Strict Dominance

Pearce's Lemma

ECON813 Game Theory Part A: Interactive Reasoning and Choice Topic 1 Rationality

Christian W. Bach

University of Liverpool & EPICENTER

ECON813 Game Theory Part A: T1 Rationality

□ ▷ 《 @ ▷ 《 볼 ▷ 《 볼 ▷ ○ Q 《 http://www.epicenter.name/bach

Strict Dominance

Pearce's Lemma

Welcome to the Course

- Lecturer: Christian Bach
- Website: www.epicenter.name/bach
- Email: cwbach@liv.ac.uk
- Office hours: Thursdays at ULMS-CR2, 3.30pm-5pm
- Questions or Comments always welcome!

Program

- ECON813 Game Theory Part A
 - Weeks 1–5 run by CW Bach
 - Topic 1 Rationality (T1)
 - Topic 2: Common Belief in Rationality (T2)
 - Topic 3: Correct Beliefs (T3)

- ECON813 Game Theory Part B
 - Weeks 7–11 run by M Lombardi
 - Topics to be announced

э

(日)

Organization of Part A (Weeks 1–5)

Lectures

- Four ≈90min Lectures on Campus: Thursdays, 9am-11am, BROD-106 in weeks 1, 2, 3, and 4
- Four accompanying Video Podcasts streamable on Canvas

Seminars

- Two ≈50min Seminars on Campus: Thursdays, 1pm-2pm, ULMS-SR3 in weeks 3 and 4
- Please attempt the questions by yourself first!
- Required Background Reading

Assessment

- MID-TERM in week 5:
 - 60min test (on campus; closed-book)
 - Topics covered: all of Part A
 - worth 20% of the final grade
- **EXAM** in the January examination period:
 - 120min exam (on campus; closed-book)
 - Topics covered: all of Part A and all of Part B
 - worth 80% of the final grade

(日)

Introduction

Rationality

Strict Dominance

Pearce's Lemma

The Book: Perea (2012)

ECON813 Game Theory Part A: T1 Rationality

http://www.epicenter.name/bach

크

Strict Dominance

Pearce's Lemma

Required Background Reading in Perea (2012)

- Chapter 1: Introduction
- Chapter 2: Belief in the Opponents' Rationality
- Chapter 3: Common Belief in Rationality
- Chapter 4: Simple Belief Hierarchies

Strict Dominance

Pearce's Lemma

Two Approaches to Game Theory

- In interactive situations ("games") an agent must make a decision, while knowing that the outcome will not only depend on his choice, but also on the choices of other agents.
- Fundamental question: What choices are plausible & why?
- In classical game theory a unique answer is sought by refining the solution concept of NASH EQUILIBRIUM.
 - "towards a single universal solution concept across agents and interactive situations"
- The more recent discipline of epistemic game theory focusses on REASONING and admits different possible answers.
 - "endorsing the heterogenity/diversity of agents and interactive situations"
- Characterization results link the two approaches to game theory.

Rationality as a Point of Departure

- Intuitively, in a game an agent makes a choice that he thinks will yield the best outcome to him.
- It is thus crucial what an agent believes his opponents to do.
- In epistemic game theory indeed beliefs become the central objects and some intuitive notions can be defined with them.
- A choice is called optimal for an agent, if it yields the best outcome given his belief about his opponents' choices.
- A choice is then said to be rational, if it is optimal for some belief about his opponents' choices.
- Rationality typically serves as the primitive, based on which various reasoning concepts are constructed.

Example: Going to a Party

Story:

- Alice and Bob are going together to a party tonight.
- Alice asks herself what colour she should wear.
- Alice prefers blue to green, green to red, and red to yellow.
- However, *Alice* dislikes most to wear the same colour as *Bob*.
- Let Alice's utilities be given as follows:
 - blue: 4
 - **green:** 3
 - **red:** 2
 - **yellow:** 1
 - same colour as Bob: 0
- Question: Which colours can Alice rationally choose for tonight's party?

A (10) A (10) A (10)

Strict Dominance

Pearce's Lemma

Example: Going to a Party

- Blue is optimal for Alice, if she believes Bob to pick any other colour than blue.
- Green is optimal for *Alice*, if she believes *Bob* to pick *blue*.
- Red is optimal for Alice, if she believes that with probability 0.6 Bob chooses blue and with probability 0.4 Bob chooses green.
 - Given this belief Alice gets 1.6 from blue and 1.8 from green and 1 from yellow

■ The colours *blue*, *green*, and *red* are therefore **rational** for *Alice*.

Strict Dominance

Pearce's Lemma

Example: Going to a Party

- What about the colour <u>yellow</u>?
- To see that there is actually no belief such that <u>yellow</u> is optimal for Alice distinguish two exhaustive cases.
- Case 1: Suppose Alice's belief assigns probability of less than 0.5 to Bob choosing blue. Then, Alice expects utility of at least 2 from blue, hence yellow is not optimal.
- Case 2: Suppose Alice's belief assigns probability of at least 0.5 to Bob choosing blue. Then, Alice expects utility of at least 1.5 from green, hence yellow is not optimal.
- Therefore, *yellow* is **irrational** for *Alice*.

Outline

Rationality

Strict Dominance

Pearce's Lemma

Rationality

Strict Dominance

Pearce's Lemma

ECON813 Game Theory Part A: T1 Rationality

< □ > < □ > < □ > < □ > < □ >

RATIONALITY

ECON813 Game Theory Part A: T1 Rationality

http://www.epicenter.name/bach

Strict Dominance

Pearce's Lemma

Games

Definition 1

A static game is a tuple

$$\Gamma = \left(I, (C_i, U_i)_{i \in I} \right),\,$$

where

- I denotes the finite set of *players*,
- C_i denotes the finite set of *choices* of player *i*,
- $U_i : \times_{j \in I} C_j \rightarrow \mathbb{R}$ denotes the *utility function* of player *i*.

э.

<ロ> <同> <同> < 同> < 同> < 同> <

Beliefs

Rationality

Strict Dominance

Pearce's Lemma

Definition 2

Let S be some space of uncertainty. A belief

 $p: S \rightarrow [0; 1]$

is a probability measure on S.

ECON813 Game Theory Part A: T1 Rationality

3

Strict Dominance

Pearce's Lemma

Conjectures

Definition 3

Let Γ be a static game, and *i* be a player. A *conjecture* for player *i* is a belief

$$\beta_i: C_{-i} \to [0;1]$$

about his opponents' choices, where $C_{-i} := \times_{j \in I \setminus \{i\}} C_j$.

Strict Dominance

Pearce's Lemma

Expected utility

Definition 4

Let Γ be a static game, and *i* be a player with utility function U_i . Suppose that player *i* entertains conjecture β_i and chooses c_i . The *expected utility* for player *i* is

$$u_i(c_i,\beta_i) := \sum_{c_{-i}\in C_{-i}} \beta_i(c_{-i}) \cdot U_i(c_i,c_{-i}),$$

where $(c_i, c_{-i}) := (c_1, ..., c_n) \in \times_{j \in I} C_j$.

3

Optimality

Rationality ○○○○○●○○○ Strict Dominance

Pearce's Lemma

Definition 5

Let Γ be a static game, and *i* be a player with utility function U_i . Suppose that player *i* entertains conjecture β_i . A choice c_i for player *i* is *optimal* given conjecture β_i , if

$$u_i(c_i,\beta_i) \geq u_i(c'_i,\beta_i)$$

holds for all choices $c'_i \in C_i$ of player *i*.

Strict Dominance

Pearce's Lemma

Rationality

Definition 6

Let Γ be a static game, and *i* be a player with utility function U_i . A choice c_i for player *i* is *rational*, if there exists a conjecture β_i such that c_i is optimal.

ECON813 Game Theory Part A: T1 Rationality

Introduction

Rationality

Strict Dominance

Pearce's Lemma

Illustration

All three choices for *Alice* are **rational**.

- *U* is optimal for *Alice*, if she believes *Bob* to choose *L*.
- *M* is optimal for *Alice*, if she believes *Bob* to choose *R*.
- D is optimal for Alice, if she believes with probability 0.5 Bob to choose L and with probability 0.5 Bob to choose R.

A (10) A (10)

Introduction

Strict Dominance

Pearce's Lemma

Illustration

Only choice *a* is **rational** for *Alice*.

- For instance, a is optimal for Alice, if she believes Bob to choose c.
- However, b is not optimal for Alice for any belief about Bob's choices: both against c as well as against d and thus also against all convex combinations of c and d choice a is better.

< 同 > < 三 > <

Strict Dominance

Pearce's Lemma

STRICT DOMINANCE

ECON813 Game Theory Part A: T1 Rationality

http://www.epicenter.name/bach

A D N A D N A D N A D

Strict Dominance

Pearce's Lemma

Randomizing

Definition 7

Let Γ be a static game, and *i* be a player. A *mixed choice* for player *i* is a probability measure

$$r_i: C_i \to [0;1]$$

over the set C_i of player *i*'s choices

Remark:

- It seems unnatural that people randomize when taking serious decisions.
- In epistemic game theory it is typically assumed that players make definite decisions also called pure choices – and so do we.
- However, mixed choices are still used as technical tools for identifying the rational (pure) choices in games.

A (10) A (10)

Strict Dominance

Pearce's Lemma

Utility with randomizing

Definition 8

Let Γ be a static game, and *i* be a player with utility function U_i . Suppose that player *i* chooses r_i , and that his opponents choose according to c_{-i} . The *randomizing-utility* for player *i* is

$$V_i(r_i,c_{-i}) := \sum_{c_i \in C_i} r_i(c_i) \cdot U_i(c_i,c_{-i}).$$

Strict Dominance

Pearce's Lemma

Expected utility with randomizing

Definition 9

Let Γ be a static game, and *i* be a player with utility function U_i . Suppose that player *i* entertains conjecture β_i and chooses r_i . The *expected randomizing-utility* for player *i* given conjecture β_i is

$$v_i(r_i,\beta_i) := \sum_{c_{-i}\in C_{-i}}\beta_i(c_{-i})\cdot V_i(r_i,c_{-i})$$

$$=\sum_{c_{-i}\in C_{-i}}\beta_i(c_{-i})\cdot\Big(\sum_{c_i\in C_i}r_i(c_i)\cdot U_i(c_i,c_{-i})\Big).$$

ECON813 Game Theory Part A: T1 Rationality

http://www.epicenter.name/bach

Strict Dominance

Pearce's Lemma

Conceptual Interlude: Randomizing is not Necessary

- Indifference Principle: if a mixed choice is optimal for some conjecture, then the expected utilities of all pure choices in its support are identical.
- Intuition: if the support contains two pure choices with distinct expected utilites, then the player could improve by reassigning weight from the "weaker" pure choice to the "stronger" one.
- The Indifference Principle implies that, if a mixed choice is optimal for some conjecture, then its expected randomizing-utility equals the expected utility of any pure choice in its support.
- In this sense, a player cannot gain anything from randomizing.
- Phrased differently, picking a mixed choice can never be superior to all pure choices.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Introduction

Rationality

Strict Dominance

Pearce's Lemma

Indifference Principle

Theorem 10 (Indifference Principle)

Let Γ be a static game, *i* be a player, β_i be a conjecture of player *i*, and r_i be a mixed choice for player *i* that is optimal. Then,

$$u_i(c_i,\beta_i)=u_i(c'_i,\beta_i)$$

for all $c_i, c'_i \in supp(r_i)$.

(日)

Introduction	

Proof

- Towards a contradiction, suppose that there exists $c_i, c'_i \in \text{supp}(r_i)$ such that $u_i(c_i, \beta_i) \neq u_i(c'_i, \beta_i)$, and without loss of generality that $u_i(c_i, \beta_i) > u_i(c'_i, \beta_i)$.
- Define a mixed strategy $r_i^* : C_i \to [0, 1]$ for player *i* as follows:

$$r_i^*(c_i'') = \begin{cases} r_i(c_i'') & \text{if } c_i'' \not\in \{c_i, c_i'\}, \\ 0 & \text{if } c_i'' = c_i', \\ r_i(c_i) + r_i(c_i') & \text{if } c_i'' = c_i. \end{cases}$$

Observe that

$$\begin{aligned} v_{i}(r_{i}^{*},\beta_{i}) &= \sum_{c_{i}^{\prime\prime} \in C_{i}} r_{i}^{*}(c_{i}^{\prime\prime}) \cdot u_{i}(c_{i}^{\prime\prime},\beta_{i}) \\ &= \left(\sum_{c_{i}^{\prime\prime} \in C_{i} \setminus \{c_{i},c_{i}^{\prime}\}} r_{i}(c_{i}^{\prime\prime}) \cdot u_{i}(c_{i}^{\prime\prime},\beta_{i})\right) + \left(r_{i}(c_{i}) + r_{i}(c_{i}^{\prime})\right) \cdot u_{i}(c_{i},\beta_{i}) + 0 \cdot u_{i}(c_{i}^{\prime},\beta_{i}) \\ &> \left(\sum_{c_{i}^{\prime\prime} \in C_{i} \setminus \{c_{i},c_{i}^{\prime}\}} r_{i}(c_{i}^{\prime\prime}) \cdot u_{i}(c_{i}^{\prime\prime},\beta_{i})\right) + r_{i}(c_{i}) \cdot u_{i}(c_{i},\beta_{i}) + r_{i}(c_{i}^{\prime}) \cdot u_{i}(c_{i}^{\prime},\beta_{i}) \\ &= \sum_{c_{i}^{\prime\prime} \in C_{i}} r_{i}(c_{i}^{\prime\prime}) \cdot u_{i}(c_{i}^{\prime\prime},\beta_{i}) = v_{i}(r_{i},\beta_{i}) \end{aligned}$$

which contradicts the optimality of r_i.

J

Strict Dominance

Pearce's Lemma

A Consequence of the Indifference Principle

Corollary 11

Let Γ be a static game, *i* be a player, β_i a conjecture of player *i*, and r_i be a mixed choice for player *i* that is optimal given conjecture β_i . Then,

$$v_i(r_i,\beta_i)=u_i(c_i,\beta)$$

for all $c_i \in supp(r_i)$.

Introduction	

Strict Dominance

Pearce's Lemma

Proof

- By Theorem 10, it follows that $u_i(c'_i, \beta_i) = u_i(c''_i, \beta_i)$ for all $c'_i, c''_i \in \text{supp}(r_i)$.
- Hence, there exists $a \in \mathbb{R}$ such that $u_i(c_i, \beta_i) = a$ for all $c_i \in \text{supp}(r_i)$.
- It then follows that

$$\begin{aligned} \mathsf{v}_i(r_i,\beta_i) &= \sum_{c_i \in C_i} r_i(c_i) \cdot u_i(c_i,\beta_i) = \left(\sum_{c_i \in \mathsf{supp}(r_i)} r_i(c_i) \cdot u_i(c_i,\beta_i)\right) + 0 \\ &= \sum_{c_i \in \mathsf{supp}(r_i)} r_i(c_i) \cdot a = a \cdot \sum_{c_i \in \mathsf{supp}(r_i)} r_i(c_i) = a \cdot 1 = a. \end{aligned}$$

Therefore, $v_i(r_i, \beta_i) = u_i(c_i, \beta_i)$ for all $c_i \in \text{supp}(r_i)$.

3

Strict Dominance

Pearce's Lemma

The Classical Solution Concept of Strict Dominance

Definition 12

Let Γ be a static game, and *i* be a player. A choice c_i for player *i* is *strictly dominated*, if there exists some mixed choice $r_i \in \Delta(C_i)$ of player *i* such that

$$U_i(c_i, c_{-i}) < V_i(r_i, c_{-i})$$

holds for every opponents' choice combination $c_{-i} \in C_{-i}$.

- A special pure case of strict dominance occurs, if r_i only assigns positive probability to a unique pure choice, say \hat{c}_i , i.e. $r_i(\hat{c}_i) = 1$.
- Then, it is also said that c_i is strictly dominated by \hat{c}_i .

3

< 回 > < 回 > < 回 >

Example: Going to a Party

■ Neither *blue*, nor *green*, nor *red* are strictly dominated for *Alice*:

- $U_{Alice}(blue, green) \ge U_{Alice}(c_{Alice}, green)$ for all $c_{Alice} \in \{blue, green, red, yellow\},$
- $U_{Alice}(green, blue) \ge U_{Alice}(c_{Alice}, blue)$ for all $c_{Alice} \in \{blue, green, red, yellow\},$
- U_{Alice}(red, blue) > U_{Alice}(blue, blue),
 U_{Alice}(red, green) > U_{Alice}(green, green), and
 U_{Alice}(red, yellow) > U_{Alice}(yellow, yellow), thus no pure choice of Alice is better than red against all of Bob's ones.

vellow is strictly dominated by $0.5 \cdot blue + 0.5 \cdot green$ for Alice, as

 $U_{Alice}(yellow, c_{Bob}) < V_{Alice}(0.5 \cdot blue + 0.5 \cdot green, c_{Bob})$

for all $c_{Bob} \in \{blue, green, red, yellow\}$.

• Hence, $SD_{Alice} = \{ blue, green, red \}$.

(日)

PEARCE'S LEMMA

ECON813 Game Theory Part A: T1 Rationality

http://www.epicenter.name/bach

Introduction

Rationality

Strict Dominance

Pearce's Lemma

A Characterization of Rationality (Pearce, 1986)

Pearce's Lemma:

The rational choices in a static game are exactly those choices that are not strictly dominated.

ECON813 Game Theory Part A: T1 Rationality

Strict Dominance

Application

Four ways to rationality:

Identify all rational choices:

find a conjecture such that the respective choice is optimal.

2

Identify all irrational choices: show that the respective choice is not optimal for any conjecture.

- 3 Identify all choices that are not strictly dominated: show that there exists no randomized choice such that for all opponents' choice-combination it is better than the respective choice.
- 4 Identify all choices that are strictly dominated: show that the respective choice fares worse than some mixed choice (or some other pure choice) for all opponents' choice-combinations.

Note:

- For rational choices it is often easier to find a supporting belief.
- For irrational choices it is often easier to show strict dominance.

(日)

Strict Dominance

Pearce's Lemma

A basic lemma

Lemma 13

Let *I* be some index set, $0 \le \alpha_i \le 1$ for all $i \in I$ such that $\sum_{i \in I} \alpha_i = 1$, $x \in \mathbb{R}$, and $y_i \in \mathbb{R}$ for all $i \in I$. If

$$x < \sum_{i \in I} \alpha_i y_i,$$

then there exists $i^* \in I$ such that

 $x < y_{i^*}$.

Proof:

By contraposition, suppose that $x \ge y_i$ for all $i \in I$.

Then,
$$\alpha_i x \ge \alpha_i y_i$$
 holds for all $i \in I$.

• It directly follows that $1 \cdot x = \sum_{i \in I} \alpha_i x \ge \sum_{i \in I} \alpha_i y_i$.

Strict Dominance

Pearce's Lemma

Connecting Strict Dominance to Conjectures

Lemma 14

If a choice c_i is strictly dominated by r_i , then

 $u_i(c_i,\beta_i) < v_i(r_i,\beta_i)$

for all conjectures $\beta_i \in \Delta(C_{-i})$.

Proof:

- By definition of strict dominance, $U_i(c_i, c_{-i}) < V_i(r_i, c_{-i})$ holds for all $c_{-i} \in C_{-i}$.
- Let β_i ∈ Δ(C_{−i}) be some conjecture of player i.
- Then,

$$\beta_i(c'_{-i}) \cdot U_i(c_i, c'_{-i}) < \beta_i(c'_{-i}) \cdot V_i(r_i, c'_{-i}) \text{ for all } c'_{-i} \in \text{supp}(\beta_i),$$

and

$$\beta_i(c'_{-i}) \cdot U_i(c_i, c'_{-i}) = 0 = \beta_i(c'_{-i}) \cdot V_i(r_i, c'_{-i}) \text{ for all } c'_{-i} \notin \text{supp}(\beta_i).$$

- Note that $\{c'_{-i} \in C_{-i} : c'_{-i} \in \operatorname{supp}(\beta_i)\} \cup \{c'_{-i} \in C_{-i} : c'_{-i} \notin \operatorname{supp}(\beta_i)\} = C_{-i}$.
- Hence, $u_i(c_i, \beta_i) = \sum_{c_{-i} \in C_{-i}} \beta_i(c_{-i}) \cdot U_i(c_i, c_{-i}) < \sum_{c_{-i} \in C_{-i}} \beta_i(c_{-i}) \cdot V_i(r_i, c_{-i}) = v_i(r_i, \beta_i).$

Introduction

Rationality

Strict Dominance

Pearce's Lemma

Pearce's Lemma

Theorem 15 (Pearce's Lemma)

Let Γ be a static game, *i* be a player, and c_i be a choice of player *i*.

 c_i is rational, if and only if, c_i is not strictly dominated.

ECON813 Game Theory Part A: T1 Rationality

http://www.epicenter.name/bach

-

(日)

Epistemic Characterizations of Solution Concepts

EPISTEMIC CHARACTERIZATIONS of (classical) of solution concepts

 $EPCO \Leftrightarrow SC$

have two directions:

- Epistemic Foundation: if agents satisfy certain epistemic conditions, then they play in line with the corresponding solution concept.
- Existence: if agents play according to some solution concept, then their behavior can be supported by the corresponding epistemic conditions.

Strict Dominance

Pearce's Lemma

Proof for: Only If **Direction (Epistemic Foundation)** "Rational Implies Not Strictly Dominated"

- Let c_i be strictly dominated by r_i.
- Lemma 14 then implies that

$$u_i(c_i, \beta_i) < v_i(r_i, \beta_i)$$

holds for all conjectures $\beta_i \in \Delta(C_{-i})$.

Observe that by associativity, commutativity, and distributivity it follows that

$$\begin{aligned} v_i(r_i, \beta_i) &= \sum_{c_{-i} \in C_{-i}} \beta_i(c_{-i}) \cdot \Big(\sum_{c'_i \in C_i} r_i(c'_i) \cdot U_i(c'_i, c_{-i})\Big) \\ &= \sum_{c'_i \in C_i} r_i(c'_i) \cdot \Big(\sum_{c_{-i} \in C_{-i}} \beta_i(c_{-i}) \cdot U_i(c'_i, c_{-i})\Big) \\ &= \sum_{c'_i \in C_i} r_i(c'_i) \cdot u_i(c'_i, \beta_i). \end{aligned}$$

Hence,

$$u_i(c_i, \beta_i) < \sum_{c'_i \in C_i} r_i(c'_i) \cdot u_i(c'_i, \beta_i)$$

holds for all conjectures $\beta_i \in \Delta(C_{-i})$.

Strict Dominance

Pearce's Lemma

Proof for: Only If Direction (Epistemic Foundation) "Rational Implies Not Strictly Dominated"

• Let $\hat{\beta}_i \in \Delta(C_{-i})$ be some conjecture.

• As $0 \le r_i(c'_i) \le 1$ for all $c'_i \in C_i$, the inequality

$$u_i(c_i, \hat{\beta}_i) < \sum_{c_i' \in C_i} r_i(c_i') \cdot u_i(c_i', \hat{\beta}_i)$$

implies – by Lemma 13 – that there exists some choice $\hat{c}_i \in C_i$ such that $u_i(c_i, \hat{\beta}_i) < u_i(\hat{c}_i, \hat{\beta}_i)$.

Therefore, c_i cannot be optimal given conjecture $\hat{\beta}_i$.

As this conjecture $\hat{\beta}_i$ has been chosen arbitrarily, c_i cannot be optimal for any conjecture and thus is irrational.

- BACH, C. W. AND PEREA, A. (2020): Incomplete Information and Iterated Strict Dominance. Oxford Economic Papers, gpz075, https://doi.org/10.1093/oep/gpz075.
- PEARCE, D. (1984): Rationalizable Strategic Behavior and the Problem of Perfection. *Econometrica* 52, 1029–1050.
- PEREA, A. (2012): Epistemic Game Theory: Reasoning and Choice. Cambridge University Press.