ECON915 Microeconomic Theory Part A: Introduction to Decision Theory Lecture 3: Choice

Christian W. Bach

University of Liverpool & EPICENTER Maastricht

ECON915 Part A Decision Theory - Lecture 3: Choice

http://www.epicenter.name/bach

Behavioural Foundation

- Preferences can be seen as a summary of the agent's mental attitude towards a set of alternatives.
- In contrast, **choices** of an agent are his observable actions.
- In comparison, preferences can be expressed, however choices are being made.
- Thus, from a descriptive point of view choice is more basic than preferences, since it can directly be observed.
- Observed choice behaviour can be connected to the agent's preferences which are never directly expressed.
 - Descriptively, an agent's choice behaviour reveals his preferences.
 - Normatively, it can be asked how should choices be made given some underlying preferences of the agent.

Choice Problem

- A model of agent behaviour does not only refer to his actual choices, but to a full description of his behaviour in all scenarios he might confront in a certain context.
- Given a set X of alternatives, a choice problem is a non-empty subset A ⊆ X of X.
- A choice from A specifies an element $a \in A$.
- Assumption by modelling a choice problem as a set: the choice does not depend on the way the alternatives are presented.
- For instance, if the alternatives appear in a list, the agent ignores the order in which they are presented and the number of times an alternative appears in the list.

- In some contexts, not all choice problems are relevant.
- Consequently, the agent's behaviour could also be defined only on a set D ⊆ P(X) \ Ø of non-empty subsets of X.
- A pair (X, \mathcal{D}) , where $\mathcal{D} \subseteq \mathcal{P}(X) \setminus \emptyset$, is called a context.
- For simplicity sake the subsequent formal development restricts attention to choice problems, where $\mathcal{D} = \mathcal{P}(X) \setminus \emptyset$.

= nar

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Illustration

- Suppose a student who has to select which university to attend.
- Let $X = \{x_1, x_2, ..., x_N\}$ be the set of universities to which the student has applied.
- The student's choice problem $A \subseteq X$ is the set of universities to which he has been admitted.
- If the admission to universities is independent, then \mathcal{D} contains all $2^N 1$ non-empty subsets of *X* as the context.
- However, suppose that the universities are listed according to decreasing admittance difficulty, and admittance to xk implies admittance to all less prestigious universities with l > k.
- Then, the set \mathcal{D} consists of the *N* sets A_1, A_2, \dots, A_N , where $A_k = \{x_k, x_{k+1}, \dots, x_N\}.$

Agenda

Choice Functions

Weak Axiom of Revealed Preference

Choice Functions

Weak Axiom of Revealed Preference

ECON915 Part A Decision Theory - Lecture 3: Choice

http://www.epicenter.name/bach

æ

Choice Functions

Weak Axiom of Revealed Preference

ECON915 Part A Decision Theory - Lecture 3: Choice

http://www.epicenter.name/bach

크

Choice Function

Definition

Let X be a finite set of alternatives. A choice function

 $c: \mathcal{P}(X) \setminus \emptyset \to \mathcal{P}(X)$

such that $c(A) \subseteq A$ and $c(A) \neq \emptyset$ for all $A \in \mathcal{P}(X) \setminus \emptyset$.

Interpretation: If the agent is offered as possible alternatives the set A, then he considers all alternatives in the set c(A) as fine.

э.

Undominatedness Function

If the agent's preferences are given by the strict preference relation ≻⊆ X × X, it is natural to suppose that he chooses from a set A anything that is undominated.

Then, an undominatedness function can be defined as follows:

 $c_{\succ}: \mathcal{P}(X) \setminus \emptyset \to \mathcal{P}(X)$

such that for all $A \in \mathcal{P}(X) \setminus \emptyset$ it is the case that

$$c_{\succ}(A) = \{ x \in A : y \not\succ x \text{ for all } y \in A \}.$$

э.

<ロト <回 > < 回 > < 回 > .

Weak Axiom of Revealed Preference

Unrelatedness Function

■ More generally, given some binary relation $\star \subseteq X \times X$, an unrelatedness function can be defined as follows:

 $c_\star:\mathcal{P}(X)\setminus\emptyset
ightarrow\mathcal{P}(X)$

such that for all $A \in \mathcal{P}(X) \setminus \emptyset$ it is the case that

$$c_{\star}(A) = \{ x \in A : y \not \prec x \text{ for all } y \in A \}.$$

■ Is an unrelatedness function always a choice function?

Note that an undominatedness function is a special case of an unrelatedness function.

э.

Weak Axiom of Revealed Preference

Normative and Descriptive Perspectives

- Normative question: given a relation ★, under what conditions is the induced unrelatedness function *c* → a choice function?
- Descriptive question: given a choice function c, under what conditions does there exist a relation * with an induced unrelatedness function c* such that c = c*?

Weak Axiom of Revealed Preference

Characterization of Choice Functions with Acyclic Binary Relations

Proposition 8

Let *X* be a finite set of alternatives, and $\star \subseteq X \times X$ be a binary relation on *X*. The binary relation \star is acyclic, if and only if, the unrelatedness function $c_{\star} : \mathcal{P}(X) \setminus \emptyset \to \mathcal{P}(X)$ is a choice function.

< 同 > < 三 > < 三 >

Proof of the *only if* (\Rightarrow) Direction of Proposition 8

- Note that $c_*(A) = \{x \in A : y \not x \text{ for all } y \in A\} \subseteq A \text{ for all } A \in \mathcal{P}(X) \setminus \emptyset \text{ directly holds.}$
- Hence, it still has to be established that $c_{\star}(A) = \{x \in A : y \not \prec x \text{ for all } y \in A\} \neq \emptyset \text{ for all } A \in \mathcal{P}(X) \setminus \emptyset.$
- Towards a contradiction, let $c_{\star}(A) = \emptyset$ for some $A \in \mathcal{P}(X) \setminus \emptyset$.
- Then, for every $x \in A$ there exists some $y \in A$ such that $y \star x$.
- **Consider some** $x_1 \in A$.
- Then there exists $x_2 \in A$ such that $x_2 \star x_1$.
- Then there exists $x_3 \in A$ such that $x_3 \star x_2$.

etc.

Proof of the *only if* (\Rightarrow) Direction of Proposition 8

Consider the sequence $(x_1, x_2, x_3, ...)$ such that

 $\cdots \star x_3 \star x_2 \star x_1.$

As *A* is of finite cardinality there exists $m, n \in \mathbb{N}$ such that m > n and $x_m = x_n$.

4

■ This forms a cycle, however, ★ is acyclic, a contradiction.

= nar

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof of the *if* (\Leftarrow **) Direction of Proposition 8**

- As c_{\star} is a choice function, it is the case that $c_{\star}(A) \neq \emptyset$ for all $A \in \mathcal{P}(X) \setminus \emptyset$.
- Towards a contradiction, suppose that ★ is not acyclic.
- Then, there exists a cycle $x_1 \star x_2 \star \cdots \star x_n \star x_1$, where $\{x_1, x_2, \dots, x_n\} \in \mathcal{P}(X) \setminus \emptyset$.
- Consequently, for every $x \in \{x_1, x_2, ..., x_n\}$ there exists $x' \in \{x_1, x_2, ..., x_n\}$ such that $x' \star x$.
- Therefore, $c_{\star}(\{x_1, x_2, \dots, x_n\}) = \emptyset$, however, c_{\star} is a choice function, a contradiction.

4

э.

A D > A B > A B > A B >

Introduction

Choice Functions

Weak Axiom of Revealed Preference

The binary relation \star is acyclic.

There exists a choice function *c* such that $c = c_{\star}$.

ECON915 Part A Decision Theory - Lecture 3: Choice

http://www.epicenter.name/bach

э

Weak Axiom of Revealed Preference

Choice Functions

Weak Axiom of Revealed Preference

ECON915 Part A Decision Theory - Lecture 3: Choice

크

Weak Axiom of Revealed Preference

Characterization of Strict Preferences with Choice Functions

- Properties of choice functions are sought that characterize strict preferences.
- Thereby, foundations for preferences in terms of choice behaviour are given.
- Indeed, the key property is Houthakker's axiom, which is also called weak axiom of revealed preference.

Weak Axiom of Revealed Preference

Weak Axiom of Revealed Preference

WEAK AXIOM OF REVEALED PREFERENCE (WARP)

Let *X* be a finite set of alternatives, $A, B \in \mathcal{P}(X) \setminus \emptyset$ be choice problems, and $c : \mathcal{P}(X) \setminus \emptyset \to \mathcal{P}(X)$ be a choice function. If $x, y \in A \cap B$ as well as $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$.

- Intuitively, if x is chosen from A when y is available, then whenever y is chosen and x is available, x is also chosen.
- WARP is broken into two pieces by Sen.

Sen's Two Properties: α

Sen's Property α

Let *X* be a finite set of alternatives, $A, B \in \mathcal{P}(X) \setminus \emptyset$ be choice problems, and $c : \mathcal{P}(X) \setminus \emptyset \to \mathcal{P}(X)$ be a choice function. If $x \in B \subseteq A$ and $x \in c(A)$, then $x \in c(B)$.

Illustration:

Suppose that vodka is chosen when whisky and wine is available. Then, according to α , vodka is also chosen if only whisky is available.

Sen's Two Properties: β

SEN'S PROPERTY β

Let *X* be a finite set of alternatives, $A, B \in \mathcal{P}(X) \setminus \emptyset$ be choice problems, and $c : \mathcal{P}(X) \setminus \emptyset \to \mathcal{P}(X)$ be a choice function. If $x, y \in c(A)$, and $A \subseteq B$, as well as $y \in c(B)$, then $x \in c(B)$.

Illustration:

Suppose that vodka and whisky are chosen from a drinks menu and whisky is chosen when tea is added to the drinks menu. Then, according to β , vodka is also chosen from this extended drinks menu.

(4) (日本)

Remark

- WARP concerns choice problems *A* and *B* such that $x, y \in A \cap B$.
- α specializes to the case $B \subseteq A$, and β specializes to the case $A \subseteq B$.
- α is sometimes referred to as independence of irrelevant alternatives.
- The idea is that the choice out of a larger set of options does not change when some of the (non-chosen, hence) irrelevant alternatives in the set are removed.

(日)

Weak Axiom of Revealed Preference

From Preferences to WARP via α and β

Proposition 9

Let *X* be a finite set of alternatives. If the binary relation $\succ \subseteq X \times X$ is a strict preference relation, then the choice function $c_{\succ} : \mathcal{P}(X) \setminus \emptyset \to \mathcal{P}(X)$ satisfies the weak axiom of revealed preference.

-

A (B) > A (B) > A (B) >

Proof of Proposition 9

- Recall that $c_{\succ}(A) = \{x \in A : y \not\succ x \text{ for all } y \in A\}$ for all $A \in \mathcal{P}(X) \setminus \emptyset$.
- Consider $x, y \in X$ such that $x, y \in A \cap B$, and $x \in c_{\succ}(A)$ as well as $y \in c_{\succ}(B)$.
- Since $x \in c_{\succ}(A)$ and $y \in A$, it holds that $y \not\succ x$.
- As $y \in c_{\succ}(B)$ it is the case for all $z \in B$ that $z \not\succ y$.
- Thus, it follows by negative transitivity of \succ that $z \not\succ x$ for all $z \in B$.
- Therefore, $x \in c_{\succ}(B)$.

Weak Axiom of Revealed Preference

From WARP to Preferences via α and β

Proposition 10

Let *X* be a finite set of alternatives. If a choice function $c : \mathcal{P}(X) \setminus \emptyset \to \mathcal{P}(X)$ satisfies the weak axiom of revealed preference, then there exists a strict preference relation $\succ \subseteq X \times X$ such that $c = c_{\succ}$.

-

(日)

Proof of Proposition 10

```
Define \succ \subseteq X \times X as follows:

x \succ y whenever x \neq y and c(\{x, y\}) = \{x\}

for all x, y \in X.
```

- By definition the binary relation > is asymmetric.
- It still needs to be shown that \succ also is negatively transitive, and that $c_{\succ}(A) = c(A)$ for all $A \in \mathcal{P}(X) \setminus \emptyset$.
- **To establish the identity of** c_{\succ} and c is addressed first.
- Let $A \in \mathcal{P}(X) \setminus \emptyset$ be some decision problem, and $x \in A$ be some alternative in decision problem *A*.
- Then, $x \in c(A)$ or $x \notin c(A)$.

Proof of Proposition 10

Firstly, suppose that $x \in c(A)$.

Then, $z \not\succ x$ for all $z \in A$. (for if $z \succ x$, then $c(\{x, z\}) = \{z\}$ by def. of \succ , contradicting α , which would imply that $x \in c(\{x, z\})$.)

• Thus,
$$x \in c_{\succ}(A)$$
.

- Secondly, suppose that $x \notin c(A)$.
- Let $z \in c(A)$, which implies $z \in c(\{x, z\})$ by α .
- Then, $c(\{z,x\}) = \{z\}$. (for otherwise β would be violated via contraposition using $x \notin c(A)$ as antecedent.)
- Thus, $z \succ x$, and consequently $x \notin c_{\succ}(A)$.

Proof of Proposition 10

- Finally, consider that $x \not\succ y$ and $y \not\succ z$ for some $x, y, z \in X$.
- Towards a contradiction, suppose that $x \succ z$.
- Then, $\{x\} = c(\{x, z\})$ by def. of \succ , thus $z \notin c(\{x, y, z\})$ by α via contraposition using $z \notin c(\{x, z\})$ as antecedent.
- Since $z \in c(\{y, z\})$, it follows that $y \notin c(\{x, y, z\})$. (by contraposition of α if $y \notin c(\{y, z\})$ (*Case 1*) and by contraposition of β using $z \notin c(\{x, y, z\})$ as antecedent if $y \in c(\{y, z\})$ (*Case 2*).)
- Similarly, since $y \in c(\{x, y\})$, it then follows that $x \notin c(\{x, y, z\})$.
- Therefore, $c({x, y, z}) = \emptyset$, however, *c* is a choice function, a contradiction.

4

3

A D > A B > A B > A B >

Summary

Choice Functions

Weak Axiom of Revealed Preference

The choice function *c* satisfies WARP.

The choice function *c* satisfies α and β .

There exists a strict preference relation \succ such that $c_{\succ} = c$.

Ξ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・