ULMS055 Mathematics Crammer Part A: Pure Mathematics (Exercises)

Christian W. Bach

University of Liverpool \& EPICENTER Maastricht

EPICENTER

Research Center for
Epistemic Game Theory

Outline

■ Exercises

- Solutions

ExERCISES

Exercise I

Let φ, ψ, and χ be propositions.
(I.a) Prove that $\varphi \leftrightarrow \psi$ and $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$ are logically equivalent.
(I.b) Prove that $\varphi \rightarrow \psi$ and $(\neg \varphi) \vee \psi$ are logically equivalent.
(I.c) Prove that $\varphi \rightarrow(\psi \rightarrow \chi)$ and $(\varphi \rightarrow \psi) \rightarrow \chi$ are not logically equivalent.

Exercise II

(II.a) Prove that $n^{2} \geq 2 n+3$ for all $n \geq 3$.
(II.b) Prove that $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ for all $n \geq 0$.
(II.c) Prove that $a_{n}=6^{n+2}+7^{2 n+1}$ is divisable by 43 for all $n \geq 0$.

Exercise III

(III.a) Let $A=\{1,2,3\}, B=\{a, b\}$, and $C=\{a, c\}$. Form the product set $A \times(B \cap C)$.
(III.b) Let A, B, C, and D be sets such that $A \subseteq B$ and $C \subseteq D$. Prove that $A \times C \subseteq B \times D$.
(III.c) Let A, B, and C be sets. Prove that

$$
A \times(B \cup C)=(A \times B) \cup(A \times C) .
$$

Exercise IV

(IV.a) Consider the set $\mathbb{Z}=\{\ldots,-3,-2-, 1,0,1,2,3, \ldots\}$ of integers. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function such that $f(z)=z+1$ for all $z \in \mathbb{Z}$. Investigate whether f is injective, surjective, and bijective.
(IV.b) Consider the set $\mathbb{Z}=\{\ldots,-3,-2-, 1,0,1,2,3, \ldots\}$ of integers. Let $f: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be a function such that $f(z)=(z, z+1)$ for all $z \in \mathbb{Z}$. Investigate whether f is injective, surjective, and bijective.
(IV.c) Let $f: A \rightarrow A$ be a function. Prove that $[f \circ f](A) \subseteq f(A)$.

Exercise V

■ Let $\mathbb{F}_{2}=\{0,1\}$ be a set with two elements 0 and 1 .

■ Let $+: \mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}$ and $\cdot: \mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}$ be functions defined according to the following tables:

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

■ Note that the cells in the tables corresponding to the i-th row and j-th column define $i+j$ and $i \cdot j$, respectively.

■ Show that the triple $\left(\mathbb{F}_{2},+, \cdot\right)$ constitutes a field.

Solutions

Solutions I

(I.c) Let φ be false, ψ be false, and χ be false. Then, $\varphi \rightarrow(\psi \rightarrow \chi)$ is true, however, $(\varphi \rightarrow \psi) \rightarrow \chi$ is false.

Solutions II

(II.a) ■ Induction basis: Let $n_{0}=3$. Observe that

$$
3^{2}=9 \geq 9=2 \cdot 3+3 .
$$

- Induction step: Let $n \geq 3$ and suppose that $n^{2} \geq 2 n+3$ holds. It needs to be shown that $(n+1)^{2} \geq 2 n+5$ also holds.
- Indeed, observe that $(n+1)^{2}=n^{2}+2 n+1 \geq 2 n+5$, since $n^{2}+1>5$ for all $n \geq 3$.

Solutions II

(II.b) Induction basis: Let $n_{0}=0$. Observe that $\sum_{i=0}^{0} 0=0$ and

$$
\frac{0 \cdot(0+1)}{2}=0 \text {. }
$$

■ Induction step: Let $n \geq 0$ and suppose that $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ holds. It needs to be shown that $\sum_{i=0}^{n+1} i=\frac{(n+1)(n+2)}{2}$ also holds.

■ Indeed, observe that

$$
\begin{aligned}
& \sum_{i=0}^{n+1} i=\sum_{i=0}^{n} i+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)+2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Solutions II

(II.c) ■ Induction basis: Let $n_{0}=0$. Observe that

$$
6^{0+2}+7^{2 \cdot 0+1}=6^{2}+7^{1}=43 \text { and } 43=43 \cdot 1 .
$$

■ Induction step: Let $n \geq 0$ and suppose that $6^{n+2}+7^{2 n+1}$ is divisible by 43. It needs to be shown that $6^{n+3}+7^{2 n+3}$ is also divisible by 43 .
\square Indeed, observe that $6^{n+3}+7^{2 n+3}=6 \cdot 6^{n+2}+7^{2} \cdot 7^{2 n+1}$ $=6 \cdot 6^{n+2}+49 \cdot 7^{2 n+1}=6 \cdot 6^{n+2}+\left(43 \cdot 7^{2 n+1}+6 \cdot 7^{2 n+1}\right)$ $=\left(6 \cdot 6^{n+2}+6 \cdot 7^{2 n+1}\right)+43 \cdot 7^{2 n+1}=6 \cdot\left(6^{n+2}+7^{2 n+1}\right)+43 \cdot 7^{2 n+1}$. As 43 divides $43 \cdot 7^{2 n+1}$ and, by the inductive assumption, 43 divides $6^{n+2}+7^{2 n+1}$ and thus $6 \cdot\left(6^{n+2}+7^{2 n+1}\right)$, it is also the case that 43 divides $6 \cdot\left(6^{n+2}+7^{2 n+1}\right)+43 \cdot 7^{2 n+1}$.

Solutions III

(III.a)

- $B \cap C=\{a\}$
$\square A \times(B \cap C)=A \times\{a\}=\{(1, a),(2, a),(3, a)\}$

Solutions III

(III.b) \quad Let $z \in A \times C$.

- Then, there exists $x \in A$ and $y \in C$ such that $z=(x, y)$.

■ As $A \subseteq B$, it is the case that $x \in B$ too.
\square As $C \subseteq D$, it is the case that $y \in D$ too.
■ Consequently, $z=(x, y) \in B \times D$.

Solutions III

(III.c)

- First, it is shown that $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$.
\square Let $u \in A \times(B \cup C)$. Then, there exist $x \in A$ and $y \in B \cup C$ such that $u=(x, y)$.
- Since $y \in B \cup C$, it is the case that $y \in B$ or $y \in C$.
- Case 1: if $y \in B$, then $u=(x, y) \in A \times B$ and thus $u \in(A \times B) \cup(A \times C)$.
- Case 2: if $y \in C$, then $u=(x, y) \in A \times C$ and thus $u \in(A \times B) \cup(A \times C)$.
- Consequently, $u \in(A \times B) \cup(A \times C)$.
\square Secondly, it is shown that $(A \times B) \cup(A \times C) \subseteq A \times(B \cup C)$.
Let $v \in(A \times B) \cup(A \times C)$. Then, $v \in A \times B$ or $v \in A \times C$.
- Case 1: if $v \in A \times B$, then there exist $s \in A$ and $t \in B$ such that $v=(s, t)$. As $t \in B$ it also holds that $t \in B \cup C$. Hence, $v=(s, t) \in A \times(B \cup C)$.
- Case 2: if $v \in A \times C$, then there exist $s^{\prime} \in A$ and $t^{\prime} \in C$ such that $v=\left(s^{\prime}, t^{\prime}\right)$. As $t^{\prime} \in C$ it also holds that $t^{\prime} \in B \cup C$. Hence, $v=\left(s^{\prime}, t^{\prime}\right) \in A \times(B \cup C)$.
- Consequently, $v \in A \times(B \cup C)$.

Solutions IV

(IV.a) \quad Let $z \in \mathbb{Z}$, and consider $z-1 \in \mathbb{Z}$. As $f(z-1)=(z-1)+1=z$, and z was chosen arbitrarily, the function f is surjective.

■ Let $z, z^{\prime} \in \mathbb{Z}$ such that $f(z)=f\left(z^{\prime}\right)$. Then, $z+1=z^{\prime}+1$, thus $z=z^{\prime}$, and as z, z^{\prime} were chosen arbitrarily, the function f is injective.

- As the function f is surjective and injective, it is also bijective.

Solutions IV

(IV.b) ■ Note that $(1,1) \in \mathbb{Z} \times \mathbb{Z}$, but there exists no $z \in \mathbb{Z}$ such that $f(z)=(z, z+1)=(1,1)$. Thus, $(1,1) \notin f(\mathbb{Z})$, and the function f is consequently not surjective.

■ Let $z, z^{\prime} \in \mathbb{Z}$ such that $f(z)=f\left(z^{\prime}\right)$. Then, $(z, z+1)=\left(z^{\prime}, z^{\prime}+1\right)$, i.e. $z=z^{\prime}$ and $z+1=z^{\prime}+1$. As z, z^{\prime} were chosen arbitrarily, the function f is injective.

- As the function f is not both surjective and injective, it is also not bijective.

Solutions IV

(IV.c) \quad Let $a \in[f \circ f](A)$, i.e. there exists $a^{*} \in A$ such that $[f \circ f]\left(a^{*}\right)=a$, i.e. $f\left(f\left(a^{*}\right)\right)=a$.

■ Note that $f\left(a^{*}\right) \in A$ and define $a^{\prime}:=f\left(a^{*}\right)$.
\square As $a^{\prime} \in A$ and $f\left(a^{\prime}\right)=a$, it is the the case that $a \in f(A)$.

Solutions V

- The tables are both symmetric with regards to the diagonal, thus $i+j=j+i$ as well as $i \cdot j=j \cdot i$ hold for all $i, j \in \mathbb{F}_{2}$.
Consequently, + and • are commutative.
- Since

$$
\begin{aligned}
& 0+(0+0)=0=(0+0)+0 \text { und } 0 \cdot(0 \cdot 0)=0=(0 \cdot 0) \cdot 0 \\
& 0+(0+1)=1=(0+0)+1 \text { und } 0 \cdot(0 \cdot 1)=0=(0 \cdot 0) \cdot 1 \\
& 0+(1+0)=1=(0+1)+0 \text { und } 0 \cdot(1 \cdot 0)=0=(0 \cdot 1) \cdot 0 \\
& 0+(1+1)=0=(0+1)+1 \text { und } 0 \cdot(1 \cdot 1)=0=(0 \cdot 1) \cdot 1 \\
& 1+(0+0)=1=(1+0)+0 \text { und } 1 \cdot(0 \cdot 0)=0=(1 \cdot 0) \cdot 0 \\
& 1+(0+1)=0=(1+0)+1 \text { und } 1 \cdot(0 \cdot 1)=0=(1 \cdot 0) \cdot 1 \\
& 1+(1+0)=0=(1+1)+0 \text { und } 1 \cdot(1 \cdot 0)=0=(1 \cdot 1) \cdot 0 \\
& 1+(1+1)=1=(1+1)+1 \text { und } 1 \cdot(1 \cdot 1)=1=(1 \cdot 1) \cdot 1 .
\end{aligned}
$$

it follows that + and \cdot are associative.

Solutions V

■ Since

$$
\begin{aligned}
& 0 \cdot(0+0)=0=0 \cdot 0+0 \cdot 0 \quad \text { und } \quad(0+0) \cdot 0=0=0 \cdot 0+0 \cdot 0 \\
& 0 \cdot(0+1)=0=0 \cdot 0+0 \cdot 1 \quad \text { und } \quad(0+0) \cdot 1=0=0 \cdot 1+0 \cdot 1 \\
& 0 \cdot(1+0)=0=0 \cdot 1+0 \cdot 0 \quad \text { und } \quad(0+1) \cdot 0=0=0 \cdot 0+1 \cdot 0 \\
& 0 \cdot(1+1)=0=0 \cdot 1+0 \cdot 1 \quad \text { und } \quad(0+1) \cdot 1=1=0 \cdot 1+1 \cdot 1 \\
& 1 \cdot(0+0)=0=1 \cdot 0+1 \cdot 0 \quad \text { und }(1+0) \cdot 0=0=1 \cdot 0+0 \cdot 0 \\
& 1 \cdot(0+1)=1=1 \cdot 0+1 \cdot 1 \quad \text { und } \quad(1+0) \cdot 1=1=1 \cdot 1+0 \cdot 1 \\
& 1 \cdot(1+0)=1=1 \cdot 1+1 \cdot 0 \quad \text { und } \quad(1+1) \cdot 0=0=1 \cdot 0+1 \cdot 0 \\
& 1 \cdot(1+1)=0=1 \cdot 1+1 \cdot 1 \quad \text { und }(1+1) \cdot 1=0=1 \cdot 1+1 \cdot 1 .
\end{aligned}
$$

it follows that the laws of distributivity hold.
■ Note that $0+0=0$ and $0+1=1$. Thus, there exists a + -netural element which is 0 .

■ Note that $1 \cdot 0=0$ and $1 \cdot 1=1$. Thus, there exists a $\cdot-$ netural element which is 1 .

Solutions V

■ It is the case that $0+0=0$ as well as $1+1=0$, i.e. 0 is inverse to 0 and 1 is inverse to 1 .

■ Consequently, every element is +-invertible.

■ The only element distinct from the + -netural element (i.e. 0) is 1 and as $1 \cdot 1=1$ holds it follows that 1 is inverse to 1 .

■ Consequently, every element distinct from the +-netural element is --invertible.

■ It can now be concluded that the triple $\left(\mathbb{F}_{2},+, \cdot\right)$ indeed constitutes a field.

