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1 | INTRODUCTION

In game theory it is fundamental to model interactive beliefs to capture the players' reasoning about each other. It is
assumed that a player holds beliefs about his opponents’ choices, about his opponents’ beliefs about their opponents’
choices, about his opponents’ beliefs about their opponents’ beliefs about their opponents’ choices, etc. Such infinite
doxastic sequences can be formally expressed by the notion of a belief hierarchy.

Initially proposed in the context of incomplete information by Harsanyi (1967-68), a belief hierarchy of a player—in
the case of strategic uncertainty (e.g., Boge & Eisele, 1979; Brandenburger & Dekel, 1993; Mertens & Zamir, 1985)—
specifies a belief about the basic space of uncertainty that is, the opponents’ choice combinations (first-order belief), a
belief about the opponents’ choice combinations and the opponents’ first-order beliefs (second-order belief), a belief
about the opponents’ choice combinations, the opponents’ first-order beliefs, and the opponents’ second-order beliefs
(third-order belief), etc. Thus, a kth-order belief fixes a belief about the basic space of uncertainty and about each of the
lower-order beliefs of the opponents. A player's belief hierarchy can be seen as the formalization of his entire interactive
thinking about the game. Different patterns of reasoning (e.g., common belief in rationality) can then be modeled as
conditions imposed on a player's belief hierarchy.
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Unfortunately, belief hierarchies are cumbersome objects due to their infinite nature. However, there exist finite
encodings of belief hierarchies that render them more tractable. The standard way to represent belief hierarchies in a
compact and convenient way is due to Harsanyi's (1967-68) seminal idea of types. Accordingly, a type induces a belief
about the opponents’ combinations of choices and types. Any belief of higher order can then be derived. An alternative
implicit description of belief hierarchies is based on the idea of states or possible words due to Kripke (1963) and
Aumann (1974). Any belief of higher order is inferable from a player's belief at a given possible world about the worlds
in combination with the players' choices and beliefs at worlds. The relation between the so-called type-based and state-
based approaches to modeling belief hierarchies have been investigated by Tan and Werlang (1992) as well as by
Brandenburger and Dekel (1993). They essentially show that hypotheses involving common knowledge are preserved
across these two epistemic frameworks.

We compare the type-based and state-based approaches to formalizing interactive thinking from a broader
perspective and provide two general transformation procedures between type and state models. Belief hierarchies as
well as the common prior assumption are preserved by these procedures. In this sense the two different epistemic
approaches are equivalent. We then explore whether our procedures constitute operational inverses to each other by
means of an isomorphism. It turns out that they do not do so unless attention is restricted to maximally reduced models
which exclude the existence of “superfluous” worlds and types, respectively. This insight emphasizes that type and state
models actually exhibit some foundational differences despite their equivalence in terms of preserving belief hierarchies
and the common prior assumption. The underlying conceptual reason dwells in the distinct degrees of granularity:
while the type-based approach only represents the players' interactive thinking the state-based approach additionally
also fixes their choices.

We proceed as follows. Section 2 lays out the formal framework and notation. In particular, type-based and state-
based approaches to interactive epistemology are presented. In Section 3 we provide a transformation procedure
(Definition 5) to convert state models into type models. Belief hierarchies (Theorem 1) as well as the common prior
assumption (Theorem 2) are preserved. Then, in Section 4 our point of departure are type models and we propose a
second transformation procedure (Definition 6) to turn them into state models. Again, preservation holds with regard to
belief hierarchies (Theorem 3) as well as the common prior assumption (Theorem 4). While the general conclusions of
Theorems 1 and 3 about the structural conservation of belief hierarchies are likely to be implicitly known in the game
theory community, our purpose is, first, to render these foundational insights explicit in an accessible way, and second,
to provide concrete tools to switch back and forth between state and type models. Besides, in Section 5 an interplay of
our transformation procedures and Theorem 2 with Hellman and Samet's (2012) results on the restrictiveness of the
common prior assumption is explored. Section 6 then addresses structural identities within a given epistemic frame-
work. It turns out that our two transformation procedures are not inverse to each other (Examples 5 and 6). By
restricting to maximally reduced models inverse relationships between the two operations then ensue (Theorems 6
and 7). Finally, some conceptual matters are discussed and concluding remarks are offered in Section 7.

2 | PRELIMINARIES

A game is modeled as a tuple I = (I, (C;, Uj),;), Where I is a finite set of players, C; denotes player i's finite choice set,
and U; : XjeiCj — R constitutes player i's utility function, which assigns a real number U(c) € R to every choice
combination ¢ € x ;¢/C;. In terms of notation, given a collection {S,: n € N} of sets and probability distribution p, € A
(Sp) for all n € N, the set S_, refers to the product set X,,emimSm and the probability distribution p_,, refers to the
product distribution IT,,emnPm € A(S—,) on S_,,. Given a probability distribution p € A,ep(xS,) on a product set, for
the sake of simplicity any marginal is also denoted by p if the intended usage is clear from the context.

Belief hierarchies can be inductively formalized as sequences of probability distributions. In the context of games,
construct for every player i € I a sequence (X l.”)neN of spaces, where

Xll = C—i7

X?=X! x (Xjel\{i}A(X}))’
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X{ =X x (Xjez\{i}A(Xf _1))7

and a belief hierarchy of player i is then defined as a sequence 7, == (1}') .., € Xnen (A (X)) of probability distributions.
For every level k € N, the probability distribution 17{.‘ S A(Xi.‘) is called i's kth-order belief. Note that

Xt =Cox (gennd (X)) x (genia (%)) o x (ienina (x577))

holds for all k e N.
The standard implicit representation of belief hierarchies in terms of types is due to Harsanyi (1967-68). According
to this epistemic approach the game-theoretic framework—given by I'—is enriched by a type-based structure.

Definition 1. Let I' be a game. A type model of T is a tuple 7" = ((T;, bi),c;), where for every player i € I,

- T; is a finite set of types,
- b;: T; » A(C_; x T_;) is i’s belief function that assigns to every type t; € T; a probability distribution b;[t;] on the set of
opponents’ choice type combinations.

A type t; of some player i naturally induces a belief hierarchy:

niltl(cm) = > bilti](coi, t)

el

for all c_; € X}, as well as

775( [tl] (C—i7 nl_ia 77:7 ooy 77}171) = Z bi [tl] (c—i7 t—i)

€T’ [ti]=n", for all 1<I<k—-1

for all (c_;,n%;, %%, ... n"7") € X¥ and for all k > 2, where the sequence 7,[t;] == (n[t]])  _,, is called the t-induced belief
hierarchy of player i. The set H[T"] = {1, € xnen (A(X?)) : there exists f; € T; such that 7;[;] =7, } is called the 7"-
induced set of belief hierarchies of player i.

An alternative way to represent interactive thinking in games is based on the idea of possible worlds—sometimes
also called states—due to Kripke (1963) and Aumann (1974). This epistemic approach employs a state-based structure
as formal framework added to I.

Definition 2. Let T be a game. A state model of T is a tuple S" = (Q, (Z;,0;, 7:),,), Where

- Q is a finite set of all possible worlds,
and for every player i € I,

- Z; € 2% is a possibility partition of Q,

- 0;: Q — C; is a Z;-measurable choice function,

- 7; € A(Q) is a subjective prior on Q such that 7;(Z;(w)) > 0 for every world w € Q with Z;(w) denoting the cell of Z;
containing w.

The requirement on the prior that 7;(Z;(w)) > 0 for all w € Q and for all i € I is sometimes also called the non-null
information condition.

Belief hierarchies also naturally emerge in state models. Given some player i, a possible world w induces a belief
hierarchy as follows:

n; [] (i) = > (@' | Zi(w))

W' €Ti(w):o_i(w')=c_;
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for all c_; € X}, as well as
771([(0] (C_i, 771—1'7 772_1'7 ceey 77]171)

= > mi(w' | Zi(w))
W' €Ly(w):0i(w)=c_ ;' [w']=n", for all 1<I<k—1
for all (c_i, L, n2,;, ... n551) € X¥ and for all k > 2, where the sequence 7;[w] := (! [w])neN is called the w-induced belief
hierarchy of player i. The set H[S'] = {n; € Xen (A(X7T)) : there exists w € Q such that ,[w] =7,} is called the S'-
induced set of belief hierarchies of player i.

By the Z;-measurability of o; the same choice for player i is assigned throughout an information cell, that is,
o(w") = ow) for all o' € Z;(w). Every information cell P; € Z; thus induces a choice oy(P;) € C;, where o(P;) := g;(w) for
all w € P;. Moreover, since the belief hierarchies are constructed on the basis of posterior beliefs, it follows that i's belief
hierarchies are also constant throughout his information cells, that is, 7;[w’] = n[w] for all o’ € Z;(w).

The common prior assumption constitutes a frequently used premise in game theory. Accordingly, all beliefs are
derived from a single probability distribution. The common prior assumption formalizes the conceptual viewpoint that
differences in beliefs are only due to differences in information.

Within the framework of type models the common prior assumption requires the probability distribution of every
type induced by the belief function to be obtained via Bayesian conditionalization on some common probability dis-
tribution on all players’ choice type combinations.

Definition 3. Let I be a game and 7" a type model of I'. The type model 7" satisfies the common prior assumption, if
there exists a probability distribution p € A(xje;(Cj x Tj)) such that for every player i € I, and for every type t; € T; it is
the case that p(t;) > 0 and

P(Cia C_i, tiv t—i)
p(ci ti)

bi[ti|(c—i, 1) =

for all ¢; € C; with p(c;, t;) > 0, and for all (c_;, t_;) € C_; x T_;. The probability distribution p is called common prior.

The preceding formalization of the common prior assumption is equivalent to the conjunction of Dekel and Sin-
iscalchil’s (2015) Definition 12.13 with their Definition 12.15 as well as to Bach and Perea's (2020) Definition 4.

In state models the common prior assumption simply postulates all subjective priors to coincide.
Definition 4. Let T be a game and S" a state model of I'. The state model S" satisfies the common prior assumption, if
there exists a probability distribution m € A(Q) such that 7; = 7 for every player i € I. The probability distribution 7 is
called common prior.
3 | TRANSFORMATION OF STATE MODELS INTO TYPE MODELS

The following transformation procedure converts state models into type models.

Definition 5. Let I be a game, and S™ a state model of I. The tuple
<(T27 bi)iel>
forms the S'-generated type model of I', where for every player i € I,

- T:= {tf : Py €Z;} is i's set of types,
- b;: T; - A(C_; x T_)) is i's belief function with
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bi[t]'] (coi, 57) = Z mi(w | Py),

cueP,-:a,l-(w):c,hl,,-(w):P,,-
for all (c_;, ;') € C_; x T_; and for all ¢’ € T,.
In a nutshell, information cells are transformed into types and the types’ beliefs are then given by the subjective
priors conditionalized on the corresponding information cells. Note that the type model generated by a given state

model actually is unique.
The transformation procedure established by Definition 5 is now illustrated by means of an example.

Example 1. Let " be a game with I = {Alice, Bob}, Cjice = {a, b} as well as Cp,;, = {c, d}. Consider the state model S* of I
with

- Q= {w, wy, w3},

= T Atice = {{6017 602}, {CU3}},

- Tpop = {{CU1}, {502,603}},

= Oaticel@1) = Outic(w2) = a and cajic(ws) = b,

- O'Bob(wl) = c and GBob(wZ) = UBob(a’s) =d,

= Taticdw1) = 0.2, Taice(@2) = 0.5, and myjice(@3) = 0.3,
~ Tgop(w1) = 0.4, mpop(@2) = 0, and 7pp(@ws) = 0.6.

Applying the transformation procedure of Definition 5 yields the following objects

- Tuee = { i) il ],

- Toos = {dinh e},

= Daiice [tixﬁlcéwz}} 02505 (Cv t]{;;%}) + 52503 (dv ti?c(;)ll)@Z}) =2 (Ca tl{;;)g}) +2 (d, técgé,wz})’
- baee|thi | =83 (. this ) = (. efiz™),

- b 1) | =34 (e ) = (0.

= bao |t = 5 (@ i) + 5285 (b.tlid) = (b)),

The assemblage of these objects (T ajice; batices Tob Dpop) then constitutes the Sr-generated type model of I. &

It turns out that the transformation procedure laid out in Definition 5 preserves the induced belief hierarchies of
state models.

Theorem 1. Let I" be a game, S' a state model of I with S -generated type model {(T;, bi);c;) of I, i € I some player, and @
€ Q some world. Then,

nilw] =n; {tizi@)} .

Proof. 1t is shown inductively that 7¥[w] =7k {tili@)} holds for all k > 1. It then directly follows that

o] = (7)), = (1 [7]) =[]
First of all, observe that

n; [](c-)
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= > mi(w' | Zi(w))

W' €Zi(w):0_i(w')=c_;

=> > (' | Zi(w))

l’_’i—ieT_i w'€Zi(w):0_;i(w)=c_;,T_i(w')=P_;

-3 b [tiff(”)} (e, £751)

t:fieT_,-
= 771'1 [tizi(w)} (c)

forall c_; € C_;.
Now, suppose that 7¥[w] = ¥ [tizi(w)} holds up to some k > 1. It then follows that

7 ] etk o)

= > mi(@' | Zi(w))

W' €Ti(w):0i(w')=c_in' [&']=n", for all 1<I<k

= > > (@' | ()

ti;"ET_i:nl_i [Ii;"]:nl_i for all 1<i<k @'€Zi(w):oi(ew)=c_i,T_i(e')=P_;

- > b (1] (c-i,£77)

t}:lTiGT,i:n’_i[ti]:n’_i for all 1<i<k

I;
= 77;{“ |:ti <w>] (C—i7 7)1_1'7 ey Ulil)
for all (c_i, 7Y, ..., n%;) € XEHL [
Also, the common prior assumption is maintained from state to type models.

Theorem 2. Let I be a game, and S a state model of I' satisfying the common prior assumption. Then, the S"-generated
type model ((T;, b;),c;) of I satisfies the common prior assumption.

Proof. Define a probability distribution p € A(x;er(C; x T;)) in the S'-generated type model ((T;, b;),;) such that for all
(ci, )., € Xier(Ci x T;)

iel

p [ w(nierP;),  ifoi(P) =cforalliel,
p((cu flP )ieI) - { 0, otherwise.

First of all it is established that p(;') >0 holds for all £' € T; and for all i € I Let ;' € T; and observe that
X P; . .
p(t") = O eT,iz(cj)jelexngj p(<0j7tj’>jel) =Y p ez 7(NjerPj) =7(P;) and since 7(P;) > 0 it thus follows that

p(t") > 0 holds.
Next it is shown that for all i € I and for all /' € T;, the equation

85US017 SUOWWIOD A1) 8|qeo! dde au) Aq peusenob afe se[ole YO ‘88N JO S9INJ 10} Akeuq18Ul|UO A8|IA UO (SUONIPUOD-PUR-SLLIBY/WID"AB| 1M ARIq U1 |UO//SdNL) SUONIPUOD PUe SWie | 8U18eS *[£202/20/2T] Uo ARiqiauljuo A8 |IMm oLisee N JO AISIBAIUN A 9ETET US/TTTT OT/I0P/L00" A3 (1M AReq Ul Uo//Sdny Wouy papeojumod ‘0 ‘5622597 T



BACH and PEREA ECOHOmiC Inpuiry_|_7

plev et )

by [lf’] (e, l{?) o(c t_Pi7) -

holds for all ¢; € C; with p(c;, ;") >0, and for all (c_;, ;') € C_; x T_;. Note that p(c;,f;') =

Z P“ eT; ZC*IEC#O

<(Cj,tfj>jel> = Y weao(@)—ai@)-pT (NieZj(®)) = (P;) > 0 holds, if and only if, 0i(P) = c. Thus, the following

equation

P(O'i(Pi),C—i,fP" l‘}_)"i)

1

bi[ ] (i, %) = p(ai(P), 1)

has to be validated for all (c_;, ;') € C_; x T_; and for all ;' € T,.
Consider some P; € Z; and dlstlngulsh two cases (I) and (II).

Case (I). Suppose that P; N (NjengPj) # @ and ¢; = oi(Py) for all j € I \{i}. Then,

bi[6]"] (-, t27') = bu[ "] (0-i(P-), 57')
= Z (w | P;)

w€eP;:0_i(w)=0_;(P—;),Z—i(w)=P—;

= Z (@] P;)
weP;:weP; for all jeI\{i}

_T (NkerPr)
7(P;)

7t(NkerPx)
ZP]EIJ- for all jeI\{i}}ﬂ(Pi n (nJEI\{i}Pj))

_ p(oi(Py), £, o_i(P_), 17) A
S-er p(oiP) 0P, 1)

p(oi(Py), 1", o_i(P_y), t7)

L

Z<C—i‘fﬁ:i)ec_,-><T_[ P (Ui(Pi)’ e, té?)

p(oi(Pr), ", ei, £77)

for all (c_;, 7)) € Coy x Ty

Case (II). Suppose that P; N (NjengPj) = @ or ¢; # o(P;) for some j € I \{i}. Then, p(oi( )5 rP e tF “) =0 holds by

definition of p as well as b;[t;'] (c;, £77) = ZweP,-:ofi(w):cfi,lfi(w):Pfi%: D wePio (@)= s T ()P T(@ | Pi) =

directly follows that

0. It
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for all (c_, 7)€ C_; x T

—i
Therefore, the S"-generated type model ((T;, bi),c;) satisfies the common prior assumption. [ |

4 | TRANSFORMATION OF TYPE MODELS INTO STATE MODELS
Taking type models as input the following transformation procedure defines corresponding state models.
Definition 6. Let T be a game, and 7" be a type model of T. The tuple
(Q, (Zi, 06, 71)iep)
forms a 7" -generated state model of I', where

- Q:={w@he : ¢ € C;,t; € T forall i €1} is the set of all possible worlds,
and for every player i € I,
- I;C2%is i's possibility partition with

Z; (w(cj:tj)jel) = {w(ci,li,clptli) eQ: Cl_l. = C—i; tl_i = T—i}

for all co(cj e e,
- 0;: Q — C;isi's choice function with

o] (w(ci«,[i-,c—ia[—i)> =

for all co(cj e €qQ,
- m; € A(Q) is i's subjective prior with

(a0 7, (0 ) ) o= bt (e, )

for all w(clic-it-er € Q.

Our transformation procedure generates a possible world for every combination of choices and types of the players.
An information cell is associated with a choice type pair of a player and contains those worlds where the choices and
types are varied for the opponents. The choice functions determine the players' decisions in line with the corresponding
worlds. Finally, the subjective priors are picked such that their induced posteriors are in accordance with the types'
beliefs. Note that, in general, many different subjective priors exist that meet this requirement. The belief of a given
player i about a world conditional on his information is defined as the belief of the corresponding type about the
opponents’ choice type combinations attached to the world. Only varying i's choices thus results in the same belief.
Observe that for every cell the conditional probability distributions on the set of possible worlds do indeed sum up to
one and are well-defined.

As already emphasized above, a state model constructed by the transformation procedure of Definition 6 on the
basis of a type model is generally not unique, because the subjective priors can be varied. This property is in contrast to
the transformation of state models into type models according to of Definition 5, where uniqueness obtains. The
possible multiplicity of generated state models ensues because of their richer structure compared to type models and a
degree of freedom in imposing the subjective priors. While type models only specify posterior beliefs, state models fix
prior beliefs and choices on top of (implicit) posterior beliefs. In terms of interactive thinking this additional infor-
mation is superfluous, as the posterior beliefs are the decision-relevant doxastic mental states of the agents. Never-
theless this additional information results in some ambiguity when deducing a state model from a type model as the
latter is a sparser formal representation of reasoning. Only the engendered posterior beliefs are required to coincide
with the beliefs of the types.
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The following example illustrates how the transformation procedure of Definition 6 converts type models to state
models.

Example 2. Let I'be a game with I = {Alice, Bob}, Cjicc = {a, b} as well as Cp,, = {c, d}. Consider the type model 7" of I"
with

= Tatice = { thicer Lhtice }»
= Toob = {hop: b
= baiee [Bhie] =5 (¢: thp) +3 (s thop) +3 (d 1)
= baiice [irice] =3 (d: tgop) + 5 (d: thop)
= bgop [tzlsob] = % (a7 tixlice) + % (b» tfllice)’
= baob [thop] = (@, L)
Applying the transformation procedure of Definition 6 yields the following objects

- Q with elements

( " Alice” ’Bob

Ahce Bob

)
tice L b)
)
)

Lalice:©s tB b

8

A[lce Bob

8

A[lce’ Bob

8

Alwe ‘Bob

8

A[lce’ Bob

8

L atice € tpob

2y
)
)
)
fios)
)
e © b)
)
)
)
)
)

88

Lalice © Bob

8

7 Alice’ 7 Bob

8

7 Alice’ d, Bab

8

7 Alice’ 7 Bob

O 0O 0O0O0OOO OO OO OO0 0 0 O
8 8

(0t
(e
(b4
(o
(b4,
(o
(b4
( L atice '€ Bob
(b4,
(o
(b4
(a;
(b4,
(0}
(b4

w Alxce

|3

— T ajice With partition cells

o P = {008heths) ottt o) feddiin) ]
0 P = {Ptiecthe) olbctihs) ofbrcesi), o 0shctsi),
o P = {o0cetha) o0t b>7w<a et o),
o Pl = {Pticthe) 0hcths) 0 incts), 0 6uctf) |

— Tpop With partition cells

a,t

" Alice? Cs Bab) CU( ilice‘c’ttgnb) s a)(b’tilice’c"[lliob) }’

(] P1130b = {a)(a’lAlzce’ i Bob) (
[¢] PBOb = {CU( 7 Alice’™ Rob) s C()(b’ Alice’ Bob) a)(a"tillce’d’t}%ob) ; Cl)(b’[fllice’d't}?ob) }’

BOb = { ( AIILL’ Bub) , a)(b ‘Alice’ Bob) w(a’tzzélice’c’tgab) (b [Allcn’ t?}ob) }’
(o, )

o) BOb = {w AIlce’ Bob , w( " Alice”™ Bob) w(a7t,241ice7d"t12§ub) s w(b’tzlic‘e‘d’tlziob) }’
- Calice(®) = a for all w € P}, U Py, and O ajce(@) = b for all w € P4, U P4
- opop(w) = ¢ for all w € Py, U P3, and opp(w) = d for all w € P, U P} ,,
— Taice With probabilities

lice>

85US017 SUOWWIOD A1) 8|qeo! dde au) Aq peusenob afe se[ole YO ‘88N JO S9INJ 10} Akeuq18Ul|UO A8|IA UO (SUONIPUOD-PUR-SLLIBY/WID"AB| 1M ARIq U1 |UO//SdNL) SUONIPUOD PUe SWie | 8U18eS *[£202/20/2T] Uo ARiqiauljuo A8 |IMm oLisee N JO AISIBAIUN A 9ETET US/TTTT OT/I0P/L00" A3 (1M AReq Ul Uo//Sdny Wouy papeojumod ‘0 ‘5622597 T



v | Economic mPuiry

O T Alice (Ct)( Lalice’ ’Bub)) — %,
O Tl Alice (w(b Alice’© lBob)) :%’
O T Alice (w(a Alice © Bab)) — 0’

[} TC Alice (co(b, Alice’© ab)) — 0’

O Tlalice (w(a‘ tce bl b)) =4,
O Talice (w(b Catcer o b)) - ﬁ’
© Tl Alice (co(““ tee b)) =L

O T Alice (w(b“ lice” ’Bob)) = %’

O T Alice (w(a  Alice’© Bob)) — 0’

O T alice (co(b’ Alice )L Ob)) — ()’

O T alice (a)(“‘ Lalice Sl ab)) -0,

O T Alice (Cd(b’ Batice ©:15 ub)) =0,

© Talice (co(““ e 40 ob)) =1,
O Talice (co(b“ lice 730::)) =1
O T Alice (a)(a, Alice’ Bob)) — %,

O Tl Alice (w(b,lf,zme’ Bob)}) :%’
Tgop With probabilities

O TTBob (CU Litice t}gab)) :1_22,

O TTpop| @ b hiee )

O TTpop| @ @ e Ol )

O 7Tgop | W bt Alice’:tB b) — 12’

o b (@l Blhun) ) = 2

o Trgop [ 0 PtaiceBlios) | =

0 rgop (0Pl dlhn) ) =

w at " Alice® Ol ob)

bt

Y

at c,

Son)

7" Alice’

’ Alzce’c7t ob)

b2, . Cith

" Alice’~" Bob

@, oty

‘Alice’™" " Bob

b‘t Ilce’ ? Bob

at Allce Bob

(e

(b

>

(

( )

( )

( )
oo (D-itcedthun)

(o]

(

(o

(b

( )

(

o

(b4

A[we Bob )

) =0
) =0
)
)=
)=0
) =0
)=
)0
)0
)=t
) =0
) =0
)0
) =)
}

)=o0

BACH and PEREA
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The assemblage of these objects (Q,Z 4jice, Talice, Talice;s L Bobs TBob, TBob) then constitutes a 7 1“-generated state
model of I. 'y

The transformation procedure yields the same induced belief hierarchies in the type model of departure and its
corresponding state models.

Theorem 3. Let I" be a game, and T* a type model of I' with some T" -generated state model S* of T, i € I some player, and
t; € T; some type of player i. Then,

nilti] =n; {W(Ci‘n’c—i’t—i)}

forall (¢, c_;, t_)) € C; x C_; x T_;.
Proof. 1t is shown inductively that 7[t;] = 7 [w(¢#:¢=+-0] holds for all (¢;, ¢, t—;) € C; x C—; x T_;, and for all k > 1. It

then directly follows that ,[t;] = (9?[ti]), o, = (9 [0 @ 00]) = n; [ @iee0=0] for all (¢, c_s, 1) € C; x Cy x T,
First of all, let (c;, c_;, t—;) € C; x C_; x T_; and observe that

7; [t] (C/—i)

= Z bi[t}] (C/_p t/—i)

z’_ieT_i

5 ) 5l
t €T

_ Z T (w(ci,li.cli,tLi) |Il (w(ci.ti.c,,-,t,,-)>>
t €T,

wel; (w<”l"‘i'c-i"-i>) o_i(w)=c,

=1} [wle I (L)

holds for all ¢, € C_;.
Now, suppose that n¥[t;] = n¥ [ew(¢--)] holds for all (c¢;, c_;, t_;) € C; x C_; x T_; up to some k > 1. Let (¢;, c—;,
t_;)) € C; x C_; x T_; and observe that

M ) (ks )

= Z b; [ti] (C/_i, t/—i)

€T, [t’_i]:n’_l. for all 1<i<k

= Z T (co(ci"‘“cr—i*"—i) | Z; (w(fivfi-c’,i,t’,,-)>)

¢ €Tt [t ]=n", for all 1<i<k

= 7; (a)(chti.c/_i;t/_i) | Ii (w(ci,t,-,c_,-,t_,-)>)

¢ €Ty [t ]=nl, for all 1<I<k

for all (¢;,nL,,...,n%,) e X¥™.
By the inductive assumption, it is the case njl. 4] = 17]4 [co(cf”f’cff’t*f)} forallj e I\{i},forallt; € T;, forall 1 <1<k, and
for all ¢;, c_j, t_j € C; x C_; x T_;. Therefore,
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2| Economic Inpuiry BACH and PEREA

= Z ; (w(ci‘t"’c/—i‘t,—i) | Ii (w(ci,t,-,c_[,t_[)>)

t’_l.ET,,-:n’_i[t’_J:nI_i for all 1<I<k

N Z T <a)l | Z; (w(ci‘ti‘cﬂ-,tﬂ-)))

W' €T, (w("i“i‘”—i“—i)):n’_i[w’]:n’_i for all 1<i<k,0_;(w')=c",

i

k 156, Ci i k
:r)i-H |:w(C,t et )} (C/—ianl—n "'77)—i)
for all (¢, 7%, ..., n%;) € XFHL. [
The common prior assumption is preserved from type to state models, too.

Theorem 4. Let I' be a game, and T" a type model of I satisfying the common prior assumption. Then, there exists a T" -
generated state model (Q, (I;,0;,7;),c;) of I that satisfies the common prior assumption.

Proof. Define a state model (Q, (Z;,0;,7;),;) of I' with the objects Q, (Z;,0;),; as in Definition 6, as well as with a
probability distribution 77 € A(Q2) such that 7r(wWier) :=p((c;, ;),;) for all w@er € Q and 7; = 7 for all i € I. By

construction (Q, (Z;, 0y, 7;),;) thus satisfies the common prior assumption. Since

, (el ) e N
K (w(q,thc_i‘ﬂ_i) . (C‘)(/’j)’g)> - ﬂ((Ii (co(cfﬁ),s’))) :p(c Pt(Ci(j ti)t ) = bifti) (L, ;)

holds for all (¢, ¢ ;) € C_; x T, for all 09 € 0 and for all i I, the state model ((Q, (Z;, 7, 01),¢;)) also forms a
T"-generated state model of I. [ |

5 | RELATION TO HELLMAN AND SAMET (2012)

The common prior assumption is also addressed by Hellman and Samet (2012) who explore its restrictiveness using a
state-based approach. More specifically, they analyze how the topological size of posterior belief profiles deducible from
a common prior depends on properties of the underlying state model. In contrast we pursue a different question here by
investigating whether the common prior assumption is preserved across epistemic models with Theorems 2 and 4. It is
nonetheless insightful to relate our results to Hellman and Samet (2012). In particular, it seems intriguing to connect
their Theorem 1 which makes explicit the restrictiveness of the common prior assumption to our Theorem 2 which
establishes the preservation of the common prior assumption when moving from state models to type models.

Hellman and Samet consider knowledge spaces which are state models without choice functions and subjective
priors. They define a belief function for every player that assigns to every world a probability distribution on the set of
all possible worlds. A profile of belief functions is then called consistent, whenever it is inferable from a common prior.
Before Hellman and Samet's crucial ingredient of tightness can be explicated some standard notions of state models
need to be introduced. Events E C Q are sets of possibles worlds and correspond to some property shared by all the
worlds they contain. For instance, the event of it raining in London contains all possible worlds in which it indeed rains
in London. A definition of common knowledge of an event due to Aumann (1976) is based on the meet of the agents'
possibility partitions. Given two possibility partitions Z; and Z,, the partition 7, is called finer than the partition Z, (or
7, coarser than 7), if each cell of Z; is a subset of some cell of Z,. The partition Z; is called strictly finer than the
partition Z,, if 7; is finer than 7, and there exists a cell of Z; which is a strict subset of some cell of Z,. Given a
possibility partition profile (Z;),.,, the finest partition that is coarser than all of them is called the meet and is denoted
by AierZ;. Common knowledge of an event E is then defined as

CK(E) = {a) eq: (/\L) () C E}

iel
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where (Aier Z;)(w) denotes the cell of the meet that contains the world w.! An event E is common knowledge at some
world w, whenever w € CK(E). We say that knowledge is tight at some world w, whenever the following conditional
holds: if the cell of some agent at w can be strictly refined, then the meet cell of w is thereby also being strictly refined.
The possibility partition profile in a knowledge space is called tight, whenever there exists a world at which the event of
knowledge being tight is common knowledge. Hellman and Samet (2012, Theorem 1.1) establish that if a possibility
partition profile is tight, then every profile of belief functions (that can be constructed in the corresponding knowledge
structure) is consistent. Moreover, according to Hellman and Samet (2012, Theorem 1.2), if a possibility partition profile
is not tight, then the set of consistent profiles of belief functions is nowhere dense (i.e., small in a topological sense). We
now relate these two results of Hellman and Samet by means of two examples to our Theorem 2.

In the following example a knowledge space with a tight possibility partition profile is equipped with a common
prior and then converted via our transformation procedure from Definition 5 into its corresponding type model.

Example 3. Let I" be a game with I = {Alice, Bob}, Cjice = {a, b} as well as Cp,, = {c, d}. Consider a knowledge space
(with choice functions) given by

- Q = {w;, Wy, W3, W4},

- Zatice = {{w1}, {w2, ws}, {ws}},

~ Tpop = {{CU1,602}7 {co3,co4}},

= Oaticl@1) = Outiclws) = a and Tajice(®2) = Tatice(@s) = b,
~ Opop(W1) = Tpop(@2) = ¢ and Tpop(@3) = Tpop(@s) = d.

We first show that the possibility partition profile in this knowledge space is tight. At w, the cell of Bob can be
strictly refined from Zpoy(w;) = {w1, @2} to I, (w1) = {w;} which induces a strict refinement of the meet cell from
(AierZi)(w1) = Q to (AierZi)'(w1) = {w1 }, while no strict refinement for Alice is possible at w;. At w, the cell of Alice
can be strictly refined from Z gjice(w2) = {@3, @4} to Z';.,(w2) = {@w,} which induces a strict refinement of the meet cell
from (AierZi)(w2)=Q to (AierZi) (w2) = {w1,w,}, while the cell of Bob can be strictly refined from
Tpop(w2) = {w1, w2} to T, (w2) = {w2} which induces a strict refinement of the meet cell from (Aie/Z;)(w2) = Q to
(NierZi) (w2) = {2, w3, ws }. At ws the cell of Bob can be strictly refined from Z gop(w3) = {w3, w4} to T, (w3) = {ws}
which induces a strict refinement of the meet cell from (AierZi)(ws) =Q to (AierZi)'(ws) = {ws}, while no strict
refinement for Alice is possible at w;. At w, the cell of Alice can be strictly refined from Z jice(ws) = {w2, w4} to
T'1jice(@wa) = {ws} which induces a strict refinement of the meet cell from (AieiZ;)(ws) = Q to (NierZ:) (wa) = {w3, wa},
while the cell of Bob can be strictly refined from Zpo(ws) = {ws, w4} to g, (ws) = {ws} which induces a strict
refinement of the meet cell from (AierZ;)(ws) = Q to (AierZi) (ws) = {1, w2, w4 }. Since knowledge is tight at all four
worlds in the knowledge space, it immediately follows that the event of knowledge being tight is common knowledge
everywhere. Consequently, the possibilty partition profile of the knowledge space qualifies as tight. By Hellman and
Samet (2012, Theorem 1.1), every profile of posterior beliefs thus has a common prior. To see this consider arbitrary
posterior beliefs for the two agents, that is,

= Tatice(@1 [{w1}) = apice(ws [ {w3}) =1,

= Tatice(@ [ {w, w4}) = a and mypice(ws | {wz, wa}) =1 — a,
= 7pop(@1 [{w1, @2}) = B and 7gep(w; [{w1, @2}) =1 = B,
~ Tpop(@s | {ws, wa}) = ¥ and mpop(ws | {ws, wa}) =1 -7,

where a, 3, ¥y € [0, 1] and 7y (w; | {w1}) and a3 | {ws}) cannot vary at all due to the given specific partitional
structure. These posterior beliefs are consistent with a common prior 7 € A(Q) that satisfies the following four
conditions

- 7)) = A iy
- (@) = s
- 7@3) = s
- mlen) = S iy
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For the conversion of the knowledge space into a type model with our transformation procedure suppose the
common prior 7 € A(Q), where 7(w;) = 7(w;) = 7(ws) =1 and 7(ws) = 0. Note that this probability distribution
satisfies the non-null information condition of Definition 2. The (Q, (Z;, 0;),;, 7)-induced type model of I' is given by
((Ti; bi)iep) with

iel

= Tatiee = {tz{acfilcla iz, fifffci} and Tgep = { florest tl{;;Z’w“}},
b atice {tg‘l"lg} ( tl{;:bl, wz}) _1,
s ] e ) 1.
Datice { Alwe} (d thop w“}) =1,
b 4] (. 522) = o ey ] (. ) =1
)

- bpos [they ™| (atl)) =1.

By Theorem 2, the type model ((T;, b;),.,;) must satisfy the common prior assumption. Indeed, observe that the
probability distribution p € A(x;e(C; x T;)), where

- p((edid) (e ™)) =3
- o (i) (™)) =%
- o( (b i) (™)) =5

constitutes a common prior for ((T;, b;),;) according to Definition 3. L

The preceding example illustrates Hellman and Samet (2012, Theorem 1.1), our Theorem 2, as well as to some
extent the interplay of the two results. The point of departure is a tight knowledge space. Indeed, as predicted by
Hellman and Samet (2012, Theorem 1.1), for every belief profile there exists a common prior that induces it. Hence, the
posteriors can be chosen arbitrarily, yet they always satisfy the common prior assumption. Our transformation pro-
cedure from Definition 5 then yields a type model corresponding to the knowledge space. In line with our Theorem 2
this type model also satisfies the common prior asumption.

Next a knowledge space is provided with a non-tight possibility partition profile and a common prior. Its induced
type model is then derived via our transformation procedure of Definition 5 and shown to preserve the common prior
assumption.

Example 4. Let I" be a game with I = {Alice, Bob}, Cjice = {a, b} as well as Cp,, = {c, d}. Consider a knowledge space
(with choice functions) given by

- Q= {w, w3, w3, w4},

= T tice = {{wh w3}7 {502,604}},

- Zpop = {{w1, @2}, {ws, wa}},

= Oalicl®1) = Tajice(®3) = a and ajice(w2) = Tasic(@s) = b,
~ Opob(@W1) = Tpop(w2) = ¢ and opep(ws) = Tpep(@ws) = d

Observe that the possibility partition profile in this knowledge space is not tight, as knowledge is not tight
at any world. Indeed, if the cell of Alice at w € {w;, ws} is strictly refined from Zajc(w) = {w1,w3} to
T yice(@) = {w}, then the meet cell is (AierZ;) (w) =Q and hence does not strictly refine (AieiZ;)(w) =Q. If
the cell of Alice at w € {w,, w,} is strictly refined from Z 4jice(w) = {2, w4} to Z';..(w) = {w}, then the meet
cell is (AierZi)'(w) =Q and hence does not strictly refine (Aie;Z;)(w)=Q. Since the possibility partition
profile is not tight, it follows from Hellman and Samet (2012, Theorem 1.2) that the set of posterior belief
profiles stemming from a common prior is very small. Nonetheless, suppose that the knowledge space is

1

equipped with a common prior 7 € A(Q), where 7(w;) = 7(w;) = m(w3) =3 and 7m(ws) = 0, which is in line
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with the non-null information condition of Definition 2. The posterior beliefs for the two agents then
obtain as

— Tatice(@1 | {@1,3}) = Tatice(ws | {1, w3}) = %,

= Taticl@z | {wz, @4}) = 1 and maje@s | {wz, @4}) = 0,
- Tgop (w1 | {@1, @2 }) = Tpop (w2 | {@1, w2}) =3,

— 7pop(W3 [ {ws, @4}) = 1 and mpep(ws | {ws, wa}) = 0.

As (Q, (Zi,01);c, m)-induced type model of I our transformation procedure of Definition 5 yields ((T;, b;),;) with

 Tane = {85 022 and T = {15555, ]

- b5 ] (e 557 ) = e [t (. 615°7) =3
- banee [t | (es ™) = 1.

- i 1] (0. 6577) = o 6] (b, £5207) =3
- b ] (. i) =1.

By Theorem 2, the type model ((T;, b;),;) must satisfy the common prior assumption. Indeed, observe that the
probability distribution p € A(X;(C; x T;)), where

- p((a i), (e k™)) =5

- p((@ ). (o fin=)) =4

B p((b, ti;ﬁzc:u“}), (c, tl{;;)l‘)’%})) =1

constitutes a common prior for ((T;, b;),;) according to Definition 3. &

In the preceding example Hellman and Samet (2012, Theorem 1.2) is illustrated together with our Theo-
rem 2. A non-tight knowledge space is equipped with a common prior. According to Hellman and Samet (2012,
Theorem 1.2) there are only very few belief functions consistent with a common prior. The posterior beliefs of
the agents must therefore be chosen carefully. However, the transformation procedure of Definition 5 is still
guaranteed by our Theorem 2 to generate an induced type model that also satisfies the common prior
assumption.

Hellman and Samet's notion of tightness can also be formally connected to our transformation procedures. Indeed, it
actually turns out that Definition 6 always generates non-tight state models.

Theorem 5. Let I be a game such that |I| > 2 as well as |C;| > 2 for alli € I, and T" a type model of I'. Every T " -generated
state model of I' is not tight.

Proof. Let S' be a 7 -generated state model of I. By Definition 6, the set of all possible worlds is given by
Q= {we ¢ eC ;€T foralliel}.
First of all, we show that (A;e/Z;) = {Q}. Toward a contradiction, suppose that there exists two non-empty cells C

and C’ such that C,C’' € (AierZ;) and C N C' = @. Let w(“Her € C and w(@er € C'. Consider some player j € I. Tt
follows by the construction of Z; in Definition 6 that w(oteil) e T (@), Let k € T \{j} be some other player. Then,
by the construction of Zj, it holds that o 5e e T K (w(cf"f’d—f"/—f)). Consequently, w(94<) e Zj (o) n
Tk (w(Cf’U‘CLi’[Li)). As Zj(w@ier) C C and T (w(cf’[f’cli’tli)) C C', it follows that C n C' # @, a contradiction.

Now, take some world w%ier and some player j € I. Let Z;(w i) be strictly refined into Z y (w(@er). Note that a
strict refinement is always possible, since I" contains at least two players with at least two choices per player. Thus, there
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exists some player k € I \{j} with |C,| > 2, which ensures that Z; (a,(c,-,tl-),.ez) has at least two worlds and can therefore be

strictly refined. Consider some world w(cﬁvfﬁ),-e, € Q and distinguish two cases (I) and (ID).

Case (I). Suppose that (c},t}) # (¢j,4). Take some player k € I \{j}. Then, by Definition 6, it follows that

ol oll) e T, (wlier) and it is also the case that wl@hea e i (w(c""’“c’fk"t k)). As only player j's cell containing
w(Ci.,[i)ieI has been Strictly reﬁned, Ij/ (a)(ck,tk.c/,k,l,,k)> :Ij (w(ck,lk,cl,k-tik))‘ Hence, w(c;,t;)iel GIJ/ (a)(ck'tk’cl—kﬂ[’fk)) hOldS, too.
Consequently, w(@) e ( Nien 1 Zi /\Ij’.) (w(@er). Since 0@ € Q has been arbitrarily chosen, ( Nien (3 Zi /\Ij’.)

(w(ci~ti)i€1) = () obtains.

Case (II). Suppose that (c]’., tj’) = (¢, ). Consider some pair (c]’.’ N4 ) € Cj x T; such that (c]’.’ N ) # (¢j,4). Then, by Case
1), wldiet) e (/\ie[\{j}Ii /\Ij/-) (w@her), Take some player k € I \{j}. Definition 6 ensures that

I

(w(@er), it follows that w(G55) e (/\iel\{i}z-i/\zj/') (eweter). Since w(@%) e € Q has been arbitrarily chosen,
(/\iel\{j}Ii /\IJ'») (wlt)ier) = Q obtains.

Because the world (¢« € Q and the player j € I have been arbitrarily chosen, knowledge is not tight at any world.
A fortiori the event of knowledge being tight cannot be common knowledge. Therefore, the possibility partition profile

of S™ is not tight. [ |

Independent from the properties of the type model of departure, Definition 6 thus constantly brings about a state
model i.e., non-tight. This is essentially due to the way the possibility partitions are generated from type models without
any exogenous restrictions on the beliefs. By construction, type models induce rectangular possibility partitions for the
induced state models in the sense that every information cell of any player contains, for a fixed choice type pair of that
player, all possible choice type combinations of his opponents. In other words, every information cell can be written as
the product of a fixed choice type pair of the corresponding player and all choice type combinations of his opponents.
Such rectangular possibility structures are always non-tight, as refining any cell still leaves all the worlds in the new
finer cells connected to all other worlds, which in turn precludes the meet from being refinable.

Besides, note that the assumption requiring at least two choices per player in Theorem 5 makes the tightness
condition non-trivial, as our transformation procedure then implies that every information cell in the induced state
model contains at least two worlds and can thus be strictly refined. In the case of a cell containing a single world,
knowledge being tight at that world would be trivially satisfied due to a false antecedent in its definition.

A direct consequence of Theorem 5 is that our two transformation procedures map tight state models into non-tight
state models via applying Definition 5 followed by Definition 6.

Corollary 1. Let I be a game such that |I| > 2 as well as |C;| > 2 for alli € I, and S" a tight state model of I with its S"-
generated type model T" of I'. Then, every T"-generated state model of I is not tight.

By Theorem 5 it is ensured that every 7" -generated state model of I' is non-tight. Conceptually, Corollary 1 reflects
an information loss from the input state model to the output state model. The doxastic structure embodied by possibility
partitions in state models is qualitative and vanishes when constructing the induced type models, which only preserve
the quantitative doxastic structure that is, the beliefs given by the probabilities. This qualitative doxastic structure of the
possibility partitions imposes exogenous restrictions on the agents' reasoning that are absent in type models. With
regard to Corollary 1, the lack of exogenous restrictions in the S'-generated type model 7" thus morphs into a 7"-
generated state model that does not exhibit any exogenous restrictions which in turn makes it non-tight. In contrast, S"
as the state model of departure may well contain some exogeneous restrictions.

Besides, Theorem 5 in connection with Hellman and Samet (2012, Theorem 1) sheds some light on the possibility of
preserving common priors in line with our transformation procedures if slight belief perturbations are admitted. Let the
point of departure be a tight state model. By Hellman and Samet (2012, Theorem 1.1) the state model's beliefs are
derivable from a common prior and its induced type model of Definition 5 also satisfies the common prior assumption
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by Theorem 3. Before transforming the induced type model back into a state model via Definition 6 let its beliefs be
slightly perturbed. By Theorem 5 this new state model violates tightness. It then follows from Hellman and Samet (2012,
Theorem 1.2) that the likelihood of it violating the common prior assumption is vast.

6 | ISOMORPHISM

The transformation procedure in Definition 5 converts state models into type models, while the one in Definition 6
moulds state models from type models. In terms of structural equivalence of epistemic models the question whether
these two transformation procedures are inverse to each other naturally emerges. We explore the relationship between
our two transformation procedures by means of isomorphism. Intuitively, two epistemic models are isomorphic if they
formalize the same interactive thinking. In the context of our transformation procedures two issues need to be
addressed. Firstly, it has to be determined whether a type model is isomorphic to the type model generated via Defi-
nition 5 by the state model which itself is generated via Definition 6 by the type model of departure. Secondly, it needs
to be established whether a state model is isomorphic to the state model generated via Definition 6 by the type model
which itself is generated via Definition 5 by the state model of departure.
For the epistemic framework of type models the notion of isomorphism can be spelled out as follows.

Definition 7. Let I be a game, and ((T;, b;),;) as well as ((Ti, Bi)‘ 1> be type models of I'. The type models ((T;, b;),c;)
~ ~ e -
and ((Tl-, bi). 1> are isomorphic, if for all i € I there exists a bijection f; : T; — T; such that
e

bilfi(t:)) (c—i, foi(t=1)) = bilti] (i, -4)
for all (c_;, t_)) € C_; x T_;and for all t; € T;.

Intuitively, in two isomorphic type models the same belief hierarchies are present—in fact only their labels differ—
and thus the described interactive thinking is alike. The bijection in Definition 7 is essentially equivalent to the notion
of type isomorphism due to Heifetz and Samet (1998, Definition 3.2). .

Take some type model 7" = ((Ti, bi);e;) as input and construct a type model 7° r— ((Ti, Bi>_ ) as output by first
applying Definition 6 to 7" and then Definition 5 to the 7' -generated state model. It turns outthat the isomorphic
relationship does actually not always hold between such input and output type models. To see this consider the
following example.

Example 5. Let I" be a game with I = {Alice, Bob}, Cyc. = {a} as well as Cg,p, = {b, ¢}, and 7 ' a type model of I" with

- TAlice = {tAlice},

- TBob = {tBob}s

- bAlice[tAlice] (b, tBob) = % and bAlice[tAlice} (C7 tBob) = %,
- bBob[tBob](as tAlice) =1

Then, (Q, T ajice, T alice, Tatices L Bob; TBob, TBob) With

- Q= {w(aJA[ice»bJBob)’w(aleliceycvtBob) },

- IAlice - {Q}’

- Thop = {{a)(a,tAtice,b,tBob)}7 {a)(aytAlicmatBob)}}

— OAlice (a)(avtAlice-bvtBob)) = O Alice (a)(avtAlice-Cthob)) =aq,

— OBob (a)(aJA[icrbthob)) = b as well as o (w(a.tA,ice,c,tgob)) —c,
- and 7 gjice(®) = Tpop(w) =3 for all w € 2

fQTmS a Tr'induced state model of I". The (Q>IAlice7 O Alice ﬂAliceaIBob> OBob ﬂBob)'induced type model of I" is given by
Tr = (TAlicea b atice; Tob, bBob> with

” (@:tatice b:tBob ) (@tatce o)
- TAlice - {tglice} and TBOb — {tB{:; Al ‘Bob }7tB{:; n 'Bob }}’
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~ (a.tatice D-tBob) \
~ Dbaiice [tﬁlice} <b7 ti;]; [ ' })

- > Taice@] {0)) =3

WEQ:T oy (w)=b,T pop ()= {w(a'tAlice'b'tBob) }

{ m(a'lAlice Ctpop) } )

as well as bjice [(2c.] (c, [

- > Taie ] {0) =3,

WEQ:Tpop (w):c,ZBob(w):{w(“~‘Atice ©tBob) }

w(“’rAllcerBob ) }

- BBUb |:tBob :l (a7 [glice)

= Z T Bob (cu | {cu<“”A”“*’b"B“"> }) =1,

WEQ:Talice (@)=, L atice={Q}

~ (a-tA[icef-[Bob)
- bBob |:[i:; }:| (a’ tglice)

— Z TTBob (Cl) | {a)(a:tAlice;Catan }) =1.

WEQ:O atice (@)=, T ptice={ 2}

Since |Tpo| < |Thos|, there does not exist a bijection fgop : Taop — Tpop and consequently 7 T and 7% are not
isomorphic. &

In the preceding example the input type model only contains one type for Bob, yet there are two cells for him in the
generated state model, which in turn imply two corresponding types in its induced type model. It thus becomes
impossible to construct a bijection between the two type models. However, one of Bob's two types in the output type
model is superfluous in the sense of interactive thinking, as it encodes precisely the same belief hierarchy as the other

type.
To remove any superflous ingredients from type models we now introduce the idea of reduction.

Definition 8. Let I be a game, and ((Tj, b;),;) as well as (T, Bi)ie[> type models of T.

(a) The type model is ((T;, Bi)ie[> is a reduction of the type model ((T;, b;),,), if for every player i € I there exists a

reduction function r; : T; — T; such that r; is surjective and

b6 () ) = 0 ({3} % 7 @) ., ) 0
for all (cj’zj)jeI\{i} € Xjen (13 (Cj, T;) and for all ; € T..

(b) The type model ((Ti,i)i)iel) is a strict reduction of the type model ((T;, b;),c;), if ((Ti,l;i)iel) is a reduction of
((Ti, bi);;) and |Tj| <7l for some j € I. )

(c) The type model ((T;,b;);s;) is @ maximal reduction of the type model ((T;, b;),c;), if ((Ti, bi);p) is a reduction of
((T;,bi),c;) and there exists no strict reduction of ((T;, b;)c;)-
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Note that the reduction functions 7; for all i € I correspond to surjective type morphisms of Heifetz and Samet (1998,
Definition 3.2).

A couple of preparatory results about reduced type models are established next.

An importantly property of reductions is that they actually preserve belief hierarchies. This can be formalized as
follows.

Lemma 1. Let " be a game, T" a type model of T, 7' a reduction of T" with reduction function rp:Ti— Tj for every player
j € I and i € I some player. Then, n;[t;] = ni[r{t)] for all t; € T;.

Proof. It is shown inductively that 5,[t]* = 7,[r;(t,)]* holds for all t; € T;, for all i € I, and for all k > 1. It then directly
follows that 7,[t;] = (n'[ti]) .o, = (7 [ri(8)]) ,cnilri(t:)] for all t; € T; and for all i € I.

neN
Let k = 1 and consider some player i € I, some type t; € T; of player i, as well as some opponents’ choice combination

c_; € C_;. By definition,

nil(c=) = ) bilti) (e, ).

el
Moreover, as

bilri(t)] (e, E) = Z bi[ti)(c—i, t=),

teT_jir; ([—i):E—i
it follows that

nilri(t)] (=) = Z bilri(t:)) (i, £0)

i,iET,i

= > bt t) = > biftil (e ti) = [t ().

Z,iET,i[,iGT,i:r,i([,i):E,i €T

Let k > 2 and assume that 7,[t]' = #,[r;(t;)]" holds for all t; € T;, for all i € I, and for all < k — 1. Consider some player
i € I, some type t; € T; of player i, and some tuple (c_;,n';, ..., n*;!) € X*,. By definition,

nilt] (ot o TY) = > bilti](c-i, ti).-
t,iET,iiﬂii[l,i]:nii for all I<k—1

Consequently,

7 [ri(6)] = bilri(t:)](c—i, £-)

el [ii]=n, for all I<k—1

= > S biltlle )

i—iET—ﬁnl,i [f_i]:nﬂi for all lSk—l[_iET_iSr_i([_i):i_i

= > bilti)(c—i, 1)

€T’ [roi(t=)]=n", for all I<k—1

= > bifti)(c—i, t0)

€Tt [t]=n", for all I<k—1

= nf[tl] (C_i, 7]1_1'7 ceey 77571)’
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where the fourth equality follows from the inductive hypothesis. |

Thus, type models are structurally equivalent to their reduced counterparts. No essential information is lost and the
same interactive reasoning is represented. Note that Lemma 1 follows from Heifetz and Samet (1998, Proposition 5.1).
However, since their formal framework is slightly different and to keep our paper self-contained, we still provide a
direct proof.

A further significant feature of reductions is that any two maximally reduced type models only contain distinct belief
hierarchies. This is substantiated by the following result.

Lemma 2. Let I" be a game, 7" a type model of I' such that there exists no strict reduction of 7', and i € I some player.
Then, n;[t}] # n;[t]] for all ¢],t] € T, such that t} #t].

"

Proof. By contraposition, suppose that there exist ¢, ¢/ € T; such that ¢, # ¢/ and »,[t}] =,[t/]. For every player j € I

recall the set H[T']| : =37, € XpenA (X[ ) : There exists £; € Ty such that 7;[t] =7, p of induced belief hierarchies in
the type model 7". Construct a type model 7" = ((T;, bi)jel) where Tj =H [T F] for every player j € I and

by [hy] (c—j, hey) = > blgl(eyity) (2)

t_jGT_jSﬂij [I_j] =h_j

such that 7;[5;] = h;, for all (c_;,h_;) € C_; x T_;, for all h; € T}, and for all j € I. Observe that the belief functions are
well-defined, since every two types £, t]f € T; such that 7 [t]] = {tj’} satisfy

> b)) = > b M (1)
tET m_[ty]=h t €T [t y]=h

for all (c_j, t_;)) € C_; x T_jand for all h_; € T_j.
For every player j € I define a surjection 7; : T; — T; such that

ri(t) = ;8] (3)

for all f; € T;. By Equations (2) and (3) it follows that

by [13(5)] (e-5- ) = by[1) (e} x 7} (i)

for all (c_j,f_;) € C; x T, for all t; € T}, and for all j € I. Consequently, Z: " constitutes a reduction of 7". Since
;6] =n;[t/], it is the case that |T;| = |H;[T"]| < |T}| for player i. Therefore, 7" actually is a strict reduction of 7". m

Accordingly, any two different types in an epistemic model without strict reduction possibilities induce distinct
belief hierarchies. In this sense, maximally reduced type models do not carry any superfluous ingredients.

If the input type model and output type model of the successive application of the two transformation procedures
are considered in their maximally reduced form, then an isomorphism does emerge between the input and output type
models.

Theorem 6. Let I' be a game, T' a type model of I, and f T the type model of I generated bya T T generated state model.
Then, every maximal reduction of T" is isomorphic to every maximal reduction of T".

R A plat)
Proof. Let i € I be a player and note that the set T; from 7° ' can be expressed as {tf" Lt eT,c e Ci}, where T;
belongs to 7 . Construct a correspondence e; : T; — T; such that
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(cit)
~P.
ei(ti) =={ il ICiECi}

for all t; € T;. Thus, e; maps i's types from the initial input model to the respective types in the output model. Hence, by
construction, T; = Urerei(t). By Theorems 1 and 3 it follows that every f; € T; and every f; € T; such that f; € ei(t)
induce the same belief hierarchy, that is, 5;[t;] =, [fi]. Consequently, for every player i € I there exists a collection of
belief hierarchies H; C x nen (A(X]')) such that

H[T"| = H|T"| = H. (4)

Let 7' = ((Ty;, b.i),c;) be a maximal reduction of 7" and TAg = ((T“-, IA)U>_ 1> a maximal reduction of 7T By Lemma 1
e
and Equation (4) it follows that H; [T | = H[7"]| = H; as well as H; [T E] =H [T F} = H; for all i € i. Moreover, Lemma 2

implies that two distinct types in 7° E induce different belief hierarchies. The same holds for T E Consequently, for every
player i € I and for every belief hierarchy h; € H; there exists a unique type t; € T,; € T,; and a unique type ; € T,; such
that »;[t;] = n; [t:;] = hu.

It follows that for every player i € I a bijection f; : T); — T,; can be defined such that

nilti] =n;lfi()] (5)

forall t; € T, ;. Besides, Equation (5) implies that Bli[ﬁ(ti)](c_i,f(t_i)) =by;[t;](c—i, t—;) forall (c_;, t_;) € C_; x T_; and for
all t; € T,;. Therefore, T,; and T,; are isomorphic. [ |

A type model can thus be said to be structurally equivalent to its two-fold transformed counterpart modulo su-
perfluous ingredients.
An notion of isomorphism can also be laid out for the epistemic framework of state models.

Definition 9. Let I' be a game, and (Q, (Z;, 0y, 7;),;) as well as (fl, (i' i, i, ﬁ'i) ) state models of I'. The state models
-~ iel ~
(Q, (Zi, 01, 7)) and (Q, (Ii, i, ﬁi) 1> are isomorphic, if there exists a bijection f : Q — Q such that for all w € Q and
€

i

for all i € I it is the case that

Ti(f(w) = {f (@) : & € Ti()}, (6)
7i(f(@) | Zi(f (@) = mi(w | Tiw)), (7)
Gi(f(w)) = gi(®). (8)

In two isomorphic state models the corresponding worlds induce the same information, posterior beliefs, and
choices for all players. The subjective priors can be distinct yet the models qualify as isomorphic, because the players'
belief hierarchies that is, their full interactive thinking are fixed by the posterior beliefs. Indeed, a difference in priors is
not a relevant issue, as the posterior beliefs are the relevant doxastic mental configurations upon which the agents act.
In that sense subjective prior beliefs could be viewed as artifacts of the state-based approach.

Take some state model S” = (Q, (Z;, 0y, Ti);ep) @s input and construct a state model ST =(Q, (f i, O, frl-)l. <) as output
by first applying Definition 5 to ST and then Definition 6 to the S'-generated type model. By counterexample it is now
illustrated that such input and output state models are not necessarily isomorphic.

Example 6. Let I" be a game with I = {Alice, Bob}, Cjc. = {a} as well as Cg,,, = {b}. Consider the state model S* of I' with
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Q = {wy, wo},

~ T atice =ZLpop = {Q},

- Ouiicd®) = a and og.p(w) = b for all w € Q,
— Talice(®) = 7pop(w) =1 for all w € Q.

Then, Tr = <TAlice7 bAlicea TBOba bBob> with

= Tatice = {tglice} and Tpo» = {tlgob}’

= baiice [tglice} (b7 tlgob) = ZweQ:chob(w):b,IBDb(w):{Q}ﬂAlice(a) {Q}) =1,

— biob [t55] (3 Eice) = D00 e (@)=a Tasee()={0)FBob (@ | {Q}) = 1,

constitutes the S'-generated type model of I. However, it directly follows that ST with O = w(a;ﬁ,iwb,zgob)} as the set of
all possible worlds forms the unique 7 I.generated state model of T. Consequently, there exists no bijection f : Q — Q.
The state models S' and S' are therefore not isomorphic. &

The possible worlds w; and w, in the input state model ST of the preceding example induce the same choices and
beliefs for both players. With regards to interactive thinking one of them is thus superfluous. These kind of re-
dundancies prevent the isomorphic relationship between input and output state models to hold in general.

We call a state model S” of I non-redundant, if for all w, w’ € Q such that w # @' it is the case that Z;(w) # Z;(«') or
oi(w) # oi(w") for some i € I. Intuitively, any two distinct worlds in the structure carry some difference for at least one of
the players. Observe that non-redundancy implies that N;e;Z;(w) = {w} for all w € Q. Essentially, the latter says that if
the players’ information is pooled, then all uncertainty is resolved.

To get rid of any superfluous ingredients we also need a notion of reduction for state models in addition to non-
redundancy.

Definition 10. Let T be a game, and (Q, (Z;, 0y, ;);;) as well as (Q, (i’i, i, ﬁ'i) ) be state models of T.
iel
(a) The state model <fz, (fi, G, fri) ) is a reduction of the state model (Q, (Z;, 0y, 7;),c,), if there exists a reduction
x ic
function r : Q — Q such that r is surjective and for all i € i

Zi(r(w)) = {r(@) : @ € I;(w)} forallw € Q, (9)
Gi(r(w)) = oi(w) for all w € Q such that 7;(w | Z;(w)) > 0 for some j € I\{i}, (10)
7 (a) | fi(r(co))> = m(r(@) | Zi(w)) for all @ € Q and for all & € Q. (11)

(b) The state model (Q, (fi, gi, ﬁi)' 1> is a strict reduction of the state model (Q, (Z;, 0y, 7)), if (Q, (fi, gi, ﬁi)_ 1> isa
e ~ e
reduction of (Q, (Il-,% Ti);ep.and |Q] < Q. N
(c) The state model (Q, (I i, O, ﬁi> _ I) is a maximal reduction of the state model (Q, (Z;, 0;, 71;),;), if (Q, (I i, O, ﬁi) )
e

iel

is a reduction of (Q, (Z;, 0;, ;),;) and there exists no strict reduction of (fl, (fh g, ﬁ'i)_ 1>'
e

An auxiliary result about reductions of state models is collected before the issue of isomorphic relationship between
state models and their two-fold transformed counterparts is addressed.

Lemma 3. Let I be a game, and S* a state model of I. If there exists no strict reduction of S', then S is non-redundant.

Proof. We proceed by contraposition. Suppose that S' is redundant. Then there exist distinct worlds «’, »” € Q such
that Z;(') = Z;(w”) as well as 0y(w’) = o(w”) for every player i € I. Construct a state model S' of I" as follows:

- Q=0\{e, 0"} U {w'}

and for every player j € I,
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- Zj(w") = Tj(w ')\{w',wf'}U{w*},

@ =0 oo ol o)
- Gj(w”) = gj(@),

- 0j(w) = oj(w) for all weQ\{w 1,

- mi(w") =m(@') + m(@"),

- and 7j(w) = 7j(w) for all w € Q\{w*}.
Define a function r : Q - Q by H{w') = H{w") = w* and Hw) = w for all w € Q \{w’, @"}. Observe that r is surjective
and also satisfies conditions (9), (10), and (11). As |Q| = |Q| — 1 < |Q], the state model S” constitutes a strict reduction
of S'. |

Accordingly, maximal reduction in the sense of the impossibility of strict reduction implies non-redundancy.
By considering maximally reduced models, the existence of superfluous worlds such as in Example 6 is blocked and
an isomorphic relationship between input and output state models ensues.

Theorem 7. Let I' be a game, S' a state model of T, and 5:r a state model of I" generated by the S"-generated type model.
Then, every maximal reduction of S* is isomorphic to every maximal reduction of S*.
Proof. Consider a maximal reduction S’ of S' and a maximal reduction :Sl: of S. The set © from 55 is a subset of

Ti(w) ~
{cb(f-‘uf,- )iel :¢geCiforalliel,we Q} which is from SF, and where Q and Z; for all i € I belong to SE. It is first

i(@)
Cu,(

shown that for every world co( )ief € Q, it is the case that ¢; = o(w), where o; belongs to SE, for all i € I. Toward a

af, Zi(w)

contradiction suppose that there exists a world co< )iez € O such that ¢; # oj(w) for some player j € I. By definition of

the two transformation procedures,
I- Ti(w)
ﬁ'k (c?)(cl i )zelIIk( (Cl ' )zel)>

— by [tf"(w)} (c_k, i ;j(”))

= > (@' | Zi())

@' €Zy(w):0_k(w')=C_,T —k(")=T k()
for all k € I \{j}.Since c¢; # oj(w) the Z;-measurability of o; implies that oj(w”) # ¢; for all w” € Z;(w). Consequently, there
exists no world ' € Zy(w) such that o(w’) = ¢; and Z(w') = Z;(w). It follows that 7y (w' | Zx(w)) = 0 for all ' € Zy(w)

7i(@) Zi(@)
such that o_ (o) = c_rand Z (') = Z_x(w). Thus, 7k <cb <C""i )161 | Te ( (Cl i )ie1)> = 0 for all k € I' \{j}. Next define
~ ~ Zi(w) ~ ~
a state model S’ based on Q : :{co("'( )G )lsz twE Q} as set of all possible worlds and a surjection r : Q — Q with
Zi(@) 7i(w) 7i) .
r<‘b (o )ia> - Cb(gi(w)‘[" ) for all cb(c"’ti ) € Q such that for alli e It

- Zi(r(@)) *{r 1 &' € Zy(@)) for all r(@) € Q,
Zj(w) -
< e )> = 01(w) for all 2@ ) e &,

- 7 ((Z) | fi(r(fo))) =7, (r"(@) | Zi(@)) for all @ € Q and for all @ € Q.Note that whenever 7;(& | Z;(@)) > 0 for some
j € I'\{i}, it is the case that & € Q hence &;(r(®)) = 6;(®) = 0;(w), and thus Equation (10) is satisfied. As |Q| < 1Q|, the
state model §' forms a strict reduction of S', a contradiction.

A Zi()
Construct a function f : Q — Q such that f(w) = cb(gi(w)‘ti )fer for all w € Q. The function f is surjective, as for

Zi(w) N Zi(w)
every world c?)(a"(w)’[i )iez € Q the pre-image f! <c?) CIO% )iel> 2 {w} contains {w} and is thus non-empty by the
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successive application of the two transformation procedures, that is, by first applying Definition 5 to S and then

Definition 6 to the S"-generated type model to induce SE Suppose that flo') = Aw”), that is,

@ ’giw)) ( @ ‘g,-<m">)

c?)( @4 =@\ @4 ier, for some worlds &', w” € Q. Then, o) = o(w”) as well as Z;(w') = Z;(w") for all

iel As SE is non-redundant by Lemma 3, it follows that o’ = @”. Hence, f is injective too and thus bijective.
We now show that the bijection f satisfies Equations (6)—(8) of Definition 10. First, observe that

={f(@) : 0i() = 0i(w), Zi(w') = Ti(w)} = {f (') : &' € Ti(w)}

Zjw)
for all w € Q and for all i € I. Therefore, f satisfies Equation (6). Second, &;(f(w)) = &; (c?)(aj(w’tfj )ia) = 0;(w) for all

w € Q and for all i € I. Hence, f satisfies Equation (7). Third,

7@

#1(f (@) 121 (@))) = 7 <w (@47 ) fi(f(w)))

7, (CAL) (O’j(w).[fj(w))jef | 7 (d) (Uj(m)thIj(w))jE[) )

. 5 (e 1 7(@))
' €Q:Zi(w')=Ti(w),0i(w')=0i(®),0-i(«)=0-i(@),Z~i(@ )= —;(w)

_ (f‘l (co ("f<‘°>"fj(w)>fe') | L-(co)) = m(@) |7 i(w>)

for all w € Q, and for all i € I. Thus, f satisfies Equation (8).Consequently, S and SE are isomorphic. [ |

Hence, a state model is structurally equivalent to its two-fold transformed counterpart modulo superfluous
ingredients.
A notable consequence obtains from Theorem 7 in conjunction with Theorem 5.

Corollary 2. Let I" be a game such that |I| > 2 as well as |C;| > 2 for all i € I. Consider a tight and maximally reduced state
model ST of " with its ST -generated type model T" of I. Then, every maximally reduced T"-generated state model of I is
isomorphic to S' and not tight.

Thus, a tight state model can be isomorphic to a non-tight state model. This may seem somewhat surprising at
first sight. However, isomorphisms and tightness concern distinct kinds of doxastic attitudes. While two models
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are isomorphic whenever they represent the same actual doxastic attitudes, tightness imposes conditions on hy-
pothetical doxastic attitudes. In a way, isomorphism and tightness thus refer to orthogonal properties of state
models.

7 | DISCUSSION

Belief hierarchies as well as the common prior assumption are structurally preserved across the two epistemic
frameworks by our transformation procedures. With regards to modeling interactive thinking in games the state-based
and type-based approaches can thus be viewed as equivalent. None of the two models contains any relevant structure
that the respective other lacks. Our two transformation procedures can be viewed as practical tools to switch back and
forth between state-based and type-based interactive epistemology.

A somewhat more subtle difference between the two epistemic approaches surfaces, as the transformation pro-
cedures fail to constitute inverses. The underlying reason is attributable to the richer structure of state models compared
to type models. While the latter only specify interactive thinking the former also fixes the players’ choices. Once su-
perfluous ingredients are wiped out—technically, by restricting attention to maximally reduced models—our two
transformation procedures turn out to be inverse to each other. Besides, the notions of maximal reduction for state and
type models can also serve to simplify a given epistemic structure while retaining the same interactive thinking in
applications.

While this “isomorphic” disparity between the state and type models does not make a difference with respect to
interactive thinking at all, the particular usage could determine which epistemic apparatus is more appropriate. The
possible benefits of each of the two modeling approaches to interactive thinking can be illustrated with a simple game-
theoretic example. Consider the two player game depicted in Figure 1 with players Alice and Bob, where Alice chooses a
“row” (a or b) and Bob picks a “column” (c or d).

The solution concept of Nash equilibrium specifies for every player a probability distribution on his own choice set
such that only best responses receive positive probability against the product of the opponents’ probability distributions.
The probability distribution tuple o = (Galices Tob)s Where guyc(b) = 1 and opep(c) = Tpep(d) = %, forms a Nash equi-
librium of the game in Figure 1, as b is a best response against op,, and c as well as d are best responses against 0 ;c.. In
terms of reasoning this Nash equilibrium corresponds to the two belief hierarchies generated entirely by o, that is,

— Alice believes with probability % that Bob chooses c and with probability % that Bob chooses d,

— Alice believes that Bob believes that she chooses b,

— Alice believes that Bob believes that she believes with probability 1 that Bob chooses ¢ and with probability 1 that Bob
chooses d,

- etc.

and

— Bob believes that Alice chooses b,

—- Bob believes that Alice believes with probability 1 that Bob chooses ¢ and with probability 1 that Bob chooses d,
— Bob believes that Alice believes that he believes that she chooses b,

- etc.

In the epistemic game-theoretic literature such belief hierarchies are called simple (Perea, 2012). These reasoning
patterns underlying the Nash equilibrium o can be modeled by either of the two epistemic approaches.
The type model ((T;, b;),c;), Where

[e] fan

FIGURE 1 A two player game.
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= Tagice = {tAlice} and Tgop = {tBob}’
- bAlice[tAlice] (C; tBob) = bAlice [tAlice] (d; tBob) = %’
- bBob[tBob](b, tAlice) =1,

formalizes the above two belief hierarchies. The structure is parsimonious, as it merely contains the absolute essentials
to describe the belief hierarchies. Such an approach seems appropriate, if the only interest lies in the agent's interactive
reasoning.

The state model (Q, (Z;, 0, 7;),c;) Where

- Q = {w;, Wy, W3, W4},

= T Alice = {{6017602}7 {5037604}},

~ Tgop = {{wl,@3}7 {coz,co4}},

- O'Alice(c’)l) = CJ'Alice(w2) = b and C"Alice(w_%) = O-Alice(w4) =a,
~ 0pop(W1) = Tpop(@3) = ¢ and Opop(@2) = Opop(ws) = d,

- nAlice(wl) = ﬂAlice(wZ) = ﬂAlice(w3) = 77:Alice(a)4) = %1

— Tgob(@1) = Tgop(w2) =5 and 7pep(@3) = pop(ws) = 0,

also formalizes the above two belief hierarchies. While the state model is somewhat more involved than the type model,
it allows for analyzing situations in the sense of interactive thinking and choice. In particular, the state model embeds
two situations—the two distinct cells for Alice—with the same belief hierarchy for Alice yet distinct (and optimal)
choices for her. A state-based approach seems appropriate, if the emphasis lies not only on the agents' interactive
reasoning but also on their actual choices.

To conclude, if the focus is put on reasoning in games before decisions are made or the perspective of a particular
player is considered, then type models may be more suitable. In contrast for analyses that are conducted from the
perspective of a modeler the state-based framework could be preferable. After all there remains a degree of subjectivity
whether the specification of beliefs only or beliefs and behavior is desired in an epistemic framework for games.
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ENDNOTES

Intuitively, an event E is common knowledge, whenever all agents know E, all agents know that all agents know E, all agents know that all
agents know that all agents know E, etc. The so-called iterative definition of common knowledge captures this intuition formally. It can be
shown that common knowledge defined in terms of the meet is equivalent to the iterative definition (e.g., Aumann, 1976; Bach &
Cabessa, 2017, Lemma 1; Tébids, 2021, Proposition 2).

—

2 Of course this is not the only prior in line with our transformation procedure. In fact, any probability distribution on € also satisfying the
four conditions would also work.
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