Behavioural Strategies

ECON322 Game Theory

Part II Cardinal Payoffs Topic 6 Extensive-Form Games

Christian W. Bach

University of Liverpool & EPICENTER

ECON322 Game Theory: T6 Extensive-Form Games

http://www.epicenter.name/bach

Dynamic Games with Probabilistic Outcomes

- In T5 the framework of static games has been generalized by admitting probabilistic outcomes.
- Formally, lotteries over outcomes have replaced the simple, deterministic outcomes in the notion of strategic form.
- Randomized choices are definable in such a cardinal framework.
- Also, in dynamic games choices can be generalized by admitting randomizations as choice objects.

Outline

Probabilistic Outcomes in Dynamic Games

Behavioural Strategies

Subgame Perfect Equilibrium

・ 戸 ト ・ ヨ ト ・ ヨ

PROBABILISTIC OUTCOMES IN DYNAMIC GAMES

ECON322 Game Theory: T6 Extensive-Form Games

http://www.epicenter.name/bach

Two Approaches to Modelling Probabilistic Outcomes in Dynamic Games

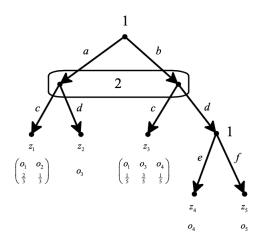
Generalization of the extensive form via lotteries over basic outcomes (analogous to extending the strategic form in **T5**)

2 Admission of a dummy player – "Nature" – with chance moves while the notion of extensive form is kept unaltered (*cf.* **T3**)

Both approaches do require cardinal payoffs of course.

Approach 1: Tweaking the Extensive Form

- In the definition of the extensive-form frame, the function α_0 is rendered probabilistic i.e. $\alpha_0 : Z \to \mathcal{L}(0)$.
- Accordingly, α₀ assigns a lottery over the basic outcomes to every terminal node (instead of merely a basic outcome).
- In the definition of the extensive-form game, the preferences are then brought into line with vNM's Expected Utility Theory.
- Accordingly, \succeq_i is turned into a preference relation over $\mathcal{L}(O)$ satisfying AXIOMS 1 4 for every player $i \in I$.

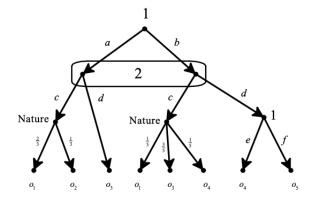


æ

< • • • • •

Approach 2: Player 'Nature' with Chance Moves

- The definition of extensive-form frame is left untouched.
- Random events are explicitly represented by means of chance moves of a dummy player called 'Nature'.
- In the definition of the extensive-form game, the preferences are then also governed by vNM's Expected Utility Theory.
- Accordingly, \succeq_i is turned into a preference relation over $\mathcal{L}(O)$ satisfying AXIOMS 1 4 for every player $i \in I$.



ъ

æ

< • • • **•**

Extensive-Form Games with Cardinal Payoffs

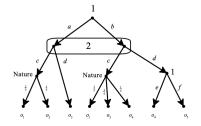
Definition 1

A cardinal extensive-form game is a tuple $\mathcal{G}^{\mathcal{E}} = \langle \mathcal{F}^{\mathcal{E}}, (\succeq_i)_{i \in I} \rangle$, where

- $\mathcal{F}^{\mathcal{E}}$ is an extensive-form frame.
- ≿_i is a preference relation over L(O) satisfying AXIOMS 1 4 for every player i ∈ I.

э

Strategies



- A pure strategy is a list of local choices, one for every information set of the respective player.
- In the example:

$$S_1 = \{(a, e), (a, f), (b, e), (b, f)\}$$
$$S_2 = \{c, d\}$$

- A mixed strategy is a probability distribution over the set of pure strategies of the respective player.
- In the example:

$$\Delta(S_1) = \left\{ \begin{pmatrix} (a,e) & (a,f) & (b,e) & (b,f) \\ p & q & r & 1-p-q-r \end{pmatrix} : p,q,r \in [0,1] \text{ and } p+q+r \le 1 \right\}$$
$$\Delta(S_2) = \left\{ \begin{pmatrix} c & d \\ p & 1-p \end{pmatrix} : p \in [0,1] \text{ and } p \le 1 \right\}$$

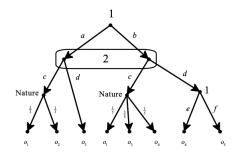
BEHAVIOURAL STRATEGIES

ECON322 Game Theory: T6 Extensive-Form Games

< 17 ×

Local Randomizations

- Another kind of randomization is conceivable in the tree: a player could locally mix between his choices at a given information set.
- Bundling together such a local randomization for every information set also provides a complete contingent plan.
- A behavioural strategy is a list of probability distributions over the set of local choices, one for every information set of the player.
- The set of behavioural strategies of a player $i \in I$ is denoted by B_i with generic element $\beta_i \in B_i$.



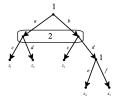
$$B_{1} = \left\{ \left(\begin{pmatrix} a & b \\ p & 1-p \end{pmatrix}, \begin{pmatrix} e & f \\ q & 1-q \end{pmatrix} \right) : p, q \in [0,1] \text{ and } p, q \le 1 \right\}$$
$$B_{2} = \left\{ \begin{pmatrix} c & d \\ p & 1-p \end{pmatrix} : p \in [0,1] \text{ and } p \le 1 \right\}$$

æ

Behavioural versus Mixed

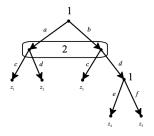
- Both behavioural strategies as well as mixed strategies constitute randomized choices.
- In fact, behavioural strategies are the simpler objects.
- In the preceding example, a behavioural strategy for Player 1 requires specifying two parameters (p and q).
- In contrast, a mixed strategy for Player 1 requires specifying three parameters (p, q, as well as r).
- It would thus be convenient to use behavioural strategies rather than mixed strategies: would that always be possible?

• (1) • (1) • (1)



- Consider the mixed strategy profile $(\sigma_1, \sigma_2) = \left(\begin{pmatrix} (a, e) & (a, f) & (b, e) & (b, f) \\ \frac{1}{12} & \frac{4}{12} & \frac{2}{12} & \frac{5}{12} \end{pmatrix}, \begin{pmatrix} c & d \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right).$
- The probabilities of reaching the five terminal nodes if (σ_1, σ_2) is played can be computed as follows:

$$\begin{aligned} \operatorname{Prob}(z_1) &= \sigma_1(a, e) \cdot \sigma_2(c) + \sigma_1(a, f) \cdot \sigma_2(c) = \frac{1}{12} \cdot \frac{1}{3} + \frac{4}{12} \cdot \frac{1}{3} = \frac{5}{36} \\ \operatorname{Prob}(z_2) &= \sigma_1(a, e) \cdot \sigma_2(d) + \sigma_1(a, f) \cdot \sigma_2(d) = \frac{1}{12} \cdot \frac{2}{3} + \frac{4}{12} \cdot \frac{2}{3} = \frac{10}{36} \\ \operatorname{Prob}(z_3) &= \sigma_1(b, e) \cdot \sigma_2(c) + \sigma_1(b, f) \cdot \sigma_2(c) = \frac{2}{12} \cdot \frac{1}{3} + \frac{5}{12} \cdot \frac{1}{3} = \frac{7}{36} \\ \operatorname{Prob}(z_4) &= \sigma_1(b, e) \cdot \sigma_2(d) = \frac{2}{12} \cdot \frac{2}{3} = \frac{4}{36} \\ \operatorname{Prob}(z_5) &= \sigma_1(b, f) \cdot \sigma_2(d) = \frac{5}{12} \cdot \frac{2}{3} = \frac{10}{36} \end{aligned}$$

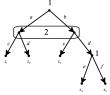


Thus, the mixed strategy profile

$$(\sigma_1, \sigma_2) = \left(\begin{pmatrix} (a, e) & (a, f) & (b, e) & (b, f) \\ \frac{1}{12} & \frac{4}{12} & \frac{2}{12} & \frac{5}{12} \end{pmatrix}, \begin{pmatrix} c & d \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right)$$

induces the following probability distribution over terminal nodes:

$$\begin{pmatrix} z_1 & z_2 & z_3 & z_4 & z_5\\ \frac{5}{36} & \frac{10}{36} & \frac{7}{36} & \frac{4}{36} & \frac{10}{36} \end{pmatrix}$$



Consider the behavioural strategy profile

$$(\beta_1,\beta_2) = \left(\left(\begin{pmatrix} a & b \\ \frac{5}{12} & \frac{7}{12} \end{pmatrix}, \begin{pmatrix} e & f \\ \frac{2}{7} & \frac{5}{7} \end{pmatrix} \right), \begin{pmatrix} c & d \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right)$$

The probabilities of reaching the five terminal nodes – if (β_1, β_2) is played – can be computed as follows:

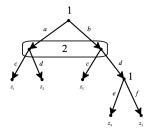
$$Prob(z_1) = \beta_1(a) \cdot \beta_2(c) = \frac{5}{12} \cdot \frac{1}{3} = \frac{5}{36}$$

$$Prob(z_2) = \beta_1(a) \cdot \beta_2(d) = \frac{5}{12} \cdot \frac{2}{3} = \frac{10}{36}$$

$$Prob(z_3) = \beta_1(b) \cdot \beta_2(c) = \frac{7}{12} \cdot \frac{1}{3} = \frac{7}{36}$$

$$Prob(z_4) = \beta_1(b) \cdot \beta_2(d)\beta_1(e) = \frac{7}{12} \cdot \frac{2}{3} \cdot \frac{2}{7} = \frac{4}{36}$$

$$Prob(z_5) = \beta_1(b) \cdot \beta_2(d) \cdot \beta_1(f) = \frac{7}{12} \cdot \frac{2}{3} \cdot \frac{5}{7} = \frac{10}{36}$$



Thus, the mixed strategy profile

$$(\sigma_1,\sigma_2) = \left(\begin{pmatrix} (a,e) & (a,f) & (b,e) & (b,f) \\ \frac{1}{12} & \frac{4}{12} & \frac{2}{12} & \frac{5}{12} \end{pmatrix}, \begin{pmatrix} c & d \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right)$$

and the behavioural strategy profile

$$(\beta_1,\beta_2) = \left(\left(\begin{pmatrix} a & b \\ \frac{5}{12} & \frac{7}{12} \end{pmatrix}, \begin{pmatrix} e & f \\ \frac{2}{7} & \frac{5}{7} \end{pmatrix} \right), \begin{pmatrix} c & d \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right)$$

induce the same probability distribution over terminal nodes:

$$\begin{pmatrix} z_1 & z_2 & z_3 & z_4 & z_5\\ \frac{5}{36} & \frac{10}{36} & \frac{7}{36} & \frac{4}{36} & \frac{10}{36} \end{pmatrix}$$

ECON322 Game Theory: T6 Extensive-Form Games

http://www.epicenter.name/bach

< • • • • •

General Equivalence between Behavioural and Mixed Strategies whenever Perfect Recall holds

Theorem 2 (Kuhn, 1953)

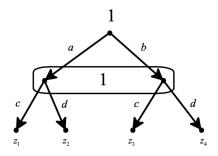
Let $\mathcal{G}^{\mathcal{E}} = \langle \mathcal{F}^{\mathcal{E}}, (\succeq_i)_{i \in I} \rangle$ be a cardinal extensive-form game with perfect recall and $i \in I$ some player. Consider an arbitrary strategy profile x_{-i} of *i*'s opponents, where for every $j \in I \setminus \{i\}$ it is the case that $x_j \in \Delta(S_j) \cup B_j$. Then, for every mixed strategy $\sigma_i \in \Delta(S_i)$ of player *i* there exists a behavioural strategy $\beta_i \in B_i$ of player *i* such that (σ_i, x_{-i}) and (β_i, x_{-i}) induce the same probability distribution over *Z*.

In words, behavioural and mixed strategies are equivalent, in the sense that, every mixed strategy can be mimicked by a behavioural strategy to yield the same probability distribution over terminal nodes.

Thus, attention can be restricted to the simpler objects of behavioural strategies in the case of perfect recall.

Without Perfect Recall the Equivalence Collapses

Consider the following extensive-form frame without perfect recall:



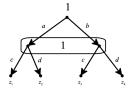
The mixed strategy

$$\begin{pmatrix} (a,c) & (a,d) & (b,c) & (b,d) \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

induces as probability distribution over terminal nodes:

$$\begin{pmatrix} z_1 & z_2 & z_3 & z_4 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Without Perfect Recall the Equivalence Collapses



• Let
$$\begin{pmatrix} a & b \\ p & 1-p \end{pmatrix}$$
, $\begin{pmatrix} c & d \\ q & 1-q \end{pmatrix}$ be a an arbitrary behavioural strategy.

Its induced probability distribution over terminal nodes is as follows:

$$\begin{pmatrix} z_1 & z_2 & z_3 & z_4 \\ p \cdot q & p \cdot (1-q) & (1-p) \cdot q & (1-p) \cdot (1-q) \end{pmatrix}$$

- In order to have $Prob(z_2) = 0$ it must be the case that either p = 0 or q = 1.
- However, if p = 0, then $Prob(z_1) = 0$. And, if q = 1, then $Prob(z_4) = 0$.
- Therefore, the probability distribution over terminal nodes $\begin{pmatrix} z_1 & z_2 & z_3 & z_4 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$ of the mixed strategy $\begin{pmatrix} (a, c) & (a, d) & (b, c) & (b, d) \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$ cannot be obtained with any behavioural strategy.

Representation in terms of Utilities

- As usual, it is convenient to represent preferences that are in line with the vNM axioms by means of vNM utility functions.
- The basic outcomes in the tree can then be replaced by vectors of utilities, one utility for every player.
- The ensuing framework can then be pinned down as reduced cardinal extensive-form games:

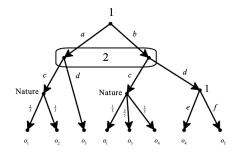
Definition 3

Let $\mathcal{G}^{\mathcal{E}} = \langle \mathcal{F}^{\mathcal{E}}, (U_i)_{i \in I} \rangle$ be cardinal extensive-form game. Suppose that $U_i : O \to \mathbb{R}$ is a vNM utility function that represents \succeq_i for every player $i \in I$. A reduced cardinal extensive-form game is a tuple $\mathcal{G}^{\mathcal{E}*} = \langle \mathcal{T}, I, \alpha_I, A, \alpha_A, (D_i, \pi_i)_{i \in I} \rangle$, where $\pi_i : Z \to \mathbb{R}$ such that

$$\pi_i(z) := \mathbb{E}\Big(U_i(\alpha_O(z))\Big)$$

for all $z \in Z$ is player *i*'s vNM payoff function for all $i \in I$.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・



Suppose that the players satisfy the vNM axioms and hold the following preferences:

$$o_1 \succ_1 o_5 \succ_1 o_2 \succ_1 o_4 \succ_1 o_3$$
$$o_2 \succ_2 o_4 \succ_2 o_3 \succ_2 o_1 \succ_2 o_5$$

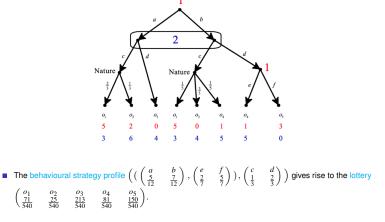
Represent these by vNM utility functions as follows:

$$U_1(o_1) = 5, U_1(o_5) = 3, U_1(o_2) = 2, U_1(o_4) = 1, U_1(o_3) = 0$$
$$U_2(o_2) = 6, U_2(o_4) = 5, U_2(o_3) = 4, U_2(o_1) = 3, U_2(o_5) = 0$$

Computing Payoffs with Behavioural Strategies

Given a cardinal extensive-form game, associated with every behavioural strategy profile is a lottery over basic outcomes.

■ Via the vNM utility functions, a payoff for every player ensues.

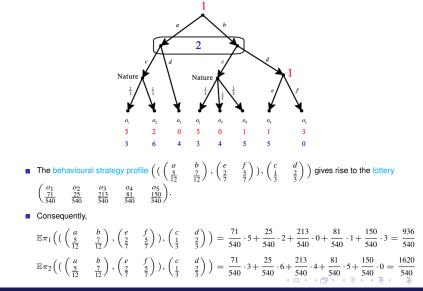


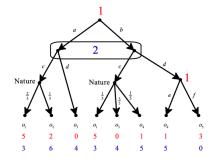
■ For example, the probability of the basic outcome *o*₁ is computed as follows:

$$\operatorname{Prob}(o_1) = \operatorname{Prob}(a) \cdot \operatorname{Prob}(c) \cdot \frac{2}{3} + \operatorname{Prob}(b) \cdot \operatorname{Prob}(c) \cdot \frac{1}{5} = \frac{5}{12} \cdot \frac{1}{3} \cdot \frac{2}{3} + \frac{7}{12} \cdot \frac{1}{3} \cdot \frac{1}{5} = \frac{71}{540}$$

ECON322 Game Theory: T6 Extensive-Form Games

æ

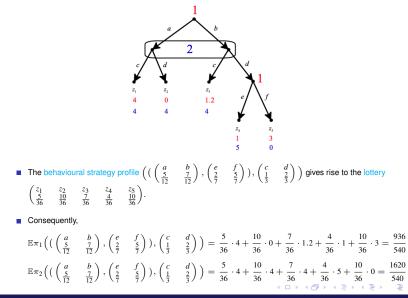




Further simplifications are possible.

Since $\mathbb{E}\left(U_1\begin{pmatrix} o_1 & o_2\\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}\right) = \mathbb{E}\left(U_2\begin{pmatrix} o_1 & o_2\\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}\right) = 4$, the first "decision node" by Nature can be replaced by the payoff vector (4, 4).

Since $\mathbb{E}\left(U_1\begin{pmatrix} o_1 & o_2 & o_3\\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5}\end{pmatrix}\right) = 1.2$ and $\mathbb{E}\left(U_2\begin{pmatrix} o_1 & o_2 & o_3\\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5}\end{pmatrix}\right) = 4$, the second "decision node" by Nature can be replaced by the payoff vector (1.2, 4).



SUBGAME PERFECT EQUILIBRIUM

ECON322 Game Theory: T6 Extensive-Form Games

http://www.epicenter.name/bach

Existence

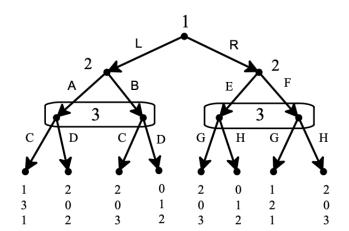
- With ordinal payoffs, a SPE may fail to exist (cf. **T3**).
- Indeed, the entire game or some proper subgame could possibly have no PSNE.
- With cardinal payoffs, it is possible to use randomized choices and then Nash's Existence Theorem applies to all subgames.
- Consequently, a SPE always exists too in finite dynamic games with cardinal payoffs.

SPE with Randomized Strategies Always Exist

Theorem 4 (Selten, 1965)

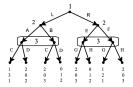
Let $\mathcal{G}^{\mathcal{E}} = \langle \mathcal{F}^{\mathcal{E}}, (\succeq_i)_{i \in I} \rangle$ be a finite cardinal extensive-form game with perfect recall. Then, $SPE \neq \emptyset$.

• (1) • (1) • (1)



æ

< 円



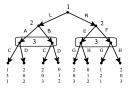
 Consider the minimal subgame starting at Player 2's decision node on the left and construct its corresponding strategic form:

- Since $PSNE = \emptyset$, the SPE algorithm would halt in a framework with ordinal payoffs and spit out $SPE = \emptyset$.
- Assuming cardinal payoffs, $MSNE = \left\{ \left(\begin{pmatrix} A & B \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \begin{pmatrix} C & D \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix} \right) \right\}$ can be obtained using PI by the following computations:

$$1 \cdot p + 3 \cdot (1 - p) = 2 \cdot p + 2 \cdot (1 - p) \text{ that is } p = \frac{1}{2}$$
$$3 \cdot q + 0 \cdot (1 - q) = 0 \cdot q + 1 \cdot (1 - q) \text{ that is } q = \frac{1}{4}$$

Subgame Perfect Equilibrium

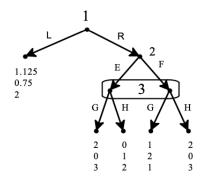
Illustration



		Player 3		
		C	D	
Player 2	Α	3,1	0,2	
	В	0,3	1,2	

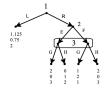
In the MSNE $\begin{pmatrix} \begin{pmatrix} A & B \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} C & D \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$) the payoffs of all three players are as follows: $\pi_1 \begin{pmatrix} \begin{pmatrix} A & B \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} C & D \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$) = $\frac{1}{2} \cdot \frac{1}{4} \cdot 1 + \frac{1}{2} \cdot \frac{3}{4} \cdot 2 + \frac{1}{2} \cdot \frac{1}{4} \cdot 2 + \frac{1}{2} \cdot \frac{3}{4} \cdot 0 = 1.125$ $\pi_2 \begin{pmatrix} \begin{pmatrix} A & B \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} C & D \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$) = $\frac{1}{2} \cdot \frac{1}{4} \cdot 3 + \frac{1}{2} \cdot \frac{3}{4} \cdot 0 + \frac{1}{2} \cdot \frac{1}{4} \cdot 0 + \frac{1}{2} \cdot \frac{3}{4} \cdot 1 = 0.75$ $\pi_3 \begin{pmatrix} \begin{pmatrix} A & B \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} C & D \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$) = $\frac{1}{2} \cdot \frac{1}{4} \cdot 1 + \frac{1}{2} \cdot \frac{3}{4} \cdot 2 + \frac{1}{2} \cdot \frac{1}{4} \cdot 3 + \frac{1}{2} \cdot \frac{3}{4} \cdot 2 = 2$

The tree thus simplifies as follows:



크

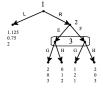
< 一型



Next consider the minimal subgame starting at Player 2's decision node on the right and construct its corresponding strategic form:

- Since again $PSNE = \emptyset$, the SPE algorithm would halt in a framework with ordinal payoffs and spit out $SPE = \emptyset$.
- Assuming cardinal payoffs however, $MSNE = \left\{ \left(\begin{pmatrix} E & F \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}, \begin{pmatrix} G & H \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right) \right\}$ can be obtained using PI by the following computations:

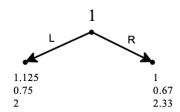
$$3 \cdot p + 1 \cdot (1 - p) = 2 \cdot p + 3 \cdot (1 - p)$$
 that is $p = 0 \cdot q + 1 \cdot (1 - q) = 2 \cdot q + 0 \cdot (1 - q)$ that is $q = 0$



		Player 3		
		G	Н	
Player 2	E F	0,3	1,2	
		2,1	0,3	

In the MSNE $\left(\begin{pmatrix} E \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}, \begin{pmatrix} G \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right)$ the payoffs of all three players are as follows: $\pi_1 \left(\begin{pmatrix} E \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}, \begin{pmatrix} G \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right) = \frac{2}{3} \cdot \frac{1}{3} \cdot 2 + \frac{2}{3} \cdot \frac{2}{3} \cdot 0 + \frac{1}{3} \cdot \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{2}{3} \cdot 2 = 1$ $\pi_2 \left(\begin{pmatrix} E \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}, \begin{pmatrix} G \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right) = \frac{2}{3} \cdot \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot \frac{2}{3} \cdot 0 = 0.67$ $\pi_3 \left(\begin{pmatrix} E \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}, \begin{pmatrix} G \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \right) = \frac{2}{3} \cdot \frac{1}{3} \cdot 3 + \frac{2}{3} \cdot \frac{2}{3} \cdot 2 + \frac{1}{3} \cdot \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{2}{3} \cdot 3 = 2.33$

The tree thus simplifies as follows:



- The unique optimal choice for Player 1 then is L.
- Expressed in behavioural strategies, it follows that

$$SPE = \left\{ \left(\underbrace{\left(\begin{pmatrix} L & R \\ 1 & 0 \end{pmatrix} \right)}_{\beta_1^*}, \underbrace{\left(\begin{pmatrix} A & B \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} , \begin{pmatrix} E & F \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix} }_{\beta_2^*}, \underbrace{\left(\begin{pmatrix} C & D \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix} , \begin{pmatrix} G & H \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} }_{\beta_3^*} \right) \right\}$$

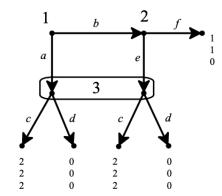
ECON322 Game Theory: T6 Extensive-Form Games

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

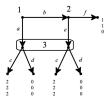
SPE not Fine Enough as a NE Refinement

- SPE constitutes a refinement of NE.
- In the context of perfect information, the solution concept of SPE eliminates some "unreasonable" NE involving incredible threats.
- However, in the context of imperfect information, it is possible that SPE admits "unreasonable" strategy profiles as solutions.
- After all, SPE is not fine (or strong) enough as a solution concept for imperfect information games.
- Stronger notions exist that address the deficiencies of SPE: discussing these reaches beyond our ECON322 scope though.



æ

< 円



■ There exists no proper subgame in Selten's horse and consequently SPE = NE.

С			d		
	е	f		е	f
а	2,2,2	2,2,2	а	0,0,0	0,0,0
b	2,2,2	1,1,0	b	0,0,0	1,1,0

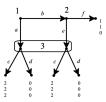
From the strategic form of Selten's horse it can be readily concluded that

 $PSNE = \{(a, e, c), (a, f, c), (b, e, c), (b, d, f)\}$

However, neither (a, f, c) nor (b, f, d) can be considered "reasonable" solutions.

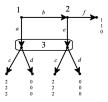
Ξ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



- First of all, consider the strategy profile (a, f, c).
- Player 2's plan to play f is only "reasonable" in the very limited sense that, given Player 1 chooses a it is totally irrelevant what Player 2 plans to do, as his information set is not reached.
- However, if Player 2's plan is taken seriously as to what he hypothetically were to do, if he had to move, e would be strictly better than f given Player 3 chooses c.
- Consequently, (a, e, c) qualifies as "reasonable" while (a, f, c) does not.

(日)



- Next, consider the strategy profile (b, f, d).
- Player 3's plan to play d is only "reasonable" in the very limited sense that, given Player 1 chooses a and Player 2 picks f, it is totally irrelevant what Player 3 plans to do, as his information set is not reached.
- However, if Player 3's plan is taken seriously as to what he hypothetically were to do, if he had to move, c would be strictly better than d: in fact d is strictly dominated by c at his information set locally.
- The reason that d can still be part of a NE is that it is strictly dominated by c conditional on Player 3's information set being reached, but not as a plan formulated before the actual play of the game.
- In other words, *d* is strictly dominated by *c* as a choice locally but not as a strategy globally.
- It follows that (b, f, d) does not qualify as "reasonable".

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Background Reading

GIACOMO BONANNO (2018): Game Theory, 2nd Edition

Chapter 7: Extensive-Form Games

available at:

http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html

ECON322 Game Theory: T6 Extensive-Form Games

э

A (B) < (B) < (B) < (B) </p>