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Welcome to the Maths Crammer

Objective: deepending & extending your knowledge of
Mathematics and Statistics.

The Maths Crammer is divided into three parts:

Part A: PURE MATHEMATICS
(taught by: CW Bach)

Part B: REAL ANALYSIS
(taught by: RR Routledge)

Part C: STATISTICS
(taught by: G Liu-Evans)
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Set-Up

ULMS055 is asynchronous and self-study based.

Ideally, you work through the material before the semester starts.
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Organization

The lecture podcasts for each of the three parts are available on
the ULMS055 Canvas page.

Exercises are also posted on Canvas together with solutions.

It is crucial that you first attempt the exercises questions by
yourself before reading the provided solutions.
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Part A: Lecturer

Lecturer of Part A: Christian Bach

Website: www.epicenter.name/bach

Email: cwbach@liv.ac.uk

Office hours: Thursdays at ULMS-CR2, 3.30pm-5pm

Questions or Comments always welcome!
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Part A: Program

Logic

Proofs

Product Sets

Functions

Fields
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LOGIC
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Propositions

A proposition is a statement that can be true or false.

Atomic propositions are non-decomposible statements.
Examples: “It is raining in London”,

∑n
k=1(4k − 2) = 2n2

Compound propositions contain logical connectives.
Note that propositions in general are typically denoted by
greek letters (e.g. φ,ψ, . . .), while atomic propositions are
typically denoted by roman letters (e.g. P,Q, . . .).

Logical connectives: ¬, ∧, ∨, →, ↔
If φ is a proposition, then ¬φ is a proposition.
If φ and ψ are propositions, then φ ∧ ψ is a proposition.
If φ and ψ are propositions, then φ ∨ ψ is a proposition .
If φ and ψ are propositions, then φ→ ψ is a proposition .
If φ and ψ are propositions, then φ↔ ψ is a proposition .
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Truth-Values

A model assigns a unique truth-value (T or F) to every atomic
proposition.

For every model, the truth-values for compound propositions are
defined in terms of the truth-values of their compounds.
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Negation

Let φ be some proposition.

The negation of φ is denoted by ¬φ.

The truth-values of ¬φ are defined in terms of φ as follows.

φ ¬φ
T F
F T
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Conjunction

Let φ and ψ be propositions.

The conjunction of φ and ψ is denoted by φ ∧ ψ.

The truth-values of φ ∧ ψ are defined in terms of φ and ψ as
follows.

φ ψ φ ∧ ψ
T T T
T F F
F T F
F F F
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Disjunction

Let φ and ψ be propositions.

The disjunction of φ and ψ is denoted by φ ∨ ψ.

The truth-values of φ ∨ ψ are defined in terms of φ and ψ as
follows.

φ ψ φ ∨ ψ
T T T
T F T
F T T
F F F
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Implication

Let φ and ψ be propositions.

The proposition that φ implies ψ is denoted by φ→ ψ, where φ
is called antecedent and ψ is called consequent.

The truth-values of φ→ ψ are defined in terms of φ and ψ as
follows.

φ ψ φ→ ψ
T T T
T F F
F T T
F F T
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Equivalence

Let φ and ψ be propositions.

The equivalence of φ and ψ is denoted by φ↔ ψ.

The truth-values of φ↔ ψ are defined in terms of φ and ψ as
follows.

φ ψ φ↔ ψ
T T T
T F F
F T F
F F T
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Logical Equivalence

Definition 1
Let φ and ψ be propositions. φ and ψ are called logically equivalent, if
they have the same truth values in every model.

Example.
φ→ ψ is logically equivalent to (¬ψ) → (¬φ).

φ ψ φ→ ψ ¬ψ ¬φ (¬ψ) → (¬φ)
T T T F F T
T F F T F F
F T T F T T
F F T T T T
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PROOFS
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Mathematical Proofs

Generally, all mathematical propositions are
“if-then-statements”.

In a proof, the consequent is derived from the antecedent and
possibly further known truths by the laws of logic.

Unfortunately, there exists no fixed procedure of how to conduct
a proof.

However, there are some techniques that can be helpful.
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Principle of Induction

The principle of induction can be helpful, whenever properties
have to be shown to hold for all natural numbers.

Let n0 ∈ N0 = {0, 1, 2, . . .} be some natural number, and A(n) be
some proposition for all n ≥ n0.

Induction basis: show that A(n0) holds.

Induction step: for all n ≥ n0 show that, if A(n) holds, then
A(n + 1) also holds.

Principle of induction: Then, A(n) holds for all n ≥ n0.

Intuition: if A(n0) is true, and if for all n ≥ n0 the truth of A(n)
implies the truth of A(n + 1), then via the chain

A(n0) → A(n0 + 1) → A(n0 + 2) → . . .

the truth of A(n) obtains for all n ≥ n0.
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Example
Assertion:∑n

i=1(i + 1)i = 1
3 n(n + 1)(n + 2) for all n ≥ 1.

Proof:

Induction basis: Let n0 = 1. Observe that
∑1

i=1(i + 1)i = 2 · 1 = 2
and 1

3 · 1 · 2 · 3 = 2.

Induction step: Let n ≥ 1 and suppose that∑n
i=1(i + 1)i = 1

3 n(n + 1)(n + 2) holds. It needs to be shown that∑n+1
i=1 (i + 1)i = 1

3 (n + 1)(n + 2)(n + 3) also holds.

Observe that
∑n+1

i=1 (i + 1)i =
(∑n

i=1(i + 1)i
)
+ (n + 2)(n + 1)

= 1
3 n(n + 1)(n + 2) + (n + 2)(n + 1) = ( 1

3 n + 1)(n + 1)(n + 2)
= 1

3 (n + 3)(n + 1)(n + 2).
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Direct Proofs

The general structure of a proposition to be proven is A → B.

In a direct proof, the antecedent A is assumed to be true, and
the consequent B is then derived.

Note that equivalence propositions A ↔ B are logically
equivalent to (A → B) ∧ (B → A).

To establish A ↔ B a proof can thus be split into first proving
A → B, and then proving B → A.
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Proof by Contraposition

Recall that A → B is logically equivalent to (¬B) → (¬A).

In order to prove A → B, it is thus possible to assume that ¬B
holds, and to then derive ¬A.
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Proof by Contradiction (Indirect Proof)

Recall that the implication A → B is only false, whenever the
antecedent A is true and the consequent B is false.

Intuition: “With the laws of logic it is not possible to deduce a
falsehood from a truth.”

Suppose A is true and B is false: If a contradiction can be
derived, one of the two assumptions must be false, and hence
A → B be true.
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Circular Proof

Sometimes statements of the following form need to be proven:

”If A holds, then the statements (i), (ii), and (iii) are equivalent“

It suffices to prove (i) → (ii), (ii) → (iii), and (iii) → (i).

By following the proven implications in an appropriate way, every
implication between the three statements is established (by
transitivity).
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PRODUCT SETS
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Product Sets

Definition 2
Let M and N be non-empty sets. The set

M × N := {(m, n) : m ∈ M, n ∈ N}

is called product set of M and N, where (m, n) is called ordered pair.

Two ordered pairs (m, n) and (m′, n′) are equal, whenever m = m′ and
n = n′.
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Illustration

Consider the sets M = {Alice,Bob,Claire} and N = {0, 1}.

The product set of M and N is

M×N = {(Alice, 0), (Bob, 0), (Claire, 0), (Alice, 1), (Bob, 1), (Claire, 1)}.
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Illustration

The product set R× R and the ordered pair (a, b) ∈ R× R
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Illustration

Let M = {x ∈ R : a ≤ x ≤ b} and N = {x ∈ R : c ≤ x ≤ d}, where
a, b, c, d ∈ R, be intervals in R.

The product set M × N can then be represented by the following
rectangle
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FUNCTIONS
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Functions

Definition 3
Let M and N be sets. A subset f ⊆ M × N of the product set M × N is
called function from M to N, whenever the following two properties
hold.

1 For all m ∈ M there exists n ∈ N such that (m, n) ∈ f .

2 If (m, n) ∈ f and (m, n′) ∈ f , then n = n′.

Example: The product set

f = {(x, x2) : x ∈ R} ⊆ R× R

is a function from R to R.
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Notation

If f ⊆ M × N is a function, this is denoted by f : M → N.

M is called domain of f , and N is called codomain of f .

For every m ∈ M, the unique n ∈ N such that (m, n) ∈ f is also
denoted by f (m).

Every m ∈ M is also said to be mapped to f (m), denoted as
m 7→ f (m).
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Identical Functions

Definition 4
Let f : M → N and g : M′ → N′ be functions. The two functions f and
g are identical, whenever the following three properties hold.

1 M = M′

2 N = N′

3 f (m) = g(m) for all m ∈ M
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Image

Definition 5
Let f : M → N be a function, and m ∈ M be some element in the
domain M. The element f (m) ∈ N in the codomain N is called image
of m under f . The set

f (M) := {n ∈ N : There exists m ∈ M such that f (m) = n} ⊆ N

is called image of f .

Consider the function f (x) = x2 for all x ∈ R.

For instance, the image of 2 under f is 4, since f (2) = 22 = 4.

Note that f (R) = R+
0 .
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Pre-Image

Definition 6
Let f : M → N be a function, n ∈ N be some element in the codomain
of f , and B ⊆ N be some subset of the codomain of f . Every m ∈ M
such that f (m) = n is called a pre-image of n under f . The set

f−1(B) = {m ∈ M : f (m) ∈ B} ⊆ M

is called pre-image of B under f .

Note that f−1(N) = M holds for every function.

Consider the function f (x) = x2 for all x ∈ R.

For instance, the pre-image of {0} ⊆ N is f−1({0}) = {0}, the
pre-image of {y} with y > 0 is f−1({y}) = {−√

y,
√

y}, and the
pre-image of {y} with y < 0 is f−1({y}) = ∅.
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Observation

Let f : M → N be a function.

Every element m ∈ M of the domain has a unique image under f .

It is possible that there exist elements n ∈ N of the codomain
such that n /∈ f (M).

If n ∈ f (M), then it is possible that there exist m,m′ ∈ M such that
m ̸= m′ and m,m′ ∈ f−1({n}).
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Surjection, Injection, and Bijections

Definition 7
Let f : M → N be a function.

f is called surjective, whenever f (M) = N.

f is called injective, whenever, for all m,m′ ∈ M, if m ̸= m′, then
f (m) ̸= f (m′).

f is called bijective, whenever f is surjective as well as injective.

A function is thus surjective, whenever every element in the
codomain N also lies in the image f (M) of f .

A function is thus injective, whenever every element in the image
f (M) of f has a unique pre-image under f .
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Surjection

Proofs

To prove that f : M → N is surjective, consider an arbitrary
element n ∈ N, and give an element m ∈ M such that f (m) = n.

To prove that f : M → N is not surjective, give an element n ∈ N
such that n /∈ f (M).

Examples

Consider f : R× R → R such that f
(
(x, y)

)
= x + y for all

(x, y) ∈ R× R. Let z ∈ R, and consider (0, z) ∈ R× R. As
f
(
(0, z)

)
= 0 + z = z, the function f is surjective.

Consider g : N → Z such that g(n) = −n for all n ∈ N. As 0 ∈ Z
but 0 /∈ g(N), the function g is not surjective.
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Injection
Proofs

To prove that f : M → N is injective, suppose that there exist
m,m′ ∈ M such that f (m) = f (m′). Derive from the equality
f (m) = f (m′) that m = m′.

To prove that f : M → N is not injective, give two elements
m1,m2 ∈ M such that m1 ̸= m2 and f (m1) = f (m2).

Examples

Consider g : N → Z such that g(n) = −n for all n ∈ N. Suppose
that there exist m,m′ ∈ N such that g(m) = g(m′). It follows that
−m = −m′, i.e. m = m′. Hence, g is injective.

Consider f : R× R → R such that f
(
(x, y)

)
= x + y for all

(x, y) ∈ R× R. As (0, 3), (1, 2) ∈ R× R and (0, 3) ̸= (1, 2) but
f
(
(0, 3)

)
= f

(
(1, 2)

)
= 3, the function f is not injective.
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Identity Function

Definition 8
Let M be a set. The function idM : M → M such that idM(m) = m for all
m ∈ M is called identity function on M.

The identity function maps each element to itself.

Note that the identity function is bijective.
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Composite Functions

Definition 9
Let M,N,O be sets, and f : M → N as well as g : N → O be functions.
The function [g ◦ f ] : M → O such that

[g ◦ f ](m) := g
(
f (m)

)
for all m ∈ M is called composite function of f and g.

Examples:

For every x ∈ R, | x | denotes x if x ≥ 0, and −x if x < 0.

Consider f : Z → N0 such that f (x) =| x | for all x ∈ Z and
g : N0 → Z such that g(x) = x − 3 for all x ∈ N0.

Then, [g ◦ f ] : Z → Z is defined as
[g ◦ f ](x) := g

(
f (x)

)
= g(| x |) =| x | −3 for all x ∈ Z.

Then, [f ◦ g] : N0 → N0 is defined as
[f ◦ g](x) := f

(
g(x)

)
= f (x − 3) =| x − 3 | for all x ∈ Z.
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Identity Function and Composition

Let f : M → N be a function.

Then,
[idN ◦ f ](m) = idN

(
f (m)

)
= f (m) for all m ∈ M

and
[f ◦ idM](m) = f

(
idM(m)

)
= f (m) for all m ∈ M.

Note that [idN ◦ f ] = f as well as [f ◦ idM] = f .
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Preservation of Surjections, Injections, and
Bijections under Composition

Proposition 10

Let f : L → M and g : M → N be functions.

1 If f and g are surjective, then g ◦ f is surjective.

2 If f and g are injective, then g ◦ f is injective.

3 If f and g are bijective, then g ◦ f is bijective.
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Proof

Recall that [g ◦ f ] : L → N such that [g ◦ f ](l) = g
(
f (l)

)
for all l ∈ L.

1 Let n ∈ N. As g is surjective, there exists m ∈ M such that
g(m) = n. Since f is surjective, too, there also exists l ∈ L such
that f (l) = m. Then, [g ◦ f ](l) = g

(
f (l)

)
= g(m) = n. Therefore,

every n ∈ N has a pre-image under [f ◦ g], and consequently
[f ◦ g] is surjective.

2 Let l, l′ ∈ L such that [g ◦ f ](l) = [g ◦ f ](l′). Then
g
(
f (l)

)
= g

(
f (l′)

)
. As g is injective, it follows that f (l) = f (l′), and

as f is injective, l = l′ obtains. Every element in the image
[g ◦ f ](L) of [g ◦ f ] thus has a unique pre-image under [g ◦ f ].
Consequently, [g ◦ f ] is injective.

3 By (1) and (2) it follows immediately that g ◦ f is bijective.
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Inverse Functions

Definition 11
Let f : M → N be a function. The function f is called invertible, if there
exists a function f−1 : N → M such that f−1 ◦ f = idM and
f ◦ f−1 = idN . The function f−1 is called inverse of f .

It is thus the case that [f−1 ◦ f ](m) = m for all m ∈ M and
[f ◦ f−1](n) = n for all n ∈ N.
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Not Every Function Is Invertible

Let M = {1, 2} and N = {1}.

Let f : M → N be a function such that f (1) = 1 and f (2) = 1.

There exist only two functions from N to M, i.e. g : N → M such
that g(1) = 1 and g′ : N → M such that g′(1) = 2.

Note that [g ◦ f ](2) = g
(
f (2)

)
= g(1) = 1 ̸= idM(2), and thus

[g ◦ f ] ̸= idM.

Also, note that [g′ ◦ f ](1) = g′
(
f (1)

)
= g′(1) = 2 ̸= idM(1), and

thus [g′ ◦ f ] ̸= idM.

Neither g nor g′ are thus inverse functions of f .
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Characterization of Invertible Functions

Proposition 12

A function is invertible, if and only if, it is bijective.
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Proof (if-direction)

Let f : M → N be a function that is bijective.

As f is surjective, for every element n ∈ N there exists m ∈ M
such that n = f (m).

Since f is also injective, for every element n ∈ N the element
m ∈ M such that n = f (m) is actually unique.

For every n ∈ N define f−1(n) to be the unique element m ∈ M
such that f (m) = n.

Then, f−1 : N → M with n 7→ f−1(n) is a function from N to M.

Let m ∈ M. Then, [f−1 ◦ f ](m) = f−1
(
f (m)

)
= f−1(n) = m, and

thus [f−1 ◦ f ] = idM.

Let n ∈ N. Then, [f ◦ f−1](n) = f
(
f−1(n)

)
= f (m) = n, and thus

[f ◦ f−1] = idN .

Therefore, f is invertible.
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Proof (only-if-direction)

Let f : M → N be a function that is invertible.

Then, there exists a function f−1 : N → M such that
[f−1 ◦ f ] = idM and [f ◦ f−1] = idN .

Let m,m′ ∈ M such that f (m) = f (m′). Applying f−1 to both sides,
yields f−1

(
f (m)

)
= f−1

(
f (m′)

)
.

Note that f−1
(
f (m)

)
= [f−1 ◦ f ](m) = m and

f−1
(
f (m′)

)
= [f−1 ◦ f ](m′) = m′.

Therefore, m = m′, and f is thus injective.

Let n ∈ N and consider the element m ∈ M for which f−1(n) = m
holds.

Then, f (m) = f
(
f−1(n)

)
= [f ◦ f−1](n) = n, and f is thus surjective.
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FIELDS
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Fields
Definition 13
A triple (F,+, ·) is called field, where + : F× F → F and · : F× F → F
are functions such that the following properties hold:

a + b = b + a and a · b = b · a for all a, b ∈ F
(Commutativity of + and ·)

(a + b) + c = a + (b + c) and (a · b) · c = a · (b · c) for all a, b, c ∈ F
(Associativity of + and ·)

a · (b + c) = a · b + a · c for all a, b, c ∈ F
(Law of Distributivity)

There exist
+
n,

·
n ∈ F such that

+
n + a = a and

·
n · a = a for all a ∈ F

(Existence of +-Neutral and ·-Neutral Elements)

For every a ∈ F there exists a′ ∈ F such that a + a′ =
+
n, and for

every a ∈ F \ {+n} there exists a∗ ∈ F such that a · a∗ =
·
n

(Every Element is +-Invertible and ·-Invertible)
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Some Properties of Fields

Proposition 14

Let F be a field.

1 a · +n =
+
n for all a ∈ F

2 Let a, b ∈ F such that a · b =
+
n. Then, a =

+
n or b =

+
n.

3 Let a, b, c ∈ F such that a + b =
+
n and a + c =

+
n. Then, b = c.

(Uniqueness of +-Inverse)

4 Let a, b, c ∈ F such that a ̸= +
n, a · b =

·
n, and a · c =

·
n. Then,

b = c. (Uniqueness of ·-Inverse)
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Proof of (1)
Statement (1):
a · +n =

+
n for all a ∈ F.

As
+
n is the +-neutral element and by the law of distributivity, it is the case that

a ·
+
n = a · (

+
n +

+
n ) = a ·

+
n + a ·

+
n .

Since every element in F is +-invertible, a ·
+
n is +-invertible.

Let x denote the +-inverse to a ·
+
n (i.e. x + a ·

+
n =

+
n ).

Then,

x + a ·
+
n = x + (a ·

+
n + a ·

+
n ) = (x + a ·

+
n ) + a ·

+
n .

As x + a ·
+
n =

+
n , it follows that

+
n =

+
n + a ·

+
n

It also holds that a ·
+
n =

+
n + a ·

+
n , and therefore a ·

+
n =

+
n ensues.
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Proof of (2)
Statement (2):
Let a, b ∈ F such that a · b =

+
n. Then, a =

+
n or b =

+
n.

Note that either a =
+
n or a ̸=

+
n .

If a =
+
n , then the claim holds, thus suppose that a ̸=

+
n .

Note that a is ·-invertible and let a∗ be its inverse.

Then,

a∗ · (a · b) = a∗ ·
+
n .

Observe by associativity and a∗ being ·-inverse to a that

a∗ · (a · b) = (a∗ · a) · b =
·
n · b.

It follows that
·
n · b = a∗ ·

+
n .

As
·
n · b = b and, by part (1) of the Proposition, a∗ ·

+
n =

+
n , it is the case that b =

+
n .
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Proof of (3)

Statement (3):
Let a, b, c ∈ F such that a + b =

+
n and a + c =

+
n. Then, b = c.

It is the case that a + b = a + c.

Let a′ denote the +-inverse of a.

Then,
a′ + (a + b) = a′ + (a + c)

which by associativity is equivalent to

(a′ + a) + b = (a′ + a) + c.

Therefore,
+
n + b =

+
n + c, and thus, by the +-neutrality of

+
n , it follows that b = c.
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Proof of (4)

Statement (4):
Let a, b, c ∈ F such that a ̸= +

n, a · b =
·
n, and a · c =

·
n. Then, b = c.

It is the case that a · b = a · c.

Let a∗ denote the ·-inverse of a.

Then,
a∗ · (a · b) = a∗ · (a · c)

which by associativity is equivalent to

(a∗ · a) · b = (a∗ · a) · c.

Therefore,
·
n · b =

·
n · c, and thus, by the ·-neutrality of

·
n, it follows that b = c.
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Examples

The sets N and Z equipped with addition + and multiplication ·
are not fields.

The sets Q and R equipped with addition + and multiplication ·
are fields with neutral elements 0 and 1.
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