ECON322 Game Theory Part III Interactive Epistemology Topic 9 Rationality

Christian W. Bach

University of Liverpool & EPICENTER

ECON322 Game Theory: T9 Rationality

http://www.epicenter.name/bach

Adding Beliefs to Knowledge

- The interactive epistemology can be linked to games.
- Thereby, it becomes possible to formally define rationality in games and to model the reasoning of players.
- The epistemic program in game theory characterizes solution concepts in terms of epistemic conditions.
- The meaning of solution concepts in terms of the players' thinking is thus brought to light.
- For simplicity sake only the epistemic operator of knowledge (and not belief) is used in T8 to formulate an epistemic condition.

A (10) A (10) A (10)

Epistemic Model

Rationality

Common Knowledge of Rationality

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EPISTEMIC MODEL

ECON322 Game Theory: T9 Rationality

The Thinking of Players in Games

- A strategic-form frame specifies the choices available to the players.
- In a strategic-form game this is complemented by what motivates the players (i.e. their preferences over the possible outcomes).
- However, an important factor in the determination of the players' choices is left out: their thinking about the opponents.
- Interactive Epistemology can serve to add a specification of the players' knoweldge and beliefs to a game model.
- This determines the context in which a particular game is played.

< 同 > < 三 > <

Epistemic Models

Definition 1

Let \mathcal{G} be a game in strategic form. An epistemic model of \mathcal{G} is a tuple $\mathcal{M}^{\mathcal{G}} = \langle \mathcal{E}^*, (\zeta_i)_{i \in I} \rangle$, where

- \mathcal{E}^* is an epistemic structure with beliefs
- ζ_i : Ω → S_i is a I_i-measurable choice function assigning to every state ω ∈ Ω a strategy of player i ∈ I.

- The interpretation of $s_i = \zeta_i(\omega)$ is that, at state ω , player *i* chooses strategy s_i .
- **\mathcal{I}_i-measurability** of ζ_i means that at every state $\omega \in \Omega$ it is the case that $\zeta_i(\omega') = \zeta_i(\omega)$ for all $\omega' \in \mathcal{I}_i(\omega)$.
- This implies that player *i* always knows his own choice.

- As a game in Definition 1, a reduced game G* can also be used and furnished with an epistemic model.
- To keep things simple, the range of the choice functions run over pure strategies.
- A player's knowledge is encoded by his information partition and his beliefs by the probability distributions at his information sets.
- The choice functions enable the formulation of events about what strategies the players choose.

A (10) A (10)

Consider the following reduced game in strategic form

		Player 2			
		LCR			
	Т	4,6	3,2	8,0	
Player 1	М	0,9	0,0	4,12	
	В	8,3	2,4	0,0	

with the following epistemic model of it, where $\Omega = \{\alpha, \beta, \gamma, \delta\}$:

1:
$$\alpha \frac{1}{2}$$
 $\beta \frac{1}{2}$ $\gamma 0 \delta 1$
2: α $\beta \frac{1}{2}$ $\gamma \frac{1}{2}$ δ
CK $\alpha \beta \gamma \delta$
 $\alpha \beta \gamma \delta$
 $\frac{\alpha \beta \gamma \delta}{\zeta_1 B B M M}$
 $\zeta_2 C L L R$

Illustration

			Player 2	
		L	С	R
Т		4,6	3,2	8,0
Player 1 M		0,9	0, 0	4,12
В		8,3	2,4	0,0
1:	$\alpha_{\frac{1}{2}}$	β 1/2	γ ₀	δ 1
2:	α	$\beta_{\frac{2}{3}}$	γ <u>1</u>	δ
CK partition	α	β	γ	δ
	α	β	γ	δ
$\zeta_1 \\ \zeta_2$	В	В	М	М
ζ_2	С	L	L	R

For instance, consider state β , which describes the following situation:

- Player 1 chooses B (since $\zeta_1(\beta) = B$) and Player 2 chooses L (since $\zeta_2(\beta) = L$).
- Player 1 is uncertain (since $\mathcal{I}_1(\beta) = \{\alpha, \beta\}$) as to whether Player 2 chooses C (since $\zeta_2(\alpha) = C$) or L (since $\zeta_2(\beta) = L$); in fact, Player 1 attaches probability $\frac{1}{2}$ to each of these two possibilities.
- Player 2 is uncertain (since $\mathcal{I}_2(\beta) = \{\beta, \gamma\}$) as to whether Player 1 chooses B (since $\zeta_1(\beta) = B$) or M (since $\zeta_1(\gamma) = M$); in fact, Player 1 attaches probability $\frac{2}{3}$ to Player 1 picking B and $\frac{1}{3}$ to him opting for M.

э

(日)

RATIONALITY

ECON322 Game Theory: T9 Rationality

• • • • • • • • • • • •

- The Enriched Framework
 - A strategic-form game only offers a partial description of an interactive situation.
 - It specifies who the players are, what choices they can make, and how they rank the possible outcomes.
 - An epistemic model completes this description.
 - It specifies what each player actually does and what he is actually thinking about the opponents.
 - The enriched framework with the full description of an interactive situation enables to judge whether a choice is rational or not.

A (10) A (10)

Optimal Behaviour given Beliefs about the Opponents' Behaviour

Intuitively, a player is rational, whenever he picks a choice which is "best" given what he believes about the opponents' choices.

• Let $\omega \in \Omega$ be some state and $i \in I$ some player.

ζ_{-i}(ω) denotes the profile of strategies at ω chosen by i's opponents i.e.:

$$\zeta_{-i}(\omega) = \left(\zeta_j(\omega)\right)_{j \in I \setminus \{i\}}$$

■ $\zeta(\omega)$ denotes the profile of strategies at ω chosen by all players: $\zeta(\omega) = (\zeta_i(\omega))_{i \in I}$

Recall that $P_i^{\mathcal{I}_i(\omega)}$ denotes *i*'s beliefs about events at the state ω .

By definition, \mathcal{I}_i -measurability also holds for *i*'s beliefs, i.e. if $\omega' \in \mathcal{I}_i(\omega)$, then $P_i^{\mathcal{I}_i(\omega')} = P_i^{\mathcal{I}_i(\omega)}$.

Rationality

Definition 2

Let \mathcal{G}^* be a reduced game in strategic form, $\mathcal{M}^{\mathcal{G}^*}$ an epistemic model of it, $i \in I$ some player, and $\omega \in \Omega$ some state. Player *i* is rational at state ω , whenever

$$\sum_{\omega' \in \mathcal{I}_{i}(\omega)} p_{i}^{\mathcal{I}_{i}(\omega)}(\omega') \cdot U_{i}(\zeta_{i}(\omega), \zeta_{-i}(\omega')) \geq \sum_{\omega' \in \mathcal{I}_{i}(\omega)} p_{i}^{\mathcal{I}_{i}(\omega)}(\omega') \cdot U_{i}(s_{i}, \zeta_{-i}(\omega'))$$

holds for all $s_i \in S_i$. The event of player *i* being rational is

 $R_i := \{ \omega \in \Omega : \text{player } i \text{ is rational at } \omega \}.$

(I)

Illustration

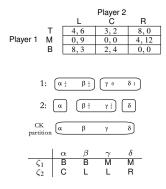
			Player 2	
		L	Ċ	R
Т		4,6	3,2	8, 0
Player 1 M		0,9	0, 0	4,12
В		8,3	2, 4	0,0
1: (α 1/2	β 1/2	<u>γ</u> 0	δι
2: [α	$\beta^{\frac{2}{3}}$	γ <u>1</u> 3	δ
CK partition	α	β	γ	δ
	α	β	γ	δ
$\zeta_1 \\ \zeta_2$	В	В	М	М
ζ_2	С	L	L	R

- At state β Player 1 is rational.
- Indeed, given his beliefs and his choice of $\zeta_1(\beta) = B$, Player 1's expected payoff is $\pi_1(B, p_1^{\mathcal{I}_1(\beta)}) = \frac{1}{2} \cdot U_1(B, C) + \frac{1}{2} \cdot U_1(B, L) = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 8 = 5.$
- This is maximal since $\pi_1(M, p_1^{\mathcal{I}_1(\beta)}) = \frac{1}{2} \cdot U_1(M, C) + \frac{1}{2} \cdot U_1(M, L) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 = 0$ as well as $\pi_1(T, p_1^{\mathcal{I}_1(\beta)}) = \frac{1}{2} \cdot U_1(T, C) + \frac{1}{2} \cdot U_1(T, L) = \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot 4 = 3.5.$

ECON322 Game Theory: T9 Rationality

http://www.epicenter.name/bach

Illustration



- At state β Player 2 is also rational.
- Indeed, given his beliefs and his choice of $\zeta_2(\beta) = L$, Player 2's expected payoff is $\pi_2(L, p_1^{T_2(\beta)}) = \frac{2}{3} \cdot U_2(B, L) + \frac{1}{3} \cdot U_2(M, L) = \frac{2}{3} \cdot 3 + \frac{1}{3} \cdot 9 = 5.$
- This is maximal since $\pi_2(C, p_2^{\mathcal{I}_2(\beta)}) = \frac{2}{3} \cdot U_2(B, C) + \frac{1}{3} \cdot U_2(M, C) = \frac{2}{3} \cdot 4 + \frac{1}{3} \cdot 0 = \frac{8}{3}$ as well as $\pi_2(R, p_2^{\mathcal{I}_2(\beta)}) = \frac{2}{3} \cdot U_2(B, R) + \frac{1}{3} \cdot U_2(M, R) = \frac{2}{3} \cdot 0 + \frac{1}{3} \cdot 12 = 4.$

ECON322 Game Theory: T9 Rationality

http://www.epicenter.name/bach

The Event of Everyone being Rational

Definition 3

Let \mathcal{G}^* be a reduced game in strategic form and $\mathcal{M}^{\mathcal{G}^*}$ an epistemic model of it. The event

$$R:=\cap_{i\in I}R_i$$

is called rationality.

A (10) A (10)

		L	Player 2 C	R
Player 1	T M	4,6	3, 2 0, 0	8,0 4,12
i layor i	В	8,3	2,4	0,0
1	: [α	÷β÷	γ ο	δι

1: $\alpha_{\frac{1}{2}}$	$\beta_{\frac{1}{2}}$	γ ο	δ 1
2: α	$\beta_{\frac{2}{3}}$	$\gamma \frac{1}{3}$	δ
CK a	β	γ	δ

	α	β	γ	δ
ζ_1	В	В	М	М
ζ_2	C	L	L	R

It can be shown that $R_1 = \{\alpha, \beta\}$ as well as $R_2 = \{\alpha, \beta, \gamma, \delta\}$.

• Therefore, $R = R_1 \cap R_2 = \{\alpha, \beta\} \cap \{\alpha, \beta, \gamma, \delta\} = \{\alpha, \beta\}.$

æ

Knowledge of own Rationality coincides with own Rationality

Proposition 4

Let \mathcal{G}^* be a reduced game in strategic form, $\mathcal{M}^{\mathcal{G}^*}$ an epistemic model of it, and $i \in I$ some player. Then, $K_i R_i = R_i$.

Proof

- Let $\omega \in \Omega$ be some state such that $\omega \in K_i R_i$.
- By T7 Proposition 3 (TRUTH), it follows that ω ∈ R_i.
- Conversely, let $\omega \in \Omega$ be some state such that $\omega \in R_i$.
- Then, *i* is rational at ω, i.e. for all s_i ∈ S_i it is the case that

$$\sum_{\omega' \in \mathcal{I}_i(\omega)} p_i^{\mathcal{I}_i(\omega)}(\omega') \cdot U_i(\zeta_i(\omega), \zeta_{-i}(\omega')) \ge \sum_{\omega' \in \mathcal{I}_i(\omega)} p_i^{\mathcal{I}_i(\omega)}(\omega') \cdot U_i(s_i, \zeta_{-i}(\omega')).$$

- The \mathcal{I}_i -measurability of ζ_i and P_i implies that $\zeta_i(\hat{\omega}) = \zeta_i(\omega)$ and $p_i^{\mathcal{I}_i(\hat{\omega})} = p_i^{\mathcal{I}_i(\hat{\omega})}$ for all $\hat{\omega} \in \mathcal{I}_i(\omega)$.
- Consequently, for all $\hat{\omega} \in \mathcal{I}_i(\omega)$ and for all $s_i \in S_i$ it also holds that

$$\sum_{\omega' \in \mathcal{I}_i(\hat{\omega})} p_i^{\mathcal{I}_i(\hat{\omega})}(\omega') \cdot U_i(\zeta_i(\hat{\omega}), \zeta_{-i}(\omega')) \geq \sum_{\omega' \in \mathcal{I}_i(\hat{\omega})} p_i^{\mathcal{I}_i(\hat{\omega})}(\omega') \cdot U_i(s_i, \zeta_{-i}(\omega')).$$

• Therefore, *i* is rational at every state $\hat{\omega} \in \mathcal{I}_i(\omega)$, thus $\mathcal{I}_i(\omega) \subseteq R_i$ and $\omega \in K_i R_i$ obtains.

COMMON KNOWLEDGE OF RATIONALITY

ECON322 Game Theory: T9 Rationality

- 47 ▶

Common Knowledge of Rationality

- Since rationality is an event, the knowledge operator and the common knowledge operator can be applied to it.
- Mutual knowledge of rationality is the event KR and common knowledge of rationality is the event CKR.
- It follows via **T7** Proposition 3 (TRUTH) that $KR \subseteq R$ as well as $CKR \subseteq R$.
- It turns out that common knowledge of rationality characterizes the solution concept of iterated strict dominance.
- Thus, the meaning of *ISD* in terms of reasoning is *CKR*.

< 同 > < 回 > < 回

Epistemic Foundation

Theorem 5

Let \mathcal{G}^* be a finite reduced game in strategic form, $\mathcal{M}^{\mathcal{G}^*}$ an epistemic model of it, and $\omega \in \Omega$ some state. If $\omega \in CKR$, then $\zeta(\omega) \in ISD$.

Equivalence of Rationality and Strict Dominance

Theorem 6

Let \mathcal{G}^* be a finite reduced game in strategic form, $i \in I$ some player, and $s_i \in S_i$ some strategy of player i. There exists a belief $\rho_i : S_{-i} \to [0, 1]$ about i's opponents' strategies such that s_i is optimal given p_i (i.e. $\sum_{s_{-i} \in S_{-i}} U_i(s_i, s_{-i}) \cdot \rho_i(s_{-i}) \ge \sum_{s_{-i} \in S_{-i}} U_i(s'_i, s_{-i}) \cdot \rho_i(s_{-i})$ for all $s'_i \in S_i$), if and only if, $s_i \in SD_i^1$

- Intuitively, Theorem 6 states that a choice being rational is equivalent to it not being strictly dominated.
- This result also known as PEARCE'S LEMMA has been established for the 2 player case by Pearce (1984, Lemma 3).
- It has been generalized by Perea (2012, Theorem 2.5.3) with any finite number of players.

(I)

Proof of Theorem 5

- By induction on $m \in \mathbb{N}$, it will be shown that for every state $\omega' \in \mathcal{I}_{CK}(\omega)$ and for every player $i \in I$ it is the case that $\zeta_i(\omega') \in SD_i^m$.
- Induction Basis *m* = 1:
 - Consider some state $\omega' \in \mathcal{I}_{CK}(\omega)$ and some player $i \in I$.
 - Since $\omega \in CKR$, it holds that $\mathcal{I}_{CK}(\omega) \subseteq R = \bigcap_{j \in I} R_j \subseteq R_i$ and thus $\omega' \in R_i$.
 - Consequently, $\zeta_i(\omega')$ is optimal given belief $p_i^{\mathcal{I}_i(\omega')}$ and therefore, by Theorem 6, $\zeta_i(\omega') \in SD_i^1$.
- Induction Basis m > 1:
 - Assume that the inductive hypothesis holds, i.e. for for every state $\omega' \in \mathcal{I}_{CK}(\omega)$ and for every player $i \in I$ it is the case that $\zeta_i(\omega') \in SD_k^i$ for all $k \leq m 1$.
 - Consider some state ω' ∈ 𝒯_{CK}(ω) and some player i ∈ I.
 - As above, ω ∈ CKR implies that ω' ∈ R_i and thus ζ_i(ω') is optimal given belief p_i^{I_i(ω')}.
 - Now, by the inductive hypothesis, $\zeta(\omega'') = (\zeta_j(\omega''))_{j \in I} \in (SD_j^{m-1})_{j \in I} = SD^{m-1}$ for all $\omega'' \in \mathcal{I}_{CK}(\omega) = \mathcal{I}_{CK}(\omega')$ and hence, since $\mathcal{I}_i(\omega') \subseteq \mathcal{I}_{CK}(\omega')$, the relation $\supp(p_i^{\mathcal{I}_i(\omega')}) \subseteq S_{-i}^{m-1}$ obtains.
 - It then follows, by Theorem 6 applied to the reduced game \mathcal{G}^{*m-1}_{SD} , that $\zeta_i(\omega') \in SD_i^{(m-1)+1} = SD_i^m$.
- As $\cap_{m \in \mathbb{N}} ((SD_i^m)_{i \in I}) = \cap_{m \in \mathbb{N}} SD^m = ISD$ as well as $\omega \in \mathcal{I}_{CK}(\omega)$, the desired conclusion $\zeta(\omega) = (\zeta_i(\omega))_{i \in I} \in ISD$ ensues.

Theorem 7

Let \mathcal{G}^* be a finite reduced game in strategic form and $s \in (S_i)_{i \in I}$ a strategy profile. If $s \in ISD$, then there exists an epistemic model $\mathcal{M}^{\mathcal{G}^*}$ with a state $\omega \in \Omega$ such that $\zeta(\omega) = s$ and $\omega \in CKR$.

Proof of Theorem 7

- Construct an epistemic model of G* such that
 - $\Omega := ISD$,
 - *I_i*(ω^s) := {s' ∈ Ω : s'_i = s_i} for every player i ∈ I and for every state s ∈ Ω,
 - ζ_i(s) = s_i for every player i ∈ I,
 - for every player $i \in I$ and for every state $s \in \Omega$ define *i*'s probability distribution $p_i^{\mathcal{I}_i(s)}$ as follows:
 - By definition of *ISD*, for every $j \in I$, if $s_j \in ISD_j$, then it is not strictly dominated in $\mathcal{G}^* \underset{SD}{\overset{\infty}{\simeq}}$.
 - For every player *j* ∈ *I*, it follows by Theorem 6 applied to *G*^{*} ^{so}_{*SD*} that there exists a probability distribution ρ^{sj}_i over *ISD*_{-j} such that s_j is optimal given ρ^{sj}_i.
 - Take one such probability distribution $\rho_i^{s_i}$ as *i*'s probability distribution $p_i^{\mathcal{I}_i(s)}$.
- Now, consider some $s \in ISD$.
- Take the corresponding state $s \in \Omega$ in the epistemic model.
- It holds at state s that ζ(s) = (ζ_i(s))_{i∈I} = (s_i)_{i∈I}.
- Moreover, at every state $s' \in \Omega$ it is the case that $\zeta_i(s') = s'_i$ is optimal given $\rho_i^{s'_i} = \rho_i^{\mathcal{I}_i(s')}$ for every player $i \in I$ and consequently $s' \in \bigcap_{i \in I} R_i = R$.
- Since $s' \in \bigcap_{i \in I} R_i = R$ holds for all $s' \in \Omega$, it directly follows that $R = \Omega$.
- Since $\mathcal{I}_{CK}(\omega) \subseteq \Omega$, it is the case that $\omega \in CKR$.

Introduction	Epistemic Model	Rationality	Common Knowledge of Rationality
Illustration			

		Player 2		
		L	C	R
	Т	4,6	3,2	8, 0
Player 1	М	0,9	0, 0	4,12
	В	8,3	2,4	0, 0

- For Player 1, the strategy M is strictly dominated by any mixed strategy $\begin{pmatrix} T & B \\ p & 1-p \end{pmatrix}$ with $p > \frac{1}{2}$.
- After deletion of M, for Player 2, the strategy R is strictly dominated by either of his other two strategies.
- It follows that $ISD = \{T, B\} \times \{L, C\}$.
- These are the only strategy profiles in this game that are compatible with common knowledge of rationality.
- Indeed, by Theorem 5, at a state in an epistemic model of this game where there is common knowledge of rationality, the players can play only one of these strategy profiles.
- Moreover, by Theorem 7, any of these four strategy profiles can in fact be played in a situation where there is common knowledge of rationality.
- Each of these profiles can be supported by an epistemic model of the game with a state at which the respective profile is actually played and the players reason in line with common knowledge of rationality.

イロト イポト イヨト イヨト 二日

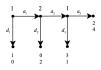
Epistemic Conditions for Nash Equilibrium

- Common knowledge of rationality does not imply Nash Equilibrium.
- Since *PSNE* ⊆ *ISD*, the solution concept of Nash Equilibrium is compatible with common knowledge of rationality.
- The crucial ingredient in any epistemic foundation for Nash Equilibrium is a correct beliefs assumption.
- A correct beliefs assumption entails knowledge of the others' strategies and an independent belief about the others' strategies.
- A correct beliefs assumption plus mutual knowledge of rationality imply Nash Equilibrium.

A (10) A (10) A (10)

A Glimpse at Reasoning in Dynamic Games

- A strategy in dynamic games is a complete, contingent plan.
- This raises potential frictions with $\zeta_i(\omega)$ being the actual choice of player *i* at state ω .
- For example, consider $\zeta_1(\omega) = (d_1, a_3)$ in the following dynamic game:



- Only the first part of $\zeta_1(\omega) = (d_1, a_3)$, namely d_1 , can be interpreted as 1's actual behaviour at state ω .
- If 1 picks d_1 , then he knows he will not make any further choices and the second part, namely a_3 , seems meaningless: $\zeta_1(\omega) = (d_1, a_3)$ can thus not be interpreted as "At state ω , player 1 chooses (d_1, a_3) ".
- A possibility could be to interpret these counterfactuals strategy ingredients (e.g. a₃ above) as others' beliefs about what the respective player would do if the respective information set were to be reached.

э.

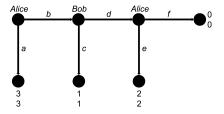
<ロ> <同> <同> < 同> < 同> < 同> 、

Modelling Hypothetical Reasoning

- In dynamic games players may have to choose several times.
- In between they may learn about opponents' choices or the outcomes of random events.
- Consequently, they may want to update or revise their beliefs.
- A richer notion of an epistemic model is thus needed to capture hypothetical reasoning as well as counterfactual reasoning.
- More refined reasoning notions are needed that also make explicit the belief revision policy of players.
- For instance, the inherently static notion of CKR may not be satisfiable at some situations within a dynamic game.

A (10) A (10)

Introduction	Epistemic Model	Rationality	Common Knowledge of Rationality
Illustration			



- It is uniquely rational in this game for Alice to immediately terminate the game by choosing a at her first information set.
- Consequently, at his information set, Bob cannot believe or know rationality and a fortiori not hold CKR even if he initially did.
- How would he revise his thinking about Alice?
 - Would Alice nonetheless be "locally rational" later on?
 - Or would Alice also act "locally irrationally" later on?

Background Reading

GIACOMO BONANNO (2018): Game Theory, 2nd Edition

Chapter 10: Rationality

available at:

http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html