R_i for $i \in \{1, 2\}$ faces the following decision problem:

$$\max_{p_i, e_i} \pi_{R_i} = (p_i - c) \frac{v + e_1 + e_2 - p_i}{2} - \mu \frac{e_i^2}{2} - F$$

The first-order conditions are

$$\frac{p_i - c}{2} - \mu e_i \stackrel{!}{=} 0$$

$$v + e_1 + e_2 - 2p_i + c \stackrel{!}{=} 0$$

- Note that given efforts the chosen price is equivalent to the vertically integrated solution.
- However, effort is not optimal, since marginal profit from effort is lower compared to full internalization of the effort externality.
- Each **R** knows that its effort will increase sales in a market which is half the size of the one of a vertically integrated structure.
- Hence, exclusive territories improve the incentives for services and bring M closer to the optimum, but do not restore first-best.

Exclusive Territories and Non-Linear Pricing

- Giving exclusive territories for the whole market to only one R does not restore first-best either, since effort will be provided by only one R ("diseconomies of scale from effort provision").
- The only \mathbf{R} 's (WLOG suppose it is R_1) decision problem is

$$\max_{p_1,e_1} \pi_{R_1} = (p_1 - c)(v + e_1 - p_1) - \mu \frac{e_1^2}{2} - F$$

The first-order conditions are

$$p_1 - c - \mu e_1 \stackrel{!}{=} 0$$

 $v + e_1 - 2p_i + c \stackrel{!}{=} 0$

thus $e_1^* = \frac{v - c}{\mu - 1}$.

- At equilibrium **R** thus indeed provides lower effort than first-best.
- To sum up, exclusive territories reduce the externality problem and increase the provision of effort but do not restore first-best.

- Another vertical restraint to be used to give more incentives to produce services is RPM plus a non-linear contract (w < c; F).
- If M fixes the price $p_{RPM} = p_{int}^* = \frac{\mu(\nu+c)-2c}{2(\mu-1)}$, then the **R** will not price so aggressively that incentives to provide effort are eliminated (as in the Bertrand case).
- Each R_i for $i \in \{1,2\}$ faces the following decision problem:

$$\max_{e_i} \pi_{RPM} = (p_{int}^* - w) \frac{v + e_1 + e_2 - p_{int}^*}{2} - \mu \frac{e_i^2}{2} - F$$

■ The first-order conditions imply that for $i \in \{1, 2\}$

$$e_i = \frac{p_{int}^* - w}{2\mu}$$

RPM and Non-Linear Pricing

■ In order for a **R** to choose the optimal level of effort $e_i = e_{int}^*$, the following conditions must be satisfied for $i \in \{1, 2\}$

$$e_1 = \frac{p_{int}^* - w}{2\mu} \stackrel{!}{=} \frac{v - c}{2(\mu - 1)} = e_{int}^*$$

- Hence, the wholesale price must be set to $w_{RPM} = p_{int}^* \frac{\mu(v-c)}{\mu-1}$ which simplifies to $w_{RPM} = \frac{3\mu c 2c \mu v}{2(\mu-1)} < c$.
- Note that if w = c, then RPM would not reproduce the vertically integrated level of effort.
- This is because each R when choosing effort takes into account the marginal impact of effort only on its own profit.
- Since each **R** knows that it will sell to only half the market ("undifferentiated product and prices fixed by **M**") it will have insufficient incentives.

RPM and Non-Linear Pricing

- RPM alone does not restore first-best: the R must be given additional incentives to make effort.
- Indeed, this can be achieved by **M** selling them the input at a wholesale price below its own marginal cost.
- As a result the contract induces the same level of price and effort as the vertically integrated structure.
- Thus, the total profit generated under this contract is the same as under vertical integration.
- The franchise fee F can then be used to redistribute the profit from each **R** to the **M**: if $F = \frac{\pi_{int}^*}{2} + (c - w) \frac{q_{int}^*}{2}$, then **M** will replicate the profit made under vertical integration (recall $PS_{int}^* = \frac{\mu(\nu-c)^2}{4(\nu-1)}$).

RPM and Quantity Forcing

- RPM can also be used in combination with quantity forcing.
- To ensure that the **R** are selling at the optimal price, **M** sets the retail price to $p_{RPM} = p_{int}^*$.
- As seen above, RPM alone would not suffice to restore the vertically integrated solution: the R would make insufficient effort and sell too few units of the good.
- As an alternative to the non-linear contract (w_{RPM}, F) , specified above, **M** can simply impose a minimum sales level equal to q_{int}^* .
- This would push the R to choose the optimal effort level.
- Since price is fixed by RPM and optimal effort is induced by Q-F, the vertically integrated outcome would be reproduced.
- M could then choose the wholesale price which given RPM and Q-F does not modify the R-incentives as the channel to redistribute rents away from the R.

■ Formally, given RPM $p_{RPM} = p_{int}^*$ and Q-F the decision problem of each R_i for $i \in \{1, 2\}$ is as follows

$$\max_{e_i} \pi_{R_i} = \frac{(p_{int}^* - w)(v + e_1 + e_2 - p_{int}^*)}{2} - \mu \frac{e_i^2}{2}$$

subject to

$$\frac{v + e_1 + e_2 - p_{int}^*}{2} \ge \frac{q_{int}^*}{2}$$

- As unconstrained optimization leads the R to insufficient effort, the problem is solved by minimum effort satisfying the constraint.
- By symmetry effort is thus given by $\frac{q_{int}^* + p_{int}^* v}{q_{int}^* + p_{int}^* v}$ which is in fact e_{int}^* .
- Since this contract already implements the optimal p_{int}^* and e_{int}^* , the wholesale price becomes incentive-neutral: **M** can use it to appropriate rents.

RPM and Quantity Forcing

- Accordingly, M chooses the wholesale price w so as to leave the R with zero net profit.
- The optimal \hat{w} then solves the following condition

$$\frac{(p_{int}^* - \hat{w})(v + 2e_{int}^* - p_{int}^*)}{2} - \mu \frac{(e_{int}^*)^2}{2} = 0$$

whence

$$\hat{w} = \frac{v + c}{2}$$

■ The total profit made by **M** is then given by $(\hat{w} - c)q_{int}^*$ which after substitution is in fact equal to π_{int}^* .

Final Remark on the Model

- In this model there are two externalities.
- The first consists of too-strong competition, which eliminates incentives to exert effort.
- The second is the spillover in effort.
- Therefore, a necessary condition for M to achieve first-best is to have two instruments.

Agenda

Overview on Vertical Restraints

Double Marginalization

Underprovision of Services

Other Efficiency Issues

Other Efficiency Reasons for Vertical Restraints and Vertical Mergers

- Two efficiency motives behind vertical restraints and vertical mergers have been considered so far: double marginalization and underprovision of services.
- There are further such efficiency motives, some of which will be considered now

Quality Certification

- R provide customers with an implicit or explicit quality certification service.
- Note that such an activity involves some costs and presents a public good characteristics: other shops might benefit and attract away consumers with lower prices due to their lower costs.
- This might justify again vertical restraints such as RPM or selective distribution (e.g. only luxury shops in posh districts).
- Note that not allowing **M** to protect the image of its good by selective distribution might be harmful not only to **M** but also to consumers who value the luxury features of the good.

Free-Riding among Producers

- Although restrictive by definition in that they oblige a R not to carry products of competing producers, exclusive contracts might be efficient.
- For instance, they can stimulate investments in R's services by
 M: technical support, promotion, training, equipment, financing.
- To the extent that such investments favour not a particular brand but the retail outlet in general, other **M** would also benefit.
- This induces a free-riding problem among **M** that may be solved via exclusive dealing ("**R** cannot stock products from other **M**").
- Exclusive dealing might also push a **R** to sell a brand more aggressively than if it devoted is marketing effort among different brands, thereby raising competition.

Restraints which remove Opportunistic Behaviour and promote Specific Investments

- Long-term contracts between M and R (or a fortiori vertical integration) might also have positive effects on the specific investments both parties have to make in their relationships.
- There are many investments which lose most of their value outside a particular relationship, as they are tailored and dedicated to a particular partner.
- In such cases, the danger that the relationship is broken or discontinued will generally lead to an underinvestment problem.
- If R fears that his promotion effort to establish a brand's image might next year benefit a rival shop, R may not promote after all.
- Likewise **M** will be deterred from investing in assets which might improve **R**'s performance if **R** is likely to switch to other brands.

Restraints which remove Opportunistic Behaviour and promote Specific Investments

- To avoid such opportunistic behaviour a firm getting out of a relationship after specific investments of the partner clauses such as exclusive territories or exclusive dealing are helpful.
- By reducing or eliminating the underinvestment problem, such clauses increase efficiency.
- Of course, the same holds for vertical mergers.
- In this case, the interests of M and R are aligned, and they will coordinate so as to attain the same objective.