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1 Introduction

In non-cooperative game theory, a player is cautious if he takes into account all

opponents� strategies, also strategies that seem very unlikely to be chosen by the

opponent. Cautious reasoning of a player can be modeled by a lexicographic belief

(Blume et al. (1991a)), which allows this player to deem some opponent�s strategy

a in�nitely more likely than some other strategy b; while still taking b into account.

What outcomes of a strategic game are consistent with common belief of the event

that all players are rational and cautious?

Various concepts in the literature provide di¤erent answers to this question.

Still, there is a common idea underlying each of these concepts, namely that a

player should deem an opponent�s strategy a in�nitely more likely than b whenever

he considers a a �better choice�for his opponent than b: The question then remains

what we mean by a �better choice�.

As an illustration, consider the following economic example. An entrant (�rm 1)

and an incumbent (�rm 2) must decide which type of good to bring on the market:

x; y or z: The entrant expects a revenue of 3 as long as it produces a good di¤erent

from the incumbent, and a revenue of 2 if it produces the same good. Its production

costs for each of the goods is 2. The incumbent expects, for every production choice,

a revenue of 3. The only exception is when the goods x and z are both brought on

the market. Since these goods are complementary, the incumbent expects a revenue

of 6 in this case. The incumbent has produced good x in the past, which would

therefore have the lowest costs (normalized to 0). Producing goods y and z would

cost the incumbent 1 and 2, respectively, since good y is more similar to x than z

is. The pro�ts for both �rms can be found in Figure 1.

Incumbent

Entrant

x2 y2 z2

x1 0; 3 1; 2 1; 4

y1 1; 3 0; 2 1; 1

z1 1; 6 1; 2 0; 1

Figure 1

Here, we denote the choices for �rm i by xi; yi and zi: Note that for �rm 2,

production choice y2 can never be optimal, whereas x2 and z2 can be optimal for

some belief about �rm 1�s choice. One could therefore argue that x2 and z2 are better
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choices for �rm 2 than y2; and hence �rm 1 should deem x2 and z2 in�nitely more

likely than y2: But then, if �rm 1 takes all possible choices by �rm 2 into account,

its unique optimal choice would be to implement production plan y1: The line of

argument we have followed here is iterated admissibility (or, iterated elimination of

weakly dominated strategies), for which an epistemic foundation has been provided

in Brandenburger et al. (2008).

Iterated admissibility is not the only plausible concept for cautious reasoning,

however. Consider again the example above. If �rm 2 would indeed believe that

�rm 1 makes production choice y1; which is what iterated admissibility requires, then

choice y2 would actually be better for �rm 2 than choice z2: So, ex-post one could

argue that �rm 1 should deem y2 in�nitely more likely than z2; and not in�nitely

less likely, as iterated admissibility imposes. Hence, by applying the procedure

of iterated admissibility one may ex-ante impose some conditions on lexicographic

beliefs which ex-post need no longer be that convincing.

The concept of proper rationalizability (Schuhmacher (1999), Asheim (2001))

takes a di¤erent viewpoint. The key condition is that a player should deem an

opponent�s strategy a in�nitely more likely than b whenever he believes that the

opponent, after completing his reasoning process, prefers a to b: We say that the

player respects the opponent�s preferences. So, in a sense, the approach in proper

rationalizability is entirely ex-post, since an opponent�s strategy a is only deemed

better than b if it is believed to be better ex-post, after the opponent has formed his

�nal belief.

To see what di¤erence this approach makes, let us return to the example. It

is clear that for �rm 2, choice x2 is better than choice y2; whereas z2 need not be

better than y2: Proper rationalizability therefore only requires that �rm 1 deems x2
in�nitely more likely than y2; but does not require that it deems z2 in�nitely more

likely than y2: If �rm 1 indeed holds such a belief, then it prefers y1 to x1; and hence

�rm 2 should deem y1 in�nitely more likely than x1: But then, �rm 2 will prefer x2
to y2; and y2 to z2: Hence, �rm 1 should deem x2 in�nitely more likely than y2; and

y2 in�nitely more likely than z2: As a consequence, �rm 1 should choose production

plan z1; and not y1; as iterated admissibility requires.

Both conceps, iterated admissibility and proper rationalizability, are reasonable

concepts with their own intuitive appeal, but may lead to completely di¤erent choices

as we have seen. It therefore seems worthwile to investigate their di¤erences and

similarities in some more detail, and this is exactly what this paper is trying to
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accomplish.

To make the picture complete, we will also investigate a third concept for cau-

tious reasoning, namely the Dekel-Fudenberg procedure (Dekel and Fudenberg, 1990),

where one round of elimination of weakly dominated strategies is followed by iter-

ated elimination of strictly dominated strategies. This procedure has been given an

epistemic foundation by Brandenburger (1992) and Börgers (1994), and it is weaker

than both iterated admissibility and proper rationalizability. One could view the

Dekel-Fudenberg procedure as a basic starting point for cautious reasoning, in the

sense that the eliminated strategies are de�nitely incompatible with common belief

of the event that all players are rational and cautious.

Both the Dekel-Fudenberg procedure and iterated admissibility are de�ned in

terms of algorithms. The case of proper rationalizability is di¤erent. This concept

was de�ned by Schuhmacher (1999) and Asheim (2001) by means of epistemic con-

ditions. Schuhmacher (1999) provides an algorithm, iteratively proper trembling,

which generates for a given " > 0 the set of mixed strategy pro�les that can be

chosen under common belief of the "-proper trembling condition. This procedure

does not yield the set of properly rationalizable strategies directly, as we must still

let " go to zero, and see which strategies survive in the limit. Recently, Perea (2009)

has provided an algorithm that directly computes the set of properly rationalizable

strategies in every game.

The purpose of this paper is to closely investigate the di¤erences and similari-

ties between the Dekel-Fudenberg procedure, iterated admissibility and proper ra-

tionalizability. As to achieve this, we present algorithms for the Dekel-Fudenberg

procedure and iterated admissibility that build on the key concepts introduced by

Perea (2009), thereby making such established procedures comparable to the new

algorithm for proper rationalizability. In Section 2, we introduce these key con-

cepts: preference restrictions and likelihood orderings. In Section 3, we construct

algorithms for the Dekel-Fudenberg procedure and iterated admissibility that are

comparable with the one for proper rationalizability. In Section 4, we then put

these algorithms to use. In particular, we o¤er examples illuminating the di¤erences

between iterated admissibility and proper rationalizability. Moreover, we provide

a su¢ cient condition under which iterated admissibility does not rule out properly

rationalizable strategies. Finally, we use the algorithms to examine an economically

relevant strategic situation, namely a bilateral commitment bargaining game which

has recently been analyzed by Ellingsen and Miettinen (2008). In Section 5 we o¤er
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concluding remarks, while an appendix contains all proofs.

2 Preference Restrictions and Likelihood Orderings

Consider a �nite strategic game G = (Si; ui)i2I with n players, where I = f1; 2; :::; ng
is the set of players, the �nite set Si denotes the set of strategies for player i and

ui : S1 � ::: � Sn ! R denotes player i�s utility function. As usual, we extend

ui to subjective probability distributions �i 2 �(S�i) over the opponents�strategy
combinations, writing ui(si; �i) for the resulting subjective expected utility. Here,

S�i := �j 6=iSj denotes the set of opponents�strategy combinations.
Each player i�s preferences over his own strategies are determined by ui and

a lexicographic probability system (LPS) (Blume et al., 1991a) with full support on

S�i. An LPS consists of a �nite sequence of subjective probability distributions, �i =

(�1i ; : : : ; �
K
i ), where for each k 2 f1; : : : ;Kg, �ki 2 �(S�i). Player i prefers ai 2 Si

to si 2 Si if there exists k 2 f1; : : : ;Kg such that (i) ui(ai; �ki ) > ui(si; �ki ) and (ii)
ui(ai; �

k0
i ) = ui(si; �

k0
i ) for all k

0 2 f1; : : : ; k � 1g. The LPS �i = (�1i ; : : : ; �
K
i ) has

full support on S�i if for every s�i 2 S�i, there exists some k 2 f1; : : : ;Kg such that
�ki (s�i) > 0. Player i deems s�i in�nitely more likely than s

0
�i (written s�i �i s

0
�i)

if there exists k 2 f1; : : : ;Kg such that (i) �ki (s�i) > 0 and (ii) �k
0
i (s

0
�i) = 0 for all

k0 2 f1; : : : ; kg. It follows that �i is an asymmetric and transitive binary relation.

For a given opponent j 6= i; we say that player i deems sj in�nitely more likely than
s0j (written sj �i s

0
j) if there is some s�ij 2 S�ij such that (sj ; sij)�i (s

0
j ; s

0
�ij) for

all s0�ij 2 S�ij : Here, S�ij := �` 6=i;jS` denotes the set of strategy combinations for
players in Infi; jg:

The following two de�nitions, which are taken from Perea (2009), provide the

key concepts for our algorithms.

De�nition 1 (Preference restriction) A preference restriction on Si is a pair

(si; Ai), where si 2 Si and Ai is a nonempty subset of Si.

The interpretation of a preference restriction (si; Ai) is that player i prefers some

strategy in Ai to si. Let R�i denote the collection of all sets of preference restrictions.
For any set Ri of preference restrictions, de�ne the choice set Ci(Ri) as follows:

Ci(Ri) := fsi 2 Si j @Ai � Si with (s;Ai) 2 Rig :

It follows that Ci(R0i) \Ci(R00i ) = Ci(R0i [R00i ) for every R0i, R00i 2 R�i . In particular,
Ci(R

0
i) � Ci(R00i ) whenever R0i � R00i .
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De�nition 2 (Likelihood ordering) A likelihood ordering on S�i is an ordered

partition Li = (L1i ; L
2
i ; : : : ; L

K
i ) of S�i.

A likelihood ordering Li = (L1i ; L
2
i ; : : : ; L

K
i ) on S�i determines the in�nitely-

more-likely relation on the set of opponents�strategy combinations: s�i �i s
0
�i if

and only if s�i 2 Lki and s0�i 2 Lk
0
i with k < k

0: Similarly, sj �i s
0
j if there is some

s�ij 2 S�ij such that (sj ; s�ij) �i (s
0
j ; s

0
�ij) for all s

0
�ij 2 S�ij : Let L�i denote the

set of all likelihood orderings on S�i.

For any subset Li of likelihood orderings on S�i, let Ri(Li) denote the set of
preference restrictions derived from Li in the following manner:

Ri(Li) := f(si; Ai) 2 Si � 2Si j 8Li = (L1i ; : : : LKi ) 2 Li;9k 2 f1; : : : ;Kg and

�i 2 �(Ai) such that si is weakly dominated by �i on L1i [ � � � [ Lki g :

Here, we say that si is weakly dominated by �i on some subset A�i � S�i if

ui(si; s�i) � ui(�i; s�i) for every s�i 2 A�i; with strict inequality for some s�i 2
A�i: It follows that Ri(L0i) \ Ri(L00i ) = Ri(L0i [ L00i ) for every L0i, L00i 2 L�i . In

particular, Ri(L0i) � Ri(L00i ) whenever L0i � L00i .
Likelihood-orderings can be related to the ordinary belief operator as well as the

assumption operator, as proposed by Brandenburger et al. (2008) (and discussed by

Asheim and Søvik, 2005, Section 6).

De�nition 3 (Believing an event) For a given subset A�i � S�i, we say that

the likelihood ordering Li believes A�i if, for every s�i 2 S�inA�i, a�i �i s�i for

some a�i 2 A�i.

De�nition 4 (Assuming an event) For a given subset A�i � S�i, we say that

the likelihood ordering Li assumes A�i if, for every s�i 2 S�inA�i, a�i �i s�i for

every a�i 2 A�i.

So, if Li assumes a non-empty event A�i it also believes the event A�i, but

not vice versa. Likelihood-orderings can also be related to respect of preferences

as introduced by Blume et al. (1991b). In the following de�nition, R��i := [j 6=iR�j
denotes the set of preference restrictions for i�s opponents.

De�nition 5 (Respecting preferences) For a given subset R�i � R��i of pref-
erence restrictions, we say that the likelihood ordering Li respects R�i if, for every

(sj ; Aj) 2 R�i, aj �i sj for some aj 2 Aj .
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For a given set R�i � R��i of preference restrictions, we de�ne C�i(R�i) :=
�j 6=iCj(Rj); where Rj = R�i \R�j for every j 6= i: Hence, if Li respects the set R�i
of preference restrictions, it also believes the event C�i(R�i), but not vice versa.

Let Lbi(R�i) denote the set of likelihood orderings that believe the opponents�
rationality when their preferences satisfy the set R�i of preference restrictions:

Lbi(R�i) := fLi 2 L�i j Li believes C�i(R�i)g :

Let Lai (R�i) denote the set of likelihood orderings that assume the opponents�ra-
tionality when their preferences satisfy the set R�i of preference restrictions:

Lai (R�i) := fLi 2 L�i j Li assumes C�i(R�i)g :

Finally, let Lri (R�i) denote the set of likelihood orderings that respect the opponents�
preferences when their preferences satisfy the set R�i of preference restrictions:

Lri (R�i) := fLi 2 L�i j Li respects R�ig :

It follows from the observations that assumption implies belief, but not vice

versa, and respect of preferences implies belief of rationality, but not vice versa.

That is,

Lbi(R�i) � Lai (R�i) [ Lri (R�i)

for every R�i 2 R��i with C�i(R�i) 6= ;. Since the belief operator satis�es con-
junction and monotonicity, the properties of the choice correspondence Ci(�) imply
that

Lbi(R0�i) \ Lbi(R00�i) = Lbi(R0�i [R00�i) :

for every R0�i, R
00
�i 2 R��i. However, since the assumption operator satis�es con-

junction but not monotonicity, it holds for every R0�i, R
00
�i 2 R��i that

Lai (R0�i) \ Lai (R00�i) � Lai (R0j [R00j ) ;

while the inverse inclusion need not hold. Finally, De�nition 5 implies that

Lri (R0�i) \ Lri (R00�i) = Lri (R0�i [R00�i) :

In particular, Lbi(R0�i) � Lbi(R00�i) and Lri (R0�i) � Lri (R00�i) whenever R0�i � R00�i.

This conclusion need not hold for Lai (�) since a likelihood ordering Li may assume
A0�i but not A

00
�i even though A

0
�i � A00�i. Hence, we may have Lai (R0�i) * Lai (R00�i)

and Lai (R0�i) + Lai (R00�i) even though R0�i � R00�i.
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3 Algorithms

In this section we provide comparable algorithms for the Dekel-Fudenberg procedure,

iterated admissibility and proper rationalizability.

3.1 An algorithm for the Dekel-Fudenberg procedure

We �rst consider the Dekel-Fudenberg procedure (Dekel and Fudenberg, 1990), which

is the procedure where one round of maximal elimination of weakly dominated strate-

gies is followed by iterated maximal elimination of strictly dominated strategies. Fol-

lowing Brandenburger (1992), strategies surviving the Dekel-Fudenberg procedure

are referred to as permissible.

Consider the following algorithm, which iteratedly increases the set of preference

restrictions for both players:

Ini For all players i, let R0i = ;.

DF For every n � 1, and all players i, let Rni = Ri(Lbi(Rn�1�i )).

Here, Rn�1�i := [j 6=iRn�1j : From the properties of Lbi(�) and Ri(�), it follows
that Ini and DF determines, for each player, a non-decreasing sequence of sets of

preference restrictions and a non-increasing sequence of sets of likelihood orderings

(where non-decreasing and non-increasing are de�ned w.r.t. set inclusion). As a

consequence, the sequence Ci(Rni ) of choice sets is non-increasing. Since the set

of preference restrictions is �nite, the algorithm converges after a �nite number of

rounds.

For both players i, let R1i :=
S1
n=1R

n
i be the limiting set of preference restric-

tions produced by the algorithm de�ned by Ini and DF.

Proposition 1 Let G be a �nite strategic game. Then, for all players i, a strategy

si is permissible if and only if si 2 Ci(R1i ).

Proof. See the appendix.

3.2 An algorithm for iterated admissibility

Iterated admissibility is the procedure of iterated maximal elimination of weakly

dominated strategies.

Consider the following algorithm:
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Ini For all players i, let R0i = ;.

IA For every n � 1, and all players i, let

Rni = Ri
�
Lai (R0�i) \ Lai (R1�i) \ � � � \ Lai (Rn�1�i )

�
:

From the properties of Ri(�), it follows that Ini and IA determines, for each

player, a non-decreasing sequence of sets of preference restrictions and a non-increasing

sequence Lai (R0�i) \ Lai (R1�i) \ � � � \ Lai (Rn�i) of sets of likelihood orderings. As a
consequence, the sequence Ci(Rni ) of choice sets is non-increasing. Since the set

of preference restrictions is �nite, the algorithm converges after a �nite number of

rounds.

For both players i, let R1i :=
S1
n=1R

n
i be the limiting set of preference restric-

tions produced by the algorithm de�ned by Ini and IA.

Proposition 2 Let G be a �nite strategic game. Then, for all players i, a strategy

si survives iterated admissibility if and only if si 2 Ci(R1i ).

Proof. See the appendix.

Proposition 2 echoes Brandenburger et al.�s (2008, Theorem 9.1) epistemic char-

acterization of iterated admissibility (see also the observation that Stahl, 1995, makes

in his theorem), by pointing out that iterated admissibility corresponds to likelihood

orderings where strategies eliminated in a later round are deemed in�nitely more

likely than strategies eliminated in an earlier round, and surviving strategies are

deemed in�nitely more likely than strategies eliminated in some round. Here we

let these likelihood orderings interplay with sets of preference restrictions, thereby

allowing comparison with the algorithm for proper rationalizability, presented next.

3.3 An algorithm for proper rationalizability

We �nally consider proper rationalizability, a concept de�ned by Schuhmacher (1999)

and characterized by Asheim (2001). We refer to these references for details.

Consider the following algorithm:

Ini For all players i, let R0i = ;.

PR For every n � 1, and all players i, let Rni = Ri(Lri (Rn�1�i )).
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From the properties of Lri (�) and Ri(�), it follows that Ini and PR determines,

for each player, a non-decreasing sequence of sets of preference restrictions and a

non-increasing sequence of sets of likelihood orderings. Since the set of preference

restrictions is �nite, the algorithm converges after a �nite number of rounds.

For both players i, let R1i :=
S1
n=1R

n
i be the limiting set of preference restric-

tions produced by the algorithm de�ned by Ini and PR.

Proposition 3 Let G be a �nite strategic game. Then, for all players i, a strategy

si is properly rationalizable if and only if si 2 Ci(R1i ).

Proof. Perea (2009).

4 Applying the algorithms

In this section we put the algorithms to work. In the �rst subsection we present

three examples illustrating how the sequences of preference restrictions that the

algorithms give rise to shed light on di¤erences between iterated admissibility and

proper rationalizability. In particular, in the �rst example, the set of strategies

surviving iterated admissibility is a strict subset of the set of properly rationalizable

strategies, while the sequences of preference restrictions for iterated admissibility

and proper rationalizability coincide in the latter two examples.

In the second subsection we build on insights conveyed by the examples and

provide through Proposition 4 a su¢ cient condition ensuring that any properly

rationalizable strategy survives iterated admissibility. In particular, since proper

equilibrium always exists and any strategy being used with positive probability in a

proper equilibrium is properly rationalizable, we reach the following conclusion: If a

game� for which iterated admissibility leads to a unique strategy for each player�

satis�es the su¢ cient condition of Proposition 4, then the surviving strategies are

the unique properly rationalizable strategies and the corresponding strategy pro�le

is the unique proper equilibrium.

In the third subsection we consider a recent contribution on commitment bar-

gaining (Ellingsen and Miettinen, 2008) and use the algorithm of Section 3.3 to show

how proper rationalizability yields the results they seek, while other procedures do

not.
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4.1 Examples

We now illustrate our algorithms by means of three examples. Before doing so, we

introduce the following piece of notation: For a given set Ri of preference restrictions

on Si, de�ne the monotonic cover of Ri by

mcRi := f(si; Ai) j 9Âi � Ai with (si; Âi) 2 Rig :

Every set Rni of preference restrictions produced by each algorithm on the way to

R1i can clearly be written as the monotonic cover of some smaller set.

[Figure 1 about here.]

In G1, illustrated in Figure 1 (and discussed by Asheim and Dufwenberg, 2003),

iterated admissibility works by eliminating D, R, and M , leading to (U;L), while

the concept of proper rationalizability rules out just D. In the �rst round, the

only restriction imposed by both iterated admissibility and proper rationalizability

is that U is preferred to D and thus, (s1; A1) is a preference restriction for 1 if

and only if s1 = D and A1 3 U (which in the notation just introduced is written

R11 = mcf(D; fUg)g). In the algorithm of proper rationalizability, this means that

the likelihood ordering over player 1�s strategies must satisfy that U is in�nitely

more likely than D. Since this does not imply anything about the relative likelihood

of M and D, which is what the preferences of player 2 depend on, no preference

restriction is imposed on 2. Thus the algorithm converges after one round.

In contrast, since C1(mcf(D; fUg)g) = fU;Mg, a likelihood ordering assumes
C1(mcf(D; fUg)g) if each of U and M is in�nitely more likely than D. This in

turn means that L is preferred to R and U is preferred to M in the algorithm of

preference restrictions that characterizes iterated admissibility (cf. Section 3.2), with

(fUg; fMg; fDg) and (fLg; fRg) as the corresponding likelihood orderings. The
likelihood ordering, (fLg; fRg), for player 2 entails that player 1 deems L in�nitely
more likely than R and therefore prefers D to M (and, of course, U to D since

the former weakly dominates the latter). However, this means that the likelihood

ordering (fUg; fMg; fDg) for player 1 determined by the algorithm characterizing

iterated admissibility does not respect the preferences of player 1 that the same

algorithm gives rise to.

[Figure 2 about here.]

Compare G1 to G2, which is the game illustrated in Figure 2. In G2, the algo-

rithms of iterated admissibility and proper rationalizability coincide in terms of the
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sets of preference restrictions. In the �rst round, the only restriction imposed by

both iterated admissibility and proper rationalizability is that U is preferred to D;

i.e., R11 = mcf(D; fUg)g. Even though the set of likelihood orderings that assumes
C1(mcf(D; fUg)g) is a strict subset of the set of likelihood orderings that respects
mcf(D; fUg)g (since only the former requires that M must be deemed in�nitely

more likely than D), every member of each set deems U in�nitely more likely than

D. This is su¢ cient to conclude L is preferred to R and U is preferred to M in the

algorithms of iterated admissibility and proper rationalizability.

A key observation for game G2 is that U weakly dominates D, and that L weakly

dominates R on both fUg (which is the strategy used to eliminate D in the �rst

round of iterated admissibility) and fU;Mg (which is the set of strategies for player
1 surviving the �rst round of iterated admissibility). The same kind of observation

can be made for the centipede game, which we turn to next.

[Figure 3 about here.]

In the four-legged centipede game illustrated in Figure 3 it is also the case that

the algorithms of iterated admissibility and proper rationalizability coincide in terms

of the sets of preference restrictions. In the �rst round, the only restriction imposed

by both iterated admissibility and proper rationalizability is that fd is preferred to ¤ ;

i.e., R12 = mcf(� ; ffdg)g. Even though the set of likelihood orderings that assumes
C2(mcf(� ; ffdg)g) is a strict subset of the set of likelihood orderings that respects
mcf(� ; ffdg)g (since only the former requires that d must be deemed in�nitely
more likely than ¤ ), every member of each set deems fd in�nitely more likely than

¤ . This is su¢ cient to conclude FD is preferred to FF. Even though the set of

likelihood orderings that assumes C1(mcf(FF ; fFDg)g) is a strict subset of the set
of likelihood orderings that respectsmcf(FF ; fFDg)g (since only the former requires
that D must be deemed in�nitely more likely than FF ), every member of each set

deems FD in�nitely more likely than FF. This is su¢ cient to conclude d is preferred

to fd and D is preferred to FD.

Note that in the second round, FD weakly dominates FF on both ffdg (which
is the strategy used to eliminate ¤ in the �rst round of iterated admissibility) and

fd; fdg (which is the set of strategies for player 2 surviving the �rst round of iterated
admissibility). Likewise, in the third round, d weakly dominates fd and ¤ on both

fFDg (which is the strategy used to eliminate FF in the second round of iterated

admissibility) and fD;FDg (which is the set of strategies for player 1 surviving the
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second round of iterated admissibility). Similar conclusions hold for any centipede

game independent of size and illustrates how both iterated admissibility and proper

rationalizability correspond to the procedure of backward induction in such games.1

4.2 A su¢ cient condition

The following proposition presents a su¢ cient condition under which iterated ad-

missibilty does not rule out properly rationalizable strategies.

Proposition 4 Consider a �nite strategic game G where the procedure of iterated

admissibility leads to the sequence (Sni )i2I;n2N of surviving strategy sets. Suppose

that there exists a sequence (Ani )i2I;n2N of strategy sets satisfying, for all players i,

A0i = Si and for each n 2 N,

� Ani � Sni ,

� if Sni 6= Sn�1i , then, for every si 2 SinSni , si is weakly dominated by every
ai 2 Ani on either (An�1�i and Sn�1�i ) or S�i,

� if Sni = Sn�1i , then Ani = A
n�1
i .

Then, for both players i, if si is properly rationalizable, then si 2
T1
n=1 S

n
i .

Proof. See the appendix.

Both G2 of Figure 2 and G3 of Figure 3 can be used to illustrate Proposition

4. In G2, the procedure of iterated admissibility yields the following sequence of

strategy sets: S11 = S21 = fU;Mg and Sn1 = fUg for n � 3, and S12 = fL;Rg and
Sn2 = fLg for n � 2. Choose An1 = fUg for n � 1, and A12 = fL;Rg and An2 = fLg
for n � 2. It is straightforward to check that the conditions of Proposition 4 are

satis�ed; in particular, L weakly dominates R on both A11 = fUg and S11 = fU;Mg,
and U weakly dominates M on A22 = S

2
2 = fLg; and weakly dominates D on S2.

In G3, the procedure of iterated admissibility yields the following sequence of

strategy sets: S11 = fD;FD ;FFg, S21 = S31 = fD;FDg and Sn1 = fDg for n � 4,

1For �nite perfect information games without relevant payo¤ ties, proper rationalizability leads

to the unique pro�le of backward induction strategies (Schuhmacher, 1999; Asheim, 2001), and

iterated admissibility leads to the backward induction outcome (see Battigalli, 1997, pp. 52�53,

for relevant references). While the algorithms of Sections 3.2 and 3.3 correspond to the backward

induction procedure in the subclass of centipede games, this does not hold for the whole class of

�nite perfect information games without relevant payo¤ ties.
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and S12 = S22 = fd; fdg and Sn1 = fdg for n � 3. Choose A11 = fD;FD ;FFg,
A21 = A31 = fFDg and An1 = fDg for n � 4, and A12 = A22 = ffdg and An2 = fdg
for n � 3. Again, it is straightforward to check that the conditions of Proposition 4
are satis�ed; in particular, FD weakly dominates FF on both A12 = ffdg and S12 =
fd; fdg, d weakly dominates both fd and � on both A21 = fFDg and S21 = fD;FDg,
and D weakly dominates both FD and FF on A32 = S

3
2 = fdg.

4.3 Commitment bargaining

The algorithms of Section 3 can be applied for the purpose of analyzing economically

signi�cant models, independently of whether the su¢ cient condition of Proposition

4 is satis�ed. In particular, they can be used for comparing iterated admissibility to

proper rationalizability in speci�c strategic situations. In this subsection we consider

a model of bilateral commitment bargaining due to Ellingsen and Miettinen (2008,

Section I).

Ellingsen and Miettinen (2008) reexamine the problem of observable commit-

ments in bargaining, �rst studied by Schelling (1956) and later formalized by Craw-

ford (1982). Ellingsen and Miettinen (2008) extends Crawford�s (1982) analysis

by considering iterated admissibility and re�nements of Nash equilibrium. Here we

show how some of the results of Ellingsen and Miettinen (2008), in particular Lemma

2 and Proposition 2, can be obtained by using proper rationalizability instead of it-

erated admissibility. We also believe there is a mistake in their Lemma 2, but we

will come back to this later.

In order to turn their strategic situation where two players bargain over real

numbered fractions of a surplus of size 1 into a �nite one-stage game with simul-

taneous moves, we introduce a smallest money unit g. We measure all variables

in terms of numbers of the smallest money unit, and assume that k units of the

smallest money unit equals the total surplus (i.e., k � g = 1). Hence, players 1 and 2
bargain over a surplus of size k.

Each player i chooses, simultaneously with the other, either to commit to some

demand si 2 f0; 1; : : : ; kg or to wait and remain uncommitted. Let w denote the

waiting strategy. Hence the strategy set of each player i is Si = f0; 1; : : : ; kg [ fwg.
If both players choose w, then each player i receives �i > 0, where �1 + �2 = k.

In the case with certain commitments and no commitment costs (Ellingsen and

Miettinen, 2008, Section I) the payo¤s are as follows: If only one player i makes a

commitment si, then i receives si and the other player receives k�si. If both players
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make commitments, then each player i receives xi(si; sj) 2 fsi; si + 1; : : : ; k � sjg,
with x1(s1; s2) + x2(s1; s2) � k, if s1 + s2 � k and nothing otherwise.

The payo¤ function ui(si; sj) of each player i can be summarized as follows:

ui(si; sj) =

8>>>>>>>>><>>>>>>>>>:

xi(si; sj) if si + sj � k ;

0 if si + sj > k ;

si if si 6= w and sj = w ;

k � sj if si = w and sj 6= w ;

�i if si = w = sj :

Ellingsen and Miettinen (2008) claim through their Lemma 2 that, for each

player i, iterated admissibility leads to the elimination of 0; 1; : : : ; �i in the �rst

round, and �i + 1; �i + 2; : : : ; k � 1 in the second round, leaving k and w as the

surviving strategies. Actually, with only k and w as the surviving strategies, w is

eliminated in the third round, since choosing k yields player i a payo¤ of 0 if the

opponent also chooses k and k if the opponent chooses w, while choosing w yields

player i a payo¤ of 0 if the opponent chooses k and �i (< k) if the opponent also

chooses w. Hence, the correct statement of Ellingsen and Miettinen�s (2008) Lemma

2 is that only k is iteratively weakly undominated.

Ellingsen and Miettinen (2008) use Lemma 2 in their subsequent Proposition 2 to

focus on Nash equilibria involving only the strategies k and w (including asymmetric

equilibria where one commits to the entire surplus and the other waits), as opposed to

the plethora of unre�ned Nash equilibria that this game gives rise to (cf. Crawford,

1982). Their Proposition 2 states that only the two asymmetric equilibria along

with the symmetric equilibrium where both claim the entire surplus are consistent

with two rounds of elimination of weakly dominated strategies. This statement is

correct, but it begs the question: why stop with two rounds of weak elimination?

As the following proposition shows, proper rationalizability provides a reason for

considering only the strategies k and w.

Proposition 5 Consider the �nite version of Ellingsen and Miettinen�s (2008, Sec-

tion I) bilateral commitment bargaining game with zero commitment cost. The prop-

erly rationalizable strategies for each player is to commit to the whole surplus, i.e.,

to choose the strategy k, or to wait, i.e., to choose the strategy w.

Proof. See the appendix.
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The proof of Proposition 5 consists of two parts. The one part uses the algorithm

of Section 3.3 to show that no strategy but k and w can be properly rationalizable.

Since w weakly dominates 0; 1; : : : ; �j for player j, respect of j�s preferences forces

player i to deem w in�nitely more likely than each of 0; 1; : : : ; �j . This in turn

implies that k weakly dominates �i + 1; �i + 2; : : : ; k� 1 for player i. Hence, only k
and w can be best responses when players are cautious.

The other part uses the result of Asheim (2001, Proposition 2) � that any

strategy being used with positive probability in a proper equilibrium is properly

rationalizable � to show that k and w are properly rationalizable. In particular,

the asymmetric equilibria where one player commits to the entire surplus and the

other waits are proper. In addition, there is a proper equilibrium where both players

choose k with probability 1.2 It can be shown that in any proper equilibrium, at

least one player chooses k with probability 1, at most one player chooses w with

positive probability, and no other strategy is assigned positive probability. Thus,

the concept of proper equilibrium focuses precisely on the equilibria highlighted in

Ellingsen and Miettinen�s (2008) Proposition 2.3

Ellingsen and Miettinen (2008, Section II) also consider a variant of Crawford�s

(1982) bilateral commitment bargaining game where commitments are uncertain. In

their Proposition 4 they show that only k survives iterated admissibility if commit-

ments are uncertain. Actually, the iterations involve one round of weak elimination,

followed by two rounds of strict elimination. Hence, only k survives the Dekel-

Fudenberg procedure, and it follows from the algorithms of Sections 3.1 and 3.3

that only k is properly rationalizable (and thus, (k; k) is the only proper equilib-

rium). In their Propositions 1 and 3 they consider costly commitments. In this

case, it can be shown that every strategy surviving iterated elimination of strictly

dominated strategies is properly rationalizable. Hence in all variants considered by

Ellingsen and Miettinen (2008), proper rationalizability and proper equilibrium yield

the results they seek, while other concepts do not.

2This equilibrium involves likelihood orderings where k � 1 and w are at the second level. See

the Claim of the Appendix.
3For each player i and any strategy ` 2 f�i+1; �i+2; : : : ; k�1g, there exists a perfect equilibrium

in which player i assigns positive probability to `, provided that this player also assigns su¢ cient

positive probability to w, so that k is the unique best response for the other player. See the Claim

of the Appendix. Hence, the concept of perfect equilibrium can not be used to rule out all equilibria

but the ones highlighted in Ellingsen and Miettinen�s (2008) Proposition 2.
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5 Concluding remarks

In our opinion, proper rationalizability is an attractive concept which is based on

appealing epistemic conditions. However, up to now, its applicability has been

hampered by the lack of an algorithm leading directly to the properly rationalizable

strategies. With Perea�s (2009) algorithm, this roadblock has been removed.

In this paper we have compared proper rationalizability to the Dekel-Fudenberg

procedure and iterated admissibility by presenting comparable algorithms for the

two latter concepts. Through the example in the introduction, and the bilateral

commitment bargaining game due to Crawford (1982) and Ellingsen and Miettinen

(2008), we have illustrated the usefulness of proper rationalizability in economic

applications.

A Proofs

In order to prove Proposition 1, we need the following lemma.

Lemma 1 Let si 2 Si; Di � Si and D�i � S�i. Then, si is strictly dominated by
some �i 2 �(Di) on D�i if and only for every (; 6=) E�i � D�i strategy si is weakly
dominated by some ~�i 2 �(Di) on E�i:

Proof. Only if. If there exists �i 2 �(Di) such that �i strictly dominates si on
D�i, then, for every (; 6=) E�i � D�i, �i 2 �(Di) weakly dominates si on E�i.

If. Suppose there does not exist �i 2 �(Di) such that �i strictly dominates si
on D�i. Hence, by Pearce (1984, Lemma 3), there exists �i 2 �(D�i) such that
ui(si; �i) � ui(s0i; �i) for all s0i 2 Di. Then, by Pearce (1984, Lemma 4), there does
not exist ~�i 2 �(Di) such that ~�i weakly dominates si on E�i := supp�i � D�i.

Proof of Proposition 1. The Dekel-Fudenberg procedure is given by the

following sequence of strategy subsets:

(i) For each player i; let S0i = Si.

(ii) For each player i; let S1i = fsi 2 Si j si not weakly dominated on S�ig.

(iii) For every n � 2; and each player i; let

Sni = fsi 2 Sn�1i j si not strictly dominated on Sn�1�i g:
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Here, Sn�1�i := �j 6=iSn�1j : We show, by induction on n, that Ci(Rni ) = Sni for

each player i and all n.

Part (i). For n = 0, we have that

Ci(R
0
i ) = Ci(;) = Si = S0i

for each player i.

Part (ii). For n = 1; we have that R1i = Ri(Lbi(R0�i)) = Ri(Lbi(;)). By de�nition,

Lbi(;) = fLi 2 L�i j Li believes C�i(;)g

= fLi 2 L�i j Li believes S�ig = L�i :

Hence,
R1i = f(si; Ai) j 9�i 2 �(Ai) that weakly dominates si on S�ig:

Therefore,
Ci(R

1
i ) = fsi 2 Si j si not weakly dominated on S�ig = S1i :

Part (iii). Now, let n � 2; and assume that for each player i; Ci(Rn�1i ) = Sn�1i .

We show that, for each player i, Ci(Rni ) = S
n
i .

Fix a player i. By de�nition, Rni = Ri(Lbi(Rn�1�i )). We have that

Lbi(Rn�1�i ) = fLi 2 L�i j Li believes C�i(Rn�1�i )g

= fLi 2 L�i j Li believes Sn�1�i g

= fLi 2 L�i j L1i � Sn�1�i g;

by our induction assumption. But then,

Rni = f(si; Ai) j for every L1i � Sn�1�i there is �i 2 �(Ai) that

weakly dominates si on L1i or on S�ig:

Consider the strategies si where for every L1i � Sn�1�i there is �i 2 �(Ai) such
that �i weakly dominates si on L

1
i : By Lemma 1, we know that these are exactly

the strategies si that are strictly dominated by some �i 2 �(Ai) on Sn�1�i :

Hence, we may conclude that

Rni = f(si; Ai) j there is �i 2 �(Ai) that

strictly dominates si on Sn�1�i ; or weakly dominates si on S�ig :

Hence,
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Ci(R
n
i ) = fsi 2 Si j si not strictly dominated on Sn�1�i ;

nor weakly dominated on S�ig = Sni ;

which completes the proof.

Proof of Proposition 2. Iterated admissibility is given by the following

sequence of strategy subsets:

(i) For each player i, let S0i = Si.

(ii) For every n � 1, and each player i, let

Sni = fsi 2 Sn�1i j si not weakly dominated on Sn�1�i g:

We show, by induction on n, that Ci(Rni ) = S
n
i for each player i and all n.

Part (i). For n = 0, we have that

Ci(R
0
i ) = Ci(;) = Si = S0i

for each player i.

Part (ii). Let n � 1, and assume that, for each player i; Ci(Rki ) = Ski for all

k < n. We show that, for each player i, Ci(Rni ) = S
n
i .

Fix a player i. By de�nition, we have that

Rni = Ri
�
Lai (R0�i) \ Lai (R1�i) \ � � � \ Lai (Rn�1�i )

�
:

By the induction assumption, we know that C�i(Rk�i) = Sk�i for all k < n, and

hence

Lai (Rk�i) = fLi 2 L�i j Li assumes C�i(Rk�i)g

= fLi 2 L�i j Li assumes Sk�ig

for all k < n: This implies that Lai (R0�i) \ Lai (R1�i) \ � � � \ Lai (Rn�1�i ) is equal to

fLi 2 L�i j Li assumes Sk�i for all k < ng :

Since Rni = Ri
�
Lai (R0�i)\Lai (R1�i)\ � � � \Lai (Rn�1�i )

�
, it follows that Rni contains

exactly those preference restrictions (si; Ai) such that si is weakly dominated by

some �i 2 �(Ai) on some Sk�i with k < n: Hence,

Ci(R
n
i ) = fsi 2 Si j si not weakly dominated on any Sk�i with k < ng = Sni ;
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which completes the proof.

Proof of Proposition 4. Let (Rni )i2I;n2N be the sequence of preference

restrictions according to the algorithm of proper rationalizability (cf. Section 3.3).

It is su¢ cient to show, under the assumptions of the proposition, that for all player

i and each n, it holds that, for every si 2 SinSni , (si; faig) 2 Rni for every ai 2 Ani .
In this case, namely, every properly rationalizable strategy must be in

T1
n=1 S

n
i :We

show by induction that the statement above is true.

Part (i). For n = 0, we have that S0i = Si, so that there is no si 2 SinSni and
the statement is trivially true.

Part (ii). Let n � 1, and assume that, for each player i and each m 2
f1; : : : ; n� 1g, it holds that, for every si 2 SinSmi , (si; faig) 2 Rmi for every ai 2 Ami .

Fix a player i. We �rst make the observation that, for each m 2 f1; : : : ; n� 1g,
every Li = (L1i ; : : : ; L

K
i ) 2 Lri (Rm�i) satis�es that there exists k 2 f1; : : : ;Kg such

that Amj � L1j [ � � � [ Lkj � Smj . This is true by the full support assumption if

Smj = Sj (and thus A
m
j = Sj). Assume now that S

m
j 6= Sj . If Lj respects Rmj , then

for every sj 2 SjnSmj , aj �i sj for every aj 2 Amj , and the observation follows also
in this case.

If Sni = Si, then the statement is trivially true also for n.

If Sni 6= Si, let (1 �) n0 � n satisfy Sni = Sn
0
i 6= Sn

0�1
i . By a premise of the

proposition, for every si 2 SinSn
0
i , si is weakly dominated by every ai 2 An

0
i on either

(An
0�1
j and Sn

0�1
j ) or Sj . If si is weakly dominated by ai on An

0�1
j and Sn

0�1
j , then

si is weakly dominated by ai on each strategy set Dj satisfying An
0�1
j � Dj � Sn

0�1
j .

By the observation that every Lj = (L1j ; : : : ; L
K
j ) 2 Lrj(Rn

0�1
j ) satis�es that there

exists k 2 f1; : : : ;Kg such that An0�1j � L1j [ � � � [ Lkj � Sn
0�1
j it follows that

(si; faig) 2 Rn
0
i = Ri(Lrj(Rn

0�1
j )). If si is weakly dominated by ai on Sj , then by the

full support assumption, (si; faig) 2 R1i = Ri(L�j ). Hence, since the sequence of sets
of preference restrictions is non-decreasing, for every si 2 SinSni , (si; faig) 2 Rni for
every ai 2 Ani .

Proof of Proposition 5. The proof is divided into two parts. In part (i) we

show that the strategies in Sin (fkg [ fwg) are not properly rationalizable. In part
(ii) we show that k and w are properly rationalizable.

Part (i). Let hRn1 ; Rn2 i1n=1 be the sequence of preference restrictions for the �nite
version of Ellingsen and Miettinen�s (2008, Section I) bilateral commitment bargain-

ing game with zero commitment cost, according to the algorithm of proper rational-
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izability (cf. Section 3.3). In order to show that the strategies in Sin (fkg [ fwg) =
f0; 1; : : : ; k� 1g are not properly rationalizable, it is su¢ cient to show that for each
player i, it holds that (a) for every si 2 f0; 1; : : : ; �ig, (si; fwg) 2 R1i , and (b) for
every si 2 f�i+1; �i+2; : : : ; k�1g, (si; fkg) 2 R2i , keeping in mind that the sequence
of sets of preference restrictions is non-decreasing.

Result (a) follows from the fact that, for each player i and for every si 2
f0; 1; : : : ; �ig, w weakly dominates si on Sj . Hence, for each player i and for every
si 2 f0; 1; : : : ; �ig, (si; fwg) 2 R1i = Ri(L�i ). This result implies that, for each player
i, every Li = (L1i ; : : : ; L

K
i ) 2 Lri (R1j ) satis�es that there exists k 2 f1; : : : ;Kg such

that fwg � L1i [ � � �[Lki � f�j +1; �j +2; : : : ; kg[fwg. Result (b) follows from the

fact that, for each player i and for every si 2 f�i+1; �i+2; : : : ; k�1g, k weakly dom-
inates si on each strategy set Dj satisfying fwg � Dj � f�j+1; �j+2; : : : ; kg[fwg.
Hence, for each player i and for every si 2 f�i + 1; �i + 2; : : : ; k � 1g, (si; fkg) 2
R2i = Ri(Lri (R1j )).

Part (ii). We establish that k and w are properly rationalizable in the �nite

version of Ellingsen and Miettinen�s (2008, Section I) bilateral commitment bar-

gaining game with zero commitment cost, by showing that both k and w can be

used with positive probability in a proper equilibrium; thus, they are properly ratio-

nalizable (Asheim, 2001, Proposition 2). To prove this claim, consider the likelihood

orderings L1 = ffkg; fk � 1g; : : : ; f�1 + 1g; fwg; f�1g; f�1 � 1g; : : : ; f1g; f0gg and
L2 = ffwg; f1g; f2g; : : : ; f�2 � 1g; fkg; fk � 1g; : : : ; f�2 + 1g; f�2gg. Since each ele-
ment in either of these partitions contains only one strategy, they determine a pair

of LPSs. It is straightforward to check that this pair of LPSs is a proper equilibrium,

according to Blume et al.�s (1991b, Proposition 5) characterization, where player 1

chooses k with probability 1 and player 2 chooses w with probability 1.

Claim Consider the �nite version of Ellingsen and Miettinen�s (2008, Section I)

bilateral commitment bargaining game with zero commitment cost.

(i) There exists a proper equilibrium where both players assign probability 1 to k:

(ii) For both players i; there exists a perfect equilibrium where player i assigns

positive probability to �i+1; �i+2; :::; k� 1 and player j assigns probability 1 to k:
Proof. Part (i). Consider the LPSs

�1 = f�11; : : : ; �k+11 g

�2 = f�12; : : : ; �k+12 g ;
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where for both players i and each ` 2 f1; : : : ; k + 1g, the support of �`i is included
in fw; k + 1 � `g for ` 2 f1; : : : ; �i + 1g, fw; 1g for ` = �i + 2, fw; k + 2 � `g for
` 2 f�i + 3; : : : ; kg, and fw; 0g for ` = k + 1. Let, for each ` 2 f1; : : : ; k + 1g, �`i be
determined by ui(w; �`i) = ui(k � 1; �`i). This means that �1i (w) = 0, �

�i+2
i (w) = 0

and �k+1i (w) 2 [0; 1), and �`i(w) 2 (0; 1) otherwise with �2i (w) = 1=�j , �
3
i (w) =

2=(�j + 1), etc.

The LPSs �1 and �2 determine the following likelihood orderings:

L1 = ffkg; fw; k � 1g; fk � 2g; : : : ; f�1 + 1g; f�1g; f1g; f�1 � 1g; : : : ; f2g; f0gg

L2 = ffkg; fw; k � 1g; fk � 2g; : : : ; f�2 + 1g; f�2g; f1g; f�2 � 1g; : : : ; f2g; f0gg :

It can be checked that L1 respects the set of preference restrictions that u2 and �2
give rise to, and that L2 respects the set of preference restrictions that u1 and �1
give rise to. It follows from Blume et al. (1991b, Proposition 5) that (�11; �

1
2) is a

proper equilibrium. Note that, for both players i, �1i (k) = 1.

Part (ii). Let (�11; �
1
2) satisfy that (1) �

1
1(k) = 1, and (2) �12(w) = �1=k and

�12(`) = 1��1=k for some ` 2 �2+1; �2+2; : : : ; k�1 (so that �12(s2) = 0 otherwise).
Then �11 is not weakly dominated and the unique best response for 1 to �

1
2, and �

1
2

is not weakly dominated4 and a best response for 2 to �11. The result that (�
1
1; �

1
2)

is perfect follows from the fact that, in two player games, any Nash-equilibrium in

strategies that are not weakly dominated is perfect.

Likewise for (�11; �
1
2) with (1) �

1
1(w) = �2=k and �

1
1(`) = 1 � �2=k for some

` 2 �1 + 1; �1 + 2; : : : ; k � 1 (so that �11(s1) = 0 otherwise), and (2) �12(k) = 1.
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L R

U

M

D

1, 1 1, 1
0, 1 2, 0
1, 0 0, 1

Dekel � FudenbergandProperrationalizability

R01 = ; R02 = ;

R11 = mcf(D ; fU g)g R12 = ;

: : : : : :

R11 = mcf(D ; fU g)g R12 = ;

Iteratedadmissibility

R01 = ; R02 = ;

R11 = mcf(D ; fU g)g R12 = ;

R21 = mcf(D ; fU g)g R22 = mcf(R; fLg)g

R31 = mcf(M ; fU g); (M ; fDg); (D ; fU g)g R32 = mcf(R; fLg)g

: : : : : :

R11 = mcf(M ; fU g); (M ; fDg); (D ; fU g)g R12 = mcf(R; fLg)g

Figure 1: Iterated admissibility rules out properly rationalizable strategies (G1).
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L R

U

M

D

1, 1 1, 0
0, 1 2, 1
1, 0 0, 1

Dekel � Fudenberg

R01 = ; R02 = ;

R11 = mcf(D ; fU g)g R12 = ;

: : : : : :

R11 = mcf(D ; fU g)g R12 = ;

IteratedadmissibilityandProperrationalizability

R01 = ; R02 = ;

R11 = mcf(D ; fU g)g R12 = ;

R21 = mcf(D ; fU g)g R22 = mcf(R; fLg)g

R31 = mcf(M ; fU g); (M ; fDg); (D ; fU g)g R32 = mcf(R; fLg)g

: : : : : :

R11 = mcf(M ; fU g); (M ; fDg); (D ; fU g)g R12 = mcf(R; fLg)g

Figure 2: Iterated admissibility coincides with proper rationalizability (G2).
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1 2 1 2 6
F f F f 4

D d D d
2 1 4 3
0 3 2 5

d fd ¤
D

FD
FF

2, 0 2, 0 2, 0
1, 3 4, 2 4, 2
1, 3 3, 5 6, 4

Dekel � Fudenberg

R01 = ; R02 = ;

R11 = ; R12 = mcf(� ; ffdg)g

R21 = mcf(FF ; fD;FDg)g R22 = mcf(� ; ffdg)g

: : : : : :

R11 = mcf(FF ; fD;FDg)g R12 = mcf(� ; ffdg)g

IteratedadmissibilityandProperrationalizability

R01 = ; R02 = ;

R11 = ; R12 = mcf(� ; ffdg)g

R21 = mcf(FF ; fFDg)g R22 = mcf(� ; ffdg)g

R31 = mcf(FF ; fFDg)g R32 = mcf(fd ; fdg); (� ; fdg); (� ; ffdg)g

R41 = mcf(FD ;fDg);(FF ;fDg);(FF ;fFDg)g R42 = mcf(fd ; fdg); (� ; fdg); (� ; ffdg)g

: : : : : :

R11 = mcf(FD ;fDg);(FF ;fDg);(FF ;fFDg)g R12 = mcf(fd ; fdg); (� ; fdg); (� ; ffdg)g

Figure 3: A four-legged centipede game (G3).
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