Subgames

ECON322 Game Theory

Part I Ordinal Payoffs Topic 3 General Dynamic Games

Christian W. Bach

University of Liverpool & EPICENTER

Introduction Formal Structure Strategies Subgames Subgame-Perfect Equilibrium Chance Moves
Imperfect information

- There are many situations where players have to make decisions with only partial information about previous moves.
- Such situations are said do exhibit imperfect information and a general model of dynamic games can account for these.
- The notion of information set is used to represent a player's uncertainty about previous moves by opponents.
- Formally, an information set of a player is a collection of his decision nodes and he is unsure at which node play has arrived.
- Graphically, an information set is represented by enclosing the corresponding decision nodes in a rounded rectangle.

Formal Structure

Subgames

Subgame-Perfect Equilibrium

Chance Moves

▲冊▶ ▲理▶ ▲理

FORMAL STRUCTURE

ECON322 Game Theory: T3 General Dynamic Games

http://www.epicenter.name/bach

Introduction Formal Structure Strategies Subgames Subgame-Perfect Equilibrium Chance Moves

Some Additional Terminology and Notation

- Given a rooted directed tree \mathcal{T} and two nodes $x, y \in X \cup Z$:
 - *y* is a successor of *x* (*x* predecessor of *y*), if there is a sequence of directed edges from *x* to *y*.
 - *y* is an immediate succesor of *x* (*y* immediate predecessor of *x*), if there is a single directed edge from *x* to *y*.
- A partition of a set *H* is a collection $\mathcal{H} = \{H_1, \ldots, H_m\}$, where $m \ge 1$ of non-empty subsets of *H* such that:
 - If $H_j, H_k \in \mathcal{H}$ with $j \neq k$, then $H_j \cap H_k = \emptyset$ ("Disjointness").
 - $H_1 \cup H_2 \cup \cdots \cup H_m = H$ ("Covering").
- The set of decision nodes assigned to player *i* ∈ *I* is typically denoted as *X_i* and *X_i* ⊆ *X* holds.

General Extensive Form Frames

Definition 1

An extensive-form frame is a tuple $\mathcal{F}^{\mathcal{E}} = \langle \mathcal{T}, I, \alpha_I, A, \alpha_A, O, \alpha_O, (\mathcal{D}_i)_{i \in I} \rangle$, where

- \mathcal{T} is a rooted directed tree.
- I is a set of players and α_I : X → I is a function assigning exactly one player to every decision node.
- A is a set of actions and α_A : Σ → A is a function assigning exactly one action to every directed edge such that no two edges of the same node receive the same action.
- *O* is a set of outcomes and $\alpha_O : Z \to O$ is a function assigning exactly one outomce to every terminal node.
- D_i is a partition of X_i for every player i ∈ I. Each element D_i ∈ D_i is called an information set of player i such that the actions available at any two nodes in the same information set are the same.

- Note that perfect information obtains as a special case, all information sets are singleton, i.e. $|H_i| = 1$ for all $H_i \in H_i$ and for all $i \in I$.
- Graphical convention: for simplicity sake, when representing an extensive-form frame graphically, an
 information set is enclosed in a rounded rectangle, if and only if, it contains at least two decision nodes.

3

General Extensive Form Games

Definition 2

An extensive-form game is a tuple $\mathcal{G}^{\mathcal{E}} = \langle \mathcal{G}^{\mathcal{E}}, (\succeq_i)_{i \in I} \rangle$, where

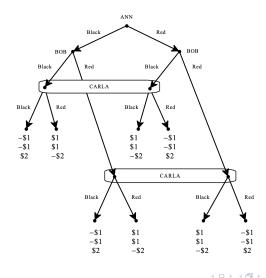
- $\mathcal{G}^{\mathcal{E}}$ is an extensive form frame.
- ≿_i is a complete and transitive preference relation over *O* for every player *i* ∈ *I*.

э

A (10) A (10) A (10)

- ANN and BOB are in a same room, while CARLA is outside.
- ANN chooses either a red or a black card from a full deck of cards, shows it to BOB and puts it face down on the table.
- CARLA then enters and BOB makes one of the following two statements (he could be lying or telling the truth):
 - "ANN chose a red card."
 - "ANN chose a black card."
- CARLA guesses the colour of the card and the card is turned.
 - If her guess was correct, then the others give her each \$1.
 - If her guess was false, then she gives each of the others \$1.

Extensive Form Frame



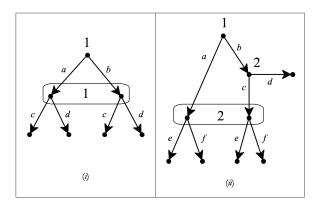
ъ

æ

- It is standard to restrict attention to situations of so-called perfect recall.
- Accordingly, a player always remembers what he once knew in the game as well as his own past actions.
- Formally, $\mathcal{F}^{\mathcal{E}}$ satisfies perfect recall, whenever:
 - If any two decision nodes x and y are in a same information set, then it is not the case that one node is a predecessor of the other.
 - Let D_i, D'_i ∈ D_i of some player i ∈ I. If x ∈ D_i is a predecessor of y ∈ D'_i and a is the action assigned out of x in the sequence of edges leading from x to y, then for every node v ∈ D'_i there is a predecessor w ∈ D_i such that the action out of w in the sequence of edges leading from w to v is a.

(日)

Examples of Imperfect Recall



- (i) Player 1 does not remember what he chose previously.
- (ii) At his non-singleton information set, Player 2 does not remember whether he choose previously.

ECON322 Game Theory: T3 General Dynamic Games

http://www.epicenter.name/bach

STRATEGIES

ECON322 Game Theory: T3 General Dynamic Games

< 172 ▶

Introduction Formal Structure Strategies Subgames Subgame-Perfect Equilibrium Chance Moves

Information Sets as Choice Situations

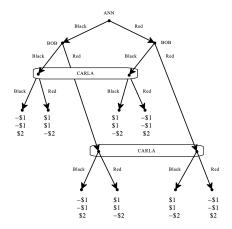
- A strategy is a complete, contigent plan that covers all possible choice situations the player may face in the dynamic game.
 - Perfect-Information Dynamic Games: a possible choice situation for a player is a decision node of the player.
 - General Dynamic Games: a possible choice situation for a player is an information set of the player.

Definition 3

Let $\mathcal{G}^{\mathcal{E}}$ be an extensive-form game and $i \in I$ some player. A strategy for *i* is a tuple of choices, which contains one choice for each of *i*'s information set. The set of all strategies of *i* is denoted by S_i .

A (1) > A (2) > A

Illustration



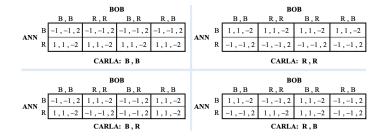
- Assume that all players are self-interested only and care about money
- The above tree then captures both the extensive-form frame as well as a possible extensive-form game of the underlying sequential strategic interaction.

ECON322 Game Theory: T3 General Dynamic Games

http://www.epicenter.name/bach

æ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



SUBGAMES

ECON322 Game Theory: T3 General Dynamic Games

< 同 > < 回 > < 回

- A generalization of the solution concept of Backward Induction is needed that can be applied to general dynamic games.
- A first step in such a direction is the notion of subgame.
- Intuitively, a subgame of an extensive-form game is a portion of the game that could be an extensive-form game in itself.

Notion of Subgame

Definition 4

Let $\mathcal{G}^{\mathcal{E}}$ be an extensive-form game. A subgame of $\mathcal{G}^{\mathcal{E}}$ is obtained as follows.

- Take a decision node *x* ∈ *X* whose information set is singleton and enclose in an oval *x* with all its successors.
- If the oval does not "cut" any information set, i.e. there exists no information set *D* with *x'*, *x''* ∈ *D* such that *x'* is a successor of *x* while *x''* is not, then the content of the oval constitutes a subgame of *G*^𝔅.

Proper Subgames and Minimal Subgames

Strategies

Note that an extensive-form game is always a subgame of itself.

Definition 5

Let $\mathcal{G}^{\mathcal{E}}$ be an extensive form game. A proper subgame of $\mathcal{G}^{\mathcal{E}}$ is a subgame that is distinct from $\mathcal{G}^{\mathcal{E}}$ itself.

Illustration



ECON322 Game Theory: T3 General Dynamic Games

(≣ →

æ

Introduction Formal Structure Strategies Subgames Subgame-Perfect Equilibrium Chance Moves

Minimal Subgames

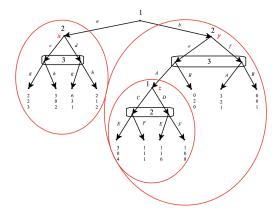
Definition 6

Let $\mathcal{G}^{\mathcal{E}}$ be an extensive-form game. A minimal subgame of $\mathcal{G}^{\mathcal{E}}$ is a subgame that does not contain any proper subgames.

ECON322 Game Theory: T3 General Dynamic Games

http://www.epicenter.name/bach

Illustration



- The subgame starting at decision node x is proper and minimal.
- The subgame starting at decision node y is proper.
- The subgame starting at decision node *z* is proper and minimal.

ECON322 Game Theory: T3 General Dynamic Games

SUBGAME-PERFECT EQUILIBRIUM

ECON322 Game Theory: T3 General Dynamic Games

A I > A I > A

A Subgame-Perfect Equilibrium of an extensive-form game is a Nash Equilibrium of the entire game which remains a Nash Equilibrium in every proper subgame.

< 同 > < 回 > < 回

Introduction

Restriction of a Strategy Profile to a Sugame

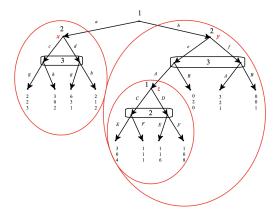
Strategies

Definition 7

Let $\mathcal{G}^{\mathcal{E}}$ be an extensive form game, $s \in \times_{i \in I} S_i$ a strategy profile, and G a proper subgame of $\mathcal{G}^{\mathcal{E}}$. The restriction of s to G, denoted by $s \mid_G$, is that part of s which prescribes choices at every information set of G and only at those information sets.

ECON322 Game Theory: T3 General Dynamic Games

Illustration



- Consider the strategy profile ((a, C), (d, f, E), (h, B)) and denote the subgame starting at node y by G.
- Then, s |_G = (C, (f, E), B).

ECON322 Game Theory: T3 General Dynamic Games

http://www.epicenter.name/bach

æ

・ロト ・四ト ・ヨト

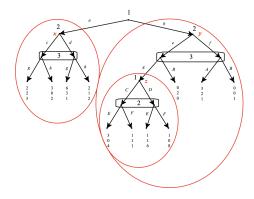
Introduction

A Solution Concept for General Dynamic Games

Definition 8

Let $\mathcal{G}^{\mathcal{E}}$ be an extensive-form game and $s \in \times_{i \in I} S_i$ some strategy profile. The strategy profile *s* forms a Subgame-Perfect Equilibrium of $\mathcal{G}^{\mathcal{E}}$, whenever for every subgame *G* of $\mathcal{G}^{\mathcal{E}}$, the restricted strategy profile *s* $|_G$ constitutes a Nash Equilibrium of *G*. The set of all such strategy profiles is denoted by *SPE*.

Illustration



- Note that the strategy profile ((a, C), (d, f, E), (h, B)) is a Nash Equilibrium of the entire game:
 - Player 1's payoff is 2 and if he were to switch to any startegy where he plays b his payoff would be 0.
 - Player 2's payoff is 1 and if he were to switch to any startegy where he plays c his payoff would be 0.
 - Player 3's payoff is 2 and if he were to switch to any startegy where he plays g his payoff would be 1.
- However, ((a, C), (d, f, E), (h, B)) is not subgame-perfect, as the proper subgame starting at node z, i.e. (C,E) does not form a Nash Equilibirum there: for Player 2 the unique best response to C is F.

ECON322 Game Theory: T3 General Dynamic Games

http://www.epicenter.name/bach

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Strategies

A Procedure to find Subgame-Perfect Equilibria

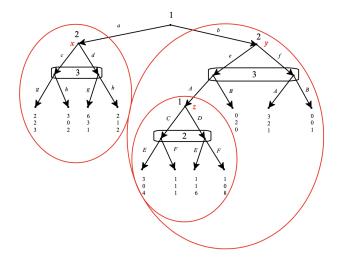
Definition 9

Let $\mathcal{G}^{\mathcal{E}}$ be a finite extensive-form game. The following procedure is called SPE Procedure:

- 1 Select a minimal subgame and pick a Nash Equilibrium of it.
- 2 Delete the selected subgame and replace it with the utility vector associated with the picked Nash Equilibrium, while making a note of the strategies constituting the Nash Equilibrium. This yields a smaller extensive-form game.
- **3** Repeat Steps **1** and **2** in the smaller game thus obtained.

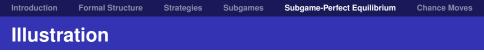
< 同 > < 回 > < 回

Illustration

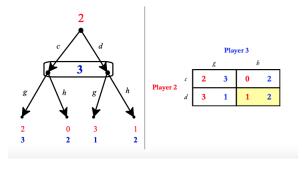


æ

< A

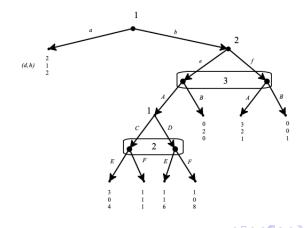


- Begin with the minimal subgame starting at decision node *x*.
- Since this is a game only between Player 2 and Player 3, merely these players' payoffs are shown in the below tree and matrix.



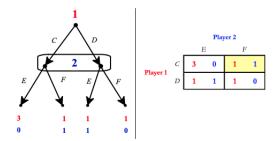
Introduction Formal Structure Strategies Subgames Subgame-Perfect Equilibrium Chance Moves
Illustration

Delete the subgame by turning the decision node x into a terminal node with the full utility vector following history (a, d, h) from the full game, which results in the following reduced game:



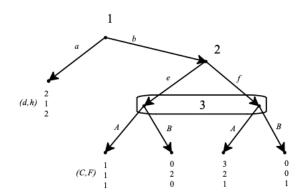
ECON322 Game Theory: T3 General Dynamic Games

Select the (only) minimal subgame, namely the one starting at the bottom decision node of Player 1, shown in the below tree and matrix:

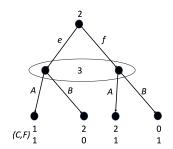


Introduction Formal Structure Strategies Subgames Subgame-Perfect Equilibrium Chance Moves Illustration

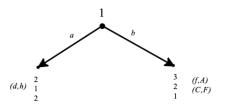
Replace the subgame by a terminal node with the full utility vector following history (b, e, A, C, F) from the full game, which results in the following reduced game:



Select the (only) minimal subgame, namely the one starting at the decision node of Player 2, shown in the below tree and matrix:



Replace the subgame by a terminal node with the full utility vector following history (b,f,A) from the full game, which results in the following reduced game:



- The (unique) Nash Equilibrium is *b*.
- Patching together the choices selected during the application of the SPE Procedure:

$$((b,C),(d,f,F),(h,A)) \in SPE$$

Comments

- Possibly, with the SPE Procedure one encounters a subgame or a reduced with multiple Nash Equilibria.
 - A single Nash Equilibrium has to be selected, in order to continue the procedure, and in the end a single Subgame-Perfect Equilibrium is obtained.
 - The procedure then has to be repeated by selecting a different Nash Equilibrium, and in the end a
 different Subgame-Perfect Equilibrium is obtained.
 - Etc.
 - Remark: This is similar to what happens with Backward Induction in perfect-information games.
- Possibly, with the SPE Procedure one encounters a subgame or a reduced game with no Nash Equilibrium at all: it follows that then $SPE = \emptyset$.
- Since, when applied to perfect-information games, it holds that SPE = BI, the solution concept of Subgame-Perfect Equilibrium constitutes a generalization of Backward Induction.
- For extensive-form games with no proper subgames, it holds that SPE = NE.
 - In general, however, the solution concept of Subgame-Perfect Equilibrium constitutes a refinement of Nash Equilibrium, i.e. SPE ⊆ NE.

ECON322 Game Theory: T3 General Dynamic Games

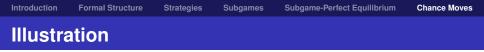
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

CHANCE MOVES

ECON322 Game Theory: T3 General Dynamic Games

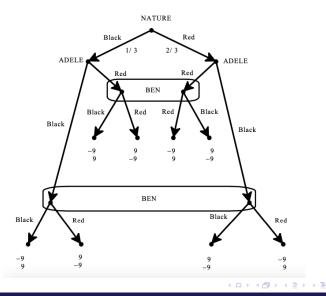
Uncertain Outcomes

- So far only games have been considered where the outcomes are certain.
- Chance moves are a way to incorporate uncertain, probabilistic events in the extensive form.



- There are three cards: one black and two red.
- They are shuffled well and put as a pile face down on the table.
- ADELE picks the top card, checks it secretly, and then tells BEN:
 - either "the top card is black"
 - or "the top card is red"
- ADELE could be telling the truth or could be lying.
- BEN has to guess the colour of the top card.
 - If he guesses correctly, then he gets \$9 from ADELE.
 - If he guesses falsely, then ADELE gets \$9 from him.

- Whether the top card is black or red is not affected by a player's decision, but the result of a random event, namely the shuffling.
- This is captured by introducing a fictitious player called NATURE (or CHANCE): probabilities are assigned to his "choices".
- Since one card is black and two are red, the probability of a black top card is ¹/₃ and the probability of a red top card is ²/₃.
- No payoffs are assigned to NATURE who is a "dummy" player while the only "real" players are ADELE and BEN.



ECON322 Game Theory: T3 General Dynamic Games

42/49

http://www.epicenter.name/bach

æ

- In games with chance moves the outcomes are probabilistic.
- Generally, probabilistic outcomes are called lotteries.
- It thus needs to be specified how the players rank the lotteries.

・ 戸 ト ・ ヨ ト ・ ヨ

Expected Value of a Money Lottery

- Lotteries whose outcomes are sums of money are called money lotteries.
- Consider a money lottery with outcomes

$$\begin{bmatrix} \$x_1 & \$x_2 & \dots & \$x_n \\ p_1 & p_2 & \dots & p_n \end{bmatrix}$$

where $p_i \ge 0$ for all $i \in \{1, 2, ..., n\}$ and $p_1 + p_2 + \dots + p_n = 1$.

■ The expected value of the lottery is the following sum of money:

$$x_1 \cdot p_1 + x_2 \cdot p_2 + \cdots + x_n \cdot p_n$$

= nar

- One possible way (not the only one though!) to convert a (money) lottery into a payoff is risk neutrality.
- A player is said to be risk neutral, whenever he considers a lottery to be equally good as its expected value.
- Consequently, a risk neutral agent ranks lotteries according to their expected value.

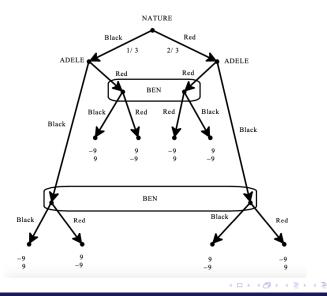
Consider the following three money lotteries:

$$L_1 = \begin{bmatrix} \$5 & \$15 & \$25\\ \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \end{bmatrix}, L_2 = \begin{bmatrix} \$16\\ 1 \end{bmatrix}, L_3 = \begin{bmatrix} \$0 & \$32 & \$48\\ \frac{5}{8} & \frac{1}{8} & \frac{1}{4} \end{bmatrix}$$

- The expected values of L_1 , L_2 , and L_3 are \$17, \$16, and \$16, respectively.
- Thus, a risk-neutral agent would entertain the following preferences:

$$L_1 \succ L_2 \sim L_3$$

A (10) A (10)



ECON322 Game Theory: T3 General Dynamic Games

http://www.epicenter.name/bach

æ

- Suppose that Adele and Ben are risk neutral.
- The corresponding strategic-form game then ensues as follows:

		Ben							
		BB		BR		RB		RR	
Adele	BB	3	-3	-3	3	3	-3	-3	3
	BR	3	-3	9	-9	-9	9	-3	3
	RB	3	-3	-9	9	9	-9	-3	3
	RR	3	-3	3	-3	-3	3	-3	3

р

(4月) (4日) (4日)

Background Reading

GIACOMO BONANNO (2018): Game Theory, 2nd Edition

Chapter 4: General Dynamic Games

available at:

http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html

ECON322 Game Theory: T3 General Dynamic Games

A (B) + A (B) + A (B) +