ECON322 Game Theory

Part III Interactive Epistemology Topic 8 Belief

Christian W. Bach

University of Liverpool \& EPICENTER

Research Center for
Epistemic Game Theory

Adding Beliefs to Knowledge

■ In T7, the notion of knowledge has been treated.

■ Since knowledge satisfies Truth, there is no uncertainty whatsoever in the epistemic attitude of the agent.

■ In T8, the weaker idea of belief is introduced.

■ Beliefs are modelled by means of probabilities and they always admit the possibility of error.

Outline

- Probability

■ Belief

- Belief Change
- Like-Mindedness
- Agreeing to Disagree

PROBABILITY

Probability Measures

- The sample space U (also called universal set) contains all objects of interest and the subsets of U are called events.

■ A probability measure on U is a function $P: 2^{U} \rightarrow[0,1]$ satisfying the following two properties:
I. $P(U)=1$,
2. $P(E \cup F)=P(E)+P(F)$ for all $E, F \in 2^{U}$ such that $E \cap F=\emptyset$.

Illustration

Properties of Probability Measures

The definition of probability measure implies the following properties:

- $P(\neg E)=1-P(E)$ for all $E \in 2^{U}$
(This stems from $E \cap \neg E=\emptyset$ and $E \cup \neg E=U$)
- $P(\emptyset)=0$
(This stems from the previous property and $\emptyset=\neg U$)
■ $P(E \cup F)=P(E)+P(F)-P(E \cap F)$ for all $E, F \in 2^{U}$
(Intuitively, $P(E \cap F)$ are subtracted to avoid "double-counting")
■ For all $E, F \in 2^{U}$, if $E \subseteq F$, then $P(E) \leq P(F)$
(This is obtained from 2 with E and $F \backslash E$)
■ Let $m \geq 2$ be a natural number. If $E_{1}, \ldots, E_{m} \in 2^{U}$ are mutually disjoint events, then $P\left(E_{1} \cup \ldots \cup E_{m}\right)=P\left(E_{1}\right)+\ldots+P\left(E_{m}\right)$
(This is obtained from 2 via the principle of induction)

Probability Distributions

■ If the sample space U is finite, then a probability distribution on U is a function $p: U \rightarrow[0,1]$ such that $\sum_{z \in U} p(z)=1$.

■ Given a probability distribution p on U, a probability measure P on 2^{U} can be defined as follows:

$$
P(E)=\sum_{z \in E} p(z) \quad \text { for all } E \in 2^{U}
$$

■ Conversely, given a probability measure P on 2^{U}, a probability distribution p on U can be defined as follows:

$$
p(z)=P(\{z\}) \quad \text { for all } z \in U
$$

- In this sense, probability distribution and probability measure are equivalent notions.

Conditional Probability

■ Let $A, B \subseteq U$ be two events and P a probability measure on U such that $P(B)>0$.

■ The conditional probability of A given B, denoted by $P(A \mid B)$, is defined as follows:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

■ For example, if $P(A \cap B)=0.2$ and $P(B)=0.6$, then

$$
P(A \mid B)=\frac{0.2}{0.6}=\frac{1}{3}
$$

Geometric Interpretation of Conditional Probability

■ A way to visualize conditional probability is to think of U as a geometric shape of area 1.

■ Eg.: a square with each side equal to 1 unit of measurement.

■ For a subset A of the unit square, $P(A)$ is the area of A.

■ If B is another subset of the square, then $A \cap B$ is that part of U that lies in both A and B.
$\square P(A \mid B)$ is the area of $A \cap B$ relative to the area of B.

■ That is, the area $A \cap B$ as a fraction of the area of B.

Illustration

	The shaded area, representing $A \cap B$, is $\frac{1}{2}$ of a small square with sides of length $\frac{1}{4}$ so that $P(A \cap B)=\frac{1}{2} \times\left(\frac{1}{4} \times \frac{1}{4}\right)=\frac{1}{32}$ $\begin{gathered} P(B)=\frac{1}{2} \text { and thus } \\ P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{32}}{\frac{1}{2}}=\frac{1}{16} \end{gathered}$

Bayes' Rule (Version 1)

■ Let $E, F \in 2^{U}$ be events such that $P(E)>0$ and $P(F)>0$.
■ Then, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$ as well as $P(F \mid E)=\frac{P(F \cap E)}{P(E)}$
■ Thus, $P(E \cap F)=P(F \mid E) \cdot P(E)$, since $E \cap F=F \cap E$.

- Consequently, the following property ensues:

Bayes' Rule (Version 1)

Let $E, F \in 2^{U}$ be events such that $P(E)>0$ and $P(F)>0$. Then,

$$
P(E \mid F)=\frac{P(F \mid E) \cdot P(E)}{P(F)}
$$

Illustration

- A doctor examines a patient who complains about lower back pain and the doctor knows that 25% of the persons in the same age group as the patient suffer from lower back pain.
- There are various causes of lower back pain: one of them is chronic inflammation of the kidneys, which affects 4% in the considered age group.
- Among those who suffer from chronic inflammation of the kidneys, 85% complain of lower back pain.
- What is the conditional probability then that the patient has a chronic inflammation of the kidneys?
- Let I denote inflammation of kidneys and L denote lower back pain.
- The doctor's information can be summarized as follows: $P(I)=\frac{4}{100}, P(L)=\frac{25}{100}$, and $P(L \mid I)=\frac{85}{100}$.
- Then, by Bayes' Rule (Version 1):

$$
P(I \mid L)=\frac{P(L \mid I) \cdot P(I)}{P(L)}=\frac{\frac{85}{100} \cdot \frac{4}{100}}{\frac{25}{100}}=0.136=13.6 \%
$$

Bayes' Rule (Version 2)

- Let $E, F \in 2^{U}$ be events such that $P(E)>0$ and $P(F)>0$.
- Then, by Bayes' Rule (Version 1), $P(E \mid F)=\frac{P(F \mid E) \cdot P(E)}{P(F)}$.

■ Since $F=(F \cap E) \cup(F \cap \neg E)$ and $(F \cap E) \cap(F \cap \neg E)=\emptyset$, it follows that

$$
P(F)=P(F \cap E)+P(F \cap \neg E)
$$

- By the definition of conditional probability, $P(F \cap E)=P(F \mid E) \cdot P(E)$ and $P(F \cap \neg E)=P(F \mid \neg E) \cdot P(\neg E)$ hold.
- Consequently, the following property ensues:

Bayes' Rule (Version 2)

Let $E, F \in 2^{U}$ be events such that $P(E)>0$ and $P(F)>0$. Then,

$$
P(E \mid F)=\frac{P(F \mid E) \cdot P(E)}{P(F \mid E) \cdot P(E)+P(F \mid \neg E) \cdot P(\neg E)}
$$

Illustration

■ Enrolment in a Game Theory module is as follows: 60\% economics majors (E) and 40% other majors ($\neg E$).

■ According to past data, 80% of the economics majors passed and 65% of the other majors passed.

■ A student utters proudly that he has passed (denoted by A): what is the conditional probability that he is an economics major?

■ With Bayes' Rule (Version 2) it follows that:

$$
\begin{gathered}
P(E \mid A)=\frac{P(A \mid E) \cdot P(E)}{P(A \mid E) \cdot P(E)+P(A \mid \neg E) \cdot P(\neg E)} \\
=\frac{\frac{80}{100} \cdot \frac{60}{100}}{\frac{80}{100} \cdot \frac{60}{100}+\frac{65}{100} \cdot \frac{40}{100}}=\frac{24}{37}=64.86 \%
\end{gathered}
$$

Bayes' Rule (Version 3)

- Bayes' Rule (Version 2) can be generalized.
- Let $E_{1}, \ldots, E_{n} \in 2^{U}$ be events such that they form a partition of the sample space U and consider some event $F \in 2^{U}$.
- It follows that

$$
P(F)=P\left(F \cap E_{1}\right)+P\left(F \cap E_{2}\right)+\ldots+P\left(F \cap E_{n}\right)
$$

and thus by the definition of conditional probability,

$$
P(F)=P\left(F \mid E_{1}\right) \cdot P\left(E_{1}\right)+P\left(F \mid E_{2}\right) \cdot P\left(E_{2}\right)+\ldots+P\left(F \mid E_{n}\right) \cdot P\left(E_{n}\right)
$$

- Consequently, the following property ensues:

Bayes' Rule (Version 3)

Let $E_{1}, \ldots, E_{n}, F \in 2^{U}$ be events such that $P\left(E_{i}\right)>0$ for all $i\{1, \ldots, n\}$ and E_{1}, \ldots, E_{n} form a partition of U, as well as $P(F)>0$. Then,

$$
P\left(E_{i} \mid F\right)=\frac{P\left(F \mid E_{i}\right) \cdot P\left(E_{i}\right)}{P\left(F \mid E_{1}\right) \cdot P\left(E_{1}\right)+P\left(F \mid E_{2}\right) \cdot P\left(E_{2}\right)+\ldots+P\left(F \mid E_{n}\right) \cdot P\left(E_{n}\right)}
$$

holds for all $i \in\{1, \ldots, n\}$

Illustration

- Enrolment in a Game Theory module is as follows: 40% economics majors (E), 35% statistics majors (S), and 25% mathematics majors (M).
- With A denoting the event "pass the module", the following past data is available:
- $P(A \mid E)=60 \%$
- $P(A \mid S)=50 \%$
- $P(A \mid M)=75 \%$
- A student utters proudly that he has passed: what is the conditional probability that he is an economics major?
- With Bayes' Rule (Version $\mathbf{3}$) it follows that:

$$
\begin{gathered}
P(E \mid A)=\frac{P(A \mid E) \cdot P(E)}{P(A \mid E) \cdot P(E)+P(A \mid S) \cdot P(S)+P(A \mid M) \cdot P(M)} \\
=\frac{\frac{60}{100} \cdot \frac{40}{100}}{\frac{60}{100} \cdot \frac{40}{100}+\frac{50}{100} \cdot \frac{35}{100}+\frac{75}{100} \cdot \frac{25}{100}}=\frac{96}{241}=39.83 \%
\end{gathered}
$$

Individual Possibility

■ What the agent deems possible is what he cannot rule out given his information about the universal set.

■ Within the framework of T7, individual possibility is captured by an information partition \mathcal{I} of the set of all states Ω.

■ More precisely, at a state $\omega \in \Omega$, the agent considers all states in his information set $\mathcal{I}(\omega)$ to be possible.

- Yet, among the possible states, the agents might still deem some more likely than others and even dismiss some as implausible.

Illustration

- Consider a module with only three students: Ann, Bob, and Carla.
- The lecturer tells them that in the last exam one of them got 95 points, another 78 , and the third 54 .
- A state can be thought of as a triple (a, b, c), where a is Ann's score, b is Bob's score, and c is Carla's score.
- Based on the lecturer's information, Ann must consider all of the following six states possible:
- $(95,78,54)$
- $(95,54,78)$
- $(78,95,54)$
- $(78,54,95)$
- $(54,95,78)$
- $(54,78,95)$
- Suppose, that in all the previous exams Ann and Bob always obtained a higher score than Carla: then, Ann might consider states $(95,78,54)$ and $(78,95,54)$ much more likely than $(78,54,95)$ and $(54,78,95)$.
- Moreover, suppose that often Ann also outperformed Bob in the past: then, Ann might also consider states $(95,78,54)$ more likely than all the other states.

Beliefs as Probabilities

■ Judgements of likelihood are represented by beliefs which are formally defined as probability distributions.

- An information set is equipped with a probability distribution over the set of states, where all the states out of it get probability 0 .

■ Beliefs, Knowledge, and Possibility:

- The probability distribution express what the agent believes.
- The information set captures what the agent knows and what he deems possible.

Illustration

- Based on the lecturer's information, Ann must consider all of the following six states ($95,78,54$), $(95,54,78),(78,95,54),(78,54,95),(54,95,78)$, and $(54,78,95)$ possible.
- Suppose, that in all the previous exams Ann and Bob always obtained a higher score than Carla: then, Ann might consider states $(95,78,54)$ and $(78,95,54)$ much more likely than $(78,54,95)$ and $(54,78,95)$.
- Moreover, suppose that often Ann also outperformed Bob in the past: then, Ann might also consider states $(95,78,54)$ more likely than all the other states.
- Ann's beliefs could be described by the following probability distribution:

$$
\bullet=\left(\begin{array}{cccccc}
(95,78,54) & (95,54,78) & (78,95,54) & (54,95,78) & (78,54,95) & (54,78,95) \\
\frac{9}{16} & \frac{4}{16} & \frac{2}{16} & \frac{1}{16} & 0 & 0
\end{array}\right)
$$

- According to these beliefs:
- Ann considers it very likely that she got the highest score.
- Ann is willing to dismiss the possibility that Carla received the highest score as extremely unlikely.
- Ann deems it much more likely that she - rather than Bob - received the highest score.

Beliefs about Events

■ Recall that propositions of interest are represented by events and let $\omega^{*} \in \Omega$ be some state.

■ The information set $\mathcal{I}\left(\omega^{*}\right)$ is equipped with a probability distribution $p: \Omega \rightarrow[0,1]$ such that $p(\omega)=0$ for all $\omega \notin \mathcal{I}\left(\omega^{*}\right)$.

- The induced probability measure P on 2^{Ω} on the full event space is $P: 2^{\Omega} \rightarrow[0,1]$ such that

$$
P(E)=\sum_{\omega \in E} p(\omega)
$$

for all $E \in 2^{\Omega}$.
■ P formally represents the agent's beliefs about events.
■ Beliefs represented by probabilities are also called probabilistic beliefs or graded beliefs.

Probabilistic Beliefs, Exclusion, and Certainty

■ Let $\alpha \in[0,1]$. An agent is said to believe an event E with probability α, whenever $P(E)=\alpha$.

■ The extreme cases of $\alpha=0$ and $\alpha=1$ get special names:

- An agent excludes an event E, whenever $P(E)=0$.
- An agent is certain of an event E, whenever $P(E)=1$.

Exclusion versus Impossibility and Certainty versus Knowledge

■ If an agent excludes an event, then he may still deem it possible.
■.g.: $\mathcal{I}\left(\omega_{1}\right)=\left\{\omega_{1}, \omega_{2}\right\}, p_{\mathcal{I}\left(\omega_{1}\right)}=\left(\begin{array}{cc}\omega_{1} & \omega_{2} \\ 0 & 1\end{array}\right)$, and $E=\left\{\omega_{1}\right\}$.
■ If an agent knows an event, then the event is true, i.e. $K E \subseteq E$ holds for all $E \in 2^{\Omega}$, due to T7, Proposition 3 (TRUTH).

■ However, an agent can be certain of an event that is false.

■.g.: $\mathcal{I}\left(\omega_{1}\right)=\left\{\omega_{1}, \omega_{2}\right\}, p_{\mathcal{I}\left(\omega_{1}\right)}=\left(\begin{array}{cc}\omega_{1} & \omega_{2} \\ 0 & 1\end{array}\right)$, and $E=\left\{\omega_{2}\right\}$.

Illustration

$$
\bullet=\left(\begin{array}{cccccc}
(95,78,54) & (95,54,78) & (78,95,54) & (54,95,78) & (78,54,95) & (54,78,95) \\
\frac{9}{16} & \frac{4}{16} & \frac{2}{16} & \frac{1}{16} & 0 & 0
\end{array}\right)
$$

- Let $E=\{(95,78,54),(78,95,54),(54,95,78)\}$ be the event "Bob's score is higher than Carla's score".
- With Ann's beliefs given by \downarrow, it follows then that:

$$
P(E)=p(95,78,54)+p(78,95,54)+p(54,95,78)=\frac{9}{16}+\frac{2}{16}+\frac{1}{16}=75 \%
$$

- Let $F=\{(95,78,54),(95,54,78),(78,95,54),(54,95,78)\}$ be the event "Carla did not receive the highest score".
- With Ann's beliefs given by \downarrow, it follows then that Ann is certain of F (yet does not know F as $(78,54,95),(54,78,95) \notin F$ but $(78,54,95)$ and $(54,78,95)$ are both in her information set):

$$
P(F)=p(95,78,54)+p(95,54,78)+p(78,95,54)+p(54,95,78)=\frac{9}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=100 \%
$$

■ Let $G=\{(78,54,95),(54,78,95)\}$ be the event "Carla received the highest score".

- With Ann's beliefs given by , it follows then that Ann excludes G (yet deems G possible as the states $(78,54,95)$ and $(54,78,95)$ are both in her information set):

$$
P(G)=p(78,54,95)+p(54,78,95)=0+0=0 \%
$$

Belief Change

How to Respond to New Information?

■ Consider an agent who holds beliefs about a universal set U embodied by a probability measure $P: 2^{U} \rightarrow[0,1]$.

■ Suppose that the agent receives a piece of information represented by a set $F \in 2^{U}$.

- Two distinct situations may arise:
- Belief Updating
- The item of information was not ruled out by the initial beliefs, in the sense that $P(F)>0$.
- Information might still be somewhat surprising (small $P(F)$), but it is not completely unexpected.
- Belief Revision
- The item of information was initially dismissed, in the sense that $P(F)=0$.
- The received Information is completely surprising.

Belief Updating via Conditional Probability

■ The initial probability measure is conditioned on the received information by means of conditional probability.

■ Such a belief modification is called belief updating (or Bayesian updating) - it assumes the information to carry positive measure.

■ Formally, given information $F \in 2^{U}$ such that $P(F)>0$, the changed beliefs are given by $P_{\text {new }}$:

- reduce the probability of every state in $\neg F$ to zero,
- set $P_{\text {new }}(\{\omega\})=P(\{\omega\} \mid F)$ for every state $\omega \in F$.

The new Belief

Consequently, for every state $\omega \in U$,

$$
P_{\text {new }}(\{\omega\})=P(\{\omega\} \mid F)= \begin{cases}0 & \text { if } \omega \notin F \\ \frac{P(\{\omega\})}{P(F)} & \text { if } \omega \in F\end{cases}
$$

and for every event $E \in 2^{U}$,

$$
P_{\text {new }}(E)=\sum_{\omega \in E} P_{\text {new }}(\{\omega\})=\sum_{\omega \in E} P_{\text {new }}(\{\omega\} \mid F)=P(E \mid F)
$$

Illustration

- Recall the story about the lecturer and the three students Ann, Bob, and Carla.
- The information given by the lecturer could be represented as follows:

$$
U=\{(95,78,54),(95,54,78),(78,95,54),(78,54,95),(54,95,78),(54,78,95)\}
$$

- Based on this information Ann has formed the following probabilistic beliefs:

$$
\bullet=\left(\begin{array}{cccccc}
(95,78,54) & (95,54,78) & (78,95,54) & (54,95,78) & (78,54,95) & (54,78,95) \\
\frac{9}{16} & \frac{4}{16} & \frac{2}{16} & \frac{1}{16} & 0 & 0
\end{array}\right)
$$

- Suppose that the lecturer makes the additional remark "Surprisingly, this time, Ann did not get the highest score": this announcement informs the students that the true state is neither $(95,78,54)$ nor $(95,54,78)$.
- Thus, the new piece of information is the event $F=\{(78,95,54),(78,54,95),(54,95,78),(54,78,95)\}$.
- Conditioning Ann's beliefs on the event F yields the following updated beliefs:

$$
\boldsymbol{\omega}=\left(\begin{array}{cccccc}
(95,78,54) & (95,54,78) & (78,95,54) & (54,95,78) & (78,54,95) & (54,78,95) \\
0 & 0 & \frac{2}{3} & \frac{1}{3} & 0 & 0
\end{array}\right)
$$

Belief Revision

■ How can beliefs be changed upon receiving completely surprising information in the sense that $P(F)=0$?

■ For example, this is relevant for dynamic games, if a player faces an information set he initially excluded.

■ The players needs to form a new belief assigning positive probability to the information set being reached.

■ The best known theory of belief revision is the so-called AGM THEORY due to Alchourrón, Gärdenfors, and Makinson (1985).

■ Only a glimpse into AGM Theory can be offered in the remainder of this section.

Belief Revision Function

Definition 1

Let U be a universal set and $\mathfrak{E} \subseteq 2^{U}$ a collection of events such that $U \in \mathbb{E}$ and $\emptyset \notin \mathbb{E}$. A belief revision function is a function $f: \mathfrak{E} \rightarrow 2^{U}$ such that:

- $f(E) \subseteq E$ for all $E \in \mathcal{E}$,
- $f(E) \neq \emptyset$ for all $E \in \mathcal{E}$.

Interpretation:

■ $f(U)$ represents the initial beliefs: the set of states that the agent initially considers possible.

- The universal set U can be thought of as representing minimum information: all beliefs are possible.
- For every event $E \subseteq \mathfrak{E}$, the set of states $f(E)$ is considered possible by the agent if informed that the true states belongs to E.
- Thus, $f(E)$ captures the agent's revised beliefs after receiving information E.

Arrow's Axiom

- An important condition that can be derived in the AGM Theory is an axiom due to Arrow from a different context (choice theory):

Arrow's Axiom

Let U be a finite universal set, $\mathfrak{E} \subseteq 2^{U}$ a collection of events such that $U \in \mathfrak{E}$ and $\emptyset \notin \mathfrak{E}, E, F \in \mathfrak{E}$ two events, as well as $f: \mathfrak{E} \rightarrow 2^{U}$ a belief revision function. If $E \subseteq F$ and $E \cap f(F) \neq \emptyset$, then $f(E)=E \cap f(E)$.

■ Suppose that information E implies information F and that there exist states in E considered possible upon receiving F.

- Then, the states that the agent would deem possible upon receiving information E are precisely those in both E and $f(F)$.

Plausibility

Definition 2

Let U be a finite universal set. A plausibility order on U is a binary relation $\unrhd \subseteq U \times U$ that is complete and transitive.

■ $\omega \unrhd \omega^{\prime}$: the agent considers ω at least as plausible as ω^{\prime}.
■ $\omega \triangleright \omega^{\prime}$: the agent considers ω more plausible than ω^{\prime}.
■ $\omega-\omega^{\prime}$: the agent considers ω just as plausible as ω^{\prime}.

- \triangleright and - can be defined in terms of \unrhd :
- $\omega \triangleright \omega^{\prime}$, whenever $\omega \unrhd \omega^{\prime}$ and $\omega^{\prime} \unrhd \omega$.
- $\omega-\omega^{\prime}$, whenever $\omega \unrhd \omega^{\prime}$ and $\omega^{\prime} \unrhd \omega$.

AGM Axiom System and Plausibility Order

Theorem 3 (Grove, 1988)

Let U be a finite universal set, $\mathfrak{E} \subseteq 2^{U}$ a collection of events such that $U \in \mathfrak{E}$ and $\emptyset \notin \mathfrak{E}$, as well as $f: \mathfrak{E} \rightarrow 2^{U}$ a belief revision function. The belief revision function f is compatible with the AGM axioms, if and only if, there exists a plausibility order $\unrhd \subseteq U \times U$ such that for every $E \in \mathfrak{E}, f(E)$ forms the set of most plausible states in E, i.e. $f(E)=\left\{\omega \in E: \omega \unrhd \omega^{\prime}\right.$ for all $\left.\omega^{\prime} \in E\right\}$.

Adding Probabilities to the Picture

■ Let U be a finite universal set and $P: 2^{U} \rightarrow[0,1]$ represent the initial beliefs.

■ $P_{E}: 2^{U} \rightarrow[0,1]$ then denote the updated beliefs upon receiving information E, if $P(E)>0$.

■ By belief updating, it follows that:

$$
\text { If } E \cap \operatorname{supp}(p) \neq \emptyset, \text { then } \operatorname{supp}\left(P_{E}\right)=E \cap \operatorname{supp}(P) .
$$

■ This is called qualitative belief updating (or qualitative Bayes' rule).

■ It can be shown that qualitative belief updating is built into AGM THEORY.

Dealing with completely surprising Information

- Yet, a belief revision function needs to go beyond belief updating, as it also encodes new beliefs, if $P(E)=0$.
- To this end, let $P_{\circ}: U \rightarrow[0,1]$ be some full-support probability measure on U.
- Then, for every possible piece of information $E \in \mathfrak{E}$, let $P_{E}: 2^{U} \rightarrow[0,1]$ be the probability measure obtained by conditioning P_{\circ} on $f(E)$ (note: not on E):

$$
P_{E}(\{\omega\})=P_{\circ}(\{\omega\} \mid f(E))= \begin{cases}\frac{P_{\circ}(\{\omega\})}{\sum_{\omega^{\prime} \in f(E)} P_{\circ}\left(\left\{\omega^{\prime}\right\}\right)} & \text { if } \omega \in f(E) \\ 0 & \text { if } \omega \notin f(E)\end{cases}
$$

- Accordingly, P_{U} gives the initial probabilistic beliefs and, for every other $E \in \mathfrak{E} \backslash U, P_{E}$ gives the revised probabilistic beliefs after receiving information E.
- The collection $\left\{P_{E}\right\}_{E \in \mathcal{E}}$ thus obtained forms the agent's probabilistic belief revision policy, while the belief revision function $f: \mathfrak{E} \rightarrow 2^{U}$ constitutes the agent's qualitative belief revision policy.

Like-Mindedness

Interactive Reasoning with Beliefs

■ In epistemic structures, a probability distribution is added for every information set of every player.

- These probability distributions are formed over the respective information sets.

■ Yet, they can be viewed as probability distributions over Ω too by assigning 0 to every state outside the respective information set.

Epistemic Structures with Beliefs

Definition 4

An epistemic structure with beliefs is a tuple $\mathcal{E}^{*}=\left\langle\mathcal{E},\left(\left(p_{i}^{S_{i}}\right)_{s_{i} \in \mathcal{I}_{i}}\right)_{i \in I}\right\rangle$, where

- \mathcal{E} is an epistemic structure,
- $p_{i}^{S_{i}} \in \Delta\left(S_{i}\right)$ is a probability distribution over information set $S_{i} \in \mathcal{I}_{i}$ of player $i \in I$.

Illustration

■ At every state the two agents hold different beliefs.

- For example, consider the event $E=\{b, c\}$ and state $a \in \Omega$.

■ Then, $P_{1}^{\{a, b, c\}}(E)=p_{1}^{\{a, b, c\}}(b)+p_{1}^{\{a, b, c\}}(c)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$ and $P_{2}^{\{a, b\}}(E)=p_{2}^{\{a, b\}}(b)=\frac{1}{3}$.

Beliefs and Information

■ If agents have different information, then it is not surprising that they can have different beliefs.

■ Two agents are said to be like-minded, whenever they would have the same beliefs if they were to have the same information.

Illustration

- At state a, it is in line with agent 1 's information that the true state is either a, b, or c.
- In contrast, agent 2 considers only a and b possible: thus, agent 2 holds finer information than agent 1 .
- Hypothetical question: if agent 1 had the same information as agent 2, would he agree with agent 2's assessment that the probability of $E=\{b, c\}$ is $\frac{1}{3}$?
- Suppose that agent 1 were to be provided with the information that the true state is either a or b.
- By belief updating, he would then change his beliefs from $\left(\begin{array}{ccc}a & b & c \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4}\end{array}\right)$ to $\left(\begin{array}{cc}a & b \\ \frac{2}{3} & \frac{1}{3}\end{array}\right)$ by means of conditional probability and thus hold the same beliefs as agent 2.

The Common Prior Assumption

■ The idea of like-mindedness will now be carved out more precisely and formally.

■ To this end the following property is needed:

Definition 5

Let \mathcal{E}^{*} be an epistemic structure with beliefs and $p \in \Delta(\Omega)$ a probability distribution over Ω with corresponding probability measure $P \in \Delta\left(2^{\Omega}\right)$ over 2^{Ω}. The probability distribution p is called a common prior, whenever for every agent $i \in I$ and for every state $\omega \in \Omega$ it is the case that:

- $P\left(\mathcal{I}_{i}(\omega)\right)>0$,
- $P\left(\left\{\omega^{\prime}\right\} \mid \mathcal{I}_{i}(\omega)\right)=p_{i}^{\mathcal{I}_{i}(\omega)}\left(\omega^{\prime}\right)$ for all $\omega^{\prime} \in \mathcal{I}_{i}(\omega)$.

Like-Mindedness or Harsanyi Consistency

Definition 6

An epistemic structure with beliefs \mathcal{E}^{*} satisfies Harsanyi Consistency, whenever there exists a common prior. The agents are then called like-minded.

Illustration

- For this particular epistemic structure with beliefs, a common prior does exist.
- Consider $p=\left(\begin{array}{lllll}a & b & c & d & e \\ \frac{2}{8} & \frac{1}{8} & \frac{1}{8} & \frac{2}{8} & \frac{2}{8}\end{array}\right)$.
- All beliefs can be obtained from p by means of conditional probability applied to P, e.g.:

$$
P(\{a\} \mid\{a, b, c\})=\frac{\frac{2}{8}}{\frac{2}{8}+\frac{1}{8}+\frac{1}{8}}=\frac{1}{2}=p_{1}^{\{a, b, c\}}(a)
$$

- Indeed, it can be verified that updating P on each information set in this epistemic structure with beliefs yields the probability distribution attached to the respective information set.
- Consequently, the agents are like-minded here.

How to determine whether a Common Prior exists?

The issue of existence of a common prior can be reduced to the issue of whether a system of equations has a solution.

Illustration

- Assume that $p=\left(\begin{array}{ccccc}a & b & c & d & e \\ p_{a} & p_{b} & p_{c} & p_{d} & p_{e}\end{array}\right)$ is a common prior.
- Updating on information set $\{a, b, c\}$ of agent 1 then needs to yield $\frac{p_{b}}{p_{a}+p_{b}+p_{c}}=\frac{1}{4}$ as well as $\frac{p_{c}}{p_{a}+p_{b}+p_{c}}=\frac{1}{4}$, which together imply that $p_{b}=\frac{1}{4} \cdot\left(p_{a}+p_{b}+p_{c}\right)=p_{c}$, i.e. $p_{b}=p_{c}$.
- Updating on information set $\{d, e\}$ of agent 1 then needs to yield $\frac{p_{d}}{p_{d}+p_{e}}=\frac{1}{2}$, which implies that $p_{d}=\frac{1}{2} \cdot p_{d}+\frac{1}{2} \cdot p_{e}$, i.e. $p_{d}=p_{e}$.
- Updating on information set $\{a, b\}$ of agent 2 then needs to yield $\frac{p_{a}}{p_{a}+p_{b}}=\frac{2}{3}$, which implies that $p_{a}=\frac{2}{3} \cdot p_{a}+\frac{2}{3} \cdot p_{b}$, i.e. $p_{a}=2 \cdot p_{b}$.
- Updating on information set $\{c, d\}$ of agent 2 then needs to yield $\frac{p_{c}}{p_{c}+p_{d}}=\frac{1}{3}$, which implies that $p_{c}=\frac{1}{3} \cdot p_{c}+\frac{1}{3} \cdot p_{d}$, i.e. $2 \cdot p_{c}=p_{d}$.

■ Moreover, it needs to hold that $p_{a}+p_{b}+p_{c}+p_{d}+p_{e}=1$.

Illustration

- Assume that $p=\left(\begin{array}{ccccc}a & b & c & d & e \\ p_{a} & p_{b} & p_{c} & p_{d} & p_{e}\end{array}\right)$ is a common prior.
- The following five conditions thus need to be satisfied by p :
i) $p_{b}=p_{c}$
ii) $p_{d}=p_{e}$
iii) $p_{a}=2 \cdot p_{b}$
iv) $2 \cdot p_{c}=p_{d}$
v) $p_{a}+p_{b}+p_{c}+p_{d}+p_{e}=1$
- This is a system of five equations in five unknowns which consequently admits a solution.
- It can be verified that this solution is as follows:

$$
p=\left(\begin{array}{ccccc}
a & b & c & d & e \\
\frac{2}{8} & \frac{1}{8} & \frac{1}{8} & \frac{2}{8} & \frac{2}{8}
\end{array}\right)
$$

Violating Harsanyi Consistency

It is possible to have epistemic structures with beliefs with agents that are not like-minded.

Illustration

1: a bi $6 \frac{1}{2}$
2: $a \frac{1}{2} \quad b \frac{1}{2} \quad a$

- Assume that $p=\left(\begin{array}{ccc}a & b & c \\ p_{a} & p_{b} & p_{c}\end{array}\right)$ is a common prior.
- Updating on information set $\{b, c\}$ of agent 1 then needs to yield $\frac{p_{b}}{p_{b}+p_{c}}=\frac{1}{2}$, which implies that $p_{b}=\frac{1}{2} \cdot p_{b}+\frac{1}{2} \cdot p_{c}$, i.e. $p_{b}=p_{c}$.
- Updating on information set $\{a, b\}$ of agent 2 then needs to yield $\frac{p_{a}}{p_{a}+p_{b}}=\frac{1}{2}$, which implies that $p_{a}=\frac{1}{2} \cdot p_{a}+\frac{1}{2} \cdot p_{b}$, i.e. $p_{a}=p_{b}$.
- It follows that $p_{a}=p_{c}$.
- However, updating on information set $\{a, c\}$ of agent $3, \frac{p_{a}}{p_{a}+p_{c}}=\frac{3}{4}$ need to ensue, which implies that $p_{a}=\frac{3}{4} \cdot p_{a}+\frac{3}{4} \cdot p_{c}$, i.e. $p_{a}=3 \cdot p_{c}$, which is a contradiction.

■ Therefore, this epistemic structure with beliefs does violate Harsanyi Consistency and represents agents that are not like-minded.

Agreeing to Disagree

An intriguing Question

■ Can two like-minded agents agree to disagree?

■ It is certainly quite possible for two agents to hold different beliefs about a particular event and to thus disagree about it.

■ Indeed, they might have different information.

■ However, can they acknowledge such a disagreement in the sense of it being common knowledge among them?

Illustration

- Consider the following epistemic structure with beliefs, which models like-minded agents:

$$
E=\{b, c\}
$$

- Observe that $P_{1}^{\{a, b, c\}}(E)=\frac{\frac{1}{4}}{\frac{1}{2}+\frac{1}{4}+\frac{1}{4}}=\frac{1}{2}$ and $P_{2}^{\{a, b\}}(E)=\frac{\frac{1}{3}}{\frac{2}{3}+\frac{1}{3}}=\frac{1}{3}$.
- Consequently, at state a, the agents disagree about E.

Illustration

$$
E=\{b, c\}
$$

- The agents also know at state a that they disagree about E.
- To see this, let $\left\|P_{1}(E)=\frac{1}{2}\right\|$ denote the event "agent 1 believes event E with probability $\frac{1}{2}$ " and $\left\|P_{2}(E)=\frac{1}{3}\right\|$ the event "agent 2 believes event E with probability $\frac{1}{3}$ "
- Then, $\left\|P_{1}(E)=\frac{1}{2}\right\|=\{a, b, c\},\left\|P_{2}(E)=\frac{1}{3}\right\|=\{a, b, c, d\}$, and thus $\left\|P_{1}(E)=\frac{1}{2}\right\| \cap\left\|P_{2}(E)=\frac{1}{3}\right\|=\{a, b, c\}$.
- It follows that $K_{1}\left(\left\|P_{1}(E)=\frac{1}{2}\right\| \cap\left\|P_{2}(E)=\frac{1}{3}\right\|\right)=\{a, b, c\}$, $K_{2}\left(\left\|P_{1}(E)=\frac{1}{2}\right\| \cap\left\|P_{2}(E)=\frac{1}{3}\right\|\right)=\{a, b\}$, and thus $K\left(\left\|P_{1}(E)=\frac{1}{2}\right\| \cap\left\|P_{2}(E)=\frac{1}{3}\right\|\right)=\{a, b\}$.
- Since $a \in K\left(\left\|P_{1}(E)=\frac{1}{2}\right\| \cap\left\|P_{2}(E)=\frac{1}{3}\right\|\right)$, the agents do not only disagree about E at state a, but they also know that they disagree.

Illustration

- However, the agents' disagreement is not common knowledge at state a.
- Actually, they already fail to attain 2nd-order mutual knowledge of it.

■ Indeed, $K_{1} K\left(\left\|P_{1}(E)=\frac{1}{2}\right\| \cap\left\|P_{2}(E)=\frac{1}{3}\right\|\right)=\emptyset, K_{2} K\left(\left\|P_{1}(E)=\frac{1}{2}\right\| \cap\left\|P_{2}(E)=\frac{1}{3}\right\|\right)=\{a, b\}$, and thus $K K\left(\left\|P_{1}(E)=\frac{1}{2}\right\| \cap\left\|P_{2}(E)=\frac{1}{3}\right\|\right)=\emptyset$.

- Consequently, it is nowhere - and, in particular, not at state a - common knowledge that agent 1 's beliefs about E are $\frac{1}{2}$ and 2's are $\frac{1}{3}$.

Impossibility of Agreeing to Disagree

■ It turns out that the opinions of two like-minded agents can never be in disagreement and, at the same time, commonly known!

- The following result, which is known as the Agreement THEOREM, establishes this impossibility formally:

Agreement Theorem (Aumann, 1976)

Let \mathcal{E}^{*} be an epistemic structure with beliefs satisfying Harsanyi consistency with two agents 1 and $2, E \in 2^{\Omega}$ some event, and $p, q \in[0,1]$ two numbers. If $C K\left(\left\|P_{1}(E)=p\right\| \cap\left\|P_{2}(E)=q\right\|\right) \neq \emptyset$, then $p=q$.

- In other words, two like-minded agents cannot agree to disagree about the probability of an event.

Towards establishing the Agreement Theorem

Lemma 7

Let U be a finite universal set, $P \in \Delta(U)$ a probability measure on $U, E, F \in 2^{U}$ two events such that $P(F)>0$, $m \in \mathbb{N}$ a natural number, and $q \in[0,1]$ a real number. If $\left\{F_{1}, \ldots, F_{m}\right\}$ forms a partition of F and $P\left(E \mid F_{j}\right)=q$ for all $j \in\{1, \ldots, m\}$, then $P(E \mid F)=q$.

Proof:

- For every $j \in\{1, \ldots, m\}$, since $P\left(E \mid F_{j}\right)=q$ and by conditional probability $P\left(E \mid F_{j}\right)=\frac{P\left(E \cap F_{j}\right)}{P\left(F_{j}\right)}$, it follows that

$$
P\left(E \cap F_{j}\right)=q \cdot F\left(F_{j}\right)
$$

- By the pairwise disjointness of the elements in $\left\{F_{1}, \ldots, F_{m}\right\}$, finite additivity of P, and the covering of F through $\left\{F_{1}, \ldots, F_{m}\right\}$,

$$
\sum_{j \in\{1, \ldots, m\}} P\left(E \cap F_{j}\right)=P\left(\cup_{j \in\{1, \ldots, m\}}\left(E \cap F_{j}\right)\right)=P\left(E \cap\left(\cup_{j \in\{1, \ldots, m\}} F_{j}\right)\right)=P(E \cap F)
$$

- By the disjointness of the elements in the collection $\left\{F_{1}, \ldots, F_{m}\right\}$ and finite additivity of P,

$$
\sum_{j \in\{1, \ldots, m\}} q \cdot P\left(F_{j}\right)=q \cdot \sum_{j \in\{1, \ldots, m\}} P\left(F_{j}\right)=q \cdot P\left(\cup_{j \in\{1, \ldots, m\}} F_{j}\right)=q \cdot P(F)
$$

- Therefore, $P(E \cap F)=\sum_{j \in\{1, \ldots, m\}} P\left(E \cap F_{j}\right)=\sum_{j \in\{1, \ldots, m\}} q \cdot F\left(F_{j}\right)=q \cdot P(F)$, which since $P(F)>0$ implies that

$$
P(E \mid F)=q .
$$

Proof of the Agreement Theorem

- Since the epistemic structure with beliefs satisfies Harsanyi Consistency, there exists a common prior $p \in \Delta(\Omega)$ with corresponding probability measure $P \in \Delta\left(2^{\Omega}\right)$.
- As $C K\left(\left\|P_{1}(E)=p\right\| \cap\left\|P_{2}(E)=q\right\|\right) \neq \emptyset$, there exists a state $\omega \in C K\left(\left\|P_{1}(E)=p\right\| \cap\left\|P_{2}(E)=q\right\|\right)$.
- Consider $\mathcal{I}_{C K}(\omega)$, which is the common knowledge cell containing state ω.
- Then, there exists $m_{1} \in \mathbb{N}$ such that $\mathcal{I}_{C K}(\omega)=\cup_{i \in\left\{1, \ldots, m_{1}\right\}} S_{1}^{i}$, where $S_{1}^{i} \in \mathcal{I}_{1}$ is an information sets of agent 1 for all $i \in\left\{1, \ldots, m_{1}\right\}$.
- There also exists $m_{2} \in \mathbb{N}$ such that $\mathcal{I}_{C K}(\omega)=\cup_{j \in\left\{1, \ldots, m_{2}\right\}} S_{2}^{j}$, where $S_{2}^{j} \in \mathcal{I}_{2}$ is an information sets of agent 2 for all $j \in\left\{1, \ldots, m_{2}\right\}$.
- It holds that $S_{1}^{i} \subseteq\left\|P_{1}(E)=p\right\|$ for all $i \in\left\{1, \ldots, m_{1}\right\}$ as well as $S_{2}^{j} \subseteq\left\|P_{2}(E)=q\right\|$ for all $j \in\left\{1, \ldots, m_{2}\right\}$.

■ By Harsanyi Consistency, $P\left(E \mid S_{1}^{i}\right)=P_{1}(E)=p$ for all $i \in\left\{1, \ldots, m_{1}\right\}$ as well as $P\left(E \mid S_{2}^{j}\right)=P_{2}(E)=q$ for all $j \in\left\{1, \ldots, m_{2}\right\}$.

■ By Lemma 7, it then follows that $P\left(E \mid \mathcal{I}_{C K}(\omega)\right)=p$ as well as $P\left(E \mid \mathcal{I}_{C K}(\omega)\right)=q$.

- Therefore, $p=q$.

Background Reading

Giacomo Bonanno (2018): Game Theory, $2^{\text {nd }}$ Edition

■ Chapter 9: Adding Beliefs to Knowledge
available at:

```
http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html
```

