Product Sets

Functions

Fields

ULMS055 Mathematics Crammer Part A: Pure Mathematics

Christian W. Bach

University of Liverpool & EPICENTER Maastricht

ULMS055 Maths Crammer Part A: Pure Mathematics

http://www.epicenter.name/bach

Welcome to the Maths Crammer

 Objective: deepending & extending your knowledge of Mathematics and Statistics.

- The Maths Crammer is divided into three parts:
 - Part A: PURE MATHEMATICS (taught by: CW Bach)
 - Part B: REAL ANALYSIS (taught by: RR Routledge)
 - Part C: STATISTICS (taught by: G Liu-Evans)

■ ULMS055 is asynchronous and self-study based.

Ideally, you work through the material before the semester starts.

(日)

- The lecture podcasts for each of the three parts are available on the ULMS055 Canvas page.
- Exercises are also posted on Canvas together with solutions.
- It is crucial that you first attempt the exercises questions by yourself before reading the provided solutions.

- Lecturer of Part A: Christian Bach
- Website: www.epicenter.name/bach
- Email: cwbach@liv.ac.uk
- Office hours: Thursdays at ULMS-CR2, 3.30pm-5pm
- Questions or Comments always welcome!

< 17 ▶

Introduction Logic Proofs Product Sets Functions

Functions

Fields

Part A: Program

Logic

Proofs

Product Sets

Functions

ULMS055 Maths Crammer Part A: Pure Mathematics

http://www.epicenter.name/bach

æ

< □ > < □ > < □ > < □ > < □ >

Introduction	Logic ●00000000	Proofs 00000000	Product Sets	Functions	Fields

LOGIC

- A proposition is a statement that can be true or false.
 - Atomic propositions are non-decomposible statements. Examples: "It is raining in London", $\sum_{k=1}^{n} (4k-2) = 2n^2$
 - Compound propositions contain logical connectives.
 - Note that propositions in general are typically denoted by greek letters (e.g. φ, ψ,...), while atomic propositions are typically denoted by roman letters (e.g. P, Q,...).
- Logical connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow
 - If φ is a proposition, then $\neg \varphi$ is a proposition.
 - If φ and ψ are propositions, then $\varphi \wedge \psi$ is a proposition.
 - If φ and ψ are propositions, then $\varphi \lor \psi$ is a proposition .
 - \blacksquare If φ and ψ are propositions, then $\varphi \rightarrow \psi$ is a proposition .
 - \blacksquare If φ and ψ are propositions, then $\varphi \leftrightarrow \psi$ is a proposition .

- A model assigns a unique truth-value (T or F) to every atomic proposition.
- For every model, the truth-values for compound propositions are defined in terms of the truth-values of their compounds.

- **Let** φ be some proposition.
- The negation of φ is denoted by $\neg \varphi$.
- The truth-values of $\neg \varphi$ are defined in terms of φ as follows.

$$\begin{array}{c|c}
\varphi & \neg \varphi \\
\hline
T & F \\
F & T
\end{array}$$

(日)

- Let φ and ψ be propositions.
- The conjunction of φ and ψ is denoted by $\varphi \wedge \psi$.
- The truth-values of $\varphi \land \psi$ are defined in terms of φ and ψ as follows.

$$\begin{array}{c|c} \varphi & \psi & \varphi \wedge \psi \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

A (B) + A (B) + A (B) +

- Let φ and ψ be propositions.
- The disjunction of φ and ψ is denoted by $\varphi \lor \psi$.
- The truth-values of $\varphi \lor \psi$ are defined in terms of φ and ψ as follows.

$$\begin{array}{c|c} \varphi & \psi & \varphi \lor \psi \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$$

(日)

- Let φ and ψ be propositions.
- The proposition that φ implies ψ is denoted by φ → ψ, where φ is called antecedent and ψ is called consequent.
- The truth-values of $\varphi \to \psi$ are defined in terms of φ and ψ as follows.

$$\begin{array}{c|c} \varphi & \psi & \varphi \rightarrow \psi \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

(4月) (4日) (4日)

- Let φ and ψ be propositions.
- $\blacksquare The equivalence of \varphi and \psi is denoted by \varphi \leftrightarrow \psi.$
- The truth-values of $\varphi \leftrightarrow \psi$ are defined in terms of φ and ψ as follows.

$$\begin{array}{c|c} \varphi & \psi & \varphi \leftrightarrow \psi \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \\ F & F & T \end{array}$$

A (1) A (2) A (2) A

Definition 1

Let φ and ψ be propositions. φ and ψ are called logically equivalent, if they have the same truth values in every model.

Example.

 $\varphi \rightarrow \psi \text{ is logically equivalent to } (\neg \psi) \rightarrow (\neg \varphi).$

э.

- 同下 - ヨト - ヨト

Introduction	Logic 000000000	Proofs ●○○○○○○○	Product Sets	Functions	Fields

PROOFS

Mathematical Proofs

- Generally, all mathematical propositions are "if-then-statements".
- In a proof, the consequent is derived from the antecedent and possibly further known truths by the laws of logic.
- Unfortunately, there exists no fixed procedure of how to conduct a proof.
- However, there are some techniques that can be helpful.

Principle of Induction

Logic

Introduction

The principle of induction can be helpful, whenever properties have to be shown to hold for all natural numbers.

Product Sets

Functions

- Let $n_0 \in \mathbb{N}_0 = \{0, 1, 2, ...\}$ be some natural number, and $\mathcal{A}(n)$ be some proposition for all $n \ge n_0$.
- Induction basis: show that $\mathcal{A}(n_0)$ holds.

Proofs

0000000

- Induction step: for all $n \ge n_0$ show that, if $\mathcal{A}(n)$ holds, then $\mathcal{A}(n+1)$ also holds.
- Principle of induction: Then, $\mathcal{A}(n)$ holds for all $n \ge n_0$.
- **Intuition**: if $A(n_0)$ is true, and if for all $n \ge n_0$ the truth of A(n) implies the truth of A(n+1), then via the chain

$$\mathcal{A}(n_0) \to \mathcal{A}(n_0+1) \to \mathcal{A}(n_0+2) \to \dots$$

the truth of $\mathcal{A}(n)$ obtains for all $n \ge n_0$.

э.

・ロット (母) ・ ヨ) ・ ・ ヨ)

Fields

Example

Assertion:

$$\sum_{i=1}^{n} (i+1)i = \frac{1}{3}n(n+1)(n+2)$$
 for all $n \ge 1$.

Proof:

- Induction basis: Let $n_0 = 1$. Observe that $\sum_{i=1}^{1} (i+1)i = 2 \cdot 1 = 2$ and $\frac{1}{3} \cdot 1 \cdot 2 \cdot 3 = 2$.
- Induction step: Let $n \ge 1$ and suppose that $\sum_{i=1}^{n} (i+1)i = \frac{1}{3}n(n+1)(n+2)$ holds. It needs to be shown that $\sum_{i=1}^{n+1} (i+1)i = \frac{1}{3}(n+1)(n+2)(n+3)$ also holds.

• Observe that
$$\sum_{i=1}^{n+1} (i+1)i = \left(\sum_{i=1}^{n} (i+1)i\right) + (n+2)(n+1)$$

= $\frac{1}{3}n(n+1)(n+2) + (n+2)(n+1) = (\frac{1}{3}n+1)(n+1)(n+2)$
= $\frac{1}{3}(n+3)(n+1)(n+2)$.

- The general structure of a proposition to be proven is $A \rightarrow B$.
- In a direct proof, the antecedent *A* is assumed to be true, and the consequent *B* is then derived.
- Note that equivalence propositions $A \leftrightarrow B$ are logically equivalent to $(A \rightarrow B) \land (B \rightarrow A)$.
- To establish $A \leftrightarrow B$ a proof can thus be split into first proving $A \rightarrow B$, and then proving $B \rightarrow A$.

(日)

Proof by Contraposition

- Recall that $A \rightarrow B$ is logically equivalent to $(\neg B) \rightarrow (\neg A)$.
- In order to prove $A \rightarrow B$, it is thus possible to assume that $\neg B$ holds, and to then derive $\neg A$.

(日)

Proof by Contradiction (Indirect Proof)

- Recall that the implication $A \rightarrow B$ is only false, whenever the antecedent *A* is true and the consequent *B* is false.
- Intuition: "With the laws of logic it is not possible to deduce a falsehood from a truth."
- Suppose *A* is true and *B* is false: If a contradiction can be derived, one of the two assumptions must be false, and hence *A* → *B* be true.

Sometimes statements of the following form need to be proven:

"If A holds, then the statements (i), (ii), and (iii) are equivalent"

It suffices to prove $(i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i)$.

By following the proven implications in an appropriate way, every implication between the three statements is established (by transitivity).

= nar

・ロット (母) ・ ヨ) ・ ・ ヨ)

Introduction	Logic 000000000	Proofs 00000000	Product Sets ●0000	Functions	Fields 00000000

PRODUCT SETS

Product Sets

Product Sets

Definition 2

Let M and N be non-empty sets. The set

$$M \times N := \{(m, n) : m \in M, n \in N\}$$

is called product set of *M* and *N*, where (m, n) is called ordered pair.

Two ordered pairs (m, n) and (m', n') are equal, whenever m = m' and n = n'.

э

(日)

• Consider the sets $M = \{ Alice, Bob, Claire \}$ and $N = \{0, 1\}$.

■ The product set of *M* and *N* is

 $M \times N = \{(Alice, 0), (Bob, 0), (Claire, 0), (Alice, 1), (Bob, 1), (Claire, 1)\}.$

The product set $\mathbb{R} \times \mathbb{R}$ and the ordered pair $(a, b) \in \mathbb{R} \times \mathbb{R}$

- Let $M = \{x \in \mathbb{R} : a \le x \le b\}$ and $N = \{x \in \mathbb{R} : c \le x \le d\}$, where $a, b, c, d \in \mathbb{R}$, be intervals in \mathbb{R} .
- The product set M × N can then be represented by the following rectangle

Introduction Logic Proofs F

FUNCTIONS

ULMS055 Maths Crammer Part A: Pure Mathematics

http://www.epicenter.name/bach

< A

Definition 3

Let *M* and *N* be sets. A subset $f \subseteq M \times N$ of the product set $M \times N$ is called function from *M* to *N*, whenever the following two properties hold.

1 For all $m \in M$ there exists $n \in N$ such that $(m, n) \in f$.

2 If
$$(m,n) \in f$$
 and $(m,n') \in f$, then $n = n'$.

Example: The product set

$$f = \{(x, x^2) : x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}$$

is a function from \mathbb{R} to \mathbb{R} .

If $f \subseteq M \times N$ is a function, this is denoted by $f : M \to N$.

 \blacksquare *M* is called domain of *f*, and *N* is called codomain of *f*.

For every $m \in M$, the unique $n \in N$ such that $(m, n) \in f$ is also denoted by f(m).

Every $m \in M$ is also said to be mapped to f(m), denoted as $m \mapsto f(m)$.

э

イロト イポト イヨト イヨト

Identical Functions

Definition 4

Let $f : M \to N$ and $g : M' \to N'$ be functions. The two functions f and g are identical, whenever the following three properties hold.

< 同 > < 三 > < 三 >

Introduction	Logic 000000000	Proofs 00000000	Product Sets	Functions 0000●00000000000000000000000000000000	Fields 00000000
_					

Image

Definition 5

Let $f : M \to N$ be a function, and $m \in M$ be some element in the domain M. The element $f(m) \in N$ in the codomain N is called image of m under f. The set

 $f(M) := \{n \in N : \text{ There exists } m \in M \text{ such that } f(m) = n\} \subseteq N$

is called image of f.

Consider the function $f(x) = x^2$ for all $x \in \mathbb{R}$.

For instance, the image of 2 under f is 4, since $f(2) = 2^2 = 4$.

Note that $f(\mathbb{R}) = \mathbb{R}_0^+$.

Pre-Image

Definition 6

Let $f : M \to N$ be a function, $n \in N$ be some element in the codomain of f, and $B \subseteq N$ be some subset of the codomain of f. Every $m \in M$ such that f(m) = n is called a pre-image of n under f. The set

$$f^{-1}(B) = \{m \in M : f(m) \in B\} \subseteq M$$

is called pre-image of B under f.

- Note that $f^{-1}(N) = M$ holds for every function.
- Consider the function $f(x) = x^2$ for all $x \in \mathbb{R}$.

For instance, the pre-image of $\{0\} \subseteq N$ is $f^{-1}(\{0\}) = \{0\}$, the pre-image of $\{y\}$ with y > 0 is $f^{-1}(\{y\}) = \{-\sqrt{y}, \sqrt{y}\}$, and the pre-image of $\{y\}$ with y < 0 is $f^{-1}(\{y\}) = \emptyset$.

Let $f : M \to N$ be a function.

Every element $m \in M$ of the domain has a unique image under f.

■ It is possible that there exist elements $n \in N$ of the codomain such that $n \notin f(M)$.

If $n \in f(M)$, then it is possible that there exist $m, m' \in M$ such that $m \neq m'$ and $m, m' \in f^{-1}(\{n\})$.

э.

イロト イポト イヨト イヨト

Surjection, Injection, and Bijections

Definition 7

- Let $f : M \to N$ be a function.
 - f is called surjective, whenever f(M) = N.
 - *f* is called injective, whenever, for all $m, m' \in M$, if $m \neq m'$, then $f(m) \neq f(m')$.
 - \blacksquare *f* is called **bijective**, whenever *f* is surjective as well as injective.

- A function is thus surjective, whenever every element in the codomain *N* also lies in the image *f*(*M*) of *f*.
- A function is thus injective, whenever every element in the image f(M) of f has a unique pre-image under f.

Proofs

- To prove that $f : M \to N$ is surjective, consider an arbitrary element $n \in N$, and give an element $m \in M$ such that f(m) = n.
- To prove that $f : M \to N$ is not surjective, give an element $n \in N$ such that $n \notin f(M)$.

Examples

- Consider $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that f((x, y)) = x + y for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. Let $z \in \mathbb{R}$, and consider $(0, z) \in \mathbb{R} \times \mathbb{R}$. As f((0, z)) = 0 + z = z, the function f is surjective.
- Consider $g : \mathbb{N} \to \mathbb{Z}$ such that g(n) = -n for all $n \in \mathbb{N}$. As $0 \in \mathbb{Z}$ but $0 \notin g(\mathbb{N})$, the function g is not surjective.

(日)

Introduction Logic Proofs Product Sets Functions Fields

Proofs

- To prove that $f : M \to N$ is injective, suppose that there exist $m, m' \in M$ such that f(m) = f(m'). Derive from the equality f(m) = f(m') that m = m'.
- To prove that $f : M \to N$ is not injective, give two elements $m_1, m_2 \in M$ such that $m_1 \neq m_2$ and $f(m_1) = f(m_2)$.

Examples

Consider $g : \mathbb{N} \to \mathbb{Z}$ such that g(n) = -n for all $n \in \mathbb{N}$. Suppose that there exist $m, m' \in \mathbb{N}$ such that g(m) = g(m'). It follows that -m = -m', i.e. m = m'. Hence, g is injective.

Consider $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that f((x, y)) = x + y for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. As $(0, 3), (1, 2) \in \mathbb{R} \times \mathbb{R}$ and $(0, 3) \neq (1, 2)$ but f((0, 3)) = f((1, 2)) = 3, the function f is not injective.

Introduction Logic Proofs Product Sets Functions

Identity Function

Definition 8

Let *M* be a set. The function $id_M : M \to M$ such that $id_M(m) = m$ for all $m \in M$ is called identity function on *M*.

- The identity function maps each element to itself.
- Note that the identity function is bijective.

Fields

Composite Functions

Definition 9

Let M, N, O be sets, and $f : M \to N$ as well as $g : N \to O$ be functions. The function $[g \circ f] : M \to O$ such that

$$[g \circ f](m) := g(f(m))$$

for all $m \in M$ is called composite function of f and g.

Examples:

- For every $x \in \mathbb{R}$, |x| denotes x if $x \ge 0$, and -x if x < 0.
- Consider $f : \mathbb{Z} \to \mathbb{N}_0$ such that f(x) = |x| for all $x \in \mathbb{Z}$ and $g : \mathbb{N}_0 \to \mathbb{Z}$ such that g(x) = x 3 for all $x \in \mathbb{N}_0$.
- Then, $[g \circ f] : \mathbb{Z} \to \mathbb{Z}$ is defined as $[g \circ f](x) := g(f(x)) = g(|x|) = |x| - 3$ for all $x \in \mathbb{Z}$.
- Then, $[f \circ g] : \mathbb{N}_0 \to \mathbb{N}_0$ is defined as $[f \circ g](x) := f(g(x)) = f(x-3) = |x-3|$ for all $x \in \mathbb{Z}$.

Identity Function and Composition

Let $f : M \to N$ be a function.

Then, $[\mathrm{id}_N \circ f](m) = \mathrm{id}_N(f(m)) = f(m) \text{ for all } m \in M$ and $[f \circ \mathrm{id}_M](m) = f(\mathrm{id}_M(m)) = f(m) \text{ for all } m \in M.$

■ Note that $[id_N \circ f] = f$ as well as $[f \circ id_M] = f$.

ULMS055 Maths Crammer Part A: Pure Mathematics

Bijections under Composition

Proposition 10

- Let $f : L \to M$ and $g : M \to N$ be functions.
 - **1** If f and g are surjective, then $g \circ f$ is surjective.
 - 2 If f and g are injective, then $g \circ f$ is injective.
 - 3 If f and g are bijective, then $g \circ f$ is bijective.

э.

(日)

Introduction	Logic 000000000	Proofs 00000000	Product Sets	Functions 000000000000000000000000000000000000	Fields 00000000
Proof					

Recall that $[g \circ f] : L \to N$ such that $[g \circ f](l) = g(f(l))$ for all $l \in L$.

- **1** Let $n \in N$. As g is surjective, there exists $m \in M$ such that g(m) = n. Since f is surjective, too, there also exists $l \in L$ such that f(l) = m. Then, $[g \circ f](l) = g(f(l)) = g(m) = n$. Therefore, every $n \in N$ has a pre-image under $[f \circ g]$, and consequently $[f \circ g]$ is surjective.
- **2** Let $l, l' \in L$ such that $[g \circ f](l) = [g \circ f](l')$. Then g(f(l)) = g(f(l')). As g is injective, it follows that f(l) = f(l'), and as f is injective, l = l' obtains. Every element in the image $[g \circ f](L)$ of $[g \circ f]$ thus has a unique pre-image under $[g \circ f]$. Consequently, $[g \circ f]$ is injective.

3 By (1) and (2) it follows immediately that $g \circ f$ is bijective.

NOV E VEN E VOV

Introduction Logic

Proofs

Product Sets

Functions

Fields

Inverse Functions

Definition 11

Let $f : M \to N$ be a function. The function f is called invertible, if there exists a function $f^{-1} : N \to M$ such that $f^{-1} \circ f = id_M$ and $f \circ f^{-1} = id_N$. The function f^{-1} is called inverse of f.

It is thus the case that $[f^{-1} \circ f](m) = m$ for all $m \in M$ and $[f \circ f^{-1}](n) = n$ for all $n \in N$.

-

(日)

Not Every Function Is Invertible

• Let
$$M = \{1, 2\}$$
 and $N = \{1\}$.

Let $f: M \to N$ be a function such that f(1) = 1 and f(2) = 1.

There exist only two functions from N to M, i.e. $g: N \to M$ such that g(1) = 1 and $g': N \to M$ such that g'(1) = 2.

Note that $[g \circ f](2) = g(f(2)) = g(1) = 1 \neq id_M(2)$, and thus $[g \circ f] \neq id_M$.

Also, note that $[g' \circ f](1) = g'(f(1)) = g'(1) = 2 \neq id_M(1)$, and thus $[g' \circ f] \neq id_M$.

■ Neither g nor g' are thus inverse functions of f.

= nar

- 同下 - ヨト - ヨト

Characterization of Invertible Functions

Proposition 12

A function is invertible, if and only if, it is bijective.

ULMS055 Maths Crammer Part A: Pure Mathematics

< 同 > < 三 > < 三 >

Proof (if-direction)

Logic

Introduction

■ Let $f : M \to N$ be a function that is bijective.

Proofs

■ As *f* is surjective, for every element *n* ∈ *N* there exists *m* ∈ *M* such that *n* = *f*(*m*).

Product Sets

Functions

- Since f is also injective, for every element $n \in N$ the element $m \in M$ such that n = f(m) is actually unique.
- For every *n* ∈ *N* define *f*⁻¹(*n*) to be the unique element *m* ∈ *M* such that *f*(*m*) = *n*.
- Then, $f^{-1}: N \to M$ with $n \mapsto f^{-1}(n)$ is a function from N to M.
- Let $m \in M$. Then, $[f^{-1} \circ f](m) = f^{-1}(f(m)) = f^{-1}(n) = m$, and thus $[f^{-1} \circ f] = id_M$.
- Let $n \in N$. Then, $[f \circ f^{-1}](n) = f(f^{-1}(n)) = f(m) = n$, and thus $[f \circ f^{-1}] = id_N$.
- **Therefore**, f is invertible.

Fields

Proof (only-if-direction)

- Let $f: M \to N$ be a function that is invertible.
- Then, there exists a function $f^{-1}: N \to M$ such that $[f^{-1} \circ f] = id_M$ and $[f \circ f^{-1}] = id_N$.
- Let $m, m' \in M$ such that f(m) = f(m'). Applying f^{-1} to both sides, yields $f^{-1}(f(m)) = f^{-1}(f(m'))$.

■ Note that
$$f^{-1}(f(m)) = [f^{-1} \circ f](m) = m$$
 and $f^{-1}(f(m')) = [f^{-1} \circ f](m') = m'$.

- Therefore, m = m', and f is thus injective.
- Let $n \in N$ and consider the element $m \in M$ for which $f^{-1}(n) = m$ holds.

Then,
$$f(m) = f(f^{-1}(n)) = [f \circ f^{-1}](n) = n$$
, and f is thus surjective.

Introduction	Logic 000000000	Proofs 00000000	Product Sets	Functions	Fields ●0000000

FIELDS

Definition 13

A triple $(\mathbb{F}, +, \cdot)$ is called field, where $+ : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ and $\cdot : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ are functions such that the following properties hold:

- a + b = b + a and $a \cdot b = b \cdot a$ for all $a, b \in \mathbb{F}$ (Commutativity of + and \cdot)
- (a+b) + c = a + (b+c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in \mathbb{F}$ (Associativity of + and ·)
- a · (b + c) = a · b + a · c for all a, b, c ∈ F
 (Law of Distributivity)
- There exist $\overset{+}{n}, n \in \mathbb{F}$ such that $\overset{+}{n} + a = a$ and $n \cdot a = a$ for all $a \in \mathbb{F}$ (Existence of +-Neutral and --Neutral Elements)

For every a ∈ F there exists a' ∈ F such that a + a' = n, and for every a ∈ F \ {n/n} there exists a* ∈ F such that a ⋅ a* = n
 (Every Element is +-Invertible and -Invertible)

Product Sets

Functions

Some Properties of Fields

Proposition 14

Let \mathbb{F} be a field.

- 1 $a \cdot \overset{+}{n} = \overset{+}{n}$ for all $a \in \mathbb{F}$
- **2** Let $a, b \in \mathbb{F}$ such that $a \cdot b = \overset{+}{n}$. Then, $a = \overset{+}{n}$ or $b = \overset{+}{n}$.
- 3 Let $a, b, c \in \mathbb{F}$ such that $a + b = \stackrel{+}{n}$ and $a + c = \stackrel{+}{n}$. Then, b = c. (Uniqueness of +-Inverse)
- 4 Let $a, b, c \in \mathbb{F}$ such that $a \neq \overset{+}{n}$, $a \cdot b = \dot{n}$, and $a \cdot c = \dot{n}$. Then, b = c. (Uniqueness of \cdot -Inverse)

Proof of (1)

Statement (1): $a \cdot \overset{+}{n} = \overset{+}{n}$ for all $a \in \mathbb{F}$.

• As $\frac{1}{n}$ is the +-neutral element and by the law of distributivity, it is the case that

$$a \cdot \overset{+}{n} = a \cdot (\overset{+}{n} + \overset{+}{n}) = a \cdot \overset{+}{n} + a \cdot \overset{+}{n}.$$

Since every element in \mathbb{F} is +-invertible, $a \cdot \stackrel{+}{n}$ is +-invertible.

- Let x denote the +-inverse to $a \cdot \stackrel{+}{n}$ (i.e. $x + a \cdot \stackrel{+}{n} = \stackrel{+}{n}$).
- Then,

$$x + a \cdot \overset{+}{n} = x + (a \cdot \overset{+}{n} + a \cdot \overset{+}{n}) = (x + a \cdot \overset{+}{n}) + a \cdot \overset{+}{n}.$$

• As
$$x + a \cdot \frac{1}{n} = \frac{1}{n}$$
, it follows that $\frac{1}{n} = \frac{1}{n} + a \cdot \frac{1}{n}$

It also holds that
$$a \cdot \stackrel{+}{n} = \stackrel{+}{n} + a \cdot \stackrel{+}{n}$$
, and therefore $a \cdot \stackrel{+}{n} = \stackrel{+}{n}$ ensues.

э

Statement (2): Let $a, b \in \mathbb{F}$ such that $a \cdot b = \overset{+}{n}$. Then, $a = \overset{+}{n}$ or $b = \overset{+}{n}$.

- Note that either $a = \stackrel{+}{n}$ or $a \neq \stackrel{+}{n}$.
- If $a = \stackrel{+}{n}$, then the claim holds, thus suppose that $a \neq \stackrel{+}{n}$.
- Note that a is --invertible and let a* be its inverse.
- Then,

$$a^* \cdot (a \cdot b) = a^* \cdot \overset{+}{n}.$$

Observe by associativity and a* being --inverse to a that

$$a^* \cdot (a \cdot b) = (a^* \cdot a) \cdot b = \dot{n} \cdot b.$$

It follows that $\dot{n} \cdot b = a^* \cdot \dot{n}$.

• As $n \cdot b = b$ and, by part (1) of the Proposition, $a^* \cdot n = n^+$, it is the case that $b = n^+$.

Statement (3): Let $a, b, c \in \mathbb{F}$ such that $a + b = \stackrel{+}{n}$ and $a + c = \stackrel{+}{n}$. Then, b = c.

- It is the case that a + b = a + c.
- Let a' denote the +-inverse of a.
- Then,

$$a' + (a + b) = a' + (a + c)$$

which by associativity is equivalent to

$$(a' + a) + b = (a' + a) + c.$$

Therefore, $\overset{+}{n} + b = \overset{+}{n} + c$, and thus, by the +-neutrality of $\overset{+}{n}$, it follows that b = c.

э

(日)

Statement (4): Let $a, b, c \in \mathbb{F}$ such that $a \neq \overset{+}{n}, a \cdot b = \overset{-}{n}$, and $a \cdot c = \overset{-}{n}$. Then, b = c.

- It is the case that a · b = a · c.
- Let a* denote the --inverse of a.
- Then,

$$a^* \cdot (a \cdot b) = a^* \cdot (a \cdot c)$$

which by associativity is equivalent to

$$(a^* \cdot a) \cdot b = (a^* \cdot a) \cdot c.$$

Therefore, $n \cdot b = n \cdot c$, and thus, by the -neutrality of *n*, it follows that b = c.

э

イロト イポト イヨト イヨト

The sets $\mathbb N$ and $\mathbb Z$ equipped with addition + and multiplication \cdot are not fields.

The sets \mathbb{Q} and \mathbb{R} equipped with addition + and multiplication \cdot are fields with neutral elements 0 and 1.