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REPEATED GAMES WITH ENDOGENOUS CHOICE OF
INFORMATION MECHANISMS

JANOS FLESCHano ANDRES PEREA Y MONSUWE

We consider two-player repeated games with nonobservable actions (cf. Lehrer 1989). An
information mechanism for a player is a function which assigns a private signal to every action-pair
of the one-shot game. In this paper, we extend the model to a situation in which both players can buy
an information mechanism before playing the repeated game. Within this model, we provide a
characterization of the lower equilibrium payoffs in terms of the one-shot game for the case that both
players choose a nontrivial information mechanism with probability one. Moreover, we construct a
lower equilibrium in a repeated game in which one of the players strictly randomizes between
information mechanisms. It is shown that the corresponding payoffs cannot be induced by a lower
equilibrium in which players choose a particular information mechanism with probability one.

1. Introduction. In this paper, we study two player repeated games with nonobserv-
able actions in which both players select an information mechanism before the actual game
starts. Here, an information mechanism is a function assigning a private signal to each pair
of actions chosen in the one-shot game. The mechanism chosen by a player is not observed
by his opponent. We assume that the costs for the information mechanisms are fixed and
known to both players. Furthermore, the players always have the ability to buy the trivial
information mechanism (revealing no information about the opponent’s actions) at price
zero. The model can therefore be seen as an extension of the traditional model (with fixed
information mechanisms) as studied in Lehrer (1989, 1990, 1991, 19924, b), Fudenberg and
Levine (1989) and Radner (1986), to name just a few. Hillas and Liu (1995) investigate the
case in which signals are stochastic instead of deterministic.

We first focus on strategies in which both players choose one specific information
mechanism with probability one. Such strategies are calleghleand lower equilibria (cf.
Lehrer 1989) consisting of simple strategies are cadlieaple lower equilibria Our main
result provides a characterization of the class of simple lower equilibrium payoffs by means
of the one-shot game. As such, it can be viewed as an extension of Lehrer’'s result to
situations where information mechanisms are not fixed but are chosen endogenously.
Roughly speaking, the characterization states that the simple lower equilibrium payoffs
coincide with the individually rational payoffs generated by some correlation on the one-shot
action pairs, such that no player can benefit from switching to another information
mechanism and subsequently transforming actions, without being detected.

Another interesting situation would be the case where both players are allowed to
randomize over the different information mechanisms that can be chosen. However, this
situation is much more complex since both players are uncertain about the mechanism that
is used by the opponent. We provide an example in which we construct a lower equilibrium
where one of the players strictly randomizes over information mechanisms at the beginning
of the game. We prove that the corresponding payoff cannot be sustained by a simple lower
equilibrium.
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786 J. FLESCH AND A. PEREA Y MONSUWE

2. Model. We consider a two player game in which both players, before playing a
repeated game with nonobservable actions, choose an information mechanism. Formally, a
two-player repeated game with nonobservable actiens tripleI" = (I"y, 14, |,) where

(1) I'y is a two-player normal form game with finite action sétg A, and payoff-
functionsv,, v,, and

(2) I;: Ay X A, — L, is the so-callednformation mechanisrfor playeri which assigns
to every pair of actions a signal in the signalslsetThe functiond,, |, should be such that
l.(as, a,) # I1.(a}, a,) whenevera, # a’ andl,(a,, a,) # |,(a}, a,) whenevera, # a..

The latter condition on the information mechanisms means that a player always observes
his own actions. The information mechanispis calledtrivial if player 1 only observes his
own actions. Formally, this means that

l,(a;, a,) = l,(a;, a5) foralla,€ A, andall a,, a,€ A,.
We call the information mechanish perfectif it reveals all the opponent’s actions, i.e.,
I,(a;, a,) # I,(a}, a5) whenever, # aj5.

In the remainder of this article, a two-player repeated game with nonobservable actions will
simply be called a repeated game.

By £, andZ, we denote the collections of information mechanisms which can be bought
by player 1 and 2 respectively. Each information mecharis@ &, can be bought at a
nonnegative pricec(l;). We assume thatf, and &, contain the trivial information
mechanism which can be bought at price zero. If the information mechahjsansi|, are
chosen, the players enter the corresponding repeated §#imel,). Depending on his
information mechanisnh, playeri chooses a behavior strategy(l;) in the repeated game
which follows. The new, larger game obtained in this way is calledetttended gameA
behavior strategyfor playeri in the extended game is a paff = (7;, o;) wherer; is a
probability distribution orff; anda; is a function assigning to every information mechanism
I, in &, a corresponding behavior strateg)(l;) for the repeated game. In order to formalize
the notion of the behavior strategy (l;), consider a repeated game which follows after
choosingd;. An n-stagehistoryfor playeri is a sequencd{, I, ... ,I) of playeri signals.

The set ofn-stage histories of playeris denoted byL;". A behavior strategyor playeri in
the repeated game is a sequenge= (o)., Wwhereo! € A(A) anda: L' — A(A)
forn=2,3,....

Let (o, 0,) be a behavior strategy pair in the repeated gdiie, 1,). For everyn and
everyn-stage history pairl(;, h,), P, ,,(h:, h;) denotes the probability thah(, h,) will
occur. The expected average payoff for playat stagen is given by

1
ﬁ E E l]:Dtn,U'z(hll hZ)vi(o-E(hl)v U;(hZ)) ’

k=1 | (h1,hp)el ¥ txLk?

vi(oy, ;) 1=

where L? is some arbitrary single-element set. By(o5(h,), o5(h,)), we denote the

Downloaded from informs.org by [137.120.34.117] on 06 February 2014, at 05:21 . For personal use only, all rights reserved.

! Another possibility would be to allow the players to choose an information mechanism at each stage of the game,
before choosing the action. As such, the model would reduce to a special case of a repeated game with unobservable
actions as studied by Lehrer (1989, 1992). In this case, a player could check the opponent’s actions by choosing a
nontrivial mechanism only at a set of stages with density zero and therefore (on average) not paying anything for
this. This is not possible in our model: if a player wants to check the opponent by using a nontrivial mechanism then
he has to pay the full price in advance. For an example illustrating this difference, see Flesch and Perea y Monsuwe
(1999).
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expected payoff for playérin the one-shot game, if the mixed actian&h,) andos(h,) are
played. We define

v (01, 0;) = liminf v{(oy, 0,) and (o, 0,) = limsup vi(oy, 0,).

n—w n—w

The payoffsy;(o,, 0,) andv;(o,, 0,) are called lower payoff and upper payoff respectively.
Now, suppose that the players play the behavior strategy pair&,) in the extended
game. The lower (upper) expected payoff for player equal to the difference between the

lower (upper) expected payoff in the repeated game and the expected amount to be paid for

the information mechanism. We denote the lower and upper expected payoff for iplayer
wi(d,, ¢,) andw,(p,, ¢,) respectively. The behavior strategy pap ( ¢,) is called dower
equilibriumin the extended game if

(1) Wi, $2) = Wi(dy, ;) fori =1, 2, and

(2) Wi(d4, 5) = Wi(dhs, b,) for all ¢ andw, (s, b5) = Wy(dbs, ¢b,) for all ¢,

A behavior strategy pair in the extended game is caliedple if both players but
probability one on a specific information mechanism. A lower equilibrium consisting of
simple strategies is termegimple lower equilibrium

3. Main result.

3.1. The theorem. In the remainder of this article, we always refer to the extended
game when we talk about strategies and equilibria unless we say otherwise. Byl SILEP(
we denote the set of payoffs induced by simple lower equilibria in which the information
mechanisms, andl, are chosen with certainty. In order to give a characterization of the set
SLEP( 4, |,) we need some more definitions. In these definitibngndl, are fixed.

Let I} be an arbitrary information mechanism. In the following definitions we compare
pairs @,|l,) consisting of an actioa; and the information mechanisinwith pairs @;]14).

A pair (a4|l%) is calledmore informativethan @|l,), denoted by &;|1}) > (a|lL), if 1:(as,
a,) # l,(a;, ab) impliesl(ay, a,) # 11(ay, a3) forall a,, a5. In words, all actions of player
2 that are distinguished by playing actiapwhile using information mechanisiy are also
distinguished by playin@’ while usingl;. A pair (a}|l%) is calledgreaterthan @|l,),
denoted by &}|1)) >" (ajly), if a; ~'* a;, and @3]l;) > (ayl,). Here,a; ~'? a, means
thata anda, are indistinguishable if player 2 usks An information mechanisrti, is called
greaterthanl, with respect td,, denoted by}, >"? I, if for every actiona, there exists an
actiona’; such that &3|17) >" (ajly).

Let & be the set of probability distributions @k X A,, which from now on will be called
weight matrices. For an information mechanigniet W,(17) be the set of functiong,: A, — A,
with

(Pa(a)lly) =" (ayll,)
for all a, € A,. In words, if player 1 switches frorh, to I}, thenW¥,(I}) contains those
functions which transform each action into a greater one. Notelth@t) is nonempty if and

only if 11 >"1,. For aB € & and a functiony, € ¥,(l}), the weight matrixy,(B) is
defined by

(1(B))(ay, &) = 2 B(a, a,)

sy (a1)

for all a,, a,. Note that, by definition,{,(B))(a., a,) = 0 if ;(a,) is empty. It can be
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seen easily that the functial, transformingB into ¢s,(B) is a linear (and therefore convex)
operator. Furthermore, we define

B1(11) = {B € Blv1(B) = c(l1) = 02 (¢2(B)) — c(I1) forall g, € ¥y (1)}

Intuitively, &B,(11) contains those weight matrices for which player 1 cannot increase his
payoff by deviating to information mechanisrh and transforming his actions into greater
ones. By constructiori (1) = B if I, * 1, since in this cas®,(1}) is empty. In the same
way, we defineR ,(1%).

Theorem 3.1. If |, and |, are nontrivial

N

lies, |bes,

SLERI,, |,) = H M w(B,(19)

N v(%za'z))] — (c(ly), c(b))] NIR.

Here, v(%;(l})) denotes the set of payoff pairs,( v,) induced by weight matrices in
Bi(11). The notation—(c(l,), c(l,)) means that we substract the cost-pa(t{), c(l,)) from
every element of the set. By IR we denote the set of individually rational payoff pairs of the
one-shot game. The proof can be found in §3.3. Note that theldeR(,, |,) can be empty
for somely, |,.

3.2. Detectability of deviations to other information mechanisms. In Lehrer’s
characterization of lower equilibrium payoffs with fixed information mechanisms (Lehrer
1989), a central role is played by checking the opponent’s actions. This is used as a tool to
prevent the opponent from deviating. Roughly speaking, Lehrer implements this by building
in test phases where a player is asked to report the signals he received in the past. In our
model, players have the additional possibility to deviate to other information mechanisms.
Therefore, new techniques have to be introduced to check whether the opponent has deviated
to another information mechanism. This is the aim of this subsection.

Let the information mechanisnsg andl, be fixed. We say that a deviation fromto |,
is undetectabléf for all behavior strategy pairsof,, o) in I'(l, |,) there exists a behavior
strategyo, in I'(1, I,) such that ¢}, o,) induces the same probability distribution on player
2's histories asd, o).

By IH (o, 0,) we denote the set of infinite player 2 historfes= (I3, 15, 13, . ..) having
a finite sub-history which is impossible i&(, o,) is played. We say that a deviation from
I, tol is detectablef there exists a behavior strategy pait, ( o,) in the repeated gamg(l ,,

;) such that for all behavior strategie$in I'(1%, | ;) we haveP,, ,,(IH (o1, 0;)) = 1. This
means that, after choosing, every strategy of player 1 will induce, with probability 1, a
finite history for player 2 which could not occur if player 1 had chokeand playedo,.

Suppose that the set of possible signals for playerll, is {ti, ..., t"|}. Sincel, and
|, are nontrivial, there exist actiorss, a; € A, anda, € A, such that ,(a?, a,) # |.(a1,

a,). These actions will be used for communication between the players. For an agtion
€ A,, thetestT(a,) is a strategy pair for & |L,| stages defined as follows. At the first stage
player 2 plays each of his actions with probabilityA|, while at all remaining stages he
playsa,. Player 1 plays actioma, at the first stage and afterwards answers which signal he
received at the first stage. Player 1 codes his answer in the following way. At thenf)ith
stage he plays actioa; if he received signat]" at the first stage and he plays actiah
otherwise. Tests (B,) are defined analogously.

We define thanformation mechanism inspectiaa be the strategy pair consisting of all
possible test3(a,) andT(a,). Since each test is finite and there are only finitely many tests,
it follows that this inspection has finite length.
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Lemma 3.2. Let |, |, be nontrivial information mechanisms andsome other informa
tion mechanism

(@) If 11 >"1, then the deviation from, Ito |} is undetectable

(b) If 15 "1, then the deviation can be detected by repeating the information mechanism
inspection infinitely many times

Proor. (@) Letl, >'"21, and let ¢, o,) be a behavior strategy pair ii(l,, 1,). We
construct a behavior strategy in I'(13, |,) such that ¢7, o) and ,, o) induce the same
probability distribution on all finite histories of player 2.

Forn = 1, we defines’,'(a,) := oi(¥i(a,)) for everya, € A,, whereoi(; '(a,))
denotes the surﬂalewf(al)ai(al). Hence, player 1 uses, to transform the old mixed
actiono; into the new mixed action,*. Sincey,(a,) ~'? a, it follows that (o'}, o,) and
(o1, 0,) induce the same probability distributions on the one-stage histories of player 2.

Forn > 1, we defines," as follows. If player 1 observes histony " at stagen, he can
compute the conditional probability distributidh,, ,,( - |hi™*) on the player 1 histories up
to stagen — 1 which would have occurred if he had playlgdand o, instead ofl;, and o’.
The latter is due to the fact thap((a,)[l;) is more informative thang|l,) for everya,. For
everyh] " we define

oi"(hi ™ (@) 1= X Poup,(hi"Hhi™) - ol (" (y1'(ar)

hin-1

for all a,. In words, player 1 calculates the probability distribution on histories that he would
have observed while using ando, and for each of those histories transforms the old mixed
action into a new one by using,. Sinceys, transforms actions into indistinguishable ones
(from player 2's viewpoint) and player 1 is always able to calculate the probability
distribution on histories that would have occurred when usjrando, , it can be shown by
induction onn that (¢, ¢,) and @, o,) induce the same probability distribution on the set
of n-stage histories of player 2 for ail

(b) Now, letl, *'?1,. Then, by definition, there is an actian for which there is no action
a; with (ay|l) >'" (a.|l,). So, by usingl; and aj}, player 1 either does not play in an
indistinguishable way or he cannot distinguish all the actions of player 2 that he could
distinguish by playing actioa, while usingl,. In the former case, since each player 2 action
occurs with strictly positive probability in the information mechanism inspection and the
inspection is repeated infinitely many times, player 2 will, with probability 1, receive a signal
that he should not get if player 1 playad. In the latter case, player 2 will, with probability
1, receive a wrong answer from player 1 in one of the repetitions of théltast. O

3.3. Proof of theorem. Before we prove the characterization of the simple lower
equilibrium payoffs as given in Theorem 3.1, we need some technical lemmas. In these
lemmas, the nontrivial information mechanismis fixed andl’; is some other information
mechanism.

By V,(I) we define the set of payoff paitavhich can be written as a convex combination

v= > a%u(a,, psH

ai
with

Z a®y(ag, p3) —c(ly) = Z a®v;(Pi(ay), p3) — c(ly)

ai ai

RIGHTS LI M Hiy



Downloaded from informs.org by [137.120.34.117] on 06 February 2014, at 05:21 . For personal use only, all rights reserved.

790 J. FLESCH AND A. PEREA Y MONSUWE

for all s, € ¥ ,(1"). Here,p3* denotes a mixed action for player 2 in the one-shot game, i.e.,
a probability distribution orA,.

Lemma 3.3, v(By(17) = Vai(l2).

The proof is elementary and can be found in Flesch and Perea y Mor(¢98@).

It can be checked easily tha{?,(1})) is a convex and compact set.

Now, suppose thato(,, o) is a behavior strategy pair (I, |,) inducing a payoff pair
v & v(B(11)). Then, we can find two disjoint, closed half-spa¢es and K~ such that
int(K™) containsv andK ™~ containsy(% ,(1,)). Here, intK ") denotes the interior ok *.

Lemva 3.4. There is ay > 0 such thatu(B) € K™ implies thatv;(y1(B)) — c(l?)
= v, (B) — ¢(l,) + v for somey, € ¥ (I}).

Proor. Let %" be the set of weight matrice® with »(B) € K. Let f be the function
assigning to every weight matri® the number

max [[v1(§1(B)) — c(11)] — [v:(B) — c(l)]].

eV ()

By constructionf is continuous ané(B) > 0 for allB € % *. Since® " is compactf attains
a minimumy > 0on®". ©

Proor oF THEOREM 3.1.

(a) “C” Obviously,SLER] 4, I,) C IR since both players can guarantee their individually
rational payoff of the one-shot game by choosing the trivial information mechanism and
playing the max-min action in every stage of the game.

By symmetry, it suffices to show th&LER|,, I,) C o(B.(11)) — (c(l,), c(l,)) for every
I1. Assume by way of contradiction thath(, ¢,) = ((I., o), (I, 0,)) is a lower-
equilibrium with payoffv — (c(l1), (1)) ¢ v(B.(17)) — (c(14), c(l,)) for somel’, sov
¢ u(%B,(11)). For convenience, we write; instead ofo(l;) andP instead ofP, . For
everyn € N, letP"(a,, a,) be the probability that the action paix, a, is played in stage
n and letB" be the weight-matrix given b"(a,, a,) = P"(a,, a,) for all a,, a,. By
definition, it holds that

v = lim % > v(B") = lim v(%z B”).

N—oe N N—o

Sincev ¢ v(MB.(l4)), we can find set& " andK ™ as constructed above. Using the fact that
v € int (K"), it follows thatv((1/N) 2., B") € K" for largeN. We may assume, w.l.0.g.,
thatv((1/N) 2\_, B") € K" for all N. By Lemma 3.4, there is ¢ > 0 such that for every

N we can find aj) € W,(I%) with

ool

N

1
N 2 nWiB") —c(y =

n=1

Z|l
Zl

2 B”) —c(l) +,

implying that

Zl -

2 0(B") = cly) + v.
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For every stage, let ¢y} € ¥ ,(1}) be such that,(7(B")) is maximal. With the inequality
above, it follows that

Zl -
Zl -

l N ~ N N
N > ni(Pi(B") —c(ly) =5 2 vi(Ph(BM) — (1) =5 > 0i(B"Y) —c(ly) + v
n=1 n=1 n=1

for all N.

Let o} be the behavior strategy which is obtained fromby transforming the actions in
stagen according toys}. The strategyr; is constructed in the same way as the strategy
in the proof of Lemma 3.2. Since the deviation framto o7 cannot be detectedy{, o)
induces the same probability distributions on the player 2 historiesoas «,). By
construction,

N

1 _
w(oh, 0p) = cly) = liminf = > v, ($3(B") - c(l1)

N—o n=1

1 N
=lim 5 2 v(B) —c(ly) +y=wvi—c(ly) + v

N—o n=1

which is a contradiction to the fact thab{, ¢,) is a lower equilibrium.

(b) “D” Let v be a payoff in the right-hand side. We construct a simple lower equilibrium
((13, o1), (I, 05)) with payoff v. The implementation of the strategiesand o, consists of
the following six phases which are repeated infinitely many times. The phases 2a, 2b, 3a and
3b are constructed in a similar way as in Lehrer (1989).

Phasela. Player 1 plays his information mechanism inspection, as described in §4.2.
Phaselb. Same for player 2.

Phase?a. Letl} be an information mechanism i,. By Lemma 3.3,0 can be written

as
v=2 a%u(a, p3)
with
3.1 2 afuy(ay, p3) — cly) = X a®u(Ya(ay), p3) — c(l})

ap ai

for all ¢, € ¥ (l%).

For everye > 0, letp3'(e) be the unique mixed action closestg which puts minimal
weight e on every action.

If the nth stage is reached, &t be the block containing the nert stages. We divid&
into sub-blocksK® such that the relative length &® in K is close to the corresponding
coefficienta®. In each stage of blocK®, player 1 and 2 play, andp3*(e) respectively,
wheree has to be chosen small enough. Below, we specify what we mean by “small enough”.

On the other hand, the values fehave to be chosen in such a way that, starting from an
arbitrary stage, the probability that a player 2 action is played in the future, is equal to 1.

Downloaded from informs.org by [137.120.34.117] on 06 February 2014, at 05:21 . For personal use only, all rights reserved.
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We repeat this process until every information mecharisimas been chosen.
Phase2b. Similar to phase 2a, but now the roles of player 1 and 2 are exchanged.

Phase3a. LetSbe the set of stages containing all repetitions of phase 2b up to the current
stage. If this is thath repetition of phase 3a, player 1 asks his opponent the question “Which
signal did you receive at theth stage ofS?” Afterwards, player 2 answers the question. The
question and answer are implemented in the same way as described in the information
mechanism inspection. Since player 2 is supposed to play only pure actions in phase 2b,
player 1 knows exactly which signal player 2 should have received attthstage ofS.

Phase3b. Same as phase 3a, but now with exchanged roles of player 1 and 2.

At the end of phase 3b, the players return to phase 1a and so on.

If at any moment in the game, a player notices that his opponent has deviated from the
prescribed strategy, he will punish him by playing his min-max action forever.

For a setM of stages, lim sup... ((IM N {1, ..., N}|/N) is called theupper densityof
M, whereas lim inf_. ((M N {1,..., N}|/N) denotes thelower densityof M. By
construction, the set of stages belonging to phases 1a, 1b, 3a and 3b has upper density zero.
Therefore, these phases have no influence on the final payoff.

The sub-blocksK®, K* should be arranged in such a way that the average payoffs
converge. The lengths of the sub-blodks, K* in phase 2a and 2b respectively and the
value of e in the same phases can be chosen in such a way(at ¢,) = v.

Finally, we show that (¢, o,), (I, 0,)) is a lower equilibrium. Suppose that player 1
would deviate to a strategy’(, o). If 7 is not greater thah,, then, with probability one,
the deviation will be detected in one of the repetitions of phase 1b and player 1 will be
punished. So the only possible way for player 1 to improve his payoff is by deviating to an
I >"21,.

Look at an arbitrary block in phase 2b which corresponds to the information mechanism
I.. The length of block is equal ton", wheren is the number of preceding stages. it
be the collection of block& which correspond td; and leti{* be the set of final stages of
blocksK € X. Let x; be the player 1 expected payoff at stagehen @}, o) is played.
Since in the long run, the average payoff until some stagé*irs completely determined by
the payoffs at stages ii, it follows that

1 1
liminf — > x7=liminf — > X,

N .
NEK* n=1 Nej* nexN{L, . .. N}

Since
N
L N( 1 Lo 1 n
v (o, o,) = liminf v)(a}, 0,) = liminf — > x3,
- N neser N 7
n=1

it suffices to show that

o1
||m |nf 5 2 XE = ‘()1(0'1, 0'2).
New* neyn{l, ... N}

In other words, it remains to prove that by playing, the average payoff at stagesiindoes
not exceedv,(o, o,). If player 1 only deviates on a set of stages with lower density zero,
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it cannot increase the lower expected payoff. Therefore, it suffices to consider player 1
deviations on a set of stages with positive lower density.

Suppose that player 1 deviates/irby transforming actions into distinguishable actions on
a set of stages with positive lower density. Then, with probability 1, player 2 will detect this
deviation in one of the repetitions of phase 2a.

If player 1 deviates ir%{ by transforming actions into less informative actions on a set of
stages with positive lower density, then, with certainty, this deviation will be detected by
player 2 in one of the repetitions of phase 3b.

So the only possible way for player 1 to increase his payoff is by transforming actions into
greater actions on a set of positive lower density. In the long run, the expected average payoff
in stages off converges to

v=2 a%u(a, p3)

ai
with

2 a®v(ay, p3) —c(ly) = 2 a®v;(Pi(ay), p3) — c(ly)

ai ai

forall yy, € ¥,(1}). Therefore, player 1 cannot increase his long run average payoff in stages
of I by transforming actions into greater actions, which leads to the conclusion that

. . 1 n
lim inf — > X1= vi(0, 07).
Ne* neXN{1, ... N}

Since this holds for everl,, it follows thatv,(o7, 02) = vi(0oq, 03). O

4. Nonsimple strategies.

ExampLE. Consider the repeated game in which the one-shot game is given by

L R
-1,0
0,1~
0,1

21
31
3

O C
cooo

Assume thatf, = {trivial, perfect} and £, = {trivial, 13, 15} where

| 2

and I3

o
Il
QT QO
000
T o 9o
000

All mechanisms can be obtained at price zero.

Claim. The payoff (2, 0) is a lower equilibrium payoff if players are allowed to
randomize over choosing different information mechanisms but cannot be obtained as a
simple lower equilibrium payoff.

Proof of claim. First we construct a lower equilibrium in which player 2 strictly
randomizes betwedn andl resulting in the payoff (2, 0). Let the strategies for player 1 and
2 be as follows. Player 1 chooses the perfect mechanism with probability one andlpddys
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every stage, irrespective of the history. Player 2 chobsesd|; both with probability3,

playsL as long as he observes sigmaand playsR if he observed signab or ¢ in one of

the previous stages. Clearly, these strategies induce the payoff (2, 0). If player 1 deviates
from U to another action at some stage then player 2 will detect this with probabilitye

lower payoff for player 1 by deviating at some stage can therefore not exce®d- 3- 0

< 2. Since player 1 has no incentive to choose the trivial mechanism and player 2 has no
incentive for deviation, these strategies constitute a lower equilibrium.

Next we prove that there is no simple lower equilibrium which induces payoff (2, 0).

Suppose that player 2 chooses one of his information mechanisms with probability one. Let

P(U) :=lim inf % > PKU),

n—e k=1

whereP*(U) is the probability that player 1 plays at stagek. If P(U) > 0 then player 1
can always replace the actidh by D or M (depending on whether player 2 udgsor |3,
respectively) without being detected and increase his payoff. Therefore this cannot be a lower
equilibrium. If P(U) = 0 then the strategies cannot induce the payoff (2, 0). Consequently
there is no lower equilibrium with payoff (2, 0) in which player 1 and 2 choose one of their
mechanisms with certainty.o

However, if we try to characterize the set of lower equilibrium payoffs in a situation where
players may randomize over the information mechanisms that can be bought, we encounter
some very difficult problems. This is due to the fact that players are uncertain about the
mechanism used by the opponent. Detecting deviations becomes therefore a very compli-
cated matter.
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