ECON322 Game Theory Part III Interactive Epistemology Topic 7 Knowledge

Christian W. Bach

University of Liverpool & EPICENTER

ECON322 Game Theory: T7 Knowledge

http://www.epicenter.name/bach

3 × 1

A General Framework for Modelling Knowledge

- In dynamic games by means of information sets it can be represented what players know about past choices.
- An information set is a collection of decision nodes in the tree, where the respective player's mind satisfies two properties:
 - he knows that play has reached the information set,
 - he does **not know** which decision node is the actual one.
- In T7, such ideas of information and knowledge are generalized and a THEORY OF KNOWLEDGE is developed.

Individual Knowledge

Properties of Knowledge

Interactive Knowledge

ECON322 Game Theory: T7 Knowledge

(4月) (4日) (4日)

INDIVIDUAL KNOWLEDGE

ECON322 Game Theory: T7 Knowledge

A (1) > A (2) > A

Motivating Example

- After examining his patient, a doctor concludes that there can be five possible causes for the patient's symptoms:
 - 1 bacterial infection,
 - viral infection,
 - 3 allergic reaction to a drug,
 - 4 allergic reaction to food,
 - 5 environmental factors.
 - The doctor decides to do a lab test.
 - If the lab test turns out to be positive, then the doctor will be able to rule out causes (3) (5).
 - If the lab test turns out to be negative, then it is indicated that causes (1) - (2) can be ruled out.

< 同 > < 回 > < 回 >

Motivating Example

The doctor's epistemic states can be represented as follows:

- The set of possible states is {*a*, *b*, *c*, *d*, *e*}, where each state represents a possible cause.
- $\{a, b, c, d, e\}$ can be partitioned into two sets:
 - {*a*, *b*} corresponds to the epistemic state of the doctor given he is informed of a positive test result.
 - {*c*, *d*, *e*} corresponds to the epistemic state of the doctor given he is informed of a negative test result.

Motivating Example

Consider the proposition:

"The cause of the patient's symptoms is either an infection or environmental factors."

- This proposition can be formally viewed as the set {*a*, *b*, *e*}.
- After the lab test, at which states would the doctor know this proposition?
- If the lab test is positive, then the doctor only deems possible states a and b at both these states the proposition holds true and as the consequence the doctor knows the proposition.
- If the lab test is negative, then the doctor only deems possible states c, d, and e among these there exists a state at which the proposition fails to hold and therefore the doctor does not know the proposition.

(日)

Terminology

- Ω is a finite set of states, where each state is to be understood as a complete specification of the relevant facts about the world.
- **\mathcal{I}** is an information partition of Ω , i.e. a collection of subsets of Ω such that
 - all subsets are pairwise disjoint,
 - the union of all subsets covers Ω in it s entirety.
- An element of the information partition is called information set.
- For every state $\omega \in \Omega$, the agent's epistemic mental set-up if ω is the actual state is captured by the information set $\mathcal{I}(\omega)$.
- It is assumed that $\omega \in \mathcal{I}(\omega)$ for all $\omega \in \Omega$, i.e. the agent always considers possible the actual state (Property of ACTUALITY).
- **Subsets** of Ω are called events and denoted by *E*.

•
$$\Omega = \{a, b, c, d, e\}$$

• $\mathcal{I} = \{\{a, b\}, \{c, d, e\}\}$
• $\mathcal{I}(a) = \mathcal{I}(b) = \{a, b\}$
• $\mathcal{I}(c) = \mathcal{I}(d) = \mathcal{I}(e) = \{c, d, e\}$

æ

Knowledge

Definition 1

Let Ω be a set of states, \mathcal{I} an information partition, $E \subseteq \Omega$ an event, and $\omega \in \Omega$ a state. The agent knows *E* at state ω , whenever $\mathcal{I}(\omega) \subseteq E$.

ECON322 Game Theory: T7 Knowledge

- $\blacksquare \ \mathcal{I} = \{\{a, b\}, \{c, d, e\}\}$
- $E = \{a, b, e\}$
- At states a and b, the doctor knows E, since $\mathcal{I}(a) = \mathcal{I}(b) = \{a, b\} \subseteq \{a, b, e\} = E$.
- At states c, d, and e, the doctor does not know E, since $\mathcal{I}(c) = \mathcal{I}(d) = \mathcal{I}(e) = \{c, d, e\} \not\subseteq \{a, b, e\} = E$
- It is possible that there is no state where the agents knows a given event.
- For instance, the doctor never knows the event $F = \{a, c\}$.

Event Space

- The event space is the set of all events, i.e. all subsets of Ω .
- It is denoted by 2^{Ω} .
- If Ω contains *n* elements i.e. states, then there exist 2^n subsets of Ω , i.e. events.
- For example, if

$$\Omega = \{a, b, c\},\$$

then

$$2^{\Omega} = \big\{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \big\}.$$

Note that
$$|\Omega| = 3$$
 and $|2^{\Omega}| = 8 = 2^3$.

< 17 ▶

Knowledge Operator

Definition 2

Let Ω be a set of states and \mathcal{I} an information partition. The knoweldge operator is the function $K : 2^{\Omega} \to 2^{\Omega}$ such that

$$KE := \{ \omega \in \Omega : \mathcal{I}(\omega) \subseteq E \}$$

for all $E \in 2^{\Omega}$.

The knowledge operator K turns any event E as input into the event KE defined as the set of states at which the agent knows E as output.

A (10) A (10) A (10)

$$\mathcal{I} = \{\{a, b\}, \{c, d, e\}\}\$$
$$If E = \{a, b, d, e\}, then KE = \{a, b\}.$$

If
$$F = \{a, c\}$$
, then $KF = \emptyset$.

æ

Negation of Events

Given an event $E \in 2^{\Omega}$, the complement of *E* contains the states not in *E* and is denoted by $\neg E$.

• E.g. if
$$\Omega = \{a, b, c, d, e\}$$
 and $E = \{a, b, d\}$, then $\neg E = \{c, e\}$.

- Thus, while *KE* is the event that the agent knows *E*, the event that the agent does not know *E* is denoted by $\neg KE$.
- *KKE* is the event that the agent knows that he knows *E*.
- $K \neg KE$ is the event that the agent knows that he does not know E.

Also, $KKF = K\emptyset = \emptyset$ and $K \neg KF = K\Omega = \Omega$.

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Knowing the Negation and Not Knowing the Event

• $K \neg E \subseteq \neg KE$ holds.

- If $\omega \in K \neg E$, then $\mathcal{I}(\omega) \subseteq \neg E$.
- It follows that $\mathcal{I}(\omega) \cap E = \emptyset$ and thus $\mathcal{I}(\omega) \not\subseteq E$.
- Consequently, $\omega \notin KE$ and therefore, $\omega \in \neg KE$.
- However, $\neg KE \subseteq K \neg E$ does not hold.
 - If $\omega \in \neg KE$, then there exists $\omega' \in \mathcal{I}(\omega)$ such that $\omega' \in \neg E$.
 - Yet, it could be possible that there exists another world $\omega'' \neq \omega'$ such that $\omega'' \in \mathcal{I}(\omega) \cap E$.
 - The agent thus neither knows *E* nor $\neg E$ but considers both events possible, and it follows in particular that $\omega \notin K \neg E$.

• (10) • (10)

$$\blacksquare \mathcal{I} = \left\{ \{a, b\}, \{c, d, e\} \right\}$$

Consider
$$F = \{a, c\}$$
 and $\neg F = \{b, d, e\}$.

• Then,
$$KF = \emptyset$$
 and $K \neg F = \emptyset$.

- For instance, if the true state is *a*, then the doctor considers *F* possible, since $\mathcal{I}(a) \cap F = \{a\} \neq \emptyset$.
- However, the doctor then also considers $\neg F$ possible, since $\mathcal{I}(a) \cap \neg F = \{b\} \neq \emptyset$.

PROPERTIES OF KNOWLEDGE

ECON322 Game Theory: T7 Knowledge

< 同 > < 回 > < 回

Truth

Proposition 3

Let Ω be a set of states, \mathcal{I} an information partition, and $E \in 2^{\Omega}$ an event. Then,

 $KE \subseteq E$

Proof

- Let $\omega \in \Omega$ be some state such that $\omega \in KE$.
- Then, $\mathcal{I}(\omega) \subseteq E$.
- Since $\omega \in \mathcal{I}(\omega)$ by ACTUALITY, it follows that $\omega \in E$.

э

Consistency

Proposition 4

Let Ω be a set of states, \mathcal{I} an information partition, and $E \in 2^{\Omega}$ an event. Then,

 $KE \cap K \neg E = \emptyset$

Proof

- Towards a contradiction, suppose that there exists a state $\omega \in \Omega$ such that $\omega \in KE \cap K \neg E$.
- It follows that $\omega \in KE$ and thus $\mathcal{I}(\omega) \subseteq E$ as well as $\omega \in K \neg E$ and thus $\mathcal{I}(\omega) \subseteq \neg E$.
- Consequently, $\mathcal{I}(\omega) \subseteq E \cap \neg E$.
- Since *I*(ω) ⊆ *E* ∩ ¬*E* = Ø, it then follows that *I*(ω) = Ø which contradicts the fact that ω ∈ *I*(ω).

Positive Introspection

Proposition 5

Let Ω be a set of states, \mathcal{I} an information partition, and $E \in 2^{\Omega}$ an event. Then,

 $KE \subseteq KKE$

Proof

- Let $\omega \in \Omega$ be some state such that $\omega \in KE$.
- Then, $\mathcal{I}(\omega) \subseteq E$.
- For every state $\omega' \in \mathcal{I}(\omega)$ it holds that $\mathcal{I}(\omega') = \mathcal{I}(\omega)$.
- It follows that $\mathcal{I}(\omega') \subseteq E$ and thus $\omega' \in KE$ for all $\omega' \in \mathcal{I}(\omega)$.
- As a consequence, $\mathcal{I}(\omega) \subseteq KE$ and therefore $\omega \in KKE$.

Negative Introspection

Proposition 6

Let Ω be a set of states, \mathcal{I} an information partition, and $E \in 2^{\Omega}$ an event. Then,

 $\neg KE \subseteq K \neg KE$

Proof

- Let $\omega \in \Omega$ be some state such that $\omega \in \neg KE$.
- Then, $\mathcal{I}(\omega) \not\subseteq E$ and thus $\mathcal{I}(\omega) \cap \neg E \neq \emptyset$.
- For every state $\omega' \in \mathcal{I}(\omega)$ it holds that $\mathcal{I}(\omega') = \mathcal{I}(\omega)$.
- It follows that $\mathcal{I}(\omega') \cap \neg E \neq \emptyset$ and thus $\omega' \in \neg KE$ for all $\omega' \in \mathcal{I}(\omega)$.
- As a consequence, $\mathcal{I}(\omega) \subset \neg KE$ and therefore $\omega \in K \neg KE$.

Monotonicity

Proposition 7

Let Ω be a set of states, ${\cal I}$ an information partition, and $E,F\in 2^\Omega$ events. If

 $E \subseteq F$,

then

$$KE \subseteq KF$$
.

Proof

- Let $\omega \in \Omega$ be some state such that $\omega \in KE$.
- Then, $\mathcal{I}(\omega) \subseteq E$.
- Since $E \subseteq F$ holds, it follows that $\mathcal{I}(\omega) \subseteq F$.
- Therefore, $\omega \in KF$.

э

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Conjunction

Proposition 8

Let Ω be a set of states, \mathcal{I} an information partition, and $E, F \in 2^{\Omega}$ events. Then,

 $KE \cap KF = K(E \cap F)$

Proof

- Let $\omega \in \Omega$ be some state such that $\omega \in KE \cap KF$.
- Then, $\omega \in KE$ and thus $\mathcal{I}(\omega) \subseteq E$ as well as $\omega \in KF$ and thus $\mathcal{I}(\omega) \subseteq F$.
- Consequently, $\mathcal{I}(\omega) \subseteq E \cap F$ and thus $\omega \in K(E \cap F)$.
- Conversely, let $\omega \in \Omega$ be some state such that $\omega \in K(E \cap F)$.
- Then, $\mathcal{I}(\omega) \subseteq E \cap F$ and thus $\mathcal{I}(\omega) \subseteq E$ as well as $\mathcal{I}(\omega) \subseteq F$.
- It follows that $\omega \in KE$ as well as $\omega \in KF$, and hence $\omega \in KE \cap KF$.

INTERACTIVE KNOWLEDGE

ECON322 Game Theory: T7 Knowledge

< 17 ×

Reasoning About Others' Knowledge

- The analysis is now extended to the case of several agents.
- In particular, the reasoning realm is rendered interactive.
- Not only knowledge about relevant facts but also interactive knowledge is considered.
- E.g. what does an agent know about what other agents know.
- The possible states of mind of an agent are represented by an information partition and knowledge operators individualized.

A (10) A (10) A (10)

Epistemic Structures

Definition 9

An epistemic structure is a tuple $\mathcal{E} = \langle \Omega, I, (\mathcal{I}_i)_{i \in I} \rangle$, where

- Ω is a set of states,
- I is a set of agents,
- \mathcal{I}_i is an information partition of player $i \in I$.

Knowledge Operators for every Agent

Definition 10

Let \mathcal{E} be an epistemic structure and $i \in I$ an agent. The knowledge operator of agent *i* is the function $K_i : 2^{\Omega} \to 2^{\Omega}$ such that

$$K_i E := \{ \omega \in \Omega : \mathcal{I}_i(\omega) \subseteq E \}$$

for all $E \in 2^{\Omega}$.

- Consider an event $E \in 2^{\Omega}$ and three distinct agents $i, j, k \in I$.
- Since K_iE forms an event, the event K_jK_iE can be computed.
- Further interactive knowledge events can be constructed, for instance: K_kK_jK_iE and K_iK_kK_jK_iE, etc.

(4) (日本)

Consider ${\mathcal E}$ such that

- $\ \ \, \square \ \ \, \Omega = \{a,b,c,d,e,f,g,h\},$
- $\blacksquare I = \{Ann, Bob, Carol\},\$
- the information partitions of the three agents are as follows:

< 同 > < 回 > < 回

Let $E = \{a, b, c, f, g\}$ be a given event. Then:

$$K_{Ann}E = \{a, b, c\}$$
$$K_{Bob}E = \{a, b, f\}$$
$$K_{Carol}E = \{b, c, f, g\}$$
$$K_{Carol}K_{Ann}E = \{b, c\}$$
$$K_{Bob}K_{Carol}K_{Ann}E = \emptyset$$

$$\blacksquare K_{Ann} \neg K_{Bob} K_{Carol} E = \{a, b, c, d, h\}$$

< 17 ▶

Mutual Knowledge

Definition 11

Let \mathcal{E} be an epistemic structure. The mutual knowledge operator is the function $K : 2^{\Omega} \to 2^{\Omega}$ such that

 $KE := \cap_{i \in I} K_i E$

for all $E \in 2^{\Omega}$.

Let $E = \{a, b, c, f, g\}$ be a given event. Then:

•
$$K_{Ann}E = \{a, b, c\}$$

• $K_{Bob}E = \{a, b, f\}$

$$K_{Carol}E = \{b, c, f, g\}$$

$$\blacksquare KE = K_{Ann}E \cap K_{Bob}E \cap K_{Carol}E = \{b\}$$

ECON322 Game Theory: T7 Knowledge

크

A (10) A (10) A (10)

Iterated Mutual Knowledge

Definition 12

Let \mathcal{E} be an epistemic structure and $m \in \mathbb{N} \setminus \{1\}$. The *m*-th-order mutual knowledge operator is the function defined inductively as follows:

- $K^1: 2^{\Omega} \to 2^{\Omega}$ such that $K^1E := KE$ for all $E \in 2^{\Omega}$,
- $K^m : 2^{\Omega} \to 2^{\Omega}$ such that $K^m E := K K^{m-1} E$ for all $E \in 2^{\Omega}$.

A (B) > A (B) > A (B) >

Let $E = \{a, b, c, f, g\}$ be a given event. Then:

- $\blacksquare KE = K_{Ann}E \cap K_{Bob}E \cap K_{Carol}E = \{b\}$
- $\blacksquare K_{Ann}KE = \emptyset$
- $\blacksquare K_{Bob}KE = \emptyset$

$$\blacksquare K_{Carol}KE = \{b\}$$

 $\blacksquare K^2 E = KKE = \emptyset$

= 990

(4月) (4日) (4日)

Common Knowledge

Definition 13

Let \mathcal{E} be an epistemic structure. The common knowledge operator is the function $CK: 2^{\Omega} \rightarrow 2^{\Omega}$ such that

$$CKE := \cap_{m \in \mathbb{N}} K^m E$$

for all $E \in 2^{\Omega}$.

- Common knowledge is the strongest form of interactive knowledge.
- Accordingly, everyone knows that everyone knows that everyone knows that ... that everyone knows the event in question.

A (10) A (10) A (10)

Should Bruno and Caroline accept the following proposal?

- They will be put in two rooms without communication possibility.
- A random number $n \in \{2, 4, 6\}$ will be picked and two pieces of paper produced, one with n 1 on it and one with n + 1 on it.
- Randomly one piece is given to Bruno and one to Caroline.
- After viewing the number on the respective piece, each agent provides a pair of numbers.
- If both agents provide the same pair of numbers and at least one of the two numbers equals the one given to Bruno, then:
 - both agents receive \$1000 each,
 - otherwise each agent pays \$1000.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

The situation can be formalized by an epistemic structure with $\Omega = \{213, 231, 435, 453, 657, 675\}$ and $I = \{Bruno, Caroline\}$.

■ A state is described as a triple *abc*.

- *a* is the random number drawn, *b* is the number given to Bruno (*b*), and *c* is the number given to Caroline.
- the information partitions of the two agents are as follows:

■ Consider *E* = {213, 453, 657}, that is, "Bruno gets a 1 or a 5".

- K_{Bruno}E = E as well as K_{Caroline}E = E, and thus KE = E.
- K_{Bruno}KE = E as well as K_{Caroline}KE = E, and thus KKE = K²E = E.
- $K_{Bruno}KKE = E$ as well as $K_{Caroline}KKE = E$, and thus $KKKE = K^3E = E$.
- It follows inductively that K^mE = E for all m ∈ N, and thus CKE = E.

Consider F = {231, 435, 675}, that is, "Bruno gets a 3 or a 7".

- K_{Bruno} F = F as well as K_{Caroline} F = F, and thus KF = F.
- $K_{Bruno}KF = F$ as well as $K_{Caroline}KF = F$, and thus $KKF = K^2F = F$.
- K_{Bruno}KKF = F as well as K_{Caroline}KKF = F, and thus KKKF = K³F = F.
- It follows inductively that $K^m F = F$ for all $m \in \mathbb{N}$, and thus CKF = F.

- A successful pair of strategies for the two agents must be based on events that, when they occur, are commonly known.
- Consider the following "coordinated" strategy ★:

$$\bigstar = \begin{cases} \text{if } E, \text{ then write } (1,5) \\ \text{if } F, \text{ then write } (3,7) \end{cases}$$

- One of the conditioning events of \bigstar must occur, since $E \cup F = \Omega$.
- In the case of both *E* and *F* both agents will obtain \$1000 each.
- Consequently, ★ is indeed a successful "coordinated" strategy for Bruno and Caroline in this situation.

A (10) A (10) A (10)

Reachability

Definition 14

Let \mathcal{E} be an epistemic structure and $\omega, \omega' \in \Omega$.

- ω' is reachable from ω in 1 step, if there exists a player i ∈ I such that ω' ∈ I_i(ω).
- Let *m* ∈ N be a natural number. ω' is reachable from ω in *m* steps, if there exists a sequence (ω₁, ω₂, ω₃, ..., ω_m) ∈ Ω^m of states such that

(i)
$$\omega_1 = \omega$$
,

(ii)
$$\omega_m = \omega'$$
,

- (iii) for every $k \in \{2, 3, ..., m\}$ it is the case that ω_k is reachable from ω_{k-1} in 1 step.
- ω' is reachable from ω, if there exists a natural number m ∈ N such that ω' is reachable from ω in m steps.

(日)

Common Knowledge Partition

Definition 15

Let \mathcal{E} be an epistemic structure and $\omega, \omega' \in \Omega$.

- Let ω ∈ Ω a state. The common knowledge cell containing ω, denote by *I*_{CK}(ω), is the set of states reachable from ω.
- The common knowledge partition is the collection of all common knowledge sets.

Information partitions ...

and the corresponding common knowledge partition

< 17 ▶

A Convenient Way to compute Common Knowledge of an Event

Theorem 16 (Aumann, 1976)

Let \mathcal{E} be an epistemic structure and $E \in 2^{\Omega}$ an event. Then,

$$CKE = \{\omega \in \Omega : \mathcal{I}_{CK}(\omega) \subseteq E\}$$

Let
$$E = \{a, b, c, d, e, f\}$$
. Then, $CKE = \{a, b, c, d\}$.

Let
$$F = \{a, b, f, g, h\}$$
. Then, $CKF = \emptyset$.

Let $x \in \{a, b, c, d\}$. Then, the smallest event that is common knowledge at state x is $\mathcal{I}_{CK}(x) = \{a, b, c, d\}$.

Let $y \in \{e, f, g, h\}$. Then, the smallest event that is common knowledge at state y is $\mathcal{I}_{CK}(y) = \{e, f, g, h\}$.

Back to Bruno and Caroline

- Observe that 213 is reachable from itself in 1 step via Bruno or Caroline, 453 is reachable in 1 step from 213 via Caroline, and 657 is reachable in 2 steps from 213 (first to 453 via Caroline and then from 453 via Bruno).
- Consequently, $\mathcal{I}_{CK}(213) = \mathcal{I}_{CK}(453) = \mathcal{I}_{CK}(657) = \{213, 453, 657\}.$
- Observe that 231 is reachable from itself in 1 step via Bruno or Caroline, 435 is reachable in 1 step from 231 via Bruno, and 675 is reachable in 2 steps from 231 (first to 435 via Bruno and then from 435 via Caroline).
- Consequently, $\mathcal{I}_{CK}(231) = \mathcal{I}_{CK}(435) = \mathcal{I}_{CK}(675) = \{231, 435, 675\}.$
- Therefore, the common knowledge partition ensues as follows:

ECON322 Game Theory: T7 Knowledge

http://www.epicenter.name/bach

Back to Bruno and Caroline

$$\mathcal{I}_{CK}(213) = \mathcal{I}_{CK}(453) = \mathcal{I}_{CK}(657) = \{213, 453, 657\}.$$

$$\mathcal{I}_{CK}(231) = \mathcal{I}_{CK}(435) = \mathcal{I}_{CK}(675) = \{231, 435, 675\}.$$

Recall the event $E = \{213, 453, 657\}$ ("Bruno gets a 1 or a 5").

$$I_{CK}(213) = I_{CK}(453) = I_{CK}(657) = \{213, 453, 657\} = E \text{ holds.}$$

- Thus, CKE = E, i.e. at any state where Bruno gets a 1 or a 5, this fact is common knowledge between Bruno and Caroline.
- **Recall the event** $F = \{231, 435, 675\}$ ("Bruno gets a 3 or a 7").

$$\mathcal{I}_{CK}(231) = \mathcal{I}_{CK}(435) = \mathcal{I}_{CK}(675) = \{231, 435, 675\} = F \text{ holds.}$$

Thus, CKF = F, i.e. at any state where Bruno gets a 3 or a 7, this fact is common knowledge between Bruno and Caroline.

Background Reading

GIACOMO BONANNO (2018): Game Theory, 2nd Edition

Chapter 8: Common Knowledge

available at:

http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html