Mini-course on Epistemic Game Theory Lecture 1: Common Belief in Rationality

Andrés Perea EpiCenter & Dept. of Quantitative Economics

Maastricht University

Toulouse, June/July 2015

Epistemic Game Theory

- **Game theory** studies situations where you make a decision, but where the final outcome also depends on the choices of **others**.
- Before you make a choice, it is natural to reason about your opponents – about their choices but also about their beliefs.
- Oskar Morgenstern, in 1935, already stresses the importance of such reasoning for games.

- Classical game theory has focused mainly on the choices of the players.
- Epistemic game theory asks: Where do these choices come from?
- More precisely, it studies the **beliefs** that motivate these choices.
- Since the late 80's it has developed a broad spectrum of **epistemic concepts** for games.
- Some of these characterize **existing** concepts in classical game theory, others provide **new** ways of reasoning.

- This course studies some of these epistemic concepts.
- For every concept we present the **intuitive idea**, and show how it can be formalized as a collection of **restrictions on the players' beliefs**.
- For every concept we characterize the **choices** they induce.
- We also study **algorithms**, which can be used to compute these choices.

Outline

Part I: Static games

Lecture 1: Common belief in rationality

Lecture 2: Nash equilibrium

Part II: Dynamic games

Lecture 3: Backward induction reasoning

Lecture 4: Forward induction reasoning

The course is based on my **textbook** "*Epistemic Game Theory: Reasoning and Choice*".

Published by Cambridge University Press in July 2012.

- In a game, you form a **belief** about the opponents' choices, and make a choice that is **optimal** for this belief.
- That is, you choose rationally given your belief.
- It seems reasonable to believe that your opponents will choose rationally as well, ...
- and that your opponents believe that the others will choose rationally as well, and so on.
- Common belief in rationality.

	blue	green	red	yellow	same color as friend			
you	4	3	2	1	0			
you Barbara	2	1	4	3	0			
Story								

- This evening, you are going to a party together with your friend Barbara.
- You must both decide which color to wear: *blue, green, red* or *yellow.*
- You both dislike wearing the same color as the friend.

		blue	green	red	yellow	same color as friend
		4	3	2	1	0
E	Barbara	2	1	4	3	0

- Choosing *blue* is optimal if you believe that Barbara chooses green.
- Choosing green is optimal if you believe that Barbara chooses blue.
- Choosing *red* is optimal if you believe that, with probability 0.6, Barbara chooses *blue*, and that with probability 0.4 she chooses *green*.
- Choosing *yellow* is not optimal for you for any belief.
- So, *blue, green* and *red* are **rational** choices for you, *yellow* is **irrational** for you.

	blue	green	red	yellow	same color as friend
	4	3	2	×	0
Barbara	2	1	4	3	0

• If you believe that Barbara chooses rationally, and believe that Barbara believes that you choose rationally,

then you believe that Barbara will not choose blue or green.

	blue	green	red	yellow	same color as friend
you	4	3	2	×	0
Barbara	×	×	4	3	0

- But then, your unique optimal choice is blue.
- So, under **common belief in rationality,** you can only rationally wear *blue*.

- Barbara has same preferences over colors as you.
- Barbara **likes** to wear the same color as you, whereas you **hate** this.

	blue	green	red	yellow	same color as friend
you	4	3	2	1	0
Barbara	4	3	2	1	5

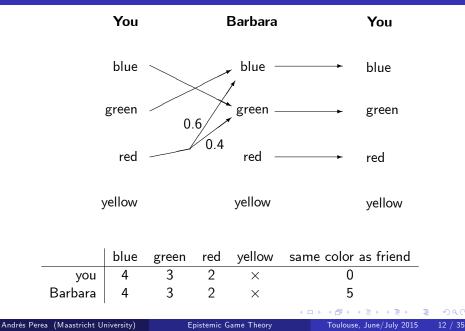
Which color(s) can you rationally choose under **common belief in** rationality?

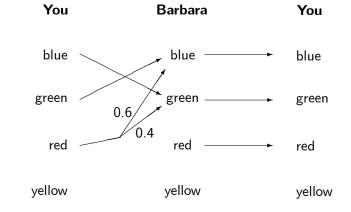
	blue	green	red	yellow	same color as friend
5	4	3	2	1	0
Barbara	4	3	2	1	5

- If you choose rationally, you will not choose yellow.
- If you believe that Barbara chooses rationally, and believe that Barbara believes that you choose rationally, then you believe that Barbara will not choose *yellow* either.

	blue	green	red	yellow	same color as friend
you	4	3	2	×	0
Barbara	4	3	2	×	5

Beliefs diagram





- The belief hierarchy that starts at your choice *blue* expresses **common belief in rationality.**
- Similarly, the belief hierarchies that start at your choices *green* and *red* also express **common belief in rationality.**
- So, you can rationally choose *blue, green* and *red* under **common belief in rationality.**

Andrés Perea (Maastricht University)

In order to formally define **common belief in rationality,** we need to specify \dots

- your belief about the opponents' choices,
- your belief about the opponents' beliefs about their opponents' choices,
- and so on, ad infinitum.

That is, we need to specify your complete **belief hierarchy**. But how can we write down an **infinite** belief hierarchy?

In an infinite belief hierarchy, you hold a belief about ...

- the opponent's choice,
- the opponent's first-order belief about his opponents' choices,
- the opponent's **second-order belief** about his opponents' first-order beliefs,

• ...

That is, in an infinite **belief hierarchy**, you hold a belief about the opponent's **choice** and the opponent's infinite **belief hierarchy**.

Following Harsanyi (1967 / 1968), we call such a belief hierarchy a type.

Definition (Static game)

A finite static game Γ consists of

- a finite set of players $I = \{1, ..., n\}$,
- a finite set of choices C_i for every player, and
- a utility function $u_i: C_1 \times ... \times C_n \to \mathbb{R}$.

Definition (Epistemic model)

An **epistemic model** specifies for every player i a finite set T_i of possible **types**.

Moreover, for every type t_i it specifies a **probabilistic belief** $b_i(t_i)$ over the set $C_{-i} \times T_{-i}$ of opponents' choice-type combinations.

- Implicit epistemic model: For every type, we can derive the complete belief hierarchy induced by it.
- This is the model as used by Tan and Werlang (1988).
- Builds upon work by Harsanyi (1967 / 1968), Armbruster and Böge (1979), Böge and Eisele (1979), and Bernheim (1984).

• **Remember:** A type t_i holds a belief $b_i(t_i)$ over the set $C_{-i} \times T_{-i}$ of opponents' choice-type combinations.

Definition (Belief in the opponents' rationality)

Type t_i believes in the opponents' rationality if his belief $b_i(t_i)$ only assigns positive probability to opponents' choice-type pairs (c_j, t_j) , where choice c_j is optimal for type t_j .

Definition (Common belief in rationality)

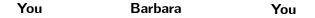
(Induction start) Type t_i expresses **1-fold** belief in rationality if t_i believes in the opponents' rationality.

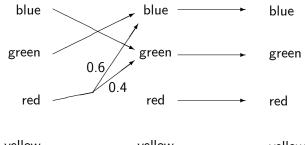
(Inductive step) For every $k \ge 2$, type t_i expresses k-fold belief in rationality if t_i only assigns positive probability to opponents' types that express (k - 1)-fold belief in rationality.

Type t_i expresses **common belief in rationality** if t_i expresses *k*-fold belief in rationality for all *k*.

- This definition is based on Tan and Werlang (1988) and Brandenburger and Dekel (1987).
- In terms of **choices** induced, it corresponds to the **pre-epistemic** concept of **rationalizability** (Bernheim (1984), Pearce (1984)).

19 / 35





yellow yellow yellow

- Can be transformed into **epistemic model** with types t_1^{blue} , t_1^{green} , t_1^{red} and t_2^{blue} , t_2^{green} , t_2^{red} .
- Type t_1^{red} has belief

$$b_1(t_1^{red}) = (0.6) \cdot (\textit{blue}, t_2^{\textit{blue}}) + (0.4) \cdot (\textit{green}, t_2^{\textit{green}})$$

			blue	green	red	yellow	same color as friend	
	ус	ou	4	3	2	1	0	
	Barbar	ra	4	3	2	1	5	
Beliefs playe		E E E	$b_1(t_1^{blue}, b_1(t_1^{gree}, b_1(t_1^{gree}, b_1(t_1^{red}, b$) = n = 0	(gree (blue (0.6)	en, t_2^{green} e, t_2^{blue}) $\cdot (blue,$) $t_2^{blue})+(0.4)\cdot(extsf{green}, extsf{t}_2^{blue})$	green)
Beliefs playe		Ŀ	$b_2(t_2^{\overline{g}ree})$		gree	e, t_1^{blue}) en, t_1^{green} t_1^{red}))	
• Ea	• Each of your types t_1^{blue} , t_1^{green} and t_1^{red} expresses common belief in							

• So, you can rationally choose *blue, green* and *red* under **common belief in rationality**.

Andrés Perea (Maastricht University)

rationality.

- Suppose we wish to find those choices you can rationally make under common belief in rationality.
- Is there an algorithm that helps us find these choices?

We start with a **basic question:** Which choices can be optimal for **some** belief about the opponents' choices?

Lemma (Pearce (1984))

A choice c_i is optimal for some probabilistic belief about the opponents' choices, if and only if, c_i is not strictly dominated by any randomized choice.

- Here, a **randomized choice** r_i for player *i* is a probability distribution on *i*'s choices.
- Choice c_i is strictly dominated by the randomized choice r_i if

$$u_i(c_i, c_{-i}) < u_i(r_i, c_{-i})$$

for every opponents' choice-combination $c_{-i} \in C_{-i}$.

Step 1: 1-fold belief in rationality

- Which choices are rational for a type that expresses **1-fold** belief in rationality?
- Consider a type t_i that expresses 1-fold belief in rationality. Then, t_i only assigns positive probability to opponents' choice-type pairs (c_j, t_j) where c_j is optimal for t_j.
- We know from Pearce's Lemma that every such choice c_j is not strictly dominated within the game Γ.
- Let Γ^1 be the game obtained from Γ by **eliminating** all strictly dominated choices.
- So, t_i only assigns positive probability to choices in Γ^1 .
- **Conclusion:** Every type *t_i* that expresses 1-fold belief in rationality, only assigns positive probability to choices in Γ¹.

Andrés Perea (Maastricht University)

Epistemic Game Theory

Step 1: 1-fold belief in rationality

- Conclusion: Every type t_i that expresses 1-fold belief in rationality, only assigns positive probability to choices in Γ¹.
- Which choices can t_i rationally choose himself?
- By Pearce's Lemma, every choice c_i that is optimal for t_i must **not** be strictly dominated within Γ¹.
- Let Γ^2 be the game obtained from Γ^1 by eliminating all strictly dominated choices from Γ^1 .
- So, every choice that is optimal for t_i must be in Γ^2 .
- Conclusion: A type t_i that expresses 1-fold belief in rationality, can only rationally make choices from Γ².

Step 2: Up to 2-fold belief in rationality

- Which choices are rational for a type that expresses **up to 2-fold** belief in rationality?
- Consider a type t_i that expresses up to 2-fold belief in rationality. Then, t_i only assigns positive probability to opponents' choice-type pairs (c_j, t_j) where c_j is optimal for t_j , and t_j expresses 1-fold belief in rationality.
- By Step 1, every such choice c_j is in Γ^2 .
- Hence, type t_i only assigns positive probability to opponents' choices in Γ^2 .

Step 2: Up to 2-fold belief in rationality

- Type t_i only assigns positive probability to opponents' choices in Γ^2 .
- Which choices can t_i rationally choose himself?
- By Pearce's Lemma, every choice c_i that is optimal for t_i must **not** be strictly dominated within Γ².
- Let Γ^3 be the game obtained from Γ^2 by eliminating all strictly dominated choices from Γ^2 .
- So, every choice that is optimal for t_i must be in Γ^3 .
- Conclusion: A type t_i that expresses up to 2-fold belief in rationality, can only rationally make choices from Γ³.

Algorithm (Iterated elimination of strictly dominated choices)

Consider a finite static game Γ .

(Induction start) Let $\Gamma^0 := \Gamma$ be the original game.

(Inductive step) For every $k \ge 1$, let Γ^k be the game which results if we eliminate from Γ^{k-1} all choices that are strictly dominated within Γ^{k-1} .

- This algorithm terminates within finitely many steps. That is, there is some K with $\Gamma^{K+1} = \Gamma^{K}$.
- The choices in Γ^k are said to survive k-fold elimination of strictly dominated choices.
- The choices in Γ^K are said to survive iterated elimination of strictly dominated choices.

Theorem (Tan and Werlang (1988))

(1) For every $k \ge 1$, the choices that are optimal for a type that expresses up to k-fold belief in rationality are exactly those choices that survive (k + 1)-fold elimination of strictly dominated choices.

(2) The choices that are optimal for a type that expresses common belief in rationality are exactly those choices that survive iterated elimination of strictly dominated choices.

Proof of part (2):

- We already know: If choice c_i is optimal for a type t_i that expresses common belief in rationality, then c_i must survive the algorithm.
- Still to show: If c_i survives the algorithm, then c_i is optimal for some type t_i that expresses common belief in rationality.

- Suppose that the algorithm terminates after K steps that is, $\Gamma^{K+1} = \Gamma^{K}$. Let C_{i}^{K} be the set of surviving choices for player *i*.
- Then, every choice in C_i^K is not strictly dominated within Γ^K . Hence, by Pearce's Lemma, every choice c_i in C_i^K is optimal for some belief $b_i^{c_i} \in \Delta(C_{-i}^K)$.
- Define set of types $T_i = \{t_i^{c_i} : c_i \in C_i^K\}$ for every player *i*.
- Every type $t_i^{c_i}$ only deems possible opponents' choice-type pairs $(c_j, t_i^{c_j})$, with $c_j \in C_i^K$, and

$$b_i(t_i^{c_i})((c_j, t_j^{t_j})_{j\neq i}) := b_i^{c_i}((c_j)_{j\neq i}).$$

- Then, every type $t_i^{c_i}$ believes in the opponents' rationality.
- Hence, every type expresses common belief in rationality.

Story

- In a casino in Las Vegas you see a remarkable machine, that says "Guess two-thirds of the average and you will be rich!"
- After putting in 5 dollars, you must enter a number between 1 and 100.
- The closer your number is to **two-thirds of the average** of all the numbers previously entered, the higher your prize-money.
- What number should you choose?

- What numbers can you rationally choose under **common belief in** rationality? Use the algorithm.
- Clearly, any number above $(2/3) \cdot 100 \approx 67$ is strictly dominated. So, eliminate every number above 67.
- In the reduced game Γ¹, every number above (2/3) · 67 ≈ 45 is strictly dominated. So, eliminate every number above 45.
- In the reduced game Γ^2 , every number above $(2/3) \cdot 45 = 30$ is strictly dominated. So, eliminate every number above 30.
- In the reduced game Γ³, every number above (2/3) · 30 = 20 is strictly dominated. So, eliminate every number above 20.

And so on.

- In this way, you will eliminate every number **except** for the lowest number 1.
- Hence, the **only** number you can rationally choose under **common belief in rationality** is **1**!
- But is this realistic?

- W. Armbruster and W. Böge, 'Bayesian game theory ' in O. Moeschlin and D. Pallaschke (eds.), *Game Theory and Related Topics* (North-Holland, Amsterdam, 1979)
- B.D. Bernheim, 'Rationalizable strategic behavior', *Econometrica*, 52 (1984), 1007–1028
- W. Böge and T.H. Eisele, 'On solutions of bayesian games', International Journal of Game Theory, 8 (1979), 193–215
- A. Brandenburger and E. Dekel, 'Rationalizability and correlated equilibria', *Econometrica*, 55 (1987), 1391–1402
- J.C. Harsanyi, 'Games with incomplete information played by "bayesian" players, I–III', *Management Science*, 14 (1967–1968), 159–182, 320–334, 486–502

- O. Morgenstern, 'Vollkommene Voraussicht und wirtschaftliches Gleichgewicht', Zeitschrift für Nationalökonomie, 6 (1935), 337–357. (Reprinted as 'Perfect foresight and economic equilibrium' in A. Schotter (ed.), Selected Economic Writings of Oskar Morgenstern (New York University Press, 1976), pp. 169–183)
- D. Pearce, 'Rationalizable strategic behavior and the problem of perfection', *Econometrica*, 52 (1984), 1029–1050
- T. Tan and S.R.C. Werlang, 'The bayesian foundations of solution concepts of games', *Journal of Economic Theory*, 45 (1988), 370–391