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Abstract In game theory, basic solution concepts often conflict with experimental
findings or intuitive reasoning. This fact is possibly due to the requirement that zero
probability is assigned to irrational choices in these concepts. Here, we introduce the
epistemic notion of common belief in utility proportional beliefs which also attributes
positive probability to irrational choices, restricted however by the natural postulate
that the probabilities should be proportional to the utilities the respective choices
generate. Besides, we propose a procedural characterization of our epistemic concept.
With regards to experimental findings common belief in utility proportional beliefs
fares well in explaining observed behavior.

Keywords Algorithms - Epistemic game theory - Interactive epistemology -
Solution concepts - Traveler’s dilemma - Utility proportional beliefs

1 Introduction

Interactive epistemology, also called epistemic game theory when applied to games,
provides a general framework in which epistemic notions such as knowledge and belief
can be modeled for situations involving multiple agents. This rather recent discipline
has been initiated by Harsanyi (1967-1968) as well as Aumann (1976) and first been
adopted in the context of games by Aumann (1987), Brandenburger and Dekel (1987)
as well as Tan and Werlang (1988). A comprehensive and in-depth introduction to
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epistemic game theory is provided by Perea (2012). An epistemic approach to game
theory analyzes the relation between knowledge, belief, and choice of rational game-
playing agents. While classical game theory is based on the two basic primitives—
game form and choice—epistemic game theory adds an epistemic framework as a third
elementary component such that knowledge and beliefs can be explicitly modelled in
games.

Intuitively, an epistemic model of a game can be interpreted as representing the
players’ reasoning. Indeed, before making a decision in a game, a player reasons
about the game and his opponents, given his knowledge and beliefs. Precisely these
epistemic mental states on which a player bases his decisions and which characterize
his reasoning are described in an epistemically enriched game-theoretic framework.

A central idea in epistemic game theory is common belief in rationality, first explic-
itly formalized in an epistemic model for games by Tan and Werlang (1988). From
an algorithmic perspective it corresponds to the concept of rationalizability, which is
due to Bernheim (1984) and Pearce (1984). Intuitively, common belief in rationality
assumes a player to believe his opponents to choose rationally, to believe his opponents
to believe their opponents to choose rationally, etc. However, this basic concept gives
counterintuitive as well as experimentally invalidated predictions in some games that
have received a lot of attention. Possibly, the requirement that only rational choices
are considered and zero probability is assigned to any irrational choice is too strong
and does not reflect how real world agents reason.

Here, we introduce the epistemic concept of utility proportional beliefs, according
to which a player assigns positive probability also to opponents’ irrational choices,
while at the same time for every opponent, differences in probability must be propor-
tional to differences in utility. In particular, better opponents’ choices receive higher
probability than inferior choices. Intuitively, probabilities now confer the intrinsic
meaning of how good the respective player deems his opponents’ choices. The con-
cept of common belief in utility proportional beliefs formalizes the idea that players
do not only entertain utility proportional beliefs themselves, but also believe their
opponents to do so, believe their opponents to believe their opponents to do so, etc.
Philosophically, our concept can be seen as a way of formalizing cautious reasoning,
since no choice is excluded from consideration. Rational choice under common belief
in utility proportional beliefs fares well with regards to intuition and to explaining
experimental findings in games of interest, where classical concepts such as rational-
izability perform weakly.

As an illustration consider a simplified version of Basu’s (1994) traveler’s dilemma.
Two persons have traveled with identical items on a plane, however when they arrive
their items are damaged and they want to claim compensation by the airline. Both
travelers are asked to simultaneously submit a discrete price between 1 and 10. The
person with the lower price is then rewarded this value plus a bonus of 2, while
the person with the higher price receives the lower price minus a penalty of 2. If
the travelers submit the same price, then they both are compensated accordingly.
Reasoning in line with common belief in rationality requires a traveler to rationally
choose the lowest price 1. Intuitively, the highest price can never be optimal for neither
traveler, and iteratively inferring that every respective lower price can then not be
optimal either only leaves the very lowest price as rational choice. However, this
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conclusion conflicts with experimental findings as well as with intuition, possibly since
people typically do not do all iterations or do not assign zero probability to opponents’
irrational choices. Indeed, our concept of common belief in utility proportional beliefs
leads to the choice of 6. Intuitively, if all prices receive a substantial positive probability,
the very low prices perform quite badly and hence do so too with common belief in
utility proportional beliefs.

In general, the classical concept of common belief in rationality is an idealized
notion. There are two direct ways of modifying this concept to draw nearer to the
reasoning of real-world agents. Firstly, the assumption of the players performing an
infinite number of reasoning steps can be relaxed. Secondly, the hypothesis of belief
in rationality may be weakened. Indeed, to fully understand the consequences of
modifying one of the two basic building blocks of common belief in rationaliy, it is
important to first study each of these separately. In fact, the two approaches can be
viewed as orthogonal. Here, we follow the second route and replace belief in rationality
by the more realistic concept of utility proportional beliefs. Formally, we still require
players to do infinitely many reasoning steps. However, it turns out that typically a few
reasoning steps already suffice to approximate the final beliefs selected by common
belief in utility proportional beliefs.

The basic idea underlying utility proportional beliefs also appears in Rosenthal’s
(1989) t-solution, where players are required to assign probabilities to their own
choices such that the probability differences are proportional to the utility differences
using a proportionality factor 7. In contrast to our model, Rosenthal uses the same pro-
portionality factor ¢ across all players; assumes that players consciously randomize,
i.e. pick probability distributions over their choice sets; and builds in an equilibrium
condition implying that players entertain correct beliefs about their opponents’ ran-
domized choices.

The intuition that better choices receive higher probabilities also occurs in McK-
elvey and Palfrey’s (1995) quantal response equilibrium, where the utilities are subject
to random errors. In contrast to our model, McKelvey and Palfrey do not assume prob-
abilities to be proportional to utilities; require players to hold correct beliefs about the
opponents’ probabilities; and suppose agents to always choose optimally with respect
to their beliefs, whereas their utilities are randomly perturbed.

The scheme of cautious reasoning—that is, no choice is completely discarded from
consideration—is also present in Schuhmacher’s (1999) and Asheim’s (2001) concept
of proper rationalizability, which assumes better choices to be infinitely more likely
than worse choices. However, in our model every choice receives a substantial, non-
infinitesimal positive probability, which is proportional to the utility the respective
choice generates.

We proceed as follows. In Sect. 2, the concept of common belief in utility pro-
portional beliefs is formalized in a type-based epistemic model for games. Also, a
convenient way of stating utility proportional beliefs by means of an explicit formula
is presented. Rational choice under common belief in utility proportional beliefs is
defined as the decision-relevant notion for game-playing agents. Section 3 introduces
the procedure of iterated elimination of utility-disproportional-beliefs, which recur-
sively restricts the players’ possible beliefs about the opponents’ choices. Section 4
then establishes that iterated elimination of utility-disproportional-beliefs provides a
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procedural characterization of common belief in utility proportional beliefs, and can
thus be used as a practical tool to compute the beliefs a player can hold when reason-
ing in line with common belief in utility proportional beliefs. In Sect. 5 it is shown
that the procedure—surprisingly—yields unique beliefs for every player in two player
games. By means of an example, non-uniqueness of beliefs is established for games
with more than two players. Section 6 illustrates how well our concept fares with
regards to intuition as well as experimental findings in some games that have received
a lot of attention. Section 7 discusses utility proportional beliefs from a conceptual
point of view and compares it to some related literature. Finally, Sect. 8 offers some
concluding remarks and indicates possible directions for future research.

2 Common belief in utility proportional beliefs

In order to model reasoning in line with utility proportional beliefs, infinite belief
hierarchies need to be considered. Here, we restrict attention to static games and follow
the type-based approach to epistemic game theory, which represents belief hierarchies
as types. More precisely, a set of types is assigned to every player, where each player’s
type induces a belief on the opponents’ choices and types. Then, the whole infinite
belief hierarchy can be derived from a given type. Note that the notion of type was
originally introduced by Harsanyi (1967-1968) to model incomplete information, but
can actually be more generally used for any interactive uncertainty. Indeed, the context
we consider is the uncertainty about choice in finite normal form games.
Notationally, a finite normal form game is represented by the tuple

I' =, (Cier, Uiier),

where / denotes a finite set of players, C; denotes player i’s finite choice set, and
Ui : xje1Cj — R denotes player i’s utility function.

The notion of an epistemic model constitutes the framework in which various
epistemic mental states of players can be described.

Definition 1 An epistemic model of a game I is a tuple M = (T})icr, (bi)icr),
where

— T; is a set of types for playeri € I,
- b : Ti = A(C_; x T_;) assigns to every type #; € T; a probability measure with
finite support on the set of opponents’ choice-type combinations.

Here, C_; := xjen(i1Cj and T—; := X jen\(;)T; denote the set of opponents’
choice and type combinations, respectively. Besides, by imposing the finite support
condition, we focus on types that only assign positive probability to finitely many types
for each of their respective opponents. Hence, no topological assumptions concerning
the type spaces are needed. Note that although according to Definition 1 the probability
measure b; (t;) represents type t;’s belief function on the set of opponents’ choice-type
pairs, for sake of notational convenience we often also use b; (#;) to denote any projected
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belief function for type #;.! It should always be clear from the context which belief
function b; (¢;) refers to.

Besides, in this paper we follow the one-player perspective approach to epistemic
game theory advocated by Perea (2007a, b, 2012). Accordingly, all epistemic concepts
including iterated ones are understood and defined as mental states inside the mind
of a single person. Indeed, a one-player approach seems natural, since reasoning is
formally represented by epistemic concepts and any reasoning process prior to choice
takes place entirely within the reasoner’s mind.

Some further notions and notation are now introduced. For that purpose consider a
game I, an epistemic model M of it, and fix two players i, j € I such thati # j.
A type t; € T; of i is said to deem possible some type t; € T; of his opponent j,
if b; (¢;) assigns positive probability to an opponents’ choice-type combination that
includes ¢;. By T;(#;) we then denote the set of types of player j deemed possible
by t;. Furthermore, given a type t; € T; of player i, and given an opponent’s type
tj € Tj(%),

g o i) ()i ty)
bi(ti))(cj | tj) := —(bi(ti))(tj)

is type t;’s conditional belief that player j chooses c¢; given his belief that j is of
type ¢;. Note that the conditional belief (b; (#;))(c; | ;) is only defined for types of j
deemed possible by ¢;.

Moreover, a choice combination for player i’s opponents is denoted by c_; €
x jen\(iyC ;. For each of his choices ¢; € C; type t;’s expected utility given his belief
on his opponents’ choice combinations is given by

ui(ci, ;) = Xe_; (bi(t;))(c—)Ui(ci, c—;).

Besides, let C := X;¢;C; be the set of all choice combinations in the game. Then,
u; :=maxcecu;(c) andu; := min.ecu;(c) denote the best and worst possible utilities
player i can obtain in the game, respectively. Farther, type #;’s average expected utility
is denoted by

average
u; ¢ () =

1
—— Yeeciui(ci, ti).
ICil
The idea that a player entertains beliefs on his opponents’ choices proportional to
the respective utilities these choices yield for the opponents can be formalized within
the framework of an epistemic model for normal form games.

Definition 2 Let i € I be some player, and A; = (A;;)jeriy € R\ such that
Aij = Oforall j € I\{i}. Atypet; € T; of player i expresses A;-utility-proportional-
beliefs, if

L\ type’s belief function projected on some opponent’s type space or projected on the set of opponents’
choice combinations are examples for projected belief functions.
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Aii ,
(bi(ti))(cjItj)—(bi(ti))(C}Ilj)zﬁ_ ! '(”j(cj’tj)_“j(cj»tj)) (UPB)

jTU
forall t; € T;(t;), for all Cj,C;, € C;,forall j e I\{i}.

Accordingly, the difference between player i ’s conditional belief probabilities attached
to two choices of any of his opponents is proportional to the difference between the

respective utilities the opponent derives from them, with proportionality factor #
for every opponent j € I'\{j}.

Note that A;-utility-proportional-beliefs may not exist if any of the A;;’s is too large,
as this may force some of the conditional probabilities (b;(#;))(c; | t;) to become
negative and hence would no longer qualify as probabilities. However, in Sect. 3
an upper bound on A;; will be defined which guarantees that A;-utility-proportional-
beliefs always exist in the sense of being well-defined probability measures.

Intuitively, A;; measures the sensitivity of the beliefs to differences in utility. If it is
too large, some of the beliefs will become negative or greater than 1 in order to satisfy
equation (U P B), thus violating the property of being probabilities. Hence, there exists
an upper bound for every A, ;, which furnishes maximally dispersed belief probabilities
while at the same time still complying with equation (U P B) for every opponent’s type.
Farther, the minimal value A;; can assume is zero, which then implies the conditional
beliefs about the respective opponent’s choice to be uniformly distributed. In other
words, if A;; = 0, then utility differences are not at all reflected in the beliefs, as all
choices are being assigned the same probability. Besides, note that in the context of
modeling reasoning in line with utility proportional beliefs, choosing A;; as large as
possible seems plausible, as the idea of utility proportional beliefs then unfolds its
maximal possible effect.

Moreover, A;-utility-proportional-beliefs are invariant with respect to affine trans-
formations of any player’s utility function. Indeed, suppose a € R, b > 0 and
j € I\{i} such that @;(cj,t;) = a + buj(c;,t;) for all ¢; € C; and for all
tj € T;. Assume that #; expresses A;-utility-proportional-beliefs with respect to ;.
Then, observe that

(bi(t)(cj | 1)) — (bi(t))(c) | 1))
== ’\"fA (@j(cjty) — (. 17)
Uj—u;
_ ki
C(a+bu;)—(a+ bu ;)
_ i
" b —u))

((a—i—buj(cj,tj)) — (a—i—buj(c;,tj)))

b(uj(cj', tj) — u./(C;-, tj))

Aij /
= — Mj(Cj,tj)—uj(Cj,l‘j)
u; _Zj

for all ¢;, c;. € C; and for all ¢; € T;. The invariance of utility proportional beliefs
with regards to affine transformations of the players’ utilities strengthens the concept,
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since it does not depend on the particular cardinal payoff structure but only on the
underlying ordinal preferences.

Utility proportional beliefs as formalized in Definition 2 can be expressed by means
of an explicit formula for a given opponent’s choice conditional of him being of a given
type. This convenient alternative way of stating utility proportional beliefs relates the
conditional belief in a specific opponent’s choice to the utility this choice generates
for the respective opponent.

Lemma 1 Leti € I be some player, and A; = (A;j) jer\li} € RN A typet; € T;
of player i expresses A;-utility-proportional-beliefs if and only if

1 Mij
Gi(1)(cj | 1) = G :lﬁj (jcjo t) = uf™ 1)),

forallt; e Tj(t;), forallcj € Cj, forall j € I\{i}.
Proof Let j € I\{i} be some opponent of player i, t; € T;(t;) be some type of j
deemed possible by i and cjf € C; be some choice of j. Note that
1= Xeiec; (bi(ti)(cj | 1)
= Zeiec; ((bi(t))(c | 1)) + Bi(t)(cj | 1)) — (bi(t:))(cT | 1))

Aii N
= Zeiec; (i (t))(c] | 1)) + = L (uj(cj, t;) — uj(ci, tj)))
u; —gj

Aij X
= (le|(bi(fi))(C}k~ [ 1) + 7 _ju'zcj-ecj(uj(cj,tj) —uj(c}, 1))
uj

)\'..
= |C;|(bi (@))(c | 1)) + ju : (1517 1) — 1Chuy 1),
—=J

uj

which is equivalent to

1 Aij
GG 1) = 1oy 1) = ).
=J

O

Intuitively, the formula provided by Lemma 1 assigns to every opponents’ type the uni-
form distribution on the respective opponents’ choice set plus or minus an adjustment
for each choice depending on its goodness relative to the average utility.

Reasoning in line with utility proportional beliefs requires a player not only to
entertain utility proportional beliefs himself, but also to believe his opponents to do
so, to believe his opponents to believe their opponents to do so, etc. Within an epistemic
framework this reasoning assumption can be formally expressed by common belief in
utility proportional beliefs.

Definition 3 Let i € I be some player, ; € 7; be some type of player i, and A =
(Aier € Xie/RINL,
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— Type t; expresses I-fold belief in A-utility-proportional-beliefs, if t; expresses ;-
utility-proportional-beliefs.

— Type t; expresses k-fold belief in A-utility-proportional-beliefs, if (b;(t;)) only
deems possible types ¢; € T; for all j € I'\{i} such that t; expresses k — 1-fold
belief in A-utility-proportional-beliefs, for all k > 1.

— Type t; expresses common belief in A-utility-proportional-beliefs, if t; expresses
k-fold belief in A-utility-proportional-beliefs for all £ > 1.

Intuitively, a player i expressing common belief in A-utility-proportional-beliefs holds
Ajj-utility-proportional-beliefs on opponent j’s choices, he believes opponent j to
entertain A j j/-utility-proportional-beliefs on opponent j’s choices, etc. In other words,
a belief hierarchy of player i satisfying A-utility-proportional-beliefs exhibits no
level at which it is not iteratively believed that every opponent j holds A ;-utility-
proportional-beliefs.

The choices a player can reasonably make under common belief in utility propor-
tional beliefs are those that are rational under his respectively restricted beliefs on the
opponents’ choices.

Definition 4 Let i € I be some player, and A = (A;)ie; € X;e/RINII A choice
c; € C; of player i is rational under common belief in A-utility-proportional-beliefs,
if there exists an epistemic model M and some type #; € T; of player i such that ¢; is
optimal given (b; (¢;)) and ¢; expresses common belief in A-utility-proportional-beliefs.

3 Recursive procedure

A recursive procedure is introduced that iteratively deletes beliefs and that—as will be
shown later in Sect. 4—yields precisely those beliefs that are possible under common
belief in A-utility proportional beliefs.

Before we formally define our recursive procedure some more notation needs to be
fixed. Let Pl.O := A(C_;) denote the set of i ’s beliefs about his opponents’ choice com-
binations. Besides, given p; € Pl.0 we define u?vemge (pi) = IC]_,I e ecui(ci, pi).
Moreover, for every player i, each of his opponents j € I'\{i}, every p; € P](.), and
every ¢; € Cj, we define the number

1 Aij
N J (e D) — Tase Y
(P} (p)(e)) : |Cj|+ﬁj_£j(u](cj,p,) u (pj))

Let A?}“" be the largest A;; such that (p;“j (pj))(cj) = Oforall p; € P](.) and for all
cj € C;. Note that by construction of (p;‘j (pj))(cj), it holds that

Z‘CjECj (P,*/(P]))(Cj) =1.

Hence, if 1;; < ){'J"“x, then the vector p;"j(pj) = ((p;kj (Pj))(cj))c;ec; constitutes a
well-defined probability measure on C;. In that case, pfj : Pj(.) — A(C;) becomes
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a function mapping beliefs p; of player j on his opponents’ choice combinations to
beliefs p;“j (pj) on j’s choice.

The recursive procedure, which we call iterated elimination of utility-
disproportional-beliefs, can now be formally stated.

Definition 5 For all i € [ and for all k > 0 the set Pl.k of i’s beliefs about his
opponents’ choice combinations is inductively defined as follows:

P = AC-),
= {pi € A(C_;) : margc, pi € p;’;(Pj’Ffl) forall j € I\{i}}.

The set of beliefs P> = ;- Pik contains the beliefs that survive iterated elimination
of utility-disproportional beliefs.

Here, pl/(Pk 1) denotes the set {p”(p]) pj € Pk 1} Intuitively, pl ((pj) is the
utility-proportional-belief on j’s choice generated by pj. The recursive procedure
then iteratively deletes beliefs p; for which the marginal on j’s choices cannot be
obtained by the function p;“j for some opponent j. In other words, beliefs are repeatedly
eliminated which are not utility proportional with respect to beliefs from the preceding
set of beliefs in the recursive procedure.

Typically, our recursive procedure does not terminate within a finite number of
steps. Indeed, it will be shown in Sect. 5 for the case of two players that the recursive
procedure converges to a singleton belief set for both players, whereas the sets Pik
normally contain infinitely many beliefs for all rounds £ > 1.

Some important properties of our recursive procedure are now presented, which
will be used later.

Lemma 2 For all i € I and for all k > 0, the set Pl.k is non-empty, convex and
compact.

Proof We proceed by induction on k. Note that for k = 0 the statement holds as
P0 A(C_;). Let k > 1 and assume that Pk !'is non- empty, convex and compact
for all players i € 1. Consider some player i € [ and recall that

= {pi € A(C;) : marge, pi € pj(Py~") forall j € 1\{i})}.

First of all, we show that P,.k is non-empty. As P/l.“1 is non-empty by the inductive
assumption, p;‘/(P/lffl) is non-empty too for every opponent j of i. Thus, for every
opponent j we can take some probability measure p;; € p;‘i(P/’.‘_l) and define p; €
A(C_;) as the product measure of these p;;’s. Then, p; € Pl.k and therefore Pl.k is
non-empty.

Secondly, it is argued that Pik is convex. Let p;, p! € Pik and o € [0, 1]. We now
prove that p' := ap; + (1 — a)p, € PF. Observe that for every opponent j of i it
holds that margc; p] = amargc; pi + (1 — a)ymargc; p;. By definition of Pf, the
two marginal probability distributions margc; pi and margc; p; are both elements of
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p;‘j(leffl). Note that the set p;“j(P;‘*l) is a convex set by virtue of being the affine

image of the convex set le.‘fl. Hence, margc; pl e p;‘j (Pj].‘fl) for all opponents j of
i and therefore p; € Pik.

Thirdly, we show that Pl.k is compact, i.e. bounded and closed. Indeed, Pik -
A(C_;) is bounded. Now, take some converging sequence (p;'),eN € Pik with limit

point p; € P;.Foreveryn € Nand forevery opponent j of i, itholds thatmargc; p} €
p;“j(PJ].‘_l). Note that PJI.‘_1 is closed by the inductive assumption and that p;“j is
a continuous function. Therefore, p;‘j(PJ]f_l) is a closed set which guarantees that
margc;pi € pl?“j(P]].‘_l) for every opponent j of i. Consequently, p; € Pik which
ensures that Pl.k is closed. O

The preceding result implies that the recursive procedure yields a non-empty output.

Corollary 1 The set P° is non-empty for all players i € 1.

Proof Observe that Pl.k - Pl.k_1 for all k > 1 and for all i € I. Moreover, by
Lemma 2 the sets Pik are non-empty and compact for k > 1 and for alli € I. Hence,
P* = k>0 Pl.k is non-empty for all playersi € I. O

Finally, it is established that the sets P for all players i € I are the largest fixed
points of our recursive procedure.

Lemma 3 For all players i it holds that
P = {pi € A(C—;) : margc, pi € pj;(P{°) forall j € I\{i}}.

Proof First, we show that P> C {p; € A(C_;) : margc; pi € pl’."j(Pj‘?o) forall j €
I\{i}}. Let p; € P. Since p; € Pl.k'H for all k > 0 it follows that margc; pi €
pl?"j(P]’F) for all k > 0 and for all opponents j of i. Fix an opponent j of i and define
pij = margc; pi. It suffices to show that p;; € p;"j(P;’o). As p;j € p;“j(P]].‘) for
all k > 0, there exists for every k > 0 some p’j? € Pj].‘ such that p;; = p;kj(plj?).
Since PJQ is compact, the sequence ( plj‘.)kzo has a convergent subsequence. Without
loss of generality, assume that ( plj)kzo is itself convergent to some p; € P]Q. As the
function p;“j is continuous it follows that p;; = p;“j (pj). Fix m > 0 and consider the
subsequence (p]]f)kzm € P]’.". By closedness of P;" it holds that the limit point p;
must be in P]’.“. Since p; € P}" forallm > 0, p; € P]‘?O follows. As p;j = p;‘j(pj)
it obtains that p;; € p;‘j(P]‘?o).

Secondly, we establish that {p; € A(C—;) : margc;pi € pfj(PJ‘?o) forall j €
I\{i}} € P™. Take p; € {pi € A(C—;) : margc,;pi € p;kj(P;-X’) forall j € I\{i}}.
Then, margc; pi € p;kj(P]]?) for all kK > 0 and for all opponents j of i. It follows that
pi € Pl.k‘H for all k > 0, and thus p; € P. O
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4 Procedural characterization of common belief in utility proportional beliefs

It is now established that the recursive procedure yields precisely those beliefs that a
player can entertain under common belief in A-utility proportional beliefs.

Theorem 1 Let A = (A))ic; € x;je; RN such that Aij < A for all two distinct
players i and j. A belief p; € A(C_;) can be held by a type t; € T; that expresses
common belief in A-utility-proportional beliefs in some epistemic model M' of I if
and only if p; survives iterated elimination of utility-disproportional beliefs.

Proof For the only if direction of the theorem, we prove by induction on & that a belief
that can be held by a type that expresses up to k-fold belief in A-utility-proportional
beliefs survives k rounds of iterated elimination of utility-disproportional beliefs. It
then follows that a type expressing common belief in A-utility-proportional-beliefs
holds a belief which survives iterated elimination of utility-disproportional beliefs.

First of all, let k = 1 and consider #; € T; that expresses 1-fold belief in A-utility-
proportional beliefs. Then,

€l

1 )\ij average
b)) (cj, tj)) = — + (ujlcj,tj) —u; () ) bi@))(t))

forallc; € Cj, t; € Tj and for all j € I\{i}. It follows that

1 )\i' average
bi (1) (cj) = Erjerf(zi)(bi(fi))(tj)(@ + W _jzj (uj(cj,tj) —u; ¢ (tj)))

for all ¢; € C;. Written as a vector,

margc; (bi(ti)) = Zi;er; ;) (bi (1)) (1))

! )‘ij average
x| — 1"'.’1 . it ! t: ). )
(|Cj|( ) uj—u.j(uj(cj ) " (tj))ejec;

obtains. Note that, by definition,

1 )\ij average * p0
@(13 LD+ ﬁj py (Mj(cjs tj) - uj (tj))CjECj € Pij(Pj)
holds. Thus, margc; (b; (t;)) is a convex combination of elements in the set p;‘j (PJQ).
Since PJQ is convex and p;‘/ is a linear function, it follows that the image set p;"/. (P/Q)
is convex too. Therefore, margc; (b (1)) € p;"j(P]Q). As this holds for all opponents

j € I\{i}, if follows that margc_, (b; (1)) € P
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Now let k > 1 and consider #; € T; that expresses up to k-fold belief in A-utility-
proportional beliefs. Then,

Aij

1 tlU(?r(l e
bi (1)) (cj, t)) =(|C | + _— (uj(cj,tj) — & (lj)))(bi(ti))(tj)

=Jj

forall ¢c; € C; and for all ¢; € T;. Therefore,

)\’ averdg(’
. (” (C]!l])_ (t]))

=J

1
(bi(zi))(c’j)=Etjer,-(mng-‘l(bi(ti))(tj)(lC |+

forall ¢; € C;, where B! denotes the set of J’s types that express up to k — 1-fold
belief in A-utility-proportional-beliefs. Written as a vector,

margc; (bi(t;)) = Etjeri(t[)gg.’lffl (bi (#:))(1)

1 A’ average
—(,...,1 = , i) — ti))c.eC;
X(|Cj|( )+I/l'— (wjlej 1)) Uj (1))‘/€C/

Y

obtains. Since every t; € T;(t;) is in Bf_l and hence by the induction hypothesis
margc_;(bj(tj)) € Pj]-‘_l, it follows that

1 Aij
—q, D+ = (MJ (Cja t]) _ average
uj

ti))c.eC;
|C | I/t] ( ]))c‘,eC,

= pj(margc_;bj (1)) € pj; (P11,

Thus, mar gc; (b; (t;)) is a convex combination of elements in the set pl*/ (Pkil) Since,
by Lemma 2 Pk !is convex and p is a linear function, it follows that the image set
pu (Pk 1) is convex too. Therefore margc; (bi(t;)) € ptj(Pk 1) As this holds for

all opponents j € I\{i}, margc_,(b;(t;)) € Plk results. By induction on k it follows
that for every type #; that expresses common belief in A-utility proportional beliefs,
margc_; (bi(t;)) € P, and consequently the only if direction of the theorem obtains.

For the if direction of the theorem, we construct for every player i € I and for
every belief p; € P> some type tip " as follows. Let p; € P be some belief that
survives the recursive procedure, which exists by Corollary 1. By Lemma 3 it then
holds for every opponent j € I\{i} that margc; pi = pj;(p;) for some p; € P?.
We define tl.p " to be the type that (i) for every opponent j € I'\{i} only deems possible
the type tjl.’ 7 where p j 1s the belief just fixed above, and (ii) that entertains belief p;
about his opponents’ choice combinations.
We now show that every such type tip " expresses A;-utility-proportional-beliefs.
Observe that for every opponent j € I\{i} type tip " only considers possible a unique

type, namely tf 7 which holds belief p ; about his opponents’ choice combinations. As
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the belief of tl.p " about j’s choice equals margc; pi = p;"j (p}), it follows by definition
of the function p;"j that tip " entertains A;-utility-proportional-beliefs.

Consider the epistemic model consisting of all such types tip " for every player
i € I. Since this epistemic model only contains types tl.p " that express A;-utility-
proportional-beliefs for every player i € I, any type also expresses common belief in
A-utility-proportional-beliefs. Therefore, for every player i € I and for every belief
pi € P there exists a type tip " such that tip " holds belief p; about his opponents’
choice combinations and expresses common belief in A-utility-proportional-beliefs,
which concludes the proof. O

According to the preceding theorem the recursive procedure thus provides a convenient
way to compute the beliefs a player can hold when reasoning in line with common
belief in utility proportional beliefs.

Farther, note that the proof of the if direction of Theorem 1 establishes that common
belief in utility proportional beliefs is always possible in every game.

Corollary 2 Let A = (Aj)jer € Xl-e[RlI\{iH. There exists an epistemic model Mr
of I', and a type t; € T; for every every player i € I such that t; expresses common
belief in A-utility-proportional-beliefs.

It is thus guaranteed that common belief in utility proportional beliefs is a logically
sound concept, which can be adopted to describe players’ reasoning in any game.

5 Uniqueness of beliefs

We first show that in the case of two players, our concept of common belief in A-
utility-proportional-beliefs yields unique beliefs for both players. However, by means
of a counterexample it is then established that uniqueness of beliefs does no longer
hold with more than two players.

5.1 Games with two players

Itis now shown that the recursive procedure returns unique beliefs in two player games,
whenever 1;; < A?}”x for both players i and j. Recall that )LZ’.‘“‘ is the largest possible
proportionality factor such that p;‘j (p;) is a probability distribution for all p; € P/Q,
and hence 1;; < Af’;“x does not constitute a strong assumption. Note that whenever
Aij < )\:.’]’.“x , the utility proportional beliefs always assign positive probability to every
opponent choice. By Theorem 1 it then follows that the concept of common belief in
A-utility-proportional-beliefs yields unique beliefs for both players, if A;; < A?}“x for
iand j.

In order to prove uniqueness of beliefs the following lemma is adduced. Recall
that Pik denotes the set of beliefs generated for player i in round k of the recursive
procedure. Moreover, for any two sets A, B C Pi0 and for all @ € [0, 1], we define
the set A + (1 —a)B := {ea+ (1 — )b : a € A and b € B}. Further, p;‘j(-, Aij)
denotes the function p;“j induced by the proportionality factor A;;.
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Lemma 4 Let I" be atwo player game with I = (1,2}, A2 < A5, and Ay < A5
Moreover, define a1 := )?7’#2* <1, ap) = )\2"% < 1, and a := max{oi, a21} < 1.

Then, for every player i € I and every round k > 0 there exists p; € Pl.0 such that
Pl C o PY + (1 —aM){pi).

Proof We prove the statement by induction on k. First of all, letk = O and i € I be
some player. Then, P? € a®P? + (1 — «®){p;} holds for all p; € P?,as a® = 1.

Now, suppose k > 0 and assume that for both players i € I there exists p; € Pl.0
such that Pl.k_1 C okl Pl.o + (1 —a*=1){p;}. Consider some playeri € I. Since there
are only two players, Pl.k = p;‘j(Pj’.‘_l, Aij) holds by construction of the recursive
procedure. As P]].‘_l - ak_lP](.) + (1 — ak_l){pj} by the inductive assumption, it
follows that

Pt c pr@ T PY + (1 — " {pj} aij)

— ok lpl*](p(.), Xij) 4+ (1 —ak~ 1){p,-j(pj,)»ij)},

where the latter equality holds by linearity of pl*j on P]Q. Therefore,

P pk(PY hij) + (1 = D (] (s 2ip)} ey

obtains. Observe that, by definition of a;;, it holds that ;; = oc,'j)\;’}‘”‘ + (1 — «;;)0.
As p;kj also is linear in 2;;, it follows that

Pfj(P,('), Aij) = aijl??}(PQ, A+ A= aij)P;kj(PQ, 0).
Note that, by definition of p;kj,

umform

plj(p/,O) forallpjeP0

untjorm
where p; 4

{ umform

is the uniform distribution on C;. Consequently, p;‘j(P]Q, 0) =
}. Since also plj (P0 A;’;“) C Pl.o, it holds that

umform}

pzj(POa l]) - Oll]PlO +A —Olu){P

As o = a,

a;j P! + (1 —aipp{™"™")  aP) + (1 = o) (p{™" ™),

1

and hence
P (P ij) S aP? + (1 —a){p/"' ™) @)
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obtains. Combining (1) and (2) yields

PEC "M @P! + (1= a)(p{™ ™) + (1 = & D{pf(pj. 1))
= PY + o (= a){(p!" "y + (1 — & ] (pj i)

Recall that « < 1. Then, by defining

o1 =) p™ "+ (1 = a* N pf(pj ki)

pi = T oF :

it follows that
Pl <P + (1 —aMipi),
which concludes the proof. O

The preceding lemma can be used to show that the beliefs surviving the recursive
procedure are unique in the case of two players.

Theorem 2 Let I" be a two player game with I = {1,2}, A2 < M5, and ka1 <
M. Then, | P° |= 1 and| P;° |= 1.

Proof It follows directly from Lemma 4 that the set Pl-k converges to a singleton as
k — oo for every playeri € I. O

Note that Lemma 4 shows that in the case of two players the recursive procedure
consists of recursively applying a kind of contraction mapping on the set of the players’
beliefs. Hence, uniqueness of beliefs obtains, which constitutes a highly convenient
property of our recursive procedure for two player games.

Moreover, Lemma 4 can be used to determine how many steps are needed to
approach the unique beliefs up to n decimal points, for any n > 1.

5.2 Games with more than two players

The following example establishes that uniqueness of beliefs does no longer neces-
sarily hold for games with more than two players.

Example 1 Consider the three player game I” depicted in Fig. 1.

Fig. 1 A 3-player game Bob Bob
c d c d
. 1,1,1 (0,0,0 . a0,0,0 1,1,1
Al a s s Y Al P PRt
“pl0,0,0[1,1,1 “b1,1,10,0,0
Claire: e Claire: f
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First of all, note that A?}”x = 1foralli, j € I suchthati # j.Fix some A < 1 and
let A;; = A foralli, j € I suchthati # j. Suppose the epistemic model MP of

given by the sets of types Tasice = {t1}, To» = {12, 13}, Tciaire = {13, 15, t3f }, and
the following induced belief functions

— batice(t1) = 1((c. 1), (e, 13)) + (e, ), (f. 13)) + §((d. 2), (e, 13)) + 3 ((d. 12),
(f, 13)),

— bpop() = T((a, 1), (e, 13)) + 1 ((a, 1), (f,13)) + $((b, 11), (e, 13)) + L((b, 11),
(f,13)),

— bpop(ty) = (3+ 10 ((a, 1), (e, )+ (5 — 1M ((a, 1), (f )+ G+ 10 (b, 1),
(e, 1) + (3 — $M((b. 1), (f. 1),

— belaire(t3) = ((a. ). (c, )+ 3 ((a, 1), (d, )+ 5 (b, 11). (c, )+ F (b, 11).
d, 1)),

— beraire(t§) = 3((a, 1), (c, ) + $((b, 1), (d. 1)),

— betaire]) = L@, 1), (d, 1)) + 1((b, 1), (c, 12)).

Observe that types t1, t2, and t3 are each indifferent between their respective two
choices. As type t; only deems possible opponents’ types 7, and #3, as well as assigns
equal probability to both choices for each opponent, it follows that #; entertains A-
utility-proportional beliefs. Similarly, it can be verified that types 12, t3, 5, and t3f
also hold A-utility-proportional-beliefs.

We now show that type 5 expresses A-utility-proportional beliefs, too. First of all,
note that ¢} only deems possible Alice’s type t; which is indifferent between choices a
and b, while assigning equal probability to her choices a and b. Secondly, 75 only deems
possible Claire’s type t5, for which the choices e and f generate expected utilities of
1 and 0, respectively. More precisely, ucaire(e, t5) = 1 and ucigire(f, t3") = 0. At
the same time, (bgop(t5))(e | 15) = 1 + $x as well as (bpop (1)) (f | 15) = § — 1a
hold, which imply that

(bob(12))(e | 15) — (bBob (1)) (f | 15) = A.
Since Uciaire — Ucigire = 1 a0d Agop, Claire = A, it follows that

(bpob(t3))(e | 15) — (bpop () (f | 15)
)\Bab,Claire

= ——————————(Uclaire(e, t;) — Uciaire(f, t’g))
UClaire — UCigire

Hence, 15 holds A-utility-proportional-beliefs by definition.
As every type in the epistemic model M entertains A-utility-proportional-beliefs,
every type also expresses common belief in A-utility-proportional-beliefs. However,

observe that Bob’s types t, and t} hold distinct beliefs about Claire’s choice, whenever
A>0. &

. . k+2 __ * * k
In fact, note that in the case of two players it holds that P, = ( P o pji)(Pi ),
where (pij o pj.l.) is a contraction mapping by Lemmg 4,.Wh1Ch 1mphes that P;
converges to a singleton set. However, such a construction is not possible for more
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than two players, as in that case Pik+2 does not only depend on one set P]].‘J“], but on
several such sets, one for every opponent j.

6 Illustration

The recursive procedure is easy and conveniently implementable. Indeed, without
any difficulties we wrote a small program for two player games, which computes the
unique belief vector there. We now illustrate in some well-known two player games
how well common belief in utility proportional beliefs fares with respect to intuition
as well as to experimental findings—in contrast to classical concepts which run into
problems when applied to these games. In each example we use A;; slightly smaller
than A;’}‘” such that the differences in utilities have the largest possible effect on the
players’ beliefs, while still guaranteeing these beliefs to be unique. In fact, from these
unique beliefs it is possible to directly read off the rational choices under common
belief in A-utility-proportional-beliefs, since these choices must receive the highest
probability under those beliefs.

Example 2 Consider again the traveler’s dilemma which has already been introduced
in Sect. 1. Consider three variants of the game, according to which the players can
choose between 10, 30, and 100 prices. Reasoning in line with common belief in
rationality requires the travelers to opt for the minimum price of 1 in each of the
three variations. However, it neither seems plausible to exclude any irrational choice
completely from consideration nor do experiments confirm such results. For instance,
in an experiment with members of the game theory society by Becker et al. (2005),
where prices between 2 and 100 could be chosen, most persons opted for a high price
of at least 90. In fact, contrary to common belief in rationality, our concept yields
the much more natural choices of 6, 26, and 96 for the games with 10, 30, and 100
prices, respectively. Besides, note that common belief in utility proportional beliefs is
actually sensitive to the cardinality of the choice sets. Indeed, it seems intuitive that
when there are few prices to choose from rather lower prices will be opted for, and
when there are many prices available then the ones picked will be higher. &

Example 3 Figure 2 depicts an asymmetric matching pennies game that is taken from

Goeree and Holt (2001).
In the unique Nash equilibrium of the game, Row Player chooses (% %) and Column

Playerchooses (4, 3

3 3 ) . Intuitively, it seems reasonable for Row Player to opt for top due
to the very high possible payoff of 320, while Column Player might tend to pick right
anticipating Row Player’s temptation for fop. Indeed, in experiments by Goeree and

Holt (2001) approximately 95 % of the row players choose fop, while approximately

Fig. 2 Asymmetric matching Column Player

pennies left right
top 320,40 | 40,80

bottom | 40,80 | 80,40

Row Player
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Fig. 3 A coordination game Column Player
with a secure outside option left middle  right
top | 90,90 0,0 0,40
R Pl bl bl b)
O pottom | 0,0 [180,180 | 0,40

Column Player
left middle non-Nash right
top | 20,5 0,4 1,3 2,—10%
bottom | 0,—10* [ 1,-10° | 3,3 5,10

Row Player

Fig. 4 Kreps game

85 % of the column players opt for right. Here, close to the experimental findings our
concept of common belief in utility proportional beliefs yields choices top and right
for Row Player and Column Player, respectively. &».

Example 4 Suppose the normal form in Fig. 3 which models a coordination game
with a secure outside option that is taken from Goeree and Holt (2001).

The game contains multiple Nash equilibria, among which there is the focal high-
payoff one (bottom,middle), while Column Player has access to a secure outside
option guaranteeing him a payoff of 40. In experiments by Goeree and Holt (2001),
approximately 95 % of the row players choose bottom, while approximately 95 % of
the column players pick middle. Close to the results from the laboratory, common
belief in utility proportional beliefs yields botfom and middle. &

Example 5 The Kreps (1995) is represented in Fig. 4.

The game exhibits three Nash equilibria, two pure and one mixed, and in none of them
Column Player chooses Non-Nash with positive proabability. However, Non-Nash
appears to be reasonable, as all other options only yield a slightly higher payoff, but
might lead to considerable losses. When anticipating this reasoning Row player would
optimally choose bottom. Indeed, in informal experiments by Kreps the row players
pick bottom, while the column players choose Non-Nash in the majority of cases.
Also in this game common belief in utility proportional beliefs performs intuitively by
generating fop for Row Player and non-Nash for Column Player, respectively. Indeed,
top seems reasonable for the Row Player as long as he assigns a substantial probability
to the Column Player choosing left, which is what our concept does. &

7 Discussion

Utility proportional beliefs The concept of utility proportional beliefs seems quite a
natural and basic way of reasoning in the context of games. Indeed, it does appear
plausible to assign non-zero probability to opponents’ irrational choices due to causes
such as the complexity of the interactive situation, uncertainty about the opponents’
utilities and choice rules, possibility of mistakes, caution etc. However, at the same time
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itis intuitive that the opponents’ relative utilities are reflected in a player’s beliefs about
their choice and to thus assign probabilities proportional to the respective utilities.

Moreover, utility proportional beliefs furnishes probabilities with intrinsic meaning
in the sense of measuring how good a player deems some choice for the respective
opponent, and thus also provides an account of how agents form their beliefs. In
contrast, basic classical concepts like common belief in rationality treat every choice
that receives positive probability as equally plausible.

Besides, utility proportional beliefs does not only appear reasonable from intuitive
as well as theoretical perspectives, but also fares well with regards to experimental
findings, as indicated in Sect. 6. In this context, also note that experimental findings
can often not be explained by the basic concept of common belief in rationality, which
implies that any irrational choice always receives zero probability.

Bounded reasoning Although the proposed notion of common belief in utility propor-
tional beliefs invokes an infinite number of reasoning steps on behalf of the players,
note that typically a few reasoning steps already suffice for the players to appproximate
the beliefs selected by our concept. In this sense, common belief in utility proportional
beliefs can actually be considered to be in line with the viewpoint that players only
reason a finite number of steps.

t-Solutions Rosenthal’s (1989) class of 7-solutions for two player games formalizes
the idea that players do not exclusively play best responses. Intuitively, given a fixed
parameter ¢ € R, a pair of randomized choices constitutes a 7-solution, if each of them
satisfies the property that if positive probability is assigned to some pure choice, then
the difference in probability with any other pure choice of the same player equals ¢
times the difference in the respective utilities given the opponent’s randomized choice.?
In other words, players assign probabilities to their choices such that the probability
differences are proportional to the utility difference multiplied by the proportionality
factor ¢.

In contrast to our concept of utility proportional beliefs, Rosenthal’s 7-solutions
employs a proportionality factor which is the same across all players. It seems more
desirable to permit different agents to entertain distinct proportionality factors, in
order to represent heterogenous states of mind, and to thus provide a more realistic
account of reasoning. Also, 7-solutions are not invariant to affine translations of the
utilities, which is a serious drawback not arising in our model. Moreover, the play-
ers’ probability distributions which are restricted by a utility proportionality condition
are distinct objects in Rosenthal’s and our models. While in the former randomized
choices, i.e. conscious randomizations of the players are considered, beliefs on the
opponents’ choices are used in the latter. Since assuming probabilities to be objects
of choice constitutes a problematic assumption for at least most game-theoretic con-
texts, probabilities interpreted as players’ beliefs seems more plausible and realistic.
Besides, by keeping the opponents’ choices fixed, an equilibrium condition is built
into Rosenthal’s ¢-solution concept. However, from an epistemic point of view fix-

2 Givena game [ and a player i € I, a randomized choice for i is a probability distribution o; € A(C;)
on i’s choice space.
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ing the opponents’ choices seems highly unreasonable, as it means that the reasoner
already knows what his opponents will do in the game. Note that in our model we
admit players to be erroneous about their opponents’ choices as well as beliefs, which
again is closer to real life, where people are frequently not correct about their fellow
men’s choices in interactive situations.

Quantal response equilibrium McKelvey and Palfrey (1995) introduce the concept of
quantal response equilibrium as a statistical version of equilibrium, where each player
chooses deterministically, however his utility for each of his choices is subject to
random error. Given a rational decision rule players are assumed to apply, the random
error induces a probability distribution over the players’ observed choices. In their
model these probabilities satisfy the intuitive property that better choices are more
likely to be chosen than worse choices.

In contrast to our concept of utility proportional beliefs, McKelvey and Palfrey
do not require the probability of a given choice to be proportional to the expected
utility it generates. Yet, in terms of reasoning it appears natural that a player assigns
utility proportional probabilities to his opponents’ choices—as in our model—when
deliberating about what his opponents might choose. Moreover, the probabilities in
quantal response equilibrium are not invariant to affine translations of the utilities. This
serious drawback is avoided in our model. Besides, from an epistemic point of view
McKelvey and Palfrey’s equilibrium condition implicitly assumes that players know
their opponents’ random error induced probabilities. This seems rather implausible,
as players can never have direct access to opponents’ minds. Farther, in McKelvey
and Palfrey’s model agents are assumed to always choose best responses with respect
to their beliefs but not with respect to their utilities , which are randomly perturbed.
However, in our model the utilities are kept fixed, but we allow players to assign
positive probability to opponents’ suboptimal choices.

Proper rationalizability The concept of proper rationalizability, introduced by Schu-
macher (1999) as well as Asheim (2001), and algorithmically characterized by Perea
(2011), formalizes cautious reasoning in games. Intuitively, a choice is properly ratio-
nalizable for a player, if he is cautious, i.e. does not exclude any opponent’s choice
from consideration; respects his opponents’ preferences, i.e. if he believes an oppo-
nent to prefer some choice ¢ to ¢/, then he deems c¢ infinitely more likely than ¢’;
as well as expresses common belief in the event that his opponents are cautious and
respect their opponents’ preferences. A standard tool to model infinitely-more-likely
relations are lexicographic beliefs.> Loosely speaking, a reasoner is then said to be
cautious, if for every opponent each of his choices occur in the support of the proba-
bility distribution of some lexicographic level of the reasoner’s lexicographic belief.
Hence, all opponents’ choices receive positive probability somewhere in a cautious
lexicographic belief.

In the sense of modeling cautious reasoning that considers all choices including
irrational ones, proper rationalizability and utility proportional beliefs are similar

3 Given some set W a lexicographic belief is a finite sequence p = (L, 0%, ..., pK) of probability
distributions such that ,o/< e A(W)forallk € {1,2,...,K}.
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concepts. However, on the one hand, utility proportional beliefs can be viewed as
a milder version than proper rationalizability, since the former assigns substantial,
non-infinitesimal positive probability to any choice including non-optimal ones, while
the latter assigns only infinitesimal probabilities to non-optimal choices. On the other
hand, the two concepts can be viewed as opposite ways of cautious reasoning, since
utility proportional beliefs reflects the utility differences of choices, while proper ratio-
nalizability treats all non-optimal choices as infinitely less likely than optimal choices.
Moreoever, on the purely formal level both ways of cautious reasoning are distinct, as
utility proportional beliefs employs standard beliefs, whereas proper rationalizability
models lexicographically minded agents.

8 Conclusion

Utility proportional beliefs provides a basic and natural way of reasoning in games. The
underlying intuitions that irrational choices should not be completely neglected, and
beliefs ought to reflect how good a player deems his opponents’ choices, seem plau-
sible. The surprising property that the iterated elimination of utility-disproportional-
beliefs procedure yields unique beliefs in two player games strengthens the suitability
of common belief in utility proportional beliefs to be used for descriptions there. More-
over, in various games of interest our concept matches well intuition and experimental
findings.

The idea of utility proportional beliefs opens up a new direction of research. Natu-
rally, the concept can be extended to dynamic games. Besides, the effects of allowing
uncertainty about the opponents’ A’s can be studied. Moreover, applications of our
epistemic concept to well-known games or economic problems such as auctions may
be highly interesting.
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