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Introduction
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Welcome to the Maths Crammer

m Objective: deepending & extending your knowledge of
Mathematics and Statistics.

m The Maths Crammer is divided into three parts:

m Part A: PURE MATHEMATICS
(taught by: CW Bach)

m Part B:
(taught by: RR Routledge)

m Part C: STATISTICS
(taught by: G Liu-Evans)
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Set-Up

m ULMSO055 is asynchronous and self-study based.

m |deally, you work through the material before the semester starts.
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Organization

m The lecture podcasts for each of the three parts are available on
the ULMS055 Canvas page.

m Exercises are also posted on Canvas together with solutions.

m ltis crucial that you first attempt the exercises questions by
yourself before reading the provided solutions.
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Part A: Lecturer

m Lecturer of Part A: Christian Bach

m \Website: www.epicenter.name/bach

m Email: cwbach@liv.ac.uk

Office hours: Thursdays at ULMS-CR2, 3.30pm-5pm

m Questions or Comments always welcome!
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Part A: Program

Logic

m Proofs

Product Sets

Functions

Fields
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Propositions

m A proposition is a statement that can be true or false.
m Atomic propositions are non-decomposible statements.
Examples: “It is raining in London”, >__, (4k — 2) = 2n?
m Compound propositions contain logical connectives.

m Note that propositions in general are typically denoted by
greek letters (e.g. o, v, . ..), while atomic propositions are
typically denoted by roman letters (e.g. P, Q, .. .).

m Logical connectives: —, A, V, —, <

m If v is a proposition, then — is a proposition.
If p and v are propositions, then ¢ A v is a proposition.
If ¢ and v are propositions, then ¢ V v is a proposition .
If o and v are propositions, then ¢ — 1) is a proposition .
If ¢ and v are propositions, then ¢ < 1) is a proposition .
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Truth-Values

m A model assigns a unique truth-value (T or F) to every atomic
proposition.

m For every model, the truth-values for compound propositions are
defined in terms of the truth-values of their compounds.
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Negation

m Let o be some proposition.

m The negation of ¢ is denoted by —p.

m The truth-values of —¢ are defined in terms of ¢ as follows.

N

m -6

F
T
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Conjunction

m Let ¢ and ¢ be propositions.
m The conjunction of ¢ and ¢ is denoted by ¢ A .

m The truth-values of ¢ A ¢ are defined in terms of p and ¢ as
follows.

nn s
I IESIECE
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Disjunction

m Let ¢ and ¢ be propositions.
m The disjunction of ¢ and v is denoted by ¢ V .

m The truth-values of ¢ v ¢ are defined in terms of ¢ and ¢ as
follows.

nn s
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Implication

m Let ¢ and ¢ be propositions.

m The proposition that ¢ implies « is denoted by ¢ — 1, where ¢
is called antecedent and v is called consequent.

m The truth-values of ¢ — v are defined in terms of ¢ and ¢ as
follows.

nn s
I SRS
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Equivalence

m Let ¢ and ¢ be propositions.
m The equivalence of ¢ and v is denoted by ¢ < 1.

m The truth-values of ¢ <> ¢ are defined in terms of ¢ and v as
follows.

mm s
m— e
AT

ULMS055 Maths Crammer Part A: Pure Mathematics http://www.epicenter.name/bach


http://www.epicenter.name/bach

Logic
00000000 e

Logical Equivalence

Definition 1

Let ¢ and v be propositions. ¢ and ¢ are called logically equivalent, if
they have the same truth values in every model.

Example.
¢ — 9 is logically equivalent to (=¢)) — ().

¥ 1/) ‘ Y =P _‘w o () = (0p)
T T T F F T
T Fl F T F F
F T T F T T
F F T T T T
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Mathematical Proofs

m Generally, all mathematical propositions are
“if-then-statements”.

m In a proof, the consequent is derived from the antecedent and
possibly further known truths by the laws of logic.

m Unfortunately, there exists no fixed procedure of how to conduct
a proof.

m However, there are some techniques that can be helpful.
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Principle of Induction

m The principle of induction can be helpful, whenever properties
have to be shown to hold for all natural numbers.

m Letny € Ng={0,1,2,...} be some natural number, and A(n) be
some proposition for all n > ny.

m Induction basis: show that .A(ny) holds.

m Induction step: for all n > ny show that, if A(n) holds, then
A(n+ 1) also holds.

m Principle of induction: Then, A(n) holds for all n > ny.
m Intuition: if A(no) is true, and if for all n > ng the truth of A(n)
implies the truth of A(n + 1), then via the chain
A(ng) = A(ng+1) = A(ng +2) — ...
the truth of A(n) obtains for all n > ny.
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Assertion:
S+ 1)i=1in(n+1)(n+2)foralln>1.

Proof:

m Induction basis: Let ny = 1. Observe that 3°)_ (i + 1)i =2-1=2
and ;-1-2-3=2.

m Induction step: Let n > 1 and suppose that
S i+ 1)i= %n(n + 1)(n+ 2) holds. It needs to be shown that

SN i+ 1)i = L(n 4+ 1)(n+2)(n + 3) also holds.

m Observe that 3" (i + 1)i = (z;;l(i n 1)i) Y (n+2)(n+1)
=inln+1)(n+2)+(n+2)(n+1)=(3n+1)(n+1)(n+2)
=1n+3)(n+1)(n+2).
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Direct Proofs

m The general structure of a proposition to be provenis A — B.

m In a direct proof, the antecedent A is assumed to be true, and
the consequent B is then derived.

m Note that equivalence propositions A < B are logically
equivalentto (A — B) A (B — A).

m To establish A +» B a proof can thus be split into first proving
A — B, and then proving B — A.
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Proof by Contraposition

m Recall that A — Bis logically equivalent to (—B) — (—A).

m In order to prove A — B, it is thus possible to assume that —B
holds, and to then derive —A.

ULMS055 Maths Crammer Part A: Pure Mathematics http://www.epicenter.name/bach


http://www.epicenter.name/bach

Proofs
00000080

Proof by Contradiction (Indirect Proof)

m Recall that the implication A — B is only false, whenever the
antecedent A is true and the consequent B is false.

m Intuition: “With the laws of logic it is not possible to deduce a
falsehood from a truth.”

m Suppose A is true and B is false: If a contradiction can be
derived, one of the two assumptions must be false, and hence
A — B be true.

ULMS055 Maths Crammer Part A: Pure Mathematics http://www.epicenter.name/bach


http://www.epicenter.name/bach

Proofs
0000000e

Circular Proof

m Sometimes statements of the following form need to be proven:
"If A holds, then the statements (i), (ii), and (iii) are equivalent”
m It suffices to prove (i) — (ii), (ii) — (iii), and (iii) — (i).

m By following the proven implications in an appropriate way, every
implication between the three statements is established (by

transitivity).

http://www.epicenter.name/bach
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Product Sets

Definition 2
Let M and N be non-empty sets. The set

M x N :={(m,n) :meM,ne N}

is called product set of M and N, where (m, n) is called ordered pair.

Two ordered pairs (m,n) and (m’,n’) are equal, whenever m = m’ and
!
n=n.
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lHlustration

m Consider the sets M = {Alice, Bob, Claire} and N = {0, 1}.

m The product set of M and N is

MxN = {(Alice,0), (Bob, 0), (Claire, 0), (Alice, 1), (Bob, 1), (Claire, 1)}.
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lHlustration

The product set R x R and the ordered pair (a,b) e R x R

Y A ———

N
=
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lHlustration

mletM={xeR:a<x<b}andN={xeR:c<x<d}, where
a,b,c,d € R, be intervals in R.

m The product set M x N can then be represented by the following
rectangle

w
=
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Functions

Definition 3

Let M and N be sets. A subset f C M x N of the product set M x N is
called function from M to N, whenever the following two properties
hold.

El For all m € M there exists n € N such that (m,n) € f.
B If (m,n) € fand (m,n’) € f, thenn =7n'.

Example: The product set
f={(xx*):xeR}CRxR

is a function from R to R.
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Notation

m If f C M x N is a function, this is denoted by f : M — N.

m M is called domain of f, and N is called codomain of f.

m For every m € M, the unique n € N such that (m,n) € f is also
denoted by f(m).

m Every m € M is also said to be mapped to f(m), denoted as
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Identical Functions

Definition 4

Letf: M — N and g : M’ — N’ be functions. The two functions f and
g are identical, whenever the following three properties hold.

B vM=M
HN=N
H f(m) = g(m) forallme M
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Definition 5

Letf: M — N be a function, and m € M be some element in the
domain M. The element f(m) € N in the codomain N is called image
of m under f. The set

f(M) :={n € N: There exists m € M such that f(m) =n} CN

is called image of 1.

m Consider the function f(x) = x* for all x € R.
m For instance, the image of 2 under f is 4, since f(2) = 2% = 4.

m Note that f(R) = R .
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Pre-Image

Definition 6

Letf : M — N be a function, n € N be some element in the codomain
of f, and B C N be some subset of the codomain of f. Every m ¢ M
such that f(m) = n is called a pre-image of n under f. The set

f'B)={meM:f(m)eB}CM

is called pre-image of B under f.

m Note that f~!(N) = M holds for every function.
m Consider the function f(x) = x* for all x € R.
m For instance, the pre-image of {0} C N is f~!1({0}) = {0}, the

pre-image of {y} withy > 0iis f~'({y}) = {—/», ¥}, and the
pre-image of {y} withy < 0is f~1({y}) = 0.
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Observation

Letf : M — N be a function.

m Every element m € M of the domain has a unique image under f.

m Itis possible that there exist elements n € N of the codomain
such that n ¢ f(M).

m If n € f(M), then it is possible that there exist m,m’ € M such that
m#m' and m,m’ € f~1({n}).
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Surjection, Injection, and Bijections

Definition 7

Letf : M — N be a function.
m f is called surjective, whenever (M) = N.

m f is called injective, whenever, for all m,m’ € M, if m # m’, then
f(m) #f(m').

m f is called bijective, whenever f is surjective as well as injective.

m A function is thus surjective, whenever every element in the
codomain N also lies in the image f(M) of f.

m A function is thus injective, whenever every element in the image
f(M) of f has a unique pre-image under f.
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Surjection

Proofs

m To prove that f : M — N is surjective, consider an arbitrary
element n € N, and give an element m € M such that f(m) = n.

m Toprovethatf: M — Nis , give an elementn € N
such that n ¢ f(M).

Examples

m Consider f : R x R — R such that f((x,y)) = x + y for all
(x,y) € R x R. Let z € R, and consider (0,z) € R x R. As
£((0,2)) = 0+ z = z, the function f is surjective.

m Consider g : N — Z such that g(n) = —nforalln e N. As0 € Z
but 0 ¢ ¢(N), the function g is .
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Injection

Proofs

m To prove that f : M — N is injective, suppose that there exist
m,m’ € M such that f(m) = f(m’). Derive from the equality
f(m) =f(m') that m = m'.

m Toprovethatf: M — N is , give two elements
my,my € M such that m; # m, and f(my) = f(my).

Examples

m Consider g : N — Z such that g(n) = —n for all n € N. Suppose
that there exist m,m’ € N such that g(m) = g(m’). It follows that
—m = —m',i.e. m =m'. Hence, g is injective.

m Consider f : R x R — R such that f((x,y)) = x + y for all
(x,y) e R xR. As (0,3),(1,2) e R x R and (0, 3) # (1,2) but
£((0,3)) =£((1,2)) = 3, the function f is :
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Identity Function

Definition 8

Let M be a set. The function idy : M — M such that id,, (m) = m for all
m € M is called identity function on M.

m The identity function maps each element to itself.

m Note that the identity function is bijective.
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Composite Functions

Definition 9

Let M,N,O be sets, and f : M — N as well as g : N — O be functions.
The function [g o f] : M — O such that

[g o f](m) := g(f(m))

for all m € M is called composite function of f and g.

Examples:
m Foreveryx € R, |x|denotesxifx>0,and —xifx < 0.

m Consider f : Z — Ny such that f(x) =| x | for all x € Z and
g : No — Z such that g(x) = x — 3 for all x € N,.

m Then, [g of]:Z — Zis defined as
[gof](x) :==g(f(x)) =g(|x|) =| x| =3 forall x € Z.

m Then, [f o g] : Ny — Ny is defined as
[f o gl(x) :==f(g(x)) =f(x —3) =| x— 3 | forallx € Z.
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Identity Function and Composition

m Letf: M — N be a function.

m Then,
lidy o f](m) = idy (f(m)) = f(m) for all m € M

and
[f oidy](m) = f(idy(m)) = f(m) for all m € M.

m Note that [idy of] = f as well as [f o idy] = f.
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Preservation of Surjections, Injections, and
Bijections under Composition

Proposition 10

Letf:L— M andg: M — N be functions.
Bl /ff and g are surjective, then g o f is surjective.
H /ff and g are injective, then g o f is injective.

Kl /ff and g are bijective, then g o f is bijective.
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Recall that [g o f] : L — N such that [g o f](I) = g(f(1)) forall I € L.

El Letn € N. As g is surjective, there exists m € M such that
g(m) = n. Since f is surjective too, there also exists [ € L such
that £(I) = m. Then, [go f](1) = g(f()) = = n. Therefore,
every n € N has a pre- |mage under [f o g] and consequently
[f o g] is surjective.

B Let/ /' € Lsuchthat [gof](l) = [gof](I'). Then
g(f() = g(f(I). As g is injective, it follows that f (1) = f(/'), and
as f is injective, I = I’ obtains. Every element in the image
[g of](L) of [g o f] thus has a unique pre-image under [g o f].
Consequently, [g o f] is injective.

Kl By (1) and (2) it follows immediately that g o f is bijective.
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Inverse Functions

Definition 11

Letf : M — N be a function. The function f is called invertible, if there
exists a function f~! : N — M such that f~! o f = idy, and
fof~! =idy. The function f~! is called inverse of f.

It is thus the case that [f~! o f](m) = m for all m € M and
[fof~'l(n) =nforallneN.
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Not Every Function Is Invertible

m LetM={1,2}and N = {1}.
m Letf: M — N be a function such that f(1) = 1 and f(2) = 1.

m There exist only two functions from N to M, i.e. g : N — M such
thatg(1) =1and g’ : N — M such that g'(1) = 2.

m Note that [g 0 f](2) = g(f(2)) = g(1) = 1 # idy(2), and thus
[g o f] # idu.

m Also, note that [¢' o f](1) = ¢/ (f(1)) = g'(1) =2 #idy(1), and
thus [g’ of] # idy.

m Neither g nor g’ are thus inverse functions of f.
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Characterization of Invertible Functions

Proposition 12

A function is invertible, if and only if, it is bijective.
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Proof (if-direction)

m Letf: M — N be a function that is bijective.

m Asf is surjective, for every element n € N there exists m e M
such that n = f(m).

m Since f is also injective, for every element n € N the element
m € M such that n = f(m) is actually unique.

m For every n € N define f~!(n) to be the unique element m € M
such that f(m) = n.

m Then,f~!: N — M with n — f~!(n) is a function from N to M.

m Letme M. Then, [f~'of](m) =f~'(f(m)) =f~"(n) =m, and
thus [f~! of] = idy.

m Letn e N. Then, [fof~'](n) =f(f~"(n)) = f(m) = n, and thus
[fof~']=idy.

m Therefore, f is invertible.
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Proof (only-if-direction)

m Letf: M — N be a function that is invertible.

m Then, there exists a function f~' : N — M such that
[f~'of] =idy and [f of~'] = idy.

m Let m,m’ € M such that f(m) = f(m’). Applying f~! to both sides,
yields =1 (F(m)) = £~ (f(m')).

m Note that /=" (f(m)) = [f~" o f](m) = m and
FHfm) = [ o fl(m') = m'.

m Therefore, m = m’, and f is thus injective.

m Letn € N and consider the element m € M for which f~!(n) = m
holds.

m Then, f(m) =f(f~"(n)) = [fof~'](n) = n, and f is thus surjective.
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Definition 13

A triple (I, +, -) is called field, where + : FxF—-Fand - : FxF - F
are functions such that the following properties hold:

Batb=b+aanda-b=b-aforalla,b el
(Commutativity of + and -)

B (a+b)+c=a+(b+c)and(a-b)-c=a-(b-c)foralla,b,c e F
(Associativity of + and )

ma - (b+c)=a-b+a-cforalab,celF
(Law of Distributivity)

m There exist 71,n € Fsuchthatn +a=aandn-a=aforalacF
(Existence of +-Neutral and --Neutral Elements)

m For every a € F there exists ' € F such thata +d' = %, and for

everya e\ {?Z} there exists a* € F such thata -a* =n
(Every Element is +-Invertible and --Invertible)
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Some Properties of Fields

Proposition 14

LetT be a field.

1 a-h=rhforallacF

B Leta,b cF suchthata-b = n. Then,a =1 orb = n.

K Leta,b,c € F suchthata+ b = " anda-+c = h. Then, b = c.
(Uniqueness of +-Inverse)

A Leta,b,c € F such thata # h,a-b=n,anda-c=n. Then,
b = c. (Uniqueness of --Inverse)
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Proof of (1)

Statement (1):
a-n=nforallaeF,

m As -:*1— is the +-neutral element and by the law of distributivity, it is the case that

a»ﬁ:a~(71r+;lr):a~;zr+a~7;.

m Since every element in F is +-invertible, a - 7? is 4-invertible.

m Let x denote the +-inverse to a - _r*:— (ie.x+a- = 7{

).

m Then,

+ +

x+a<n:x+(a-n+a-jt’):(x+a-j;) j’z’

+a-

] As.x+a<JrT = ;7 itfollowsthatJVT = ;erra»;

m [t also holds that a - = -; +a- _r'z', and therefore a - _r*z— =% ensues.
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Proof of (2)

Statement (2):
Leta.,be]Fsuchthata'b:Z. Then,azﬁorb: h.

m Note that eithera = _r*f ora # _r'{

m lfa= ;zr then the claim holds, thus suppose that a # ;zr
m Note that a is --invertible and let «* be its inverse.

m Then,

a*-(a-b):a*-ﬁ.

m Observe by associativity and a* being --inverse to a that

a* - (a-b)=(a"-a) -b=n-b.

m Itfollowsthats - b = a* - 4.

m Asi-b = band, by part (1) of the Proposition, a* - = 1, itis the case thatb = 7.
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Proof of (3)

Statement (3):
Leta,b,c € F such thata +b =nanda+c = n. Then, b = c.

m ltisthecasethata + b =a +c.
m Leta’ denote the +-inverse of a.

m Then,
a + (a+b) :a/+(¢z+c)

which by associativity is equivalent to

(a/+a)+b:(a/+a)+c.

m Therefore, JrT +b= ;7 + ¢, and thus, by the 4-neutrality of j? it follows that b = c.
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Proof of (4)

Statement (4):
Let a,b,c € F such that a # n,a-b=n,anda-c—=n. Then, b= c.

m ltisthecasethata-b=a-c.
m Leta™ denote the --inverse of a.

m Then,
a* - (a-b)y=da" (a-c)
which by associativity is equivalent to

(a* -a)-b=(a" -a)-ec.

m Therefore, n - b = n - ¢, and thus, by the --neutrality of n, it follows that b = c.
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Examples

m The sets N and Z equipped with addition + and multiplication -
are not fields.

m The sets Q and R equipped with addition + and multiplication -
are fields with neutral elements 0 and 1.

ULMS055 Maths Crammer Part A: Pure Mathematics http://www.epicenter.name/bach


http://www.epicenter.name/bach

	Introduction
	

	Logic
	

	Proofs
	

	Product Sets
	

	Functions
	

	Fields
	


