Lexicographic Beliefs

Part II: Respect of Preferences

Christian W. Bach

EPICENTER & University of Liverpool

Respect of Preferences

Respect of Preferences

- Cautious reasoning = not completely discarding any event, yet being able to consider some event much more likely, indeed infinitely more likely, than some other event
- Modelling tool: lexicographic beliefs
- A particular way of cautious reasoning is based on primary belief in rationality: restrictions concentrate only on the first lexicographic level
- However, it can also be plausible to impose conditions on deeper lexicographic levels!

Agenda

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

Agenda

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

Taking the Opponent's Preferences Seriously

Motivating Idea:

Respect of Preferences

■ If player i believes that his opponent j prefers some choice c_j to some other choice c'_j , then he must deem c_j infinitely more likely than c'_j .

Motivating Example: Where to read my book?

Story

Respect of Preferences

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- Your only objective is to avoid Barbara, since you would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Question: Which pub should you go to?

Respect of Preferences

Motivating Example: Where to read my book?

Barbara 0,3 1, 2 1, 1 A You B 1,3 0, 21, 1 0, 1

Respect of Preferences

Motivating Example: Where to read my book?

		Barbara		
		\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}
	\boldsymbol{A}	0, 3	1, 2	1, 1
You	\boldsymbol{B}	1, 3	0, 2	1, 1
	\boldsymbol{C}	1, 3	1, 2	0, 1

- **Type Spaces:** $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B\}$
- **Beliefs for You:** $b_{you}^{lex}(t_y) = ((A, t_B); (C, t_B); (B, t_B))$
- **Beliefs for** *Barbara*: $b_{Rarbara}^{lex}(t_B) = ((B, t_V); (C, t_V); (A, t_V))$
- Your type t_y primarily believes in Barbara's rationality.
- \blacksquare However, t_v 's secondary and tertiary belief seem counter-intuitive.
- For Barbara, B is better than C, hence it can be plausible to deem Barbara choosing B infinitely more likely than her picking C.

Respecting the Opponent's Preferences

Definition

A cautious type t_i of player i **respects the opponent's preferences**, whenever for every opponent's type t_j deemed possible by t_i , if t_j prefers some choice c_j to some other choice c'_j , then t_i deems (c_j, t_j) infinitely more likely than (c'_i, t_i) .

Intuition:

A player deems better choices of his opponent infinitely more likely than worse choices.

Remark:

Respect of preferences can only be defined for cautious types.

Towards an Algorithm

- **Type Spaces:** $T_{you} = \{t_y, t'_y\}$ and $T_{Barbara} = \{t_B\}$
- Beliefs for You: $b_{you}^{lex}(t_y) = ((A, t_B); (C, t_B); (B, t_B))$ and $b_{you}^{lex}(t_y') = ((A, t_B); (B, t_B); (C, t_B))$
- Beliefs for Barbara: $b_{Barbara}^{lex}(t_B) = ((B, t_y); (C, t_y); (A, t_y))$
- Your type t_v does not respect Barbara's preferences.
- Your type t'_{y} does respect Barbara's preferences.
- Note that if you respect Barbara's preferences, then your unique optimal choice is C.

Observation. If i is cautious and respects j's preferences, then i also primarily believes in j's rationality.

- Let t_i be some type that is cautious and respects j's preferences.
- Now, consider some pair (c_j, t_j) that is deemed possible by t_i such that c_j is not optimal for t_j .
- Then, there exists some choice c_j^* that t_j prefers to c_j , and t_i must deem (c_i^*, t_j) infinitely more likely than (c_j, t_j) .
- Thus, t_i 's primary belief must assign probability 0 to (c_j, t_j) .

Algorithm

Respect of Preferences

Agenda

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

Common Full Belief in (Caution & Respect of Preferences)

Definition

Respect of Preferences

A cautious type t_i of player i expresses **common full belief in** (caution & respect of preferences), if

- \mathbf{I}_i expresses 1-fold full belief in caution and respect of preferences, i.e. t_i only deems possible cautious opponent i's types and respects i's preferences,
- t_i expresses 2-fold full belief in caution and respect of preferences, i.e. t_i only deems possible opponent j's types that only deem possible cautious i's types and that respect i's preferences,
- etc

Relation to Common Full Belief in (Caution & Primary Belief in Rationality)

Proposition

Respect of Preferences

If a cautious type t_i expresses common full belief in (caution & respect of preferences), then t_i entertains common primary belief in (caution & rationality).

Respect of Preferences

Towards an Algorithm

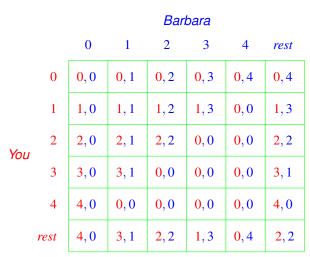
Barbara CВ You B 1, 1 0.1

- Type Spaces: $T_{vou} = \{t_v\}$ and $T_{Rarbara} = \{t_R\}$
- Beliefs for You: $b_{you}^{lex}(t_y) = ((A, t_B); (B, t_B); (C, t_B))$
- Beliefs for Barbara: $b_{Rarbara}^{lex}(t_B) = ((C, t_V); (B, t_V); (A, t_V))$
- Your type t_v is cautious, and respects Barbara's preferences.
- Barbara's type t_B is cautious, and respects your preferences.
- Thus, t_v expresses common full belief in caution and respect of preferences.
- As choice C is optimal for type t_v , you can rationally and cautiously go to Pub C under common full belief in (caution & respect of preferences).
- Note that under common primary belief in (caution & rationality), you can rationally and cautiously choose B as well as C.

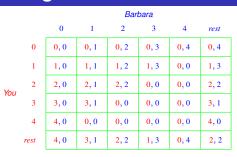
Story

- You have ordered a four-sliced pizza with Barbara.
- Both simultaneously write down the desired number of slices or simply "the rest".
- It is agreed that if the numbers' sum exceeds four, both will give the pizza to charity and neither gets any slice.
- If both write "the rest", then the pizza is divided equally among the two.

Respect of Preferences



Respect of Preferences



- What choices can you rationally and cautiously make under common full belief in (caution & respect of preferences)?
- Your choices 0, 1, and 2 are weakly dominated by claiming the rest.
- Hence, if you are cautious, then the rest is better for you than 0, 1, or 2.
- Similarly, if you believe Barbara to be cautious, then you believe the *rest* to be better for her than 0, 1, or 2.
- As you respect Barbara's preferences, you deem her choice rest infinitely more likely than 0, 1, and 2.
- It is now shown that 4 is then better for you than 3.

			Barbara				
		0	1	2	3	4	rest
	0	0, 0	0, 1	0, 2	0, 3	0, 4	0, 4
	1	1,0	1, 1	1, 2	1, 3	0,0	1,3
You	2	2, 0	2, 1	2, 2	0, 0	0, 0	2, 2
100	3	3,0	3, 1	0, 0	0, 0	0, 0	3, 1
	4	4, 0	0,0	0, 0	0, 0	0,0	4, 0
	rest	4, 0	3, 1	2, 2	1, 3	0, 4	2, 2

- Indeed, suppose that you deem Barbara's choice rest infinitely more likely than 0, 1, and 2.
- There are four possible ways to do so:
 - 1 You deem rest infinitely more likely than her other choices. Then, 4 is better for you than 3.
 - You deem 4 and rest infinitely more likely than her other choices. Then, 4 is better for you than 3.
 - 3 You deem 3 and *rest* infinitely more likely than her other choices. Then, 4 is better for you than 3.
 - 4 You deem 3, 4 and *rest* infinitely more likely than her other choices. Then, 4 is better for you than 3.
- Thus, if you are cautious, believe in Barbara's caution, and respect Barbara's preferences, then you prefer rest to 0, 1, and 2 and you prefer 4 to 3.
- Consequently, under common full belief in (caution & respect of preferences) only 4 and rest can possibly be optimal for you!

Barbara						
0	1	2	3	4	rest	
0,0	0, 1	0, 2	0, 3	0, 4	0, 4	
1,0	1, 1	1, 2	1, 3	0, 0	1,3	
2, 0	2, 1	2, 2	0, 0	0, 0	2, 2	
3, 0	3, 1	0, 0	0, 0	0, 0	3, 1	
4, 0	0, 0	0, 0	0, 0	0, 0	4, 0	
4, 0	3, 1	2, 2	1, 3	0, 4	2, 2	

- Consider the following lexicographic epistemic model:
 - Type Spaces:

$$T_{you} = \{t_y^4, t_y^r\}$$
 and $T_{Barbara} = \{t_B^4, t_B^r\}$

Beliefs for You:

$$\begin{aligned} b_{you}^{lex}(t_{p}^{4}) &= ((rest, t_{B}^{r}); (1, t_{B}^{r}); (4, t_{B}^{r}); (3, t_{B}^{r}); (2, t_{B}^{r}); (0, t_{B}^{r})) \\ b_{you}^{lex}(t_{V}^{r}) &= ((4, t_{B}^{4}); (3, t_{B}^{4}); (rest, t_{B}^{4}); (2, t_{B}^{4}); (1, t_{B}^{4}); (0, t_{B}^{4})) \end{aligned}$$

Beliefs for Barbara:

$$b_B^{lex}(t_B^4) = ((rest, t_y^r); (1, t_y^r); (4, t_y^r); (3, t_y^r); (2, t_y^r); (0, t_y^r))$$

$$b_B^{lex}(t_B^r) = ((4, t_y^4); (3, t_y^4); (rest, t_y^4); (2, t_y^4); (1, t_y^4); (0, t_y^4))$$

- Both your types are cautious and express common full belief in (caution & respect of preferences).
- As 4 is optimal for t_v^4 and rest is optimal for t_v^r , you can rationally as well as cautiously choose 4 and rest under common full belief in (caution & respect of preferences)!

Agenda

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

Cautious Reasoning

Is it always possible – for any given game – that a player cautiously reasons in line with common full belief in (caution & respect of preferences)?

Story

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- Your only objective is to avoid *Barbara*, since *you* would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C, and she would also like to talk to *you* (2 additional utils for her).
- Question: Which pub should vou go to?

Barbara

		A_B	B_B	C_B
	A_{y}	0,5	1,2	1, 1
You	\boldsymbol{B}_{y}	1,3	0,4	1, 1
	C_{y}	1,3	1,2	0,3

			Barbara		
		A_B	B_B	C_B	
	A_y	0, 5	1, 2	1, 1	
You	B_{y}	1, 3	0, 4	1, 1	
	C_{y}	1, 3	1, 2	0, 3	

Is common full belief in (caution & respect of preferences) possible in this game?

- Consider some arbitrary cautious lexicographic belief about Barbara's choice, e.g. $(A_R; B_R; C_R)$.
- Given this belief, your preferences are C_{ν} preferred to B_{ν} preferred to A_{ν} .
- Consider a cautious lexicographic belief for Barbara that respects these preferences, e.g. $(C_y; B_y; A_y)$.
- Given this belief, Barbara's preferences are A_R preferred to C_R preferred to B_R .
- Consider a cautious lexicographic belief for you that respects these preferences, e.g. $(A_B; C_B; B_B)$.
- Given this belief, your preferences are B_{ν} preferred to C_{ν} preferred to A_{ν} .
- Consider a cautious lexicographic belief for Barbara that respects these preferences, e.g. $(B_v; C_v; A_v)$.
- Given this belief, Barbara's preferences are B_B preferred to A_B preferred to C_B .
- Consider a cautious lexicographic belief for you that respects these preferences, e.g. $(B_R; A_R; C_R)$.
- Given this belief, your preferences are C_{ν} preferred to A_{ν} preferred to B_{ν} .
- Consider a cautious lexicographic belief for Barbara that respects these preferences, e.g. $(C_v; A_v; B_v)$.
- Given this belief, Barbara's preferences are A_R preferred to C_R preferred to B_R .
- Consider a cautious lexicographic belief for you that respects these preferences, e.g. $(A_R; C_R; B_R)$.

			Barbara		
		A_B	B_B	C_B	
	A_y	0, 5	1, 2	1, 1	
You	B_{y}	1, 3	0, 4	1, 1	
	C_{y}	1, 3	1, 2	0, 3	

A sequence of lexicographic beliefs has thus been formed:

$$(A_B; B_B; C_B) \to (C_y; B_y; A_y) \to (A_B; C_B; B_B) \to (B_y; C_y; A_y) \to (B_B; A_B; C_B) \to (C_y; A_y; B_y) \to (A_B; C_B; B_B)$$

It has entered into a cylce:

$$(A_B;C_B;B_B) \rightarrow (B_y;C_y;A_y) \rightarrow (B_B;A_B;C_B) \rightarrow (C_y;A_y;B_y) \rightarrow (A_B;C_B;B_B)$$

- This cycle is now transformed into a lexicographic epistemic model.
- **Type Spaces:** $T_{you} = \{t_y, t'_y\}$ and $T_{Barbara} = \{t_B, t'_B\}$
- Beliefs for You: $b_v^{lex}(t_y) = ((A_B, t_B); (C_B, t_B); (B_B, t_B))$ and $b_v^{lex}(t_v') = ((B_B, t_B'); (A_B, t_B'); (C_B, t_B'))$
- Beliefs for Barbara: $b_B^{lex}(t_B) = ((C_y, t_y'); (A_y, t_y'); (B_y, t_y'))$ and $b_B^{lex}(t_B') = ((B_y, t_y); (C_y, t_y); (A_y, t_y))$
- All types in the epistemic model are cautious and respect the opponent's preferences.
- Hence, all express common full belief in (caution & respect of preferences).
- Concluding, caution and common full belief in (caution & respect of preferences) is indeed possible in the Hide and Seek game.

Generalizing the Construction for Existence

- Fix some finite game and consider an arbitrary cautious lexicographic belief b_i^{lex1} for player i about j's choice.
- Let R_i^1 be the induced preference relation on C_i for player i given this belief.
- Consider some cautious lexicographic belief b_j^{lex2} for player j about i's choice that respects the preference relation R_j!.
- Let R_i^2 be the induced preference relation on C_j for player j given this belief.
- Consider some cautious lexicographic belief b_i^{lex-3} for player i about j's choice that respects the preference relation R_i².
- Let R_i^3 be the induced preference relation on C_i for player i given this belief.
- etc.

Respect of Preferences

- The sequence of lexicographic beliefs thus constructed bears the following property: Any element of the sequence satisfies respect of preferences given the preference relation induced by the immediate predecessor lexicographic belief in the sequence.
- Since there are only finitely many choices and the same lexicographic belief can be specified for any recurring preference relation, the sequence of lexicographic beliefs must eventually enter into a cycle of lexicographic beliefs.

Existence

- Suppose some cycle of lexicographic beliefs: $b_i^{lex1} \rightarrow b_i^{lex2} \rightarrow b_i^{lex3} \rightarrow \ldots \rightarrow b_i^{lexK} \rightarrow b_i^{lex1}$
- This cycle can be transformed into an lexicographic epistemic model:
 - $b_i(t_i^1) = (b_i^{lex}, t_i^K)$
 - $b_i(t_i^2) = (b_i^{lex^2}, t_i^1)$
 - $b_i(t_i^3) = (b_i^{lex^3}, t_i^2)$
 - $b_i(t_i^4) = (b_i^{lex^4}, t_i^3)$
 - etc.

Respect of Preferences

- In such an epistemic model, every type is cautious and respects the opponent's preferences.
- Hence, all types express common full belief in (caution & respect of preferences)!

Existence

Theorem

Let Γ be some finite two player game. Then, there exists a lexicographic epistemic model such that

- every type in the model is cautious and expresses common full belief in (caution & respect of preferences).
- every type in the model deems possible only one opponent's type, and assigns at each lexicographic level probability-1 to one of the opponent's choices.

Agenda

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

- It is very convenient to have an algorithm which computes the choices that can be made rationally under caution and common full belief in (caution & respect of preferences).
- So far algorithms have been presented that iteratively eliminate choices from the game.
- It is now shown that such an algorithm cannot work for common full belief in (caution & respect of preferences).

Story

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- Your only objective is to avoid *Barbara*, since *you* would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, *Barbara* suspects *you* to have an affair and would thus like to spy on you.
- Spying is only possible from Pub A to Pub C, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

Respect of Preferences

Barbara A_B B_B C_B A_y 0,3 1,2 1,4 You B_y 1,3 0,2 1,1 C_y 1,6 1,2 0,1

			Barbara		
		A_B	B_B	C_B	
	A_{y}	0, 3	1, 2	1, 4	
You	B_{y}	1, 3	0, 2	1, 1	
	C_{y}	1,6	1, 2	0, 1	

- Which pubs can you rationally and cautiously pick under common full belief in (caution & respect of preferences)?
- Barbara prefers A_B to B_B .
- Therefore, you must deem A_B infinitely more likely than B_B .
- Then, you prefer B_{ν} to A_{ν} .
- Hence, you believe that Barbara deems B_{ν} infinitely more likely than A_{ν} .
- Thus, you believe that Barbara prefers B_R to C_R .
- Consequently, you must deem Barbara's choice B_R infinitely more likely than C_R .
- As you deem A_B infinitely more likely than B_B and B_B infinitely more likely than C_B , you can only rationally choose Cv!

Respect of Preferences

Barbara

		A_B	B_B	C_B
	A_y	0, 3	1, 2	1, 4
You	B_{y}	1, 3	0, 2	1, 1
	C_{y}	1,6	1, 2	0, 1

- Consider the following lexicographic epistemic model:
 - Type Spaces:

$$T_{you} = \{t_y\}$$
 and $T_{Barbara} = \{t_B\}$

Beliefs for You:

$$b_{you}(t_y) = ((A_B, t_B); (B_B, t_B); (C_B, t_B))$$

Beliefs for Barbara:

$$b_{Rarbara}(t_R) = ((C_v, t_v); (B_v, t_v); (A_v, t_v))$$

- Both your types are cautious and express common full belief in (caution & respect of preferences).
- As C_y is optimal for t_y, you can indeed rationally and cautiously choose C_y under common full belief in (caution & respect of preferences)!

		Barbara			
		A_B	B_B	C_B	
	A_{y}	0, 3	1, 2	1, 4	
⁄ои	B_{y}	1, 3	0, 2	1, 1	
	C_{y}	1,6	1, 2	0, 1	

- **But:** choice C_ν cannot be uniquely filtered out by iteratively deleting strictly or weakly dominated choices!
- At a first step, only B_B could be eliminated.
- But then choice B_{ν} could never be eliminated in the resulting reduced game!

Likelihood Orderings

Definition

A *likelihood ordering* for player i on j's choice set is a sequence $L_i = (L_i^1; L_i^2; \dots; L_i^K)$, where $\{L_i^1; L_i^2; \dots; L_i^K\}$ forms a partition of C_j .

Interpretation:

- Player *i* deems all choices in L_i^1 infinitely more likely than all choices in L_i^2 ; deems all choices in L_i^2 infinitely more likely than all choices in L_i^3 ; etc.
- Moreover, a likelihood ordering L_i for player i is said to **assume** a set of choices D_j for the opponent j, whenever L_i deems all choices inside D_j infinitely more likely than all choices outside D_j .
- In other words, an assumed set of choices equals the union of some first *l* levels of a likelihood ordering.

Preference Restrictions

Definition

Respect of Preferences

A *preference restriction* for player i is a pair (c_i, A_i) , where $c_i \in C_i$ and $A_i \subseteq C_i$.

Interpretation:

- Player i "prefers" at least one choice in A_i to c_i. (Note that "prefer" is used intuitively here, it does not correspond to the well-defined notion prefer!)
- Besides, a likelihood ordering L_i for player i is said to **respect a preference restriction** (c_j, A_j) for the opponent j, whenever L_i deems at least one choice in A_i infinitely more likely than c_i .

Story

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- Your only objective is to avoid Barbara, since you would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, Barbara suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from *Pub A* to *Pub C*, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

Respect of Preferences

		Barbara					
		A_B	B_B	C_B			
	A_{y}	0, 3	1, 2	1, 4			
You	B_{y}	1,3	0, 2	1, 1			
	C_{y}	1,6	1, 2	0, 1			
	- y	-,0	-, -	-, -			

- Barbara prefers A_B to B_B.
- It has been shown above that eliminating choice B_B leads to a dead end.
- However, it can be noted that $(B_B, \{A_B\})$ is a preference restriction for Barbara.
- If you respect Barbara's preference restriction (B_B, {A_B}), then you must deem A_B infinitely more likely than B_B.
- Thus, your likelihood ordering should be one of the followng:
 - 1 ({A_B}, {B_B}, {C_B}) 2 ({A_B}, {C_B}, {B_B}) 3 ({A_B}, {B_B, C_B}) 4 ({C_B}, {A_B}, {B_B}) 5 ({A_B, C_B}, {B_B})
- If your likelihood ordering is ({A_B}, {B_B}, {C_B}) or ({A_B}, {C_B}, {B_B}) or ({A_B}, {B_B, C_B}), then you assume Barbara's choice A_B, i.e. you deem A_B infinitely more likely than her other choices.
- In this case, you prefer B_v to A_v , since B_v weakly dominates A_v on $\{A_B\}$.

		Barbara						
		A_B	B_B	C_B				
	A_y	0, 3	1, 2	1, 4				
You	B_{y}	1, 3	0, 2	1, 1				
	C_{y}	1,6	1, 2	0, 1				

Your likelihood ordering should be one of the following:

- $(\{A_B\}, \{B_B\}, \{C_B\})$
- $(\{A_B\}, \{C_B\}, \{B_B\})$
- $({A_B}, {B_B}, {C_B})$
- $(\{C_B\}, \{A_B\}, \{B_B\})$
- $(\{A_B, C_B\}, \{B_B\})$
- If your likelihood ordering is $(\{C_B\}, \{A_B\}, \{B_B\})$ or $(\{A_B, C_B\}, \{B_B\})$, then you assume Barbara's choice set $\{A_B, C_B\}$, i.e. you deem A_B and C_B infinitely more likely than her choice B_B .
- In this case, you prefer B_v to A_v , since B_v weakly dominates A_v on $\{A_B, C_B\}$.
- Indeed, every likelihood ordering for you that respects Barbara's preference restriction $(B_B, \{A_B\})$ assumes either $\{A_B\}$ or $\{A_B, C_B\}$, and on both sets your choice A_v is weakly dominated by B_v .
- Hence, Barbara's preference restriction $(B_R, \{A_R\})$ induces the new preference restriction $(A_v, \{B_v\})$ for you.

			Barbara					
		A_B	B_B	C_B				
	A_{y}	0, 3	1, 2	1, 4				
You	B_{y}	1, 3	0, 2	1, 1				
	C_{y}	1,6	1, 2	0, 1				

- So far there are two preference restrictions: $(A_y, \{B_y\})$ and $(B_B, \{A_B\})$.
 - If Barbara respects your preference restriction $(A_y, \{B_y\})$, then she must deem B_y infinitely more likely than A_y .
 - Hence, her likelihood ordering must assume either your choice B_y or the set $\{B_y, C_y\}$.
 - On B_y as well as on $\{B_y, C_y\}$, Barbara's choice C_B is weakly dominated by B_B .
 - Thus, Barbara prefers B_B to C_B , and $(C_B, \{B_B\})$ results as a new preference restriction for Barbara.
- Now the preference restrictions are as follows: $(A_y, \{B_y\}), (B_B, \{A_B\}), \text{ and } (C_B, \{B_B\}).$
 - If you respect Barbara's preference restrictions $(B_B, \{A_B\})$ and $(C_B, \{B_B\})$, then your likelihood ordering must be $(A_R; B_B; C_B)$.
 - Hence, you assume the set $\{A_B, B_B\}$.
 - On $\{A_B, B_B\}$, your choice B_y is weakly dominated by C_y .
 - Thus, you prefer C_y to B_y , and $(B_y, \{C_y\})$ results as a new preference restriction for you.
- The resulting preference restrictions are: $(A_y, \{B_y\}), (B_y, \{C_y\}), (B_B, \{A_B\}),$ and $(C_B, \{B_B\}).$
- Then, your only optimal choice is C_y .
- Indeed, C_y also constitutes the only choice you can rationally and cautiously make under common full belief in (caution & respect of preferences).

Implications of Assuming a Set of Choices

Lemma

Respect of Preferences

Suppose that player i is equipped with some lexicographic belief b_i^{lex} about j's choices and that i assumes a set of choices $D_j \subseteq C_j$ for opponent j. If a choice c_i is weakly dominated on D_j by some randomized choice r_i , then i prefers some choice $c_i^* \in \text{supp}(r_i)$ to c_i .

Proof

Respect of Preferences

- Suppose that *i* entertains lexicographic belief $b_i^{lex} = (b_i^1; \dots; b_i^K)$ on C_i , and assumes $D_i \subset C_i$.
- Then, i deems all choices inside D_i infinitely more likely than all choices outside D_i .
- Consequently, there exists some level k* such that
 - 1 for every $d_i \in D_i$ there exists $k < k^*$ such that $d_i \in supp(b_i^k)$,
 - for every $c_i \in C_i \setminus D_i$ there exists no $k \leq k^*$ such that $c_i \in supp(b_i^k)$.
- Hence, the first k^* levels of b_i^{lex} form a cautious lexicographic belief $b_i^{lex}D_j = (b_i^1, \dots, b_i^{k^*})$ on D_i .
- As r_i weakly dominates c_i on D_i , it follows that for all $k \leq k^* u_i^k(c_i, b_i^{lex}D_i) \leq v_i^k(r_i, b_i^{lex}D_i)$, and, since $b_i^{lexD_j}$ is cautious, there exists some $l \leq k^*$ such that $u_i^l(c_i, b_i^{lexD_j}) < v_i^l(r_i, b_i^{lexD_j})$.
- Since $u_i^k(c_i, b_i^{lexD_j}) < v_i^k(r_i, b_i^{lexD_j})$ for all $k < k^*$, it is by Basic-Lemma II the case for all $k < k^*$ that either $u_i^k(c_i, b_i^{lexD_j}) = u_i^k(a_i, b_i^{lexD_j})$ for all $a_i \in \text{supp}_i(b_i^k)$ or there exists $\hat{a}_i \in \text{supp}_i(b_i^k)$ such that $u_i^k(c_i, b_i^{lexD_j}) < u_i^k(\hat{a}_i, b_i^{lexD_j})$.
- Moreover, as $u_i^l(c_i, b_i^{lexD_j}) < v_i^l(r_i, b_i^{lexD_j})$ for some $l < k^*$, there must be some $l^* < k^*$ and by Basic-Lemma I – some $a_i^* \in \text{supp}_i(b_i^{l^*})$ such that $u_i^{l^*}(c_i, b_i^{lexD_j}) < u_i^{l^*}(a_i^*, b_i^{lexD_j})$, and denote the smallest such level by l^{min} .
- As $u_i^k(c_i, b_i^{lexD_j}) = u_i^k(a_i^*, b_i^{lexD_j})$ for all $k < l^{min}$ and $u_i^{min}(c_i, b_i^{lexD_j}) < u_i^{min}(a_i^*, b_i^{lexD_j})$, player i prefers choice a_i^* to c_i , which concludes the proof.

Agenda

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

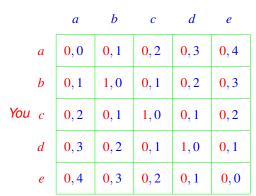
Towards an Algorithm

Story

- You are attending Barbara's wedding.
- However, when Barbara was supposed to say "yes", she suddenly changed her mind and ran away with light speed.
- You would like to find her and know that she is hiding in one of the following houses:
 - $a \rightleftharpoons b \rightleftharpoons c \rightleftharpoons d \rightleftharpoons e$
- Barbara's mother and grandmother live at a and e, respectively, and will definitely not open the door.
- Your utility is 1 if you find her, and 0 otherwise.
- Barbara's utility equals simply the distance away from you.

Respect of Preferences

Barbara



Respect of Preferences

			Barbara								
		a_B	b_B	c_B	d_B	e_B					
	a_Y	0, 0	0, 1	0, 2	0, 3	0, 4					
	b_Y	0, 1	1,0	0, 1	0, 2	0, 3					
You	c_Y	0, 2	0, 1	1, 0	0, 1	0, 2					
	d_Y	0, 3	0, 2	0, 1	1, 0	0, 1					
	e_Y	0, 4	0, 3	0, 2	0, 1	0, 0					

- What locations can you rationally and cautiously choose under common full belief in (caution & respect of preferences)?
- Observe that c_B is weakly dominated by $\frac{1}{2}b_B + \frac{1}{2}d_B$ on C_Y .
- Thus, Barbara prefers some choice from $\{b_B, d_B\}$ to c_B by the Lemma, and the preference restriction $(c_B, \{b_B, d_B\})$ for Barbara results.
- Preference restrictions: $(c_B, \{b_B, d_B\})$
 - If you respect Barbara's preference restriction (c_B, {b_B, d_B}), then you must deem either b_B or d_B infinitely more likely than c_B.
 - Hence, you will assume some set $D_B \subseteq C_B$ which includes b_B or d_B but not c_B .
 - On every such set D_B , your choice c_Y is weakly dominated by $\frac{1}{2}b_Y + \frac{1}{2}d_Y$.
 - Thus, you prefer some choice from $\{b_Y, d_Y\}$ to c_Y by the Lemma, and the preference restriction $(c_Y, \{b_Y, d_Y\})$ for you results.
 - Also, a_Y and e_Y are weakly dominated by c_Y on C_B yielding additional preference restrictions $(a_Y, \{c_Y\})$ and $(e_Y, \{c_Y\})$.

				Barbara		
		a_B	b_B	c_B	d_B	e_B
	a_Y	0, 0	0, 1	0, 2	0, 3	0, 4
	b_Y	0, 1	1,0	0, 1	0, 2	0, 3
⁄ou	c_Y	0, 2	0, 1	1,0	0, 1	0, 2
	d_Y	0, 3	0, 2	0, 1	1, 0	0, 1
	e_Y	0, 4	0, 3	0, 2	0, 1	0, 0

- Preference restrictions: $(c_Y, \{b_Y, d_Y\}), (a_Y, \{c_Y\}), (e_Y, \{c_Y\}), \text{ and } (c_B, \{b_B, d_B\})$
 - Note that b_B and d_B are weakly dominated by $\frac{3}{4}a_B + \frac{1}{4}e_B$ and $\frac{1}{4}a_B + \frac{3}{4}e_B$, respectively, on C_Y , yielding preference restrictions $(b_R, \{a_R, e_R\})$ and $(d_R, \{a_R, e_R\})$ for Barbara.
- Preference restrictions: $(c_Y, \{b_Y, d_Y\}), (a_Y, \{c_Y\}), (e_Y, \{c_Y\}),$ as well as $(c_R, \{b_R, d_R\}),$ $(b_B, \{a_B, e_B\}), \text{ and } (d_B, \{a_B, e_B\}).$
- Therefore, only b_V and d_V can possibly be optimal for you, and only a_R and e_R can possibly be optimal for Barbara

Respect of Preferences

				Barbara		
		a_B	b_B	c_B	d_B	e_B
	a_Y	0, 0	0, 1	0, 2	0, 3	0, 4
	b_Y	0, 1	1,0	0, 1	0, 2	0, 3
You	c_Y	0, 2	0, 1	1,0	0, 1	0, 2
	d_Y	0, 3	0, 2	0, 1	1,0	0, 1
	e_Y	0, 4	0, 3	0, 2	0, 1	0, 0
■ Preference restrictions: (c)	y , $\{b_Y$	$d_{Y}\}), (a$	$a_Y, \{c_Y\}$), $(e_Y, \{e_Y, \{$	c_Y }), as	well as (

- $(b_B, \{a_B, e_B\}), \text{ and } (d_B, \{a_B, e_B\}).$
- Consider the following lexicographic epistemic model:
 - Type Spaces:

$$T_{you} = \{t_y^b, t_y^d\}$$
 and $T_{Barbara} = \{t_B^a, t_B^e\}$

Beliefs for You:

$$b_{you}^{lex}(t_y^b) = ((a_B, t_B^a); (b_B, t_B^a); (e_B, t_B^a); (c_B, t_B^a); (d_B, t_B^a))$$

$$b_{you}^{lex}(t_y^d) = ((e_B, t_B^e); (d_B, t_B^e); (a_B, t_B^e); (c_B, t_B^e); (b_B, t_B^e))$$

Beliefs for Barbara:

$$\overline{b_B^{lex}(t_B^a)} = ((d_Y, t_y^d); (c_Y, t_y^d); (b_Y, t_y^d); (a_Y, t_y^d); (e_Y, t_y^d))
b_B^{lex}(t_B^e) = ((b_Y, t_y^b); (c_Y, t_y^b); (d_Y, t_y^b); (a_Y, t_y^b); (e_Y, t_y^b))$$

Respect of Preferences

				Barbara		
		a_B	b_B	c_B	d_B	e_B
	a_Y	0, 0	0, 1	0, 2	0, 3	0, 4
	b_Y	0, 1	1,0	0, 1	0, 2	0, 3
You	c_Y	0, 2	0, 1	1,0	0, 1	0, 2
	d_Y	0, 3	0, 2	0, 1	1, 0	0, 1
	e_Y	0, 4	0, 3	0, 2	0, 1	0, 0

- All four types are cautious and express common full belief in (caution & respect of preferences).
- **a** As b_Y is optimal for t_y^b and d_Y is optimal for t_y^d , you can rationally as well as cautiously choose house b and d under common full belief in (caution & respect of preferences)!

An Algorithm

Respect of Preferences

Basic Idea: iteratively add preference restrictions to the game!

Perea-Procedure

- Round 1. For every player i, add a preference restriction (ci, supp(ri)), if in the full game ci is weakly dominated by some randomized choice ri.
- Round 2. For every player i, restrict to likelihood orderings Li that respect all preference restrictions for the opponent in round 1. If every such likelihood ordering Li assumes a set of opponent choices Dj on which ci is weakly dominated by some randomized choice ri, then add a preference restriction (ci, supp(ri)) for player i,
- etc, until no further preference restrictions can be added.

The choices that survive this algorithm are the ones that are not part of any preference restriction generated during the complete algorithm.

Note: The order and speed in which preference restrictions are added is not relevant for the choices it returns.

Algorithmic Characterization

Theorem

Respect of Preferences

For all $k \ge 1$, the choices that can rationally be made by a cautious type that expresses up to k-fold full belief in caution and respect of preferences are exactly those choices that survive the first k + 1 steps of the Perea-Procedure.

Corollary

The choices that can rationally be made by a cautious type that expresses common full belief in (caution & respect of preferences) are exactly those choices that survive the Perea-Procedure.

Story

- Barbara and you are the only ones to take an exam.
- Both must choose a seat.
- If both choose the same seat, then with probability 0.5 you get the seat you want, and with probability 0.5 you get the one horizontally next to it.
- In order to pass the exam *you* must be able copy from *Barbara*, and the same applies to her.
- A person can only copy from the other person if seated horizontally next or diagonally behind the latter.

Towards an Algorithm

Example: Take a Seat

Story (continued)

The probabilities of successful copying for the respective seats are given in percentages:

$$a = 0$$
, $b = 10$, $c = d = 20$, $e = f = 45$, $g = h = 95$

- The objective is to maximize the expected percentage of successful copying.
- Question: What seats can you rationally and cautiously choose under common full belief in (caution & respect of preferences)?

			Barbara										
		a_B	b_B	c_B	d_B	e_B	f_B	g_B	h_B				
	a_Y	5, 5	<mark>0</mark> , 10	0, 0	<mark>0</mark> , 20	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0				
	b_Y	10, 0	5, 5	<mark>0</mark> , 20	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0	0,0				
	c_Y	0, 0	20, 0	20, 20	20, 20	0, 0	0, 45	0, 0	0,0				
You	d_Y	20, 0	<mark>0</mark> , 0	20, 20	20, 20	<mark>0</mark> , 45	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0				
100	e_Y	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0	45, 0	45, 45	45, 45	0, 0	0, 95				
	f_Y	0, 0	0, 0	45, 0	0, 0	45, 45	45, 45	0, 95	0,0				
	g_Y	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0	0, 0	0, 0	95, 0	95, 95	95, 95				
	h_Y	0, 0	0, 0	0, 0	0, 0	95, 0	0, 0	95, 95	95, 95				

			Barbara								
		a_B	b_B	c_B	d_B	e_B	f_B	g_B	h_B		
	a_Y	5, 5	<mark>0</mark> , 10	0, 0	<mark>0</mark> , 20	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0		
	b_Y	10, 0	5, 5	<mark>0</mark> , 20	0, 0	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0		
	c_Y	0, 0	20, 0	20, 20	20, 20	<mark>0</mark> , 0	<mark>0</mark> , 45	<mark>0</mark> , 0	0, 0		
You	d_Y	20, 0	0, 0	20, 20	20, 20	0 , 45	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0		
100	e_Y	0, 0	0, 0	0, 0	45, 0	45, 45	45, 45	0, 0	0, 95		
	f_Y	0, 0	0, 0	45, 0	0, 0	45, 45	45, 45	0, 95	0, 0		
	g_Y	0, 0	0, 0	0, 0	0, 0	0, 0	95, 0	95, 95	95, 95		
	h_Y	0, 0	0, 0	0, 0	0, 0	95, 0	0, 0	95, 95	95, 95		

Round 1.

- a_Y is weakly dominated by b_Y on C_R .
- b_Y is weakly dominated by $\frac{1}{2}c_Y + \frac{1}{2}d_Y$ on C_B .
- With symmetry the preference restrictions $(a_Y, \{b_Y\})$ and $(b_Y, \{c_Y, d_Y\})$ as well as $(a_B, \{b_B\})$ and $(b_B, \{c_B, d_B\})$ obtain.

Respect of Preferences

			Barbara								
		a_B	b_B	c_B	d_B	e_B	f_B	g_B	h_B		
	a_Y	5, 5	<mark>0</mark> , 10	<mark>0</mark> , 0	<mark>0</mark> , 20	0, 0	<mark>0</mark> , 0	<mark>0</mark> , 0	0,0		
	b_Y	10, 0	5, 5	<mark>0</mark> , 20	<mark>0</mark> , 0	0, 0	<mark>0</mark> , 0	<mark>0</mark> , 0	0,0		
	c_Y	<mark>0</mark> , 0	20, 0	20, 20	20, 20	0, 0	<mark>0</mark> , 45	<mark>0</mark> , 0	0,0		
You	d_Y	20, 0	0, 0	20, 20	20, 20	0, 45	0, 0	0, 0	0,0		
100	e_Y	0, 0	0, 0	0, 0	45, 0	45, 45	45, 45	0, 0	0, 95		
	fy	0, 0	0, 0	45, 0	0, 0	45, 45	45, 45	0, 95	0,0		
	g_Y	0, 0	0, 0	0, 0	0, 0	0, 0	95, 0	95, 95	95, 95		
	h_Y	0, 0	0, 0	0, 0	0, 0	95, 0	0, 0	95, 95	95, 95		

- **Round 2.** preference restrictions: $(a_Y, \{b_Y\}), (b_Y, \{c_Y, d_Y\}), (a_B, \{b_B\}), (b_B, \{c_B, d_B\})$
 - If you respect preference restriction $(a_B, \{b_B\})$, then you must assume some set $D_B \subseteq C_B$ which contains b_B but not a_B .
 - For every such set D_B it holds that d_Y is weakly dominated by c_Y .
 - Moreover, if you respect preference restrictions $(a_B, \{b_B\})$ and $(b_B, \{c_B, d_B\})$, then you must assume some set $D_B \subseteq C_B$ which contains c_B or d_B but not a_B and not b_B .
 - For every such set D_B it holds that c_Y is weakly dominated by $\frac{1}{2}e_Y + \frac{1}{2}f_Y$.

Respect of Preferences

			Barbara								
		a_B	b_B	c_B	d_B	e_B	f_B	g_B	h_B		
	a_Y	5, 5	<mark>0</mark> , 10	<mark>0</mark> , 0	0, 20	0, 0	<mark>0</mark> , 0	0, 0	0, 0		
	b_Y	10, 0	5, 5	<mark>0</mark> , 20	0, 0	0, 0	<mark>0</mark> , 0	0, 0	0, 0		
	c_Y	<mark>0</mark> , 0	20, 0	20, 20	20, 20	0, 0	<mark>0</mark> , 45	0, 0	0, 0		
You	d_Y	20, 0	0, 0	20, 20	20, 20	0, 45	0, 0	0, 0	0, 0		
100	e_Y	<mark>0</mark> , 0	0, 0	<mark>0</mark> , 0	45, 0	45, 45	45, 45	0, 0	0, 95		
	f_Y	<mark>0</mark> , 0	0, 0	45, 0	0, 0	45, 45	45, 45	0, 95	0, 0		
	g_Y	<mark>0</mark> , 0	0, 0	<mark>0</mark> , 0	0, 0	0, 0	95, 0	95, 95	95, 95		
	h_Y	0, 0	0, 0	0, 0	0, 0	95, 0	0, 0	95, 95	95, 95		

- **Round 3.** preference restrictions: $(a_Y, \{b_Y\}), (b_Y, \{c_Y, d_Y\}), (d_Y, \{c_Y\}), (c_Y, \{e_Y, f_Y\}), (a_B, \{b_B\}), (b_B, \{c_B, d_B\}), (d_B, \{c_B\}), (c_B, \{e_B, f_B\})$
 - If you respect preference restriction $(d_B, \{c_B\})$, then you must assume some set $D_B \subseteq C_B$ which contains c_B but not d_B .
 - For every such set D_B it holds that e_Y is weakly dominated by f_Y .
 - Moreover, if you respect preference restrictions $(a_B, \{b_B\}), (b_B, \{c_B, d_B\}), (d_B, \{c_B\}), (e_B, \{e_B, f_B\}), \text{then you must assume some set } D_B \subseteq C_B$ which contains e_B or f_B but not any choice from $\{a_B, b_B, c_B, d_B\}$.
 - For every such set D_B it holds that f_Y is weakly dominated by $\frac{1}{2}g_Y + \frac{1}{2}h_Y$.

Respect of Preferences

					Ban	bara			
		a_B	b_B	c_B	d_B	e_B	f_B	g_B	h_B
	a_Y	5, 5	<mark>0</mark> , 10	0, 0	<mark>0</mark> , 20	0, 0	0, 0	<mark>0</mark> , 0	0, 0
	b_Y	10, 0	5, 5	0, 20	0, 0	0, 0	0, 0	0, 0	0, 0
	c_Y	0, 0	20, 0	20, 20	20, 20	0, 0	0, 45	0, 0	0,0
You	d_Y	20, 0	0, 0	20, 20	20, 20	0, 45	0, 0	0, 0	0,0
100	e_Y	0, 0	0, 0	0, 0	45, 0	45, 45	45, 45	0, 0	0, 95
	f_Y	0, 0	0, 0	45, 0	0, 0	45, 45	45, 45	0, 95	0, 0
	g_Y	0, 0	0, 0	0, 0	0, 0	0, 0	95, 0	95, 95	95, 95
	h_Y	0, 0	0, 0	0, 0	0, 0	95, 0	0, 0	95, 95	95, 95

- **Round 4.** preference restrictions: $(a_Y, \{b_Y\}), (b_Y, \{c_Y, d_Y\}), (d_Y, \{c_Y\}), (c_Y, \{e_Y, f_Y\}), (e_Y, \{f_Y\}), (f_Y, \{g_Y, h_Y\}), (a_B, \{b_B\}), (b_B, \{c_B, d_B\}), (d_B, \{c_B\}), (c_B, \{e_B, f_B\}), (e_B, \{f_B\}), (f_B, \{g_B, h_B\})$
 - If you respect preference restriction $(e_B, \{f_B\})$, then you must assume some set $D_B \subseteq C_B$ which contains f_B but not e_B .
 - For every such set D_B it holds that h_Y is weakly dominated by g_Y .
 - However, note that with preference restrictions $(a_Y, \{b_Y\}), (b_Y, \{c_Y, d_Y\}), (d_Y, \{c_Y\}), (c_Y, \{e_Y, f_Y\}), (e_Y, \{f_Y\}), (f_Y, \{g_Y, h_Y\}), (h_Y, \{g_Y\}),$ only your choice g_Y can be optimal!
- Under common full belief in (caution & respect of preferences), you can thus only rationally and cautiously take seat g.

Respect of Preferences

		Barbara							
		a_B	b_B	c_B	d_B	e_B	f_B	g_B	h_B
You	a_Y	5, 5	<mark>0</mark> , 10	0, 0	<mark>0</mark> , 20	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0
	b_Y	10, 0	5, 5	<mark>0</mark> , 20	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0
	c_Y	0, 0	20, 0	20, 20	20, 20	0, 0	0, 45	0, 0	0,0
	d_Y	20, 0	0, 0	20, 20	20, 20	0, 45	0, 0	0, 0	0,0
	e_Y	0, 0	0, 0	0, 0	45, 0	45, 45	45, 45	0, 0	0, 95
	fy	0, 0	0, 0	45, 0	0, 0	45, 45	45, 45	0, 95	0, 0
	g_Y	0, 0	0, 0	0, 0	0, 0	0, 0	95, 0	95, 95	95, 95
	h_Y	0, 0	0, 0	0, 0	0, 0	95, 0	0, 0	95, 95	95, 95

- Consider the following lexicographic epistemic model:
 - **Type Spaces:** $T_{you} = \{t_Y\}$ and $T_{Barbara} = \{t_B\}$
 - Beliefs for You:
 - $b_{vou}(t_Y) = ((g_B, t_B); (h_B, t_B); (f_B, t_B); (e_B, t_B); (c_B, t_B); (d_B, t_B); (b_B, t_B); (a_B, t_B))$
 - Beliefs for Barbara:
 - $b_B(t_B) = ((g_Y, t_Y); (h_Y, t_Y); (f_Y, t_Y); (e_Y, t_Y); (c_Y, t_Y); (d_Y, t_Y); (b_Y, t_Y); (a_Y, t_Y))$

Related Solution Concept of Proper Equilibrium (Myerson, 1978)

Classical Definition

Respect of Preferences

A pair of mixed choices $(\sigma_1,\sigma_2)\in\Delta(C_1)\times\Delta(C_2)$ constitutes a proper equilibrium, if there exists a converging sequence (σ_1^n,σ_2^n) of full support mixed choices such that for all $c_i,c_i'\in\mathcal{C}_i$, if $u_i(c_i,\sigma_j^n)< u_i(c_i',\sigma_j^n)$ for some $n\in\mathbb{N}$, then $\lim_{n\to\infty}\frac{\sigma_i^n(c_i)}{\sigma_i^n(c_i')}=0$.

Epistemic Definition

A pair of beliefs $(\sigma_1,\sigma_2)\in\Delta(C_1)\times\Delta(C_2)$ constitutes a proper equilibrium, if there exists a pair of cautious lexicographic beliefs (b_1^{lex},b_2^{lex}) such that $b_1^1=\sigma_2$ as well as $b_2^1=\sigma_1$ and for all $c_i,c_i'\in C_i$, if $u_i^{lex}(c_i,b_i^{lex})< u_i^{lex}(c_i',b_i^{lex})$, then b_i^{lex} deems c_i infinitely less likely than c_i' .

Epistemic Conditions:

common full belief in (caution & respect of preferences)

some correct beliefs assumption (e.g. "simple belief hierarchies")