ECON322 Game Theory

Part I Ordinal Payoffs Topic 2 Dynamic Games with Perfect Information

Christian W. Bach

University of Liverpool & EPICENTER

ECON322 Game Theory: T2 Dynamic Games with Perfect Information 1/34 http://www.epicenter.name/bach

Introduction Formal Structure Backward Induction Strategies Relationship between BI and NE

Sequential Interactions

- Often interactions are not simultaneous but sequential.
 - An example is Chess, where the two players *White* and *Black* take turns moving pieces on the board.
- Such games are called Dynamic Games or Games in Extensive Form or Extensive-Form Games.
- In T2 we consider the subclass of dynamic games with perfect information.
- The property of perfect information states that, whenever it is his turn to move, a player knows all the preceding moves.
 - Again Chess is an example, as each player entertains full knowledge of all past moves throughout the game.
- Dynamic Games with Perfect Information can be represented by means of rooted directed trees.

Formal Structure

Backward Induction

Strategies

Relationship between Backward Induction and Nash Equilibrium

ECON322 Game Theory: T2 Dynamic Games with Perfect Information 3/34 http://www.epicenter.name/bach

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

FORMAL STRUCTURE

ECON322 Game Theory: T2 Dynamic Games with Perfect Information 4/34 http://www.epicenter.name/bach

A (1) > A (2) > A

Definition 1

A rooted directed tree is a pair $\mathcal{T} = \langle X, \Sigma \rangle$, where *X* is a set of nodes and $\Sigma \subseteq X \times X$ is set of directed edges connecting nodes.

- The root of the tree has no directed edges leading to it, while every other node has exactly one directed edge leading to it.
- There exists a unique path (i.e. unique sequence of directed edges) leading from the root to any other node.
- A node that has no directed edges out of it is called terminal node, while every other node is called a decision node.
- *X* = *D* ∪ *Z*, where *D* is the set of decision nodes and *Z* is the set of terminal nodes.

Definition 2

An extensive-form frame with perfect information is a tuple $\mathcal{F}_{PI}^{\mathcal{E}} = \langle \mathcal{T}, I, \alpha_I, A, \alpha_A, O, \alpha_O \rangle$, where

- \mathcal{T} is a rooted directed tree.
- *I* is a set of players and α_I : X → I is a function assigning exactly one player to every decision node.
- A is a set of actions and α_A : Σ → A is a function assigning exactly one action to every directed edge such that no two edges of the same node receive the same action.
- *O* is a set of outcomes and *α*_{*O*} : *Z* → *O* is a function assigning exactly one outomce to every terminal node.

(日)

Introduction	Formal Structure	Backward Induction	Strategies	Relationship between BI and NE
Illustra	tion			

- Alice (Player 1) and Bob (Player 2) have decided to dissolve a business partnership whose assets have been valued at \$100k.
- According to their charter, the senior partner, Alice, makes an offer about the assets division to the junior partner, Bob.
- The junior partner can
 - Accept, in which case the proposal is implemented,
 - *Reject*, in which case the division goes to litigation.
- A litigation costs \$20k in legal fees per partner while the typical verdict assigns \$60k to the senior and \$40k to the junior partner.
- For simplicity sake: there is no uncertainty about the verdict and Alice can only propose two possible offers: 50-50 or 70-30 splits.

Representation as an Extensive Form Frame with Perfect Information



Games

Definition 3

An extensive-form game with perfect information is a tuple $\mathcal{G}_{PI}^{\mathcal{E}} = \langle \mathcal{F}_{PI}^{\mathcal{E}}, (\succeq_i)_{i \in I} \rangle$, where

- $\mathcal{F}_{PI}^{\mathcal{E}}$ is an extensive form frame with perfect information.
- ≿*i* is a complete and transitive preference relation over *O* for every player *i* ∈ *I*.

Introduction	Formal Structure	Backward Induction	Strategies	Relationship between BI and NE
Illustra	tion			

- Assume that Alice is self-interested, while Bob is above all concerned with fairness, giving rise to the following rankings:
 - $o_3 \succ_1 o_1 \succ_1 o_2 \sim_1 o_4$
 - $o_1 \succ_2 o_2 \sim_2 o_4 \succ_2 o_3$

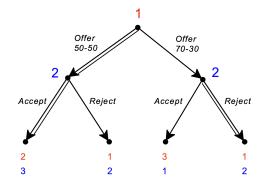
These preferences can be represented by means of ordinal utility functions $U_i: O \to \mathbb{R}$ for $i \in \{1, 2\}$, e.g.:

•
$$U_1(o_1) = 2$$
 and $U_1(o_2) = U_1(o_4) = 1$ and $U_1(o_2) = 3$

- $U_2(o_1) = 3$ and $U_2(o_2) = U_2(o_4) = 2$ and $U_2(o_3) = 1$
- The outcomes in the previous extensive-form frame can then be replaced by a corresponding pair of utilities.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◆○○

Introduction Formal Structure Backward Induction Strategies Relationship between BI and NE Reasoning about the Ensuing Extensive Form Game



BACKWARD INDUCTION

ECON322 Game Theory: T2 Dynamic Games with Perfect Information 12/34 http://www.epicenter.name/bach

< 17 ×

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Towards A Solution Concept for Finite Dynamic Games with Perfect Information

Definition 4

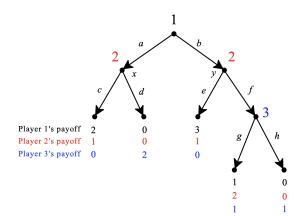
Let $\mathcal{G}_{PI}^{\mathcal{E}}$ be a finite extensive-form game with perfect information. The following marking procedure is called **Backward Induction**:

- **1** Let every terminal node $z \in Z$ be called marked.
- 2 Select a decision node *x* ∈ *X* whose immediate successors are all marked. Let *i* ∈ *I* be the player who moves at *x*. Select a choice *a* ∈ *A* that leads to an immediate successor of *x* with the highest utility (among the imimediate successors of *x*) for *i*. Mark *x* with the utility vector associated with the node that follows *a*.
- **3** Repeat step **1** until every decision node $x \in X$ has been marked.

Some Comments on Backward Induction

- By the assumption of finiteness, the procedure of Backward Induction is well-defined.
- In general, at a decision node there may be several choices that maximize the utility of the moving player at that node.
 - In that case Backward Induction requires that one such choice be selected.
 - This arbitrary selection may lead to the existence of multiple solutions in line with Backward Induction.

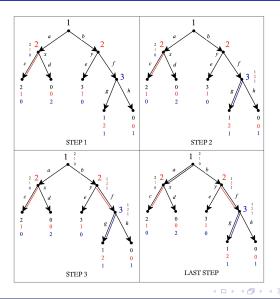
Illustration



< 円

크

Possibility 1



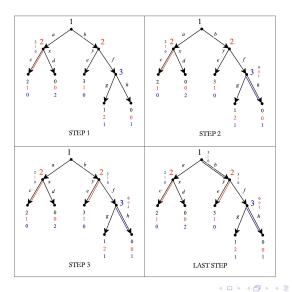
ECON322 Game Theory: T2 Dynamic Games with Perfect Information 16/34 h

http://www.epicenter.name/bach

æ

æ

Possibility 2



Ways to graphically implement Backward Induction

At every step, the selected choices are shown by double edges.

In the previous figures the node marking is done explicitly, but a more succint approach merely highlights the selected choices.

STRATEGIES

ECON322 Game Theory: T2 Dynamic Games with Perfect Information 19/34 http://www.epicenter.name/bach

< 172 ▶

Objects of Choice in Dynamic Games

A strategy for a player in a dynamic game is a complete, contingent plan on how to act in any situation that may emerge.

Formally:

Definition 5

Let $\mathcal{G}_{PI}^{\mathcal{E}}$ be an extensive-form game with perfect information and $i \in I$ some player. A strategy for *i* is a tuple of choices, which contains one choice for each of *i*'s decision nodes. The set of all strategies of *i* is denoted by S_i .

For example, suppose that Alice has three decision nodes:

- at node *a* she has three possible choices *a*₁, *a*₂, *a*₃,
- at node *b* she has two possible choices *b*₁, *b*₂,
- at node *c* she has four possible choices *c*₁, *c*₂, *c*₃, *c*₄,

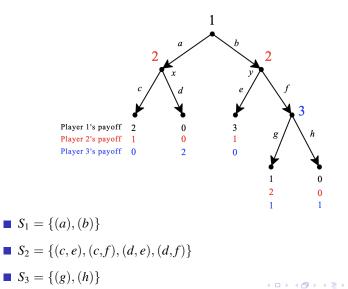
A strategy can be thought of as a way of filling in three blanks:

$$\left(\begin{array}{c} \underbrace{\qquad}\\ \text{one of } a_{1}, a_{2}, a_{3} \end{array}\right), \begin{array}{c} \underbrace{\qquad}\\ \text{one of } b_{1}, b_{2} \end{array}\right), \begin{array}{c} \text{one of } c_{1}, c_{2}, c_{3}, c_{4} \end{array}\right)$$

In total, there are thus $3 \times 2 \times 4 = 24$ possible strategies for Alice.

ECON322 Game Theory: T2 Dynamic Games with Perfect Information 21/34 http://www.epicenter.name/bach

Illustration



ECON322 Game Theory: T2 Dynamic Games with Perfect Information

22/34 http://www.epicenter.name/bach

Interpretational Remarks

- The notion of strategy involves redundancies.
- Indeed, a player is required to plan for nodes that are excluded by his own earlier choices.
- Possible justifications:
 - A player is so cautious that he wants his plan to also cover the possibility of making a mistake in implementing his plan.
 - A strategy as a set of instructions to a third party; thus the player may indeed worry about implementation mistakes.
 - A strategy as a belief in the mind of the opponents about what the player would do.

(日)

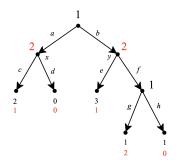
Introduction Formal Structure Backward Induction Strategies Relationship between BI and NE

Strategic Form of a Dynamic Game

- For every dynamic game it is possible to construct a corresponding strategic-form game.
- A strategy profile determines a unique terminal node reached if the players act accordingly and thus a unique utility vector.
- Indeed, a set of players, a set of strategies for every player, and a utility function for every player define a game in strategic form.
- Because of the discussed redundancies above, the strategic form of a dynamic game can also display redundancies. ("identical rows or identical columns")
- The strategic-form game corresponding to a given dynamic game G^E_{PI} can be denoted by R(G^E_{PI}).

Illustration

Consider the following Extensive Form...



...its corresponding Strategic Form is

2						
1,f)	(d,	(d,e)	(C,f)	(c,e)		
. 0	0, (0, <mark>0</mark>	2, 1	2, 1	(a,g)	
0	0,0	0, <mark>0</mark>	2, 1	2, 1	(a,h)	1
, 2	1,	3,1	1, 2	3, 1	(b,g)	
, <mark>0</mark>	1,	3, 1	1, <mark>0</mark>	3,1	(b,h)	
	1	3, 1 3, 1	1, 2 1, 0	3, 1 3, 1	(a,h) (b,g) (b,h)	'

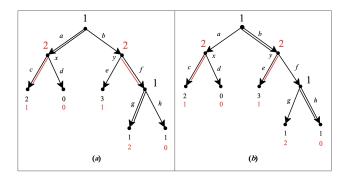
ECON322 Game Theory: T2 Dynamic Games with Perfect Information 25/34 http://www.epicenter.name/bach

A (10) A (10) A (10)

Formulating Backward Induction in terms of Strategies

- From the definition of Backward Induction it follows that the procedure selects a unique choice at every decision node.
- Consequently, Backward Induction yields a strategy profile for the entire game.
- The output of the solution concept Backward Induction is typically denoted as *BI* and note that $BI \subseteq \times_{i \in I} S_i$ holds.

Illustration



(a) $\{((a,g),(c,f))\} \in BI$

(b) $\{((b,h),(c,e))\} \in BI$

RELATIONSHIP BETWEEN BACKWARD INDUCTION AND NASH EQUILIBRIUM

ECON322 Game Theory: T2 Dynamic Games with Perfect Information 28/34 http://www.epicenter.name/bach

Introduction

Backward Induction implies Nash Equilibrium

Theorem 6

Let $\mathcal{G}_{P_{I}}^{\mathcal{E}}$ be an extensive-form game with perfect information. Consider the corresponding strategic-form game $\mathcal{R}(\mathcal{G}_{P_{I}}^{\mathcal{E}})$. Then, $BI \subseteq NE$.

Introduction Formal Structure Backward Induction Strategies Relationship between BI and NE

Proof of Theorem 6

- Towards a contradiction, suppose that there exists $s^* \in \times_{i \in I} S_i$ such that $s^* \in BI$ but $s^* \notin NE$ in the strategic-form game $\mathcal{R}(\mathcal{G}_{PI}^{\mathcal{E}})$.
- Then, there exists some player $i \in I$ such that s_i^* is not a best response to s_{-i}^* , i.e. there exists some strategy $s_i' \in S_i$ such that $\pi_i(s_i', s_{-i}^*) > \pi_i(s_i^*, s_{-i}^*)$.
- Consequently, applied to G^E_{PI}, the strategy s'_i ∈ S_i leads to a terminal node with higher utility than s^{*}_i fixing the opponents' choices throughout the tree in line with s^{*}_{-i}.
- It follows that s^{*}_i does not prescribe optimal choices at all of i's decision nodes given the opponents' choices prescribed at all other decision odes according to s^{*}_{-i}.
- Therefore, $s^* \notin BI$, which is a contradiction.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Introduction Formal Structure Backward Induction Strategies Relationship between BI and NE

Incredible Threats

- Nash Equilibria that are not backward inductive often involve incredible threats.
- To see this, consider the so-called **Entry Game**.
- An industry is currently a monopoly and the incumbent is making a profit of \$5m, while a potential entrant is thinking about entry.
 - In the case of staying out, another investement yields \$1m.
 - In the case of entering, the incumbent can fight with a price war resulting in both firms making zero profits.
 - Alternatively, the incumbent can accommodate by sharing the market resulting in both firms making \$2m.

Image: A matrix and a matrix

It is assumed that both firms care about their own profits only.

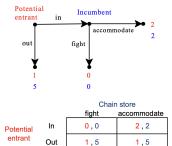
Introduction

Backward Induction

Strategies

æ

The Entry Game



(a) $BI = \{(in, accommodate)\}$

(a)
$$NE = \{ ((in, accommodate), (out, fight)) \}$$

- In fact, the NE (*out*, *fight*) involves an incredible threat on the part of the incumbent, namely to fight if entry occurs.
- If the potential entrant believes the threat, then he is better off staying out, however he should ignore the threat.
- Indeed when faced with the fait accompli of entry the incumbent would not want to carry out the threat.
- BI filters out the "more plausible solution" in the Entry Game.

In general, BI can be seen as a refinement of NE.

(4) (日本)

(日)

э

Background Reading

GIACOMO BONANNO (2018): Game Theory, 2nd Edition

Chapter 3: Perfect-Information Games

available at:

http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html