ULMS055 Mathematics Crammer Part A: Pure Mathematics

Christian W. Bach

University of Liverpool \& EPICENTER Maastricht

Welcome to the Maths Crammer

■ Objective: deepending \& extending your knowledge of Mathematics and Statistics.

- The Maths Crammer is divided into three parts:

■ Part A: Pure Mathematics (taught by: CW Bach)

- Part B: REAL Analysis (taught by: RR Routledge)

■ Part C: Statistics (taught by: G Liu-Evans)

Set-Up

■ ULMS055 is asynchronous and self-study based.

■ Ideally, you work through the material before the semester starts.

Organization

- The lecture podcasts for each of the three parts are available on the ULMS055 Canvas page.

■ Exercises are also posted on Canvas together with solutions.

■ It is crucial that you first attempt the exercises questions by yourself before reading the provided solutions.

Part A: Lecturer

■ Lecturer of Part A: Christian Bach

■ Website: www.epicenter.name/bach

■ Email: cwbach@liv.ac.uk

■ Office hours: Thursdays at ULMS-CR2, 3.30pm-5pm

■ Questions or Comments always welcome!

Part A: Program

■ Logic

- Proofs

■ Product Sets

- Functions

■ Fields

Logic

Propositions

■ A proposition is a statement that can be true or false.
■ Atomic propositions are non-decomposible statements. Examples: "It is raining in London", $\sum_{k=1}^{n}(4 k-2)=2 n^{2}$
■ Compound propositions contain logical connectives.
■ Note that propositions in general are typically denoted by greek letters (e.g. φ, ψ, \ldots), while atomic propositions are typically denoted by roman letters (e.g. P, Q, \ldots).

■ Logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$

- If φ is a proposition, then $\neg \varphi$ is a proposition.

■ If φ and ψ are propositions, then $\varphi \wedge \psi$ is a proposition.
■ If φ and ψ are propositions, then $\varphi \vee \psi$ is a proposition.
■ If φ and ψ are propositions, then $\varphi \rightarrow \psi$ is a proposition.
\square If φ and ψ are propositions, then $\varphi \leftrightarrow \psi$ is a proposition .

Truth-Values

■ A model assigns a unique truth-value (T or F) to every atomic proposition.

■ For every model, the truth-values for compound propositions are defined in terms of the truth-values of their compounds.

Negation

■ Let φ be some proposition.

■ The negation of φ is denoted by $\neg \varphi$.

■ The truth-values of $\neg \varphi$ are defined in terms of φ as follows.

φ	$\neg \varphi$
T	F
F	T

Conjunction

■ Let φ and ψ be propositions.

■ The conjunction of φ and ψ is denoted by $\varphi \wedge \psi$.

■ The truth-values of $\varphi \wedge \psi$ are defined in terms of φ and ψ as follows.

φ	ψ	$\varphi \wedge \psi$
T	T	T
T	F	F
F	T	F
F	F	F

Disjunction

■ Let φ and ψ be propositions.

■ The disjunction of φ and ψ is denoted by $\varphi \vee \psi$.

■ The truth-values of $\varphi \vee \psi$ are defined in terms of φ and ψ as follows.

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	T
F	F	F

Implication

■ Let φ and ψ be propositions.

■ The proposition that φ implies ψ is denoted by $\varphi \rightarrow \psi$, where φ is called antecedent and ψ is called consequent.

■ The truth-values of $\varphi \rightarrow \psi$ are defined in terms of φ and ψ as follows.

φ	ψ	$\varphi \rightarrow \psi$
T	T	T
T	F	F
F	T	T
F	F	T

Equivalence

■ Let φ and ψ be propositions.

■ The equivalence of φ and ψ is denoted by $\varphi \leftrightarrow \psi$.

- The truth-values of $\varphi \leftrightarrow \psi$ are defined in terms of φ and ψ as follows.

φ	ψ	$\varphi \leftrightarrow \psi$
T	T	T
T	F	F
F	T	F
F	F	T

Logical Equivalence

Definition 1

Let φ and ψ be propositions. φ and ψ are called logically equivalent, if they have the same truth values in every model.

Example.

$\varphi \rightarrow \psi$ is logically equivalent to $(\neg \psi) \rightarrow(\neg \varphi)$.

φ	ψ	$\varphi \rightarrow \psi$	$\neg \psi$	$\neg \varphi$	$(\neg \psi) \rightarrow(\neg \varphi)$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

Proofs

Mathematical Proofs

■ Generally, all mathematical propositions are "if-then-statements".

- In a proof, the consequent is derived from the antecedent and possibly further known truths by the laws of logic.

■ Unfortunately, there exists no fixed procedure of how to conduct a proof.

■ However, there are some techniques that can be helpful.

Principle of Induction

- The principle of induction can be helpful, whenever properties have to be shown to hold for all natural numbers.
\square Let $n_{0} \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$ be some natural number, and $\mathcal{A}(n)$ be some proposition for all $n \geq n_{0}$.
- Induction basis: show that $\mathcal{A}\left(n_{0}\right)$ holds.

■ Induction step: for all $n \geq n_{0}$ show that, if $\mathcal{A}(n)$ holds, then $\mathcal{A}(n+1)$ also holds.

■ Principle of induction: Then, $\mathcal{A}(n)$ holds for all $n \geq n_{0}$.
■ Intuition: if $\mathcal{A}\left(n_{0}\right)$ is true, and if for all $n \geq n_{0}$ the truth of $\mathcal{A}(n)$ implies the truth of $\mathcal{A}(n+1)$, then via the chain

$$
\mathcal{A}\left(n_{0}\right) \rightarrow \mathcal{A}\left(n_{0}+1\right) \rightarrow \mathcal{A}\left(n_{0}+2\right) \rightarrow \ldots
$$

the truth of $\mathcal{A}(n)$ obtains for all $n \geq n_{0}$.

Example

Assertion:

$\sum_{i=1}^{n}(i+1) i=\frac{1}{3} n(n+1)(n+2)$ for all $n \geq 1$.

Proof:

- Induction basis: Let $n_{0}=1$. Observe that $\sum_{i=1}^{1}(i+1) i=2 \cdot 1=2$ and $\frac{1}{3} \cdot 1 \cdot 2 \cdot 3=2$.

■ Induction step: Let $n \geq 1$ and suppose that
$\sum_{i=1}^{n}(i+1) i=\frac{1}{3} n(n+1)(n+2)$ holds. It needs to be shown that $\sum_{i=1}^{n+1}(i+1) i=\frac{1}{3}(n+1)(n+2)(n+3)$ also holds.

■ Observe that $\sum_{i=1}^{n+1}(i+1) i=\left(\sum_{i=1}^{n}(i+1) i\right)+(n+2)(n+1)$

$$
\begin{aligned}
& =\frac{1}{3} n(n+1)(n+2)+(n+2)(n+1)=\left(\frac{1}{3} n+1\right)(n+1)(n+2) \\
& =\frac{1}{3}(n+3)(n+1)(n+2)
\end{aligned}
$$

Direct Proofs

■ The general structure of a proposition to be proven is $A \rightarrow B$.

■ In a direct proof, the antecedent A is assumed to be true, and the consequent B is then derived.

- Note that equivalence propositions $A \leftrightarrow B$ are logically equivalent to $(A \rightarrow B) \wedge(B \rightarrow A)$.
- To establish $A \leftrightarrow B$ a proof can thus be split into first proving $A \rightarrow B$, and then proving $B \rightarrow A$.

Proof by Contraposition

■ Recall that $A \rightarrow B$ is logically equivalent to $(\neg B) \rightarrow(\neg A)$.

■ In order to prove $A \rightarrow B$, it is thus possible to assume that $\neg B$ holds, and to then derive $\neg A$.

Proof by Contradiction (Indirect Proof)

■ Recall that the implication $A \rightarrow B$ is only false, whenever the antecedent A is true and the consequent B is false.

■ Intuition: "With the laws of logic it is not possible to deduce a falsehood from a truth."

- Suppose A is true and B is false: If a contradiction can be derived, one of the two assumptions must be false, and hence $A \rightarrow B$ be true.

Circular Proof

■ Sometimes statements of the following form need to be proven:
"If A holds, then the statements $(i),(i i)$, and (iii) are equivalent"

■ It suffices to prove $(i) \rightarrow(i i),(i i) \rightarrow(i i i)$, and $(i i i) \rightarrow(i)$.

■ By following the proven implications in an appropriate way, every implication between the three statements is established (by transitivity).

Product Sets

Product Sets

Definition 2

Let M and N be non-empty sets. The set

$$
M \times N:=\{(m, n): m \in M, n \in N\}
$$

is called product set of M and N, where (m, n) is called ordered pair.

Two ordered pairs (m, n) and $\left(m^{\prime}, n^{\prime}\right)$ are equal, whenever $m=m^{\prime}$ and $n=n^{\prime}$.

Illustration

■ Consider the sets $M=\{$ Alice, Bob, Claire $\}$ and $N=\{0,1\}$.

- The product set of M and N is
$M \times N=\{($ Alice, 0$),($ Bob, 0$),($ Claire, 0$),($ Alice, 1 $),($ Bob, 1$),($ Claire, 1$)\}$.

Illustration

The product set $\mathbb{R} \times \mathbb{R}$ and the ordered pair $(a, b) \in \mathbb{R} \times \mathbb{R}$

Illustration

■ Let $M=\{x \in \mathbb{R}: a \leq x \leq b\}$ and $N=\{x \in \mathbb{R}: c \leq x \leq d\}$, where $a, b, c, d \in \mathbb{R}$, be intervals in \mathbb{R}.

- The product set $M \times N$ can then be represented by the following rectangle

Functions

Functions

Definition 3

Let M and N be sets. A subset $f \subseteq M \times N$ of the product set $M \times N$ is called function from M to N, whenever the following two properties hold.

1 For all $m \in M$ there exists $n \in N$ such that $(m, n) \in f$.
2 If $(m, n) \in f$ and $\left(m, n^{\prime}\right) \in f$, then $n=n^{\prime}$.

Example: The product set

$$
f=\left\{\left(x, x^{2}\right): x \in \mathbb{R}\right\} \subseteq \mathbb{R} \times \mathbb{R}
$$

is a function from \mathbb{R} to \mathbb{R}.

Notation

■ If $f \subseteq M \times N$ is a function, this is denoted by $f: M \rightarrow N$.

- M is called domain of f, and N is called codomain of f.

■ For every $m \in M$, the unique $n \in N$ such that $(m, n) \in f$ is also denoted by $f(m)$.

■ Every $m \in M$ is also said to be mapped to $f(m)$, denoted as $m \mapsto f(m)$.

Identical Functions

Definition 4

Let $f: M \rightarrow N$ and $g: M^{\prime} \rightarrow N^{\prime}$ be functions. The two functions f and g are identical, whenever the following three properties hold.

$$
\begin{aligned}
& 1 \quad M=M^{\prime} \\
& 22 N=N^{\prime} \\
& \text { 3 } f(m)=g(m) \text { for all } m \in M
\end{aligned}
$$

Image

Definition 5

Let $f: M \rightarrow N$ be a function, and $m \in M$ be some element in the domain M. The element $f(m) \in N$ in the codomain N is called image of m under f. The set

$$
f(M):=\{n \in N: \text { There exists } m \in M \text { such that } f(m)=n\} \subseteq N
$$

is called image of f.

- Consider the function $f(x)=x^{2}$ for all $x \in \mathbb{R}$.
- For instance, the image of 2 under f is 4 , since $f(2)=2^{2}=4$.

■ Note that $f(\mathbb{R})=\mathbb{R}_{0}^{+}$.

Pre-Image

Definition 6

Let $f: M \rightarrow N$ be a function, $n \in N$ be some element in the codomain of f, and $B \subseteq N$ be some subset of the codomain of f. Every $m \in M$ such that $f(m)=n$ is called a pre-image of n under f. The set

$$
f^{-1}(B)=\{m \in M: f(m) \in B\} \subseteq M
$$

is called pre-image of B under f.

- Note that $f^{-1}(N)=M$ holds for every function.
- Consider the function $f(x)=x^{2}$ for all $x \in \mathbb{R}$.

■ For instance, the pre-image of $\{0\} \subseteq N$ is $f^{-1}(\{0\})=\{0\}$, the pre-image of $\{y\}$ with $y>0$ is $f^{-1}(\{y\})=\{-\sqrt{y}, \sqrt{y}\}$, and the pre-image of $\{y\}$ with $y<0$ is $f^{-1}(\{y\})=\emptyset$.

Observation

Let $f: M \rightarrow N$ be a function.

- Every element $m \in M$ of the domain has a unique image under f.
- It is possible that there exist elements $n \in N$ of the codomain such that $n \notin f(M)$.

■ If $n \in f(M)$, then it is possible that there exist $m, m^{\prime} \in M$ such that $m \neq m^{\prime}$ and $m, m^{\prime} \in f^{-1}(\{n\})$.

Surjection, Injection, and Bijections

Definition 7

Let $f: M \rightarrow N$ be a function.
$\square f$ is called surjective, whenever $f(M)=N$.

- f is called injective, whenever, for all $m, m^{\prime} \in M$, if $m \neq m^{\prime}$, then $f(m) \neq f\left(m^{\prime}\right)$.
- f is called bijective, whenever f is surjective as well as injective.
- A function is thus surjective, whenever every element in the codomain N also lies in the image $f(M)$ of f.

■ A function is thus injective, whenever every element in the image $f(M)$ of f has a unique pre-image under f.

Surjection

Proofs

■ To prove that $f: M \rightarrow N$ is surjective, consider an arbitrary element $n \in N$, and give an element $m \in M$ such that $f(m)=n$.

■ To prove that $f: M \rightarrow N$ is not surjective, give an element $n \in N$ such that $n \notin f(M)$.

Examples

■ Consider $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $f((x, y))=x+y$ for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. Let $z \in \mathbb{R}$, and consider $(0, z) \in \mathbb{R} \times \mathbb{R}$. As $f((0, z))=0+z=z$, the function f is surjective.
$■$ Consider $g: \mathbb{N} \rightarrow \mathbb{Z}$ such that $g(n)=-n$ for all $n \in \mathbb{N}$. As $0 \in \mathbb{Z}$ but $0 \notin g(\mathbb{N})$, the function g is not surjective.

Injection

Proofs

■ To prove that $f: M \rightarrow N$ is injective, suppose that there exist $m, m^{\prime} \in M$ such that $f(m)=f\left(m^{\prime}\right)$. Derive from the equality $f(m)=f\left(m^{\prime}\right)$ that $m=m^{\prime}$.

■ To prove that $f: M \rightarrow N$ is not injective, give two elements $m_{1}, m_{2} \in M$ such that $m_{1} \neq m_{2}$ and $f\left(m_{1}\right)=f\left(m_{2}\right)$.

Examples

$■$ Consider $g: \mathbb{N} \rightarrow \mathbb{Z}$ such that $g(n)=-n$ for all $n \in \mathbb{N}$. Suppose that there exist $m, m^{\prime} \in \mathbb{N}$ such that $g(m)=g\left(m^{\prime}\right)$. It follows that $-m=-m^{\prime}$, i.e. $m=m^{\prime}$. Hence, g is injective.

- Consider $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $f((x, y))=x+y$ for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. As $(0,3),(1,2) \in \mathbb{R} \times \mathbb{R}$ and $(0,3) \neq(1,2)$ but $f((0,3))=f((1,2))=3$, the function f is not injective.

Identity Function

Definition 8

Let M be a set. The function $\operatorname{id}_{M}: M \rightarrow M$ such that $\operatorname{id}_{M}(m)=m$ for all $m \in M$ is called identity function on M.

■ The identity function maps each element to itself.

■ Note that the identity function is bijective.

Composite Functions

Definition 9

Let M, N, O be sets, and $f: M \rightarrow N$ as well as $g: N \rightarrow O$ be functions. The function $[g \circ f]: M \rightarrow O$ such that

$$
[g \circ f](m):=g(f(m))
$$

for all $m \in M$ is called composite function of f and g.

Examples:

\square For every $x \in \mathbb{R},|x|$ denotes x if $x \geq 0$, and $-x$ if $x<0$.

- Consider $f: \mathbb{Z} \rightarrow \mathbb{N}_{0}$ such that $f(x)=|x|$ for all $x \in \mathbb{Z}$ and $g: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ such that $g(x)=x-3$ for all $x \in \mathbb{N}_{0}$.
■ Then, $[g \circ f]: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined as

$$
[g \circ f](x):=g(f(x))=g(|x|)=|x|-3 \text { for all } x \in \mathbb{Z} .
$$

■ Then, $[f \circ g]: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ is defined as
$[f \circ g](x):=f(g(x))=f(x-3)=|x-3|$ for all $x \in \mathbb{Z}$.

Identity Function and Composition

■ Let $f: M \rightarrow N$ be a function.

■ Then,

$$
\left[\mathrm{id}_{N} \circ f\right](m)=\operatorname{id}_{N}(f(m))=f(m) \text { for all } m \in M
$$

and

$$
\left[f \circ \operatorname{id}_{M}\right](m)=f\left(\operatorname{id}_{M}(m)\right)=f(m) \text { for all } m \in M .
$$

■ Note that $\left[\mathrm{id}_{N} \circ f\right]=f$ as well as $\left[f \circ \mathrm{id}_{M}\right]=f$.

Preservation of Surjections, Injections, and Bijections under Composition

Proposition 10

Let $f: L \rightarrow M$ and $g: M \rightarrow N$ be functions.
1 If f and g are surjective, then $g \circ f$ is surjective.
2 If f and g are injective, then $g \circ f$ is injective.
3 If f and g are bijective, then $g \circ f$ is bijective.

Proof

Recall that $[g \circ f]: L \rightarrow N$ such that $[g \circ f](l)=g(f(l))$ for all $l \in L$.

1 Let $n \in N$. As g is surjective, there exists $m \in M$ such that $g(m)=n$. Since f is surjective, too, there also exists $l \in L$ such that $f(l)=m$. Then, $[g \circ f](l)=g(f(l))=g(m)=n$. Therefore, every $n \in N$ has a pre-image under [$f \circ g$], and consequently $[f \circ g]$ is surjective.

2 Let $l, l^{\prime} \in L$ such that $[g \circ f](l)=[g \circ f]\left(l^{\prime}\right)$. Then $g(f(l))=g\left(f\left(l^{\prime}\right)\right)$. As g is injective, it follows that $f(l)=f\left(l^{\prime}\right)$, and as f is injective, $l=l^{\prime}$ obtains. Every element in the image $[g \circ f](L)$ of $[g \circ f]$ thus has a unique pre-image under $[g \circ f]$. Consequently, $[g \circ f]$ is injective.

3 By (1) and (2) it follows immediately that $g \circ f$ is bijective.

Inverse Functions

Definition 11

Let $f: M \rightarrow N$ be a function. The function f is called invertible, if there exists a function $f^{-1}: N \rightarrow M$ such that $f^{-1} \circ f=\mathrm{id}_{M}$ and $f \circ f^{-1}=\operatorname{id}_{N}$. The function f^{-1} is called inverse of f.

It is thus the case that $\left[f^{-1} \circ f\right](m)=m$ for all $m \in M$ and $\left[f \circ f^{-1}\right](n)=n$ for all $n \in N$.

Not Every Function Is Invertible

■ Let $M=\{1,2\}$ and $N=\{1\}$.

■ Let $f: M \rightarrow N$ be a function such that $f(1)=1$ and $f(2)=1$.

■ There exist only two functions from N to M, i.e. $g: N \rightarrow M$ such that $g(1)=1$ and $g^{\prime}: N \rightarrow M$ such that $g^{\prime}(1)=2$.

■ Note that $[g \circ f](2)=g(f(2))=g(1)=1 \neq \operatorname{id}_{M}(2)$, and thus $[g \circ f] \neq \mathrm{id}_{M}$.

■ Also, note that $\left[g^{\prime} \circ f\right](1)=g^{\prime}(f(1))=g^{\prime}(1)=2 \neq \mathrm{id}_{M}(1)$, and thus $\left[g^{\prime} \circ f\right] \neq \mathrm{id}_{M}$.

■ Neither g nor g^{\prime} are thus inverse functions of f.

Characterization of Invertible Functions

Proposition 12

A function is invertible, if and only if, it is bijective.

Proof (if-direction)

\square Let $f: M \rightarrow N$ be a function that is bijective.
■ As f is surjective, for every element $n \in N$ there exists $m \in M$ such that $n=f(m)$.

■ Since f is also injective, for every element $n \in N$ the element $m \in M$ such that $n=f(m)$ is actually unique.
■ For every $n \in N$ define $f^{-1}(n)$ to be the unique element $m \in M$ such that $f(m)=n$.

■ Then, $f^{-1}: N \rightarrow M$ with $n \mapsto f^{-1}(n)$ is a function from N to M.
■ Let $m \in M$. Then, $\left[f^{-1} \circ f\right](m)=f^{-1}(f(m))=f^{-1}(n)=m$, and thus $\left[f^{-1} \circ f\right]=\mathrm{id}_{M}$.

■ Let $n \in N$. Then, $\left[f \circ f^{-1}\right](n)=f\left(f^{-1}(n)\right)=f(m)=n$, and thus $\left[f \circ f^{-1}\right]=\mathrm{id}_{N}$.

- Therefore, f is invertible.

Proof (only-if-direction)

■ Let $f: M \rightarrow N$ be a function that is invertible.

- Then, there exists a function $f^{-1}: N \rightarrow M$ such that $\left[f^{-1} \circ f\right]=\mathrm{id}_{M}$ and $\left[f \circ f^{-1}\right]=\mathrm{id}_{N}$.

■ Let $m, m^{\prime} \in M$ such that $f(m)=f\left(m^{\prime}\right)$. Applying f^{-1} to both sides, yields $f^{-1}(f(m))=f^{-1}\left(f\left(m^{\prime}\right)\right)$.

■ Note that $f^{-1}(f(m))=\left[f^{-1} \circ f\right](m)=m$ and $f^{-1}\left(f\left(m^{\prime}\right)\right)=\left[f^{-1} \circ f\right]\left(m^{\prime}\right)=m^{\prime}$.

- Therefore, $m=m^{\prime}$, and f is thus injective.

■ Let $n \in N$ and consider the element $m \in M$ for which $f^{-1}(n)=m$ holds.

■ Then, $f(m)=f\left(f^{-1}(n)\right)=\left[f \circ f^{-1}\right](n)=n$, and f is thus surjective.

Fields

Fields

Definition 13

A triple $(\mathbb{F},+, \cdot)$ is called field, where $+: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ and $\cdot: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ are functions such that the following properties hold:

- $a+b=b+a$ and $a \cdot b=b \cdot a$ for all $a, b \in \mathbb{F}$
(Commutativity of + and)
■ $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in \mathbb{F}$ (Associativity of + and \cdot)
- $a \cdot(b+c)=a \cdot b+a \cdot c$ for all $a, b, c \in \mathbb{F}$ (Law of Distributivity)
- There exist $\stackrel{+}{n}, \dot{n} \in \mathbb{F}$ such that $\stackrel{+}{n}+a=a$ and $\dot{n} \cdot a=a$ for all $a \in \mathbb{F}$ (Existence of + -Neutral and --Neutral Elements)
- For every $a \in \mathbb{F}$ there exists $a^{\prime} \in \mathbb{F}$ such that $a+a^{\prime}=\stackrel{+}{n}$, and for every $a \in \mathbb{F} \backslash\left\{\begin{array}{l}+ \\ n\end{array}\right\}$ there exists $a^{*} \in \mathbb{F}$ such that $a \cdot a^{*}=\dot{n}$ (Every Element is +-Invertible and --Invertible)

Some Properties of Fields

Proposition 14

Let \mathbb{F} be a field.
$1 a \cdot \stackrel{+}{n}=\stackrel{+}{n}$ for all $a \in \mathbb{F}$
2 Let $a, b \in \mathbb{F}$ such that $a \cdot b=\stackrel{+}{n}$. Then, $a=\stackrel{+}{n}$ or $b=\stackrel{+}{n}$.
3 Let $a, b, c \in \mathbb{F}$ such that $a+b=\stackrel{+}{n}$ and $a+c=\stackrel{+}{n}$. Then, $b=c$. (Uniqueness of +-Inverse)

4 Let $a, b, c \in \mathbb{F}$ such that $a \neq \stackrel{+}{n}, a \cdot b=\dot{n}$, and $a \cdot c=\dot{n}$. Then, $b=c$. (Uniqueness of --Inverse)

Proof of (1)

Statement (1):

$a \cdot \stackrel{+}{n}=\stackrel{+}{n}$ for all $a \in \mathbb{F}$.

- As $\stackrel{+}{n}$ is the +-neutral element and by the law of distributivity, it is the case that

$$
a \cdot \stackrel{+}{n}=a \cdot(\stackrel{+}{n}+\stackrel{+}{n})=a \cdot \stackrel{+}{n}+a \cdot \stackrel{+}{n} .
$$

- Since every element in \mathbb{F} is + -invertible, $a \cdot \stackrel{+}{n}$ is + -invertible.
- Let x denote the + -inverse to $a \cdot \stackrel{+}{n}$ (i.e. $x+a \cdot \stackrel{+}{n}=\stackrel{+}{n}$).
- Then,

$$
x+a \cdot \stackrel{+}{n}=x+(a \cdot \stackrel{+}{n}+a \cdot \stackrel{+}{n})=(x+a \cdot \stackrel{+}{n})+a \cdot \stackrel{+}{n} .
$$

- As $x+a \cdot \stackrel{+}{n}=\stackrel{+}{n}$, it follows that $\stackrel{+}{n}=\stackrel{+}{n}+a \cdot \stackrel{+}{n}$
- It also holds that $a \cdot \stackrel{+}{n}=\stackrel{+}{n}+a \cdot \stackrel{+}{n}$, and therefore $a \cdot \stackrel{+}{n}=\stackrel{+}{n}$ ensues.

Proof of (2)

Statement (2):

Let $a, b \in \mathbb{F}$ such that $a \cdot b=\stackrel{+}{n}$. Then, $a=\stackrel{+}{n}$ or $b=\stackrel{+}{n}$.

- Note that either $a=\stackrel{+}{n}$ or $a \neq \stackrel{+}{n}$.
- If $a=\stackrel{+}{n}$, then the claim holds, thus suppose that $a \neq \stackrel{+}{n}$.
- Note that a is --invertible and let a^{*} be its inverse.
- Then,

$$
a^{*} \cdot(a \cdot b)=a^{*} \cdot \stackrel{+}{n}
$$

- Observe by associativity and a^{*} being --inverse to a that

$$
a^{*} \cdot(a \cdot b)=\left(a^{*} \cdot a\right) \cdot b=\dot{n} \cdot b .
$$

- It follows that $\dot{n} \cdot b=a^{*} \cdot \stackrel{+}{n}$.
- As $\dot{n} \cdot b=b$ and, by part (1) of the Proposition, $a^{*} \cdot \stackrel{+}{n}=\stackrel{+}{n}$, it is the case that $b=\stackrel{+}{n}$.

Proof of (3)

Statement (3):

Let $a, b, c \in \mathbb{F}$ such that $a+b=\stackrel{+}{n}$ and $a+c=\stackrel{+}{n}$. Then, $b=c$.

- It is the case that $a+b=a+c$.
- Let a^{\prime} denote the + -inverse of a.
- Then,

$$
a^{\prime}+(a+b)=a^{\prime}+(a+c)
$$

which by associativity is equivalent to

$$
\left(a^{\prime}+a\right)+b=\left(a^{\prime}+a\right)+c .
$$

- Therefore, $\stackrel{+}{n}+b=\stackrel{+}{n}+c$, and thus, by the + -neutrality of $\stackrel{+}{n}$, it follows that $b=c$.

Proof of (4)

Statement (4):

Let $a, b, c \in \mathbb{F}$ such that $a \neq \stackrel{+}{n}, a \cdot b=\dot{n}$, and $a \cdot c=\dot{n}$. Then, $b=c$.

- It is the case that $a \cdot b=a \cdot c$.
- Let a^{*} denote the --inverse of a.
- Then,

$$
a^{*} \cdot(a \cdot b)=a^{*} \cdot(a \cdot c)
$$

which by associativity is equivalent to

$$
\left(a^{*} \cdot a\right) \cdot b=\left(a^{*} \cdot a\right) \cdot c .
$$

- Therefore, $\dot{n} \cdot b=\dot{n} \cdot c$, and thus, by the --neutrality of \dot{n}, it follows that $b=c$.

Examples

■ The sets \mathbb{N} and \mathbb{Z} equipped with addition + and multiplication . are not fields.

■ The sets \mathbb{Q} and \mathbb{R} equipped with addition + and multiplication . are fields with neutral elements 0 and 1 .

