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For a given ε > 0, the concept of ε-proper rationalizability (Schuhmacher, 1999) is based on 
two assumptions: (1) every player is cautious, i.e., does not exclude any opponent’s choice 
from consideration, and (2) every player satisfies the ε-proper trembling condition, i.e., the 
probability he assigns to an opponent’s choice a is at most ε times the probability he 
assigns to b whenever he believes the opponent to prefer b to a. In this paper we show 
that a belief hierarchy is ε-properly rationalizable in the complete information framework, 
if and only if, there is an equivalent belief hierarchy within the incomplete information 
framework that expresses common belief in the events that (1) players are cautious, (2) the 
players’ beliefs about the opponent’s utilities are “centered around the original utilities” in 
some specific way parametrized by ε, and (3) players rationalize each opponent’s choice 
by a utility function that is as close as possible to the original utility function.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Epistemic game theory deals with possible ways a player may reason about his opponents before making a decision. 
More precisely, in epistemic game theory players base their choices on the beliefs about the opponents’ behavior, which 
in turn depend on their beliefs about the opponents’ beliefs about others’ behavior, and so on. A major goal of epistemic 
game theory is to study such infinite belief hierarchies, to impose reasonable conditions on these, and to investigate their 
behavioral implications. See Perea (2012) for a textbook that discusses these issues.

A central idea in epistemic game theory is common belief in rationality (Tan and Werlang, 1988), stating that a player 
believes that his opponents choose rationally, believes that his opponents believe that their opponents choose rationally, 
and so on. In our view, one of its most natural refinements is the concept of proper rationalizability (Schuhmacher, 1999
and Asheim, 2001), which is based on Myerson’s (1978) notion of proper equilibrium, but without making any equilibrium 
assumption. Proper rationalizability is based on the following two conditions: The first states that players are cautious, 
meaning that they do not exclude any opponents’ choices from consideration. The second condition is known as the ε-proper 
trembling condition, which states that whenever you believe that a choice a is better than another choice b for your opponent, 
then the probability you assign to b must be at most ε times the probability you assign to a.

✩ We would like to thank an associate editor and two anonymous referees for their valuable comments. In fact, their suggestions have led to a very 
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d e f
a 0,2 1,1 1,0
b 1,2 0,1 1,0
c 1,2 1,1 0,0

Fig. 1. An example for ε-proper rationalizability.

Formally, a type within an epistemic model is called ε-properly rationalizable if it is cautious, satisfies the ε-proper 
trembling condition, and expresses common belief in these events. The concept of proper rationalizability is basically obtained 
by considering the notion of ε-proper rationalizability, and letting ε tend to zero in the limit. In this paper, however, we 
will focus on the concept of ε-proper rationalizability for an arbitrary but fixed ε.

We will now explain this concept by means of an example. Consider the game in Fig. 1, where player 1 chooses between 
a, b and c and player 2 chooses between d, e and f .

Note that for player 2, choice d is better than choice e, and choice e is better than choice f . Hence, any ε-properly 
rationalizable type of player 1 assigns a probability to choice f that is at most ε times the probability he assigns to choice e, 
and assigns a probability to e that is at most ε times the probability he assigns to choice d. Therefore, if ε < 1, only choice 
c for player 1 and choice d for player 2 can be optimal for ε-properly rationalizable types. The usual interpretation of 
an ε-properly rationalizable type is that you assume that your opponent makes mistakes, but that you deem more costly 
mistakes much less likely (by a factor ε) than less costly mistakes.

In this paper we offer a rather different foundation for ε-properly rationalizable types, within a model that assumes 
incomplete information about the players’ utility functions. More precisely, in our model players do not believe the opponent 
to make mistakes, but rather believe, with some (small) positive probability, that the opponent has a utility function different
from the one depicted in the game. Importantly, they do believe the opponent to choose rationally given his utility function. 
In other words, instead of assuming that players are certain about the opponent’s utility function but uncertain about his 
degree of rationality, we assume that players are uncertain about the opponent’s utility function but certain about his degree 
of rationality.

Within such a framework we offer epistemic conditions that characterize the concept of ε-proper rationalizability for 
two-player games. The epistemic conditions we introduce are caution, ε-centered beliefs around u, and belief in the opponent’s 
rationality under the closest utility function. Here, u is the original profile of utility functions as depicted in the game. By 
caution we mean that whenever a type deems some opponent’s belief hierarchy possible, it does not exclude any opponent’s 
choice for that particular belief hierarchy. A type has ε-centered beliefs around u if it deems opponent’s utility functions 
closer to u much more likely (by a factor ε) than utility functions that are further away from u. Finally, a type believes in 
the opponent’s rationality under the closest utility function if it rationalizes every opponent’s choice by an opponent’s utility 
function that is as close as possible to u.

Our main result shows that a type in a model with complete information is ε-properly rationalizable, if and only if, there 
is a type in the model with incomplete information that (a) expresses common belief in caution, ε-centered beliefs around
u and rationality under the closest utility function, and (b) generates the same belief hierarchy on choices as the ε-properly 
rationalizable type. By doing so, we thus provide a new, alternative epistemic characterization of ε-proper rationalizability 
within an incomplete information setting.

The crucial difference with the usual interpretation of ε-proper rationalizability is that in our new characterization, 
a player believes – with probability 1 – that his opponent chooses rationally, but faces some small uncertainty about the 
opponent’s true utility function, restricted by the ε-centered beliefs condition. In the usual interpretation, a player assigns 
probability 1 to his opponent’s actual utility function, but faces some small uncertainty about the opponent’s degree of 
rationality, restricted by the ε-proper trembling condition. Hence, we show that the new conditions of ε-centered beliefs 
around u and belief in the opponent’s rationality under the closest utility function in the incomplete information setting are, in a 
sense, equivalent to the ε-proper trembling condition in the complete information setting.

The driving force behind this equivalence is our Choice Ranking Lemma (Lemma 5.5). There we show that for a given 
belief and a given utility function ui , choice a is better than choice b if and only if the closest utility function to ui needed 
to rationalize a is closer to ui than the closest utility function to ui needed to rationalize b. Hence, “inferior choices” in 
the complete information setting can be translated into “more distant utility functions needed to rationalize the choice” 
in the incomplete information setting. Building upon this insight, the ε-proper trembling condition, stating that inferior 
choices must deemed less probable, by a factor ε, than better choices, becomes equivalent to saying that (a) choices must 
be rationalized by utility functions that are as close as possible to the original one, and (b) more distant utility functions 
must be deemed less probable, by a factor ε, than closer utility functions. Since the conditions (a) and (b) summarize 
ε-centered beliefs around u and belief in the opponent’s rationality under the closest utility function, these conditions can thus be 
seen as an “incomplete information counterpart” to the ε-proper trembling condition. This, in fact, is the main message of 
our paper.

Our setting with incomplete information is related to the model used in Dekel and Fudenberg (1990). They also consider 
games with incomplete information where the players face some small uncertainty about the opponent’s utilities. One 
important difference with our approach is that Dekel and Fudenberg apply the concept of iterated elimination of weakly 
dominated choices to such games with incomplete information. They show that if the uncertainty about the opponent’s 
utilities vanishes, then we obtain one round of deletion of weakly dominated strategies, followed by iterated deletion of 
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strongly dominated strategies, in the original game. The latter procedure is also called the Dekel–Fudenberg procedure in 
the literature. In contrast, we apply common belief in caution, ε-centered beliefs around u and rationality under the closest 
utility function to games with incomplete information. We then show that these types are in one-to-one correspondence 
with the ε-properly rationalizable types.

Another fundamental difference between our paper and Dekel–Fudenberg lies in the restrictions imposed on the uncer-
tainty about the opponent’s utilities. Their model assumes that players only deem possible finitely many utility functions 
for the opponent, and that a large probability must be assigned to the opponent’s original utility function u. Our condi-
tion of ε-centered beliefs around u also imposes these conditions, but additionally requires that utility functions closer to 
u must be deemed much more likely than utility functions further away from u – something that is not required in the 
Dekel–Fudenberg setting.

The paper is organized as follows. In Section 2 we introduce the notion of ε-properly rationalizable types for games with 
complete information. In Section 3 we introduce an epistemic model for games with incomplete information, and define 
common belief in caution, ε-centered beliefs around u and rationality under the closest utility function within that setting. In 
Section 4 we show how to derive, for a given type, the full belief hierarchy on choices it induces. We do so for the complete 
information setting and the incomplete information setting. In Section 5 we state some preparatory results that are needed 
to prove our characterization result. In Section 6 we present and prove our epistemic characterization of ε-proper rational-
izability. We give some concluding remarks in Section 7. Finally, Section 8 contains the proofs of the preparatory results.

2. ε-Proper rationalizability

The concept of proper rationalizability has first been defined by Schuhmacher (1999), and has later been characterized 
in Asheim (2001) within a model with lexicographic beliefs. Here we will follow Schuhmacher’s approach, who developed 
proper rationalizability by first defining ε-proper rationalizability for an arbitrary ε > 0, and then “taking the limit when ε
tends to 0”. In fact, in this paper we will focus on the concept of ε-proper rationalizability for a fixed but arbitrary ε with 
0 < ε < 1. Throughout the paper we will restrict our attention to the case of two players to keep our presentation as simple 
as possible. Everything we do in this paper can easily be generalized, however, to the case of more than two players.

2.1. Epistemic model

Consider a finite two-player static game � = (Ci, ui)i∈I where I = {1, 2} is the set of players, Ci is the finite set of choices 
for player i, and ui : C1 × C2 → R is player i’s utility function. We assume that player i holds a probabilistic belief about j’s 
choices, a probabilistic belief about the possible probabilistic beliefs that j can hold about i’s choices, and so on. Such belief 
hierarchies can be encoded within an epistemic model with types.

Definition 2.1 (Epistemic model). Consider a finite two-player static game � = (Ci, ui)i∈I . A finite epistemic model for � is a 
tuple Mco = (Ti, bi)i∈I where

(a) Ti is a finite set of types, and

(b) bi is a mapping that assigns to every ti ∈ Ti a probabilistic belief bi(ti) ∈ �(C j × T j) on the opponent’s choice-type pairs.

Here, the superscript co stands for “complete information”, as to distinguish it from the epistemic model for games with 
incomplete information which will be introduced in Section 3. For every finite set X , we denote by �(X) the set of probability 
distributions on X . In Section 4 we show how to formally derive a full belief hierarchy for every type.

2.2. ε-Proper rationalizability

Consider a finite two-player static game � = (Ci, ui)i∈I , and a finite epistemic model Mco = (Ti, bi)i∈I . Fix a type ti ∈ Ti
with belief bi(ti) ∈ �(C j × T j).

Type ti deems possible a type t j ∈ T j if bi(ti)(C j × {t j}) > 0. Let T j(ti) be the set of types t j ∈ T j that ti deems possible.
Type ti is cautious if for every t j ∈ T j(ti), and every c j ∈ C j , we have that bi(ti)(c j, t j) > 0. That is, type ti takes into 

account all opponent’s choices for every opponent’s belief hierarchy he deems possible.
For every choice ci ∈ Ci , let

ui(ci, ti) :=
∑

(c j ,t j)∈C j×T j

bi(ti)(c j, t j) · ui(ci, c j)

be the expected utility for player i induced by the choice ci and the probabilistic belief bi(ti) on C j × T j . Type ti prefers
choice ci to choice c′

i if ui(ci, ti) > ui(c′
i, ti).

Fix a number ε with 0 < ε < 1. Type ti satisfies the ε-proper trembling condition if for every t j ∈ T j(ti), and every 
c j, c′

j ∈ C j with u j(c′
j, t j) < u j(c j, t j), we have that

bi(ti)(c′ , t j) ≤ ε · bi(ti)(c j, t j).
j
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That is, ti deems inferior choices much less likely than superior choices for the opponent.
In words, we say that type ti is ε-properly rationalizable if it expresses common belief in “caution and ε-proper trem-

bling”. To formally define this, let us first define the set of types T ∗(ti) that “ti reasons about”. We recursively define sets 
T 1

i (ti), T 1
j (ti), T 2

i (ti), T 2
j (ti), ... as follows:

T 1
i (ti) : = {ti},

T 1
j (ti) : = T j(ti),

T k
i (ti) : = {t′

i ∈ Ti | t′
i ∈ Ti(t

′
j) for some t′

j ∈ T k−1
j (ti)},

T k
j (ti) : = {t′

j ∈ T j | t′
j ∈ T j(t

′
i) for some t′

i ∈ T k
i (ti)},

for every k ≥ 2. Then, we define

T ∗(ti) :=
⋃

k∈N
[

T k
i (ti) ∪ T k

j (ti)
]
,

representing the set of types that “ti reasons about”.

Definition 2.2 (ε-Proper rationalizability). Type ti is ε-properly rationalizable if every type in T ∗(ti) is cautious and satisfies 
the ε-proper trembling condition.

That is, type ti is cautious and satisfies the ε-proper trembling condition, only deems possible types for j that are 
cautious and satisfy the ε-proper trembling condition, only deems possible types for j that only deem possible types for i
that are cautious and satisfy the ε-proper trembling condition, and so on, ad infinitum.

3. Incomplete information

We will now propose an epistemic model for situations in which players are uncertain about the opponent’s utility 
function, and define the conditions of caution, ε-centered beliefs around u, and belief in opponent’s rationality under closest 
utility function within that framework.

3.1. Epistemic model

Consider a finite two-player static game form G = (Ci)i∈I . That is, we only specify the choice sets, but not the utility 
functions, for the players. Suppose now that both players are uncertain about the opponent’s utility function, that is, the 
game is with incomplete information. A belief hierarchy for a player must now also specify what this player believes about 
the opponent’s utility function, what this player believes about the opponent’s belief about his own utility function, and so 
on. Also such belief hierarchies can be encoded within an epistemic model with types, as we will see. To formally define 
this epistemic model, let us denote by V i the set of all possible utility functions vi : C1 × C2 →R.

Definition 3.1 (Epistemic model with incomplete information). Consider a finite two-player static game form G = (Ci)i∈I . A finite 
epistemic model for G with incomplete information is a tuple Min = (�i, wi, βi)i∈I where

(a) �i is a finite set of types,

(b) wi is a mapping that assigns to every θi ∈ �i a utility function wi(θi) ∈ V i , and

(c) βi is a mapping that assigns to every θi ∈ �i a probabilistic belief βi(θi) ∈ �(C j × � j).

Here, the superscript in stands for “incomplete information”. As every type θi holds a belief about j’s type, and each of 
j’s types θ j has a utility function w j(θ j), we can derive for every type θi the induced belief about j’s utility function. In 
fact, for every type we can derive a full belief hierarchy on the players’ choices and utility functions. In Section 4 we show 
how to derive, for every type θi ∈ �i , an infinite belief hierarchy on the players’ choices alone.

3.2. Caution

Consider an epistemic model Min = (�i, wi, βi)i∈I with incomplete information for the game form G , and a type θi ∈ �i . 
Similarly to the previous section, we say that type θi is cautious if, for every opponent’s belief hierarchy it takes into 
account, it deems possible every opponent’s choice. To formally define this, we need some additional notation. For a given 
type θi ∈ �i , we say that θi deems possible some type θ j ∈ � j if βi(θi)(C j × {θ j}) > 0. We denote by � j(θi) the set of 
types that θi deems possible. For a given type θ j ∈ � j and utility function v j , let θ v j

j be the auxiliary type that has utility 
function v j and holds exactly the same belief on Ci × �i as θ j . Consequently, θ v j

j has exactly the same belief hierarchy 
on choice-utility pairs as θ j , but differs only in the utility function. Formally, θi is cautious if, for every θ j ∈ � j(θi), and for 
every c j ∈ C j , there is some utility function v j ∈ V j such that βi(θi)(c j, θ

v j
) > 0.
j
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3.3. ε-Centered beliefs around u

Consider a game form G = (Ci)i∈I and an epistemic model Min = (�i, wi, βi)i∈I with incomplete information for G . We 
will now put restrictions on the beliefs that types hold about the opponent’s utility function.

Consider a pair u = (ui)i∈I of utility functions, and some ε with 0 < ε < 1. Informally, we say that a type θi has 
“ε-centered beliefs around u” if it deems an opponent’s utility function v j “much more likely” than some other utility 
function v ′

j – where “much more likely” is measured by ε – whenever v j is closer to u j than v ′
j is. To formally define this, 

we first need to define the distance between some utility function v j and the true utility function u j .
Consider the true utility function u j for player j, and some other utility function v j . We define the distance d(v j, u j) by

d(v j, u j) :=
⎡
⎣ ∑

(c1,c2)∈C1×C2

(
v j(c1, c2) − u j(c1, c2)

)2

⎤
⎦

1/2

.

Mathematically, this is just the Euclidean distance between the real valued vectors v j and u j .

Definition 3.2 (ε-Centered beliefs around u). Consider a static game form G = (Ci)i∈I , an epistemic model Min = (�i, wi, βi)i∈I
with incomplete information for G , and a pair u = (ui)i∈I of utility functions. A type θi has ε-centered beliefs around u if 

for every θ j ∈ � j(θi), every c j, c′
j ∈ C j and every v j, v ′

j ∈ V j with βi(θi)(c j, θ
v j

j ) > 0 and βi(θi)(c′
j, θ

v ′
j

j ) > 0, it holds that

βi(θi)(c′
j, θ

v ′
j

j ) ≤ ε · βi(θi)(c j, θ
v j

j )

whenever d(v j, u j) < d(v ′
j, u j).

Hence, θi must deem, for every fixed opponent’s belief hierarchy θ j ∈ � j(θi), utility functions closer to u j much more 
likely than those that are further away from u j .

Note that the definition of “ε-centered beliefs around u” depends crucially on the specific distance function d. However, 
for establishing the epistemic characterization of ε-proper rationalizability – which is the main purpose of this paper – 
we could also have chosen a whole range of other distance functions instead. More specifically, we could have chosen any 
distance function d with the following three properties:

(a) there is a norm ‖·‖ such that d(v j, u j) =
∥∥v j − u j

∥∥ for all v j ∈ V j ,

(b) 
∥∥v j

∥∥ =
∥∥∥v ′

j

∥∥∥ whenever v ′
j can be obtained from v j by a permutation of the coordinates, and

(c) 
∥∥∥ 1

2 v j + 1
2 v ′

j

∥∥∥ <
∥∥v j

∥∥ whenever v j 
= v ′
j and 

∥∥v j
∥∥ =

∥∥∥v ′
j

∥∥∥.

But, to keep things as transparent as possible, we have chosen a particular, well-known distance function that satisfies 
these properties – the Euclidean distance.

Note also that the distance measure above is not invariant with respect to positive affine transformations of the utility 
functions. In Section 7 we discuss this conceptual issue in some more detail.

3.4. Belief in rationality under closest utility function

We next impose that a type, for a given opponent’s belief hierarchy and choice, must always look for the opponent’s 
utility function closest to u j for which that choice is optimal. We say that the type believes in the opponent’s rationality under 
the closest utility function.

Consider a type θi with utility function wi(θi) and belief βi(θi) ∈ �(C j × � j). For every choice ci ∈ Ci , let

wi(θi)(ci, θi) :=
∑

(c j ,θ j)∈C j×� j

βi(θi)(c j, θ j) · wi(θi)(ci, c j)

be the expected utility induced by the choice ci , the belief βi(θi), and the utility function wi(θi). We say that choice ci is 
optimal for θi if

wi(θi)(ci, θi) ≥ wi(θi)(c′
i, θi) for all c′

i ∈ Ci .

We are now ready to formalize the condition described above.

Definition 3.3 (Belief in rationality under closest utility function). Consider a static game form G = (Ci)i∈I , an epistemic model 
Min = (�i, wi, βi)i∈I with incomplete information for G , and a pair u = (ui)i∈I of utility functions. A type θi believes in j’s 
rationality under the closest utility function, if βi(θi) only assigns positive probability to pairs (c j, θ j) where

(a) c j is optimal for θ j , and

(b) there is no v j ∈ V j with d(v j, u j) < d(w j(θ j), u j) such that c j is optimal for θ v j .
j
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Hence, θi always looks for the utility function closest to u j that rationalizes the choice c j , for any given opponent’s 
belief hierarchy θ j and opponent’s choice c j . In Section 5 we will show that there is always a unique utility function v j that 
rationalizes the choice c j and that is closest to u j .

3.5. Common belief in caution, centered beliefs and rationality

Consider a game form G = (Ci)i∈I , an epistemic model Min = (�i, wi, βi)i∈I with incomplete information for G , and 
a pair u = (ui)i∈I of utility functions. We will focus on types θi ∈ �i that are not only cautious, hold ε-centered beliefs 
around u, and believe in the opponent’s rationality under the closest utility function, but also express common belief in 
these three events. That is, types θi ∈ �i that also believe that j is cautious, that j has ε-centered beliefs around u, and 
that j believes in i’s rationality under the closest utility function, and so on.

Similarly to the previous section, let �∗(θi) be the set of types that θi reasons about.

Definition 3.4 (Common belief in caution, centered beliefs and rationality). Consider a game form G = (Ci)i∈I , an epistemic model 
Min = (�i, wi, βi)i∈I with incomplete information for G , and a pair u = (ui)i∈I of utility functions. A type θi ∈ �i expresses 
common belief in caution, ε-centered beliefs around u and rationality under the closest utility function, if every type in 
�∗(θi) is cautious, holds ε-centered beliefs around u, and believes in the opponent’s rationality under the closest utility 
function.

A major difference with ε-proper rationalizability is thus that we require players to believe in the opponent’s rationality 
– that is, to only deem possible opponent’s choice-type pairs (c j, θ j) where c j is actually optimal for θ j . To make this 
possible, player i may believe that his opponent holds a utility function different from u j , but still “as close as possible to 
u j” in some sense. The concept of ε-proper rationalizability, in contrast, requires player i to believe that j’s utility function 
is u j – and no other – but at the same time allows player i to deem possible choice-type pairs (c j, t j) where c j is not 
optimal for t j .

In Section 6 we will see, however, that the concepts of “ε-proper rationalizability” and “common belief in caution, 
ε-centered beliefs around u, and rationality under the closest utility function” yields exactly the same belief hierarchies 
on choices for a given game � = (Ci, ui)i∈I . In that sense, “common belief in caution, ε-centered beliefs around u, and 
rationality under the closest utility function” may be viewed as an alternative epistemic characterization of ε-proper ratio-
nalizability. However, before we prove that result we first formally define the belief hierarchies on choices induced by types 
in an epistemic model, and establish some important lemmas that are needed for the proof of this characterization.

4. From types to belief hierarchies

In this section we show how to derive, for a given type within an epistemic model, the full belief hierarchy it induces on 
the players’ choices. We first consider epistemic models with complete information, and subsequently we turn to epistemic 
models with incomplete information. This is essential for a formal statement of our characterization result in Section 6.

4.1. Complete information

Take a finite epistemic model Mco = (Ti, bi)i∈I for the game � = (Ci, ui)i∈I . For every type ti ∈ Ti we can derive the belief 
about j’s choices, by taking the marginal of bi(ti) on C j . We call this ti ’s first-order belief. But we can also derive the belief 
it has about j’s first-order beliefs, which we call ti ’s second-order belief. In fact, we can derive for every type ti ∈ Ti the full 
belief hierarchy, consisting of a first-order belief, second-order belief, third-order belief, and so on. Formally, this works as 
follows.

For every type ti ∈ Ti we define the induced first-order belief h1
i (ti) ∈ �(C j) by

h1
i (ti)(c j) := bi(ti)({c j} × T j)

for every c j ∈ C j . Let

h1
i (Ti) := {h1

i (ti) | ti ∈ Ti}
be the set of first-order beliefs for player i induced by types in Ti .

Now, suppose that m ≥ 2, and that the beliefs hm−1
i (ti) and the sets hm−1

i (Ti) have been defined for both players i, and 
every type ti ∈ Ti . For every hm−1

i ∈ hm−1
i (Ti), let

Ti[hm−1
i ] := {ti ∈ Ti | hm−1

i (ti) = hm−1
i }.

We recursively define the beliefs hm
i (ti) and the sets hm

i (Ti) as follows. For every type ti ∈ Ti , let hm
i (ti) be the m-th order 

belief on C j × hm−1(T j) given by
j
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hm
i (ti)(c j,hm−1

j ) := bi(ti)({c j} × T j[hm−1
j ])

for every c j ∈ C j and every hm−1
j ∈ hm−1

j (T j). By

hm
i (Ti) := {hm

i (ti) | ti ∈ Ti}
we denote the set of m-th order beliefs for player i induced by types in Ti .

Finally, for every type ti ∈ Ti , we denote by

hi(ti) := (hm
i (ti))m∈N

the belief hierarchy on the players’ choices induced by ti .

4.2. Incomplete information

Consider a finite epistemic model Min = (�i, wi, βi)i∈I with incomplete information for the game form G = (Ci)i∈I . In a 
similar way as for epistemic models with complete information, we can derive for every type θi ∈ �i the full belief hierarchy 
on the players’ choices.

For every type θi ∈ �i , let h1
i (θi) ∈ �(C j) be the first-order belief given by

h1
i (θi)(c j) := βi(θi)({c j} × � j)

for all c j ∈ C j . Let

h1
i (�i) := {h1

i (θi) | θi ∈ �i}
be the set of first-order beliefs induced by types in �i .

Let m ≥ 2, and suppose that the beliefs hm−1
i (θi) and the sets hm−1

i (�i) have been defined for both players i, and all 
types θi ∈ �i . For every hm−1

i ∈ hm−1
i (�i), let

�i[hm−1
i ] := {θi ∈ �i | hm−1

i (θi) = hm−1
i }.

For every type θi ∈ �i , let hm
i (θi) ∈ �(C j × hm−1

j (� j)) be the m-th order belief given by

hm
i (θi)(c j,hm−1

j ) := βi(θi)({c j} × � j[hm−1
j ])

for all c j ∈ C j and all hm−1
j ∈ hm−1

j (� j). Let

hm
i (�i) := {hm

i (θi) | θi ∈ �i}
be the set of m-th order beliefs induced by types in �i .

Finally, for every θi ∈ �i we denote by

hi(θi) := (hm
i (θi))m∈N

the belief hierarchy on the players’ choices induced by θi .

5. Some preparatory results

In this section we will state five preparatory results that are needed to prove our characterization theorem. The proofs 
of these results can be found in the proofs section at the end of this paper.

For the first three results, fix a finite two-player static game � = (Ci, ui)i∈I , the corresponding game form G = (Ci)i∈I , a fi-
nite epistemic model Mco = (Ti, bi)i∈I for �, and a finite epistemic model with incomplete information Min = (�i, wi, βi)i∈I
for G .

In our first preparatory result, we show that two types which induce the same m-th order belief on choices, also induce 
the same (m − 1)-th order belief.

Lemma 5.1 (Identical m-th order beliefs imply identical (m − 1)-th order beliefs). Let m ≥ 2. Then, if two types in Ti ∪ �i induce the 
same m-th order belief on choices, they also induce the same (m − 1)-th order belief on choices.

For our next preparatory result, let T ∗
i (ti) := T ∗(ti) ∩ Ti be the set of player i types that ti reasons about, and let T ∗

j (ti) :=
T ∗(ti) ∩ T j be the set of player j types that ti reasons about. Similarly we define �∗(θi) and �∗(θi).
i j
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Lemma 5.2 (Equivalent types deem possible equivalent opponent’s types). Let t∗
i ∈ Ti and θ∗

i ∈ �i be two types with hi(t∗
i ) = hi(θ

∗
i ). 

Then,

(a) for every θi ∈ �∗
i (θ

∗
i ) there is some ti ∈ T ∗

i (t∗
i ) with hi(θi) = hi(ti), and for every θ j ∈ �∗

j (θ
∗
i ) there is some t j ∈ T ∗

j (t
∗
i ) with 

h j(θ j) = h j(t j), and

(b) for every ti ∈ T ∗
i (t∗

i ) there is some θi ∈ �∗
i (θ

∗
i ) with hi(ti) = hi(θi), and for every t j ∈ T ∗

j (t
∗
i ) there is some θ j ∈ �∗

j (θ
∗
i ) with 

h j(t j) = h j(θ j).

Our third result provides necessary and sufficient conditions such that two types t∗
i and θ∗

i – one from a complete 
information model and the other from an incomplete information model – induce the same belief hierarchy on choices. This 
result plays a key role in the proof of our characterization theorem.

Lemma 5.3 (Equivalent types lemma). Suppose that any two different types in Mco induce different belief hierarchies. Consider two 
types t∗

i ∈ Ti and θ∗
i ∈ �i .

Then, hi(t∗
i ) = hi(θ

∗
i ) if and only if there are mappings

fi : �∗
i (θ

∗
i ) → T ∗

i (t∗
i ) and f j : �∗

j (θ
∗
i ) → T ∗

j (t
∗
i )

with f i(θ
∗
i ) = t∗

i such that

bi( f i(θi))(c j, t j) = βi(θi)({c j} × f −1
j (t j)) (1)

for all θi ∈ �∗
i (θ

∗
i ), all t j ∈ T ∗

j (t
∗
i ) and all c j ∈ C j , and

b j( f j(θ j))(ci, ti) = β j(θ j)({ci} × f −1
i (ti)) (2)

for all θ j ∈ �∗
j (θ

∗
i ), all ti ∈ T ∗

i (t∗
i ) and all ci ∈ Ci .

Here, by f −1
j (t j) we denote the set {θ j ∈ �∗

j (θ
∗
i ) | f j(θ j) = t j}. Similarly for f −1

i (ti).
In the literature, a combination of mappings ( f i, f j) which satisfies the conditions (1) and (2) is called a type morphism.

See, for instance, Böge and Eisele (1979), Mertens and Zamir (1985), Heifetz and Samet (1998), Friedenberg and Meier
(2011) and Perea and Kets (2016). Heifetz and Samet (1998) prove – in a somewhat different setting than ours – that type 
morphisms preserve the belief hierarchies. Showing this result is actually part of our proof of Lemma 5.3.

In our fourth preparatory result, we show that for every choice ci and every belief bi ∈ �(C j), there is a unique utility 
function closest to ui that rationalizes this choice ci .

Lemma 5.4 (Unique closest utility function that rationalizes a choice). For player i, consider a utility function ui ∈ V i , a choice ci ∈ Ci , 
and a probabilistic belief bi ∈ �(C j). Then, there is a unique utility function vi ∈ V i such that (a) choice ci is optimal for the utility 
function vi and the belief bi , and (b) there is no other utility function v ′

i ∈ V i with d(v ′
i, ui) < d(vi, ui) such that choice ci is optimal 

for the utility function v ′
i and the belief bi .

On the basis of this lemma we may define, for every choice ci ∈ Ci and every belief bi ∈ �(C j), the utility function 
vi[ci, bi] ∈ V i as the unique utility function such that (a) ci is optimal for the belief bi and the utility function vi[ci, bi], and 
(b) there is no other utility function v ′

i ∈ V i with d(v ′
i, ui) < d(vi[ci, bi], ui) such that ci is optimal for bi and v ′

i .
Our last preparatory result links the ranking of two choices ci and c′

i under the utility function ui and the belief bi , to 
the distance that the corresponding utility functions vi[ci, bi] and vi[c′

i, bi] have to ui .

Lemma 5.5 (Choice ranking lemma). Fix a belief bi ∈ �(C j). Then, for every two choices ci, c′
i ∈ Ci we have that ui(ci, bi) > ui(c′

i, bi), 
if and only if, d(vi[ci, bi], ui) < d(vi[c′

i, bi], ui).

Here, ui(ci, bi) denotes the expected utility generated by the choice ci , the belief bi , and the utility function ui . As we 
already argued in the introduction, this Choice Ranking Lemma is fundamental for our characterization result in the next 
section. On the basis of this lemma, a “choice c′

i being inferior to ci ” in the complete information setting, can be translated 
into “the closest utility function rationalizing c′

i being further away than the closest utility function rationalizing ci ” in 
the incomplete information setting. This equivalence then implies that ε-proper trembling in the complete information 
setting, stating that inferior choices must be deemed much less likely than superior choices, corresponds in the incomplete 
information setting to ε-centered beliefs around u and belief in the opponent’s rationality under the closest utility function, 
stating that choices must be rationalized by the closest possible utility function and that more distant utility functions 
must be deemed much less likely than less distant utility functions. This, in turn, leads to the epistemic characterization of 
ε-proper rationalizability in the following section.
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6. Characterization result

So far we have introduced two different concepts for static games – “ε-proper rationalizability” for a context with 
complete information, and “common belief in caution, ε-centered beliefs around u and rationality under the closest utility 
function” for a context with incomplete information. In this section we will prove that both concepts yield precisely the 
same belief hierarchies on choices. More formally, we prove the following theorem.

Theorem 6.1 (Characterization result). Consider a finite two-player static game
� = (Ci, ui)i∈I , the corresponding game form G = (Ci)i∈I , the corresponding utility pair u = (ui)i∈I , a finite epistemic model Mco =
(Ti, bi)i∈I for �, and a type t∗

i ∈ Ti . Suppose that any two different types in Mco induce different belief hierarchies on choices.

Then, t∗
i is ε-properly rationalizable, if and only if, there is some finite epistemic model with incomplete information Min =

(�i, wi, βi)i∈I for G, and some type θ∗
i ∈ �i , such that

(a) θ∗
i expresses common belief in caution, ε-centered beliefs around u and rationality under the closest utility function, and

(b) hi(θ
∗
i ) = hi(t∗

i ).

That is, for every ε-properly rationalizable type within the complete information setting we can find a type within the 
incomplete information setting that generates exactly the same belief hierarchy on choices, and which expresses common 
belief in caution, ε-centered beliefs around u and rationality under the closest utility function. The other direction, however, 
is also true: if we can find a type θ∗

i within the incomplete information setting that generates exactly the same belief 
hierarchy on choices as t∗

i , and which expresses common belief in caution, ε-centered beliefs around u and rationality under 
the closest utility function, then t∗

i must be ε-properly rationalizable. The above theorem thus provides a characterization 
of ε-properly rationalizable belief hierarchies within an incomplete information setting.

Proof. (If) Consider some type t∗
i ∈ Ti . Suppose that there is some finite epistemic model Min = (�i, wi, βi)i∈I for G , and 

some type θ∗
i ∈ �i , such that θ∗

i expresses common belief in caution, ε-centered beliefs around u and rationality under the 
closest utility function, and hi(θ

∗
i ) = hi(t∗

i ). We show that t∗
i is ε-properly rationalizable. To that purpose, we show that 

every t ∈ T ∗(t∗
i ) is cautious and satisfies ε-proper trembling.

Since hi(θ
∗
i ) = hi(t∗

i ), we know by Lemma 5.3 that there are mappings f i : �∗
i (θ

∗
i ) → T ∗

i (t∗
i ) and f j : �∗

j (θ
∗
i ) → T ∗

j (t
∗
i )

with f i(θ
∗
i ) = t∗

i such that

bi( f i(θi))(c j, t j) = βi(θi)({c j} × f −1
j (t j)) (3)

for all θi ∈ �∗
i (θ

∗
i ), all t j ∈ T ∗

j (t
∗
i ) and all c j ∈ C j , and

b j( f j(θ j))(ci, ti) = β j(θ j)({ci} × f −1
i (ti)) (4)

for all θ j ∈ �∗
j (θ

∗
i ), all ti ∈ T ∗

i (t∗
i ) and all ci ∈ Ci .

For every θi ∈ �∗
i (θ

∗
i ) we have, by construction, that �∗(θi) ⊆ �∗(θ∗

i ). By applying Lemma 5.3 to θi and f i(θi), while 
restricting the mappings f i and f j to �∗(θi) ⊆ �∗(θ∗

i ), it follows that hi( f i(θi)) = hi(θi) for all θi ∈ �∗
i (θ

∗
i ). In a similar 

fashion it follows that h j( f j(θ j)) = h j(θ j) for all θ j ∈ �∗
j (θ

∗
i ).

Now, take some arbitrary ti ∈ T ∗
i (t∗

i ). Then, by Lemma 5.2, part (b), we know that there is some θi ∈ �∗
i (θ

∗
i ) with 

hi(θi) = hi(ti). As hi( f i(θi)) = hi(θi) = hi(ti), and any two different types in T ∗
i (t∗

i ) generate different belief hierarchies, 
it must be that f i(θi) = ti . So, we have found a θi ∈ �∗

i (θ
∗
i ) with f i(θi) = ti . As θ∗

i expresses common belief in caution, 
ε-centered beliefs around u and rationality under the closest utility function, and θi ∈ �∗

i (θ
∗
i ), we know that θi is cautious, 

has ε-centered beliefs around u and believes in j’s rationality under the closest utility function. We will show that ti = f i(θi)

is cautious and satisfies ε-proper trembling.

Caution. To prove that ti is cautious, we must show that for every t j ∈ T j(ti), and every c j ∈ C j , we have bi(ti)(c j, t j) > 0. 
Take some t j ∈ T j(ti). Then, in particular, t j ∈ T ∗

j (t
∗
i ), as ti ∈ T ∗

i (t∗
i ). As t j ∈ T j(ti), we have bi(ti)(C j × {t j}) > 0. But then, by 

condition (3),

βi(θi)(C j × f −1
j (t j)) = bi( f i(θi))(C j × {t j}) = bi(ti)(C j × {t j}) > 0.

Hence, there is some θ j ∈ f −1
j (t j) such that βi(θi)(C j × {θ j}) > 0. So, θ j ∈ � j(θi). Since θi is cautious, there is for every c j ∈

C j some utility function v j with βi(θi)(c j, θ
v j

j ) > 0. Note that h j(θ
v j

j ) = h j(θ j). Since θ j ∈ f −1
j (t j), we have that f j(θ j) = t j , 

and hence h j(θ j) = h j(t j). We also know that h j( f j(θ
v j

j )) = h j(θ
v j

j ) = h j(θ j) = h j(t j). Since any two different types in T j

induce different belief hierarchies, we must necessarily have that f j(θ
v j

j ) = t j as well. Hence θ v j

j ∈ f −1
j (t j), which implies 

that βi(θi)({c j} × f −1
j (t j)) > 0. So, for every c j ∈ C j we have that βi(θi)({c j} × f −1

j (t j)) > 0. But then, by condition (3), for 
every c j ∈ C j we have
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bi(ti)(c j, t j) = bi( f i(θi))(c j, t j) = βi(θi)({c j} × f −1
j (t j)) > 0.

Since this holds for every t j ∈ T j(ti), it follows that ti is cautious.

ε-Proper trembling. We next show that ti satisfies ε-proper trembling. That is, we must show for every t j ∈ T j(ti), and 
every two choices c j, c′

j with u j(c′
j, t j) < u j(c j, t j) that bi(ti)(c′

j, t j) ≤ ε · bi(ti)(c j, t j). Remember that ti = f i(θi) for some 
θi ∈ �∗

i (θ
∗
i ).

By condition (3),

βi(θi)({c′
j} × f −1

j (t j)) = bi( f i(θi)(c′
j, t j) = bi(ti)(c′

j, t j) > 0,

hence there must be some θ j ∈ f −1
j (t j) such that βi(θi)(c′

j, θ j) > 0.

Take some arbitrary θ j ∈ f −1
j (t j) with βi(θi)(c′

j, θ j) > 0. Let b j be the belief that t j has about i’s choices. Since θ j ∈
f −1

j (t j), we have that f j(θ j) = t j , and hence θ j has the same belief on i’s choices as t j . We thus conclude that θ j has 
belief b j as well. Since θi believes in j’s rationality under the closest utility function, c′

j must be optimal for type θ j , and 
d(v j[c′

j, b j], u j) = d(w j(θ j), u j).
Remember that u j(c′

j, t j) < u j(c j, t j), which implies that u j(c′
j, b j) < u j(c j, b j). By Lemma 5.5, we conclude that

d(v j[c j,b j], u j) < d(v j[c′
j,b j], u j) = d(w j(θ j), u j).

That is, there must be some utility function v j with d(v j, u j) < d(w j(θ j), u j) such that c j is optimal for the belief b j
and the utility function v j . As θ j has the belief b j on i’s choices, there must be some utility function v j with d(v j, u j) <
d(w j(θ j), u j) such that c j is optimal for θ v j

j .
Since θi ∈ �∗

i (θ
∗
i ), we know, by assumption, that θi is cautious, holds ε-centered beliefs around u and believes in j’s 

rationality under the closest utility function. As θi is cautious, there must be some utility function v j such that θi deems 
possible the pair (c j, θ

v j

j ). As θi believes in j’s rationality under the closest utility function, type θi only deems possible 
a choice-type pair (c j, θ

v j

j ) if there is no v ′′
j with d(v ′′

j , u j) < d(v j, u j) such c j is optimal for v ′′
j and b j . This implies that 

there is some utility function v j with d(v j, u j) < d(w j(θ j), u j), such that θi deems possible the pair (c j, θ
v j

j ). As θi has 
ε-centered beliefs around u, we must have that βi(θi)(c′

j, θ j) ≤ ε · βi(θi)(c j, θ
v j

j ).

We thus have shown that there is some utility function v j such that for every θ j ∈ f −1
j (t j) with βi(θi)(c′

j, θ j) > 0

we have βi(θi)(c′
j, θ j) ≤ ε · βi(θi)(c j, θ

v j

j ). Note that we can choose the v j independent of the specific θ j ∈ f −1
j (t j) with 

βi(θi)(c′
j, θ j) > 0 as any two types in f −1

j (t j) induce the same belief hierarchy on choices, namely hi(ti). So, by condition (3),

bi(ti)(c′
j, t j) = bi( f i(θi))(c′

j, t j)

= βi(θi)({c′
j} × f −1

j (t j))

=
∑

θ j∈ f −1
j (t j)

βi(θi)(c′
j, θ j)

=
∑

θ j∈ f −1
j (t j):βi(θi)(c′

j ,θ j)>0

βi(θi)(c′
j, θ j)

≤
∑

θ j∈ f −1
j (t j):βi(θi)(c′

j ,θ j)>0

ε · βi(θi)(c j, θ
v j

j )

= ε ·
∑

θ j∈ f −1
j (t j):βi(θi)(c′

j ,θ j)>0

βi(θi)(c j, θ
v j

j )

≤ ε · βi(θi)({c j} × f −1
j (t j))

= ε · bi( f i(θi))(c j, t j)

= ε · bi(ti)(c j, t j),

and hence bi(ti)(c′
j, t j) ≤ ε· bi(ti)(c j, t j). Here, the first inequality follows from the fact that βi(θi)(c′

j, θ j) ≤ ε · βi(θi)(c j, θ
v j

j )

for all θ j ∈ f −1
j (t j) with βi(θi)(c′

j, θ j) > 0. The second inequality follows from the observation that θ v j

j ∈ f −1
j (t j) whenever 

θ j ∈ f −1
j (t j) with βi(θi)(c′

j, θ j) > 0. We thus conclude that bi(ti)(c′
j, t j) ≤ ε· bi(ti)(c j, t j) whenever u j(c′

j, t j) < u j(c j, t j), and 
hence ti satisfies ε-proper trembling.
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We have thus shown that every ti ∈ T ∗
i (t∗

i ) is cautious and satisfies ε-proper trembling. In exactly the same way, it 
can be shown that also every t j ∈ T ∗

j (t
∗
i ) is cautious and satisfies ε-proper trembling. This implies that every t ∈ T ∗(t∗

i ) is 
cautious and satisfies ε-proper trembling. Hence, t∗

i is ε-properly rationalizable, which was to show.

(Only if) Take now some type t∗
i ∈ Ti which is ε-properly rationalizable. We will construct a finite epistemic model with 

incomplete information Min = (�i, wi, βi)i∈I for G , and some type θ∗
i ∈ �i , such that (a) θ∗

i expresses common belief in 
caution, ε-centered beliefs around u and rationality under the closest utility function, and (b) hi(θ

∗
i ) = hi(t∗

i ).
We construct Min = (�i, wi, βi)i∈I in the following way. Let

�i : = {θi[ci, ti] | ci ∈ Ci, ti ∈ T ∗
i (t∗

i )},
� j : = {θ j[c j, t j] | c j ∈ C j, t j ∈ T ∗

j (t
∗
i )}.

That is, we construct a type θi[ci, ti] for every player i choice ci and every player i type ti ∈ T ∗
i (t∗

i ) that t∗
i reasons about. 

Similarly for the player j types.
For every type θi[ci, ti], let wi(θi[ci, ti]) be the unique utility function such that (a) ci is optimal for type ti under the 

utility function wi(θi[ci, ti]), and (b) there is no other utility function vi with d(vi, ui) < d(wi(θi[ci, ti]), ui) under which ci
is optimal for ti . The fact that this utility function exists, and that it is unique, follows from Lemma 5.4. Similarly for the 
player j types.

Finally, the belief βi(θi[ci, ti]) of type θi[ci, ti] on C j × � j is defined by

βi(θi[ci, ti])(c j, θ j[c′
j, t j]) :=

{
bi(ti)(c j, t j), if c j = c′

j
0, if c j 
= c′

j
(5)

for all (c j, θ j[c′
j, t j]) ∈ C j × � j . Similarly, the belief β j(θ j[c j, t j]) of type θ j[c j, t j] on Ci × �i is defined by

β j(θ j[c j, t j])(ci, θi[c′
i, ti]) :=

{
b j(t j)(ci, ti), if ci = c′

i
0, if ci 
= c′

i
(6)

for all (ci, θi[c′
i, ti]) ∈ Ci × �i . This completes the construction of the epistemic model Min = (�i, wi, βi)i∈I .

Define θ∗
i := θi[c∗

i , t
∗
i ] for some fixed but arbitrary choice c∗

i . We show that θ∗
i expresses common belief in caution, 

ε-centered beliefs around u and rationality under the closest utility function, and that hi(θ
∗
i ) = hi(t∗

i ).
Let us start by showing that hi(θ

∗
i ) = hi(t∗

i ). Here, we use Lemma 5.3. So, we will define functions f i : �∗
i (θ

∗
i ) → T ∗

i (t∗
i )

and f j : �∗
j (θ

∗
i ) → T ∗

j (t
∗
i ) with the desired properties. For every θi[ci, ti] ∈ �∗

i (θ
∗
i ), define

f i(θi[ci, ti]) := ti . (7)

Similarly, for every θ j[c j, t j] ∈ �∗
j (θ

∗
i ), define

f j(θ j[c j, t j]) := t j. (8)

Then, obviously, f i is a mapping from �∗
i (θ

∗
i ) to T ∗

i (t∗
i ), and f j is a mapping from �∗

j (θ
∗
i ) to T ∗

j (t
∗
i ). As θ∗

i = θi[c∗
i , t

∗
i ], we 

also have that f i(θ
∗
i ) = t∗

i .
We now prove that the mappings f i and f j satisfy condition (1) in Lemma 5.3. Take some type θi[ci, ti] ∈ �∗

i (θ
∗
i ), some 

choice c j ∈ C j and some type t j ∈ T j . Then, by construction,

bi( f i(θi[ci, ti]))(c j, t j) = bi(ti)(c j, t j)

=
∑

c′
j∈C j

βi(θi[ci, ti])(c j, θ j[c′
j, t j])

= βi(θi[ci, ti])({c j} × f −1
j (t j)),

which implies condition (1). Here, the second equality follows from (5), whereas the third equality follows from (8).
We have thus shown that the mappings f i and f j satisfy condition (1) in Lemma 5.3. In a similar way, it can be shown 

that f i and f j satisfy condition (2). As f i(θ
∗
i ) = t∗

i , it follows from Lemma 5.3 that hi(θ
∗
i ) = hi(t∗

i ), as we wanted to show.
We finally show that θ∗

i expresses common belief in caution, ε-centered beliefs around u and rationality under the 
closest utility function. To that purpose, we show that every θ ∈ �∗(θ∗

i ) is cautious, has ε-centered beliefs around u and 
believes in the opponent’s rationality under the closest utility function. Take first some player i type θi[ci, ti] ∈ �i(θ

∗
i ).

Caution. Take some θ j[c j, t j] ∈ � j(θi[ci, ti]) and some c′
j ∈ C j . We show that there is some utility function v j such that 

θi deems possible (c′
j, θ j[c j, t j]v j ).

Since θ j[c j, t j] ∈ � j(θi[ci, ti]), there is some c′′ ∈ C j such that
j
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βi(θi[ci, ti])(c′′
j , θ j[c j, t j]) > 0.

Hence, by (5), c′′
j = c j and

bi(ti)(c j, t j) = βi(θi[ci, ti])(c j, θ j[c j, t j]) > 0,

which implies that t j ∈ T j(ti).
As ti ∈ T ∗

i (t∗
i ) and t∗

i is ε-properly rationalizable, we know that ti is cautious. Hence, for every c′
j ∈ C j , type ti deems 

possible the choice-type pair (c′
j, t j). Take some arbitrary c′

j ∈ C j . Then, bi(ti)(c′
j, t j) > 0, and hence, by (5),

βi(θi[ci, ti])(c′
j, θ j[c′

j, t j]) > 0.

Let v j := w j(θ j[c′
j, t j]). Then, it may be verified by (6) that θ j[c′

j, t j] = θ j[c j, t j]v j , and hence

βi(θi[ci, ti])(c′
j, θ j[c j, t j]v j ) > 0.

That is, θi[ci, ti] deems possible the pair (c′
j, θ j[c j, t j]v j ).

So, for every θ j[c j, t j] ∈ � j(θi[ci, ti]), and every c′
j ∈ C j , there is some utility function v j such that θi deems possible 

(c′
j, θ j[c j, t j]v j ). Consequently, θi[ci, ti] is cautious.

ε-centered beliefs around u. Suppose that θi[ci, ti] deems possible two choice-type pairs (c j, θ
v j

j ) and (c′
j, θ

v ′
j

j ), where θ v j

j

and θ
v ′

j

j only differ in the utility function, and d(v j, u j) < d(v ′
j, u j). We must show that

βi(θi[ci, ti])(c′
j, θ

v ′
j

j ) ≤ ε · βi(θi[ci, ti])(c j, θ
v j

j ).

Since θi[ci, ti] deems possible the choice-type pairs (c j, θ
v j

j ) and (c′
j, θ

v ′
j

j ), we conclude from (5) that there must be some 
types t j, t′

j ∈ T j(ti) such that

θ
v j

j = θ j[c j, t j] and θ
v ′

j

j = θ j[c′
j, t′

j].

Moreover, as h j(θ
v j

j ) = h j(θ
v ′

j

j ), h j(θ
v j

j ) = h j(t j) and h j(θ
v ′

j

j ) = h j(t′
j), it follows that h j(t j) = h j(t′

j). But then, t j = t′
j , as by 

assumption any two different types in T j induce different belief hierarchies on choices. So, we conclude that

θ
v j

j = θ j[c j, t j] and θ
v ′

j

j = θ j[c′
j, t j].

By construction of the type θ j[c j, t j], we know that c j is optimal for θ j[c j, t j], and there is no other utility function v ′′
j with 

d(v ′′
j , u j) < d(v j, u j) such that c j is optimal for θ j[c j, t j]v ′′

j . Now, let b j be the belief that θ j[c j, t j] has about i’s choices. 
Then, it follows that v j = v j[c j, b j], where v j[c j, b j] is defined as in Lemma 5.5. As θ j[c′

j, t j] has the same belief b j about 
i’s choices, it can be shown in the same way that v ′

j = v j[c′
j, b j]. Since we assume that d(v j, u j) < d(v ′

j, u j), we conclude 
that

d(v j[c j,b j], u j) < d(v j[c′
j,b j], u j).

But then, by Lemma 5.5, it follows that u j(c′
j, b j) < u j(c j, b j). As type t j has exactly this belief b j and the utility function u j , 

we obtain that t j prefers c j to c′
j .

Since ti ∈ T ∗
i (t∗

i ), and t∗
i is ε-properly rationalizable, we know that ti satisfies ε-proper trembling. As t j ∈ T j(ti), and t j

prefers c j to c′
j , we conclude that bi(ti)(c′

j, t j) ≤ ε · bi(ti)(c j, t j). It then follows by (5) that

βi(θi[ci, ti])(c′
j, θ j[c′

j, t j]) = bi(ti)(c′
j, t j)

≤ ε · bi(ti)(c j, t j)

= ε · βi(θi[ci, ti])(c j, θ j[c j, t j]).

As θ v j

j = θ j[c j, t j] and θ
v ′

j

j = θ j[c′
j, t j], it follows that

βi(θi[ci, ti])(c′
j, θ

v ′
j

j ) ≤ ε · βi(θi[ci, ti])(c j, θ
v j

j ),

which was to show. As such, we conclude that θi[ci, ti] has ε-centered beliefs around u.
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Belief in j’s rationality under the closest utility function. Suppose that θi[ci, ti] deems possible a choice-type pair 
(c j, θ j[c′

j, t j]). That is,

βi(θi[ci, ti])(c j, θ j[c′
j, t j]) > 0.

By (5), it follows that c j = c′
j , and hence (c j, θ j[c′

j, t j]) = (c j, θ j[c j, t j]). By construction, the utility function w j(θ j[c j, t j]) is 
chosen such that (a) c j is optimal for type t j under the utility function w j(θ j[c j, t j]), and (b) there is no other utility func-
tion v j with d(v j, u j) < d(w j(θ j[c j, t j]), u j) under which c j is optimal for t j . Since, by (6), θ j[c j, t j] has the same belief on 
Ci as t j , it follows that c j is optimal for type θ j[c j, t j]. Hence, θi[ci, ti] only deems possible choice-type pairs (c j, θ j[c j, t j])
where (a) c j is optimal for θ j[c j, t j], and (b) there is no other utility function v j with d(v j, u j) < d(w j(θ j[c j, t j]), u j) such 
that c j is optimal for θ j[c j, t j]v j . Hence, θi[ci, ti] believes in j’s rationality under the closest utility function.

Summarizing, we see that every θi[ci, ti] ∈ �∗
i (θ

∗
i ) is cautious, has ε-centered beliefs around u, and believes in j’s ra-

tionality under the closest utility function. As the same can be shown for every θ j[c j, t j] ∈ �∗
j (θ

∗
i ), we conclude that every 

θ ∈ �∗(θ∗
i ) is cautious, has ε-centered beliefs around u and believes in the opponent’s rationality under the closest utility 

function. Hence, θ∗
i expresses common belief in caution, ε-centered beliefs around u and rationality under the closest utility

function. Since hi(θ
∗
i ) = hi(t∗

i ), the proof is complete. �
7. Concluding remarks

7.1. Characterization of proper rationalizability

In this paper we have given an epistemic characterization of ε-proper rationalizability, for a fixed ε, within an incomplete 
information setting. The crucial conditions we use are ε-centered beliefs around u and belief in the opponent’s rationality under 
the closest utility function. A natural question is whether similar conditions can be used to characterize proper rationalizability,
which essentially corresponds to ε-proper rationalizability as ε tends to zero.

Asheim (2001) has shown that proper rationalizability can be characterized by means of lexicographic beliefs, and that the 
ε-proper trembling condition, as ε tends to zero, can be mimicked by the requirement that better choices must be deemed 
infinitely more likely than inferior choices within the lexicographic belief. On the basis of this insight, we conjecture that 
proper rationalizability can be characterized within an incomplete information setting by using lexicographic beliefs. More 
precisely, we could introduce a lexicographic notion of centered beliefs around u, stating that closer utility functions must be 
deemed infinitely more likely than more distant utility functions. We believe that (common belief in) this condition, together 
with appropriately adapted definitions of caution and belief in the opponent’s rationality under the closest utility function, 
would characterize proper rationalizability. This investigation, however, is beyond the scope of this paper, and is left for 
future research.

7.2. Distance measure

The distance measure between utility functions that we use in this paper (see Section 3.2) has its problems, since it is 
not invariant with respect to positive affine transformations of the utility functions.1 If we view a utility function as the 
numerical representation of a preference relation over lotteries, then ideally the distance measure should be invariant with 
respect to such positive affine transformations, as these would not change the underlying preference relation. A possible 
remedy could be to assume that all utility functions are normalized in a uniform way, for instance by requiring that the 
minimum utility is 0 and the maximum utility is 1 (provided the underlying preference relation is non-trivial). This would 
remove the invariance problem, but would cause other, technical problems. For instance, the space of normalized utility 
functions would no longer be convex – a property that is important for showing that there is always a unique utility 
function that rationalizes a certain choice and that is closest to u. We conjecture that our characterization would still hold 
by restricting to normalized utility functions, but we are short of a formal proof at this moment. We hope to be able to 
clarify this issue in the near future.

7.3. Beliefs about utilities versus beliefs about preferences

In this paper, when investigating the context with incomplete information, we assume that players hold beliefs about the 
specific opponent’s utility function. Similarly to the problem above, one could argue that only the belief about the oppo-
nent’s underlying preference relation over lotteries should matter, and not so much the belief about the precise numerical 
representation of it. It would thus be desirable to have a model in which we describe the players’ beliefs about the oppo-
nent’s preference relations rather than their beliefs about utilities. At this moment we have no satisfactory resolution to this 
problem, but hope to address this issue in the future.

1 We thank an anonymous referee for pointing this out to us.
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8. Proofs

Proof of Lemma 5.1. We prove the statement by induction on m. Consider first the case where m = 2.
Take two types in Ti ∪ �i that induce the same second-order belief on choices. Suppose that the first type is in Ti – call 

it ti – and the second type is in �i – call it θi . So, h2
i (ti) = h2

i (θi). We show that ti and θi also induce the same first-order 
belief on choices – that is, h1

i (ti) = h1
i (θi).

For every c j ∈ C j ,

h1
i (ti)(c j) = bi(ti)({c j} × T j)

=
∑

h1
j ∈h1

j (T j)∪h1
j (� j)

bi(ti)({c j} × T j[h1
j ])

=
∑

h1
j ∈h1

j (T j)∪h1
j (� j)

h2
i (ti)(c j,h1

j )

=
∑

h1
j ∈h1

j (T j)∪h1
j (� j)

h2
i (θi)(c j,h1

j )

=
∑

h1
j ∈h1

j (T j)∪h1
j (� j)

βi(θi)({c j} × � j[h1
j ])

= βi(θi)({c j} × � j)

= h1
i (θi)(c j),

which implies that h1
i (ti) = h1

i (θi). Here, the fourth equality follows from the assumption that h2
i (ti) = h2

i (θi). The proof for 
the case when both types are from Ti , or when both types are from �i , is very similar, and is therefore omitted.

Take now some m ≥ 3, and suppose that the statement is true for m − 1, for both players i. Consider some type ti ∈ Ti
and some type θi ∈ �i with hm

i (ti) = hm
i (θi). We show that hm−1

i (ti) = hm−1
i (θi).

To prove this, we first show that

hm−1
j (T j(ti)) = hm−1

j (� j(θi)), (9)

and, for every hm−1
j ∈ hm−1

j (T j),

hm−2
j (T j[hm−1

j ]) = hm−2
j (� j[hm−1

j ]) = {hm−2
j } (10)

for some hm−2
j ∈ hm−2

j (T j). Here, hm−1
j (T j(ti)) = {hm−1

j (t j) | t j ∈ T j(ti)} and hm−2
j (T j[hm−1

j ]) = {hm−2
j (t j) | t j ∈ T j[hm−1

j ]}, 
and similarly for � j .

We first show (9). By definition, for every hm−1
j ∈ hm−1

j (T j),

hm
i (ti)(C j × {hm−1

j }) = bi(ti)(C j × T j[hm−1
j ])

= bi(ti)(C j × {t j ∈ T j | hm−1
j (t j) = hm−1

j })
= bi(ti)(C j × {t j ∈ T j(ti) | hm−1

j (t j) = hm−1
j }), (11)

where the third equality follows from the fact that bi(ti) only assigns positive probability to types in T j(ti). In fact, bi(ti)

assigns positive probability precisely to those types that are in T j(ti). Hence, it follows from (11) that hm
i (ti)(C j ×{hm−1

j }) > 0

if and only if there is some t j ∈ T j(ti) with hm−1
j (t j) = hm−1

j , which is the case precisely when hm−1
j ∈ hm−1

j (T j(ti)).

In a similar way, it follows that hm
i (θi)(C j × {hm−1

j }) > 0 if and only if hm−1
j ∈ hm−1

j (� j(θi)). Since, by the induction 
assumption, hm

i (ti) = hm
i (θi), it follows that hm−1

j (T j(ti)) = hm−1
j (� j(θi)), and hence (9) holds.

We now prove (10). We first show that hm−2
j (T j[hm−1

j ]) = {hm−2
j } for some hm−2

j ∈ hm−2
j (T j). Take two types t j, t′

j ∈
T j[hm−1

j ]. That is, hm−1
j (t j) = hm−1

j (t′
j) = hm−1

j . Then, by the induction assumption, it follows that hm−2
j (t j) = hm−2

j (t′
j). So, 

all types in T j[hm−1
j ] induce the same (m − 2)-th order belief, which we call hm−2

j . So, hm−2
j (T j[hm−1

j ]) = {hm−2
j }.

Next we show that hm−2
j (� j[hm−1

j ]) = {hm−2
j } as well. Take some θ j ∈ � j[hm−1

j ] and some t j ∈ T j[hm−1
j ]. As 

hm−2
j (T j[hm−1

j ]) = {hm−2
j }, it follows that hm−2

j (t j) = hm−2
j . Since hm−1

j (θ j) = hm−1
j = hm−1

j (t j), it follows by the induc-

tion assumption that hm−2
j (θ j) = hm−2

j (t j) = hm−2
j . So, we may conclude that hm−2

j (� j[hm−1
j ]) = {hm−2

j }. We have thus 
shown (10).
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We now prove that hm−1
i (ti) = hm−1

i (θi). By (10) we know that for every hm−1
j ∈ hm−1

j (T j) there is some hm−2
j ∈ hm−2

j (T j)

with hm−2
j (T j[hm−1

j ]) = {hm−2
j }. Consequently, for every hm−2

j ∈ hm−2
j (T j),

T j[hm−2
j ] =

⋃
hm−1

j ∈hm−1
j (T j):hm−2

j (T j [hm−1
j ])={hm−2

j }
T j[hm−1

j ],

and hence

T j[hm−2
j ] ∩ T j(ti) =

⋃
hm−1

j ∈hm−1
j (T j(ti)):hm−2

j (T j [hm−1
j ])={hm−2

j }
T j[hm−1

j ] ∩ T j(ti). (12)

So, for every c j ∈ C j and hm−2
j ∈ hm−2

j (T j),

hm−1
i (ti)(c j,hm−2

j ) = bi(ti)({c j} × T j[hm−2
j ])

= bi(ti)({c j} × (T j[hm−2
j ] ∩ T j(ti))

=
∑

hm−1
j ∈hm−1

j (T j(ti)):hm−2
j (T j [hm−1

j ])={hm−2
j }

bi(ti)({c j} × (T j[hm−1
j ] ∩ T j(ti))

=
∑

hm−1
j ∈hm−1

j (T j(ti)):hm−2
j (T j [hm−1

j ])={hm−2
j }

bi(ti)({c j} × T j[hm−1
j ])

=
∑

hm−1
j ∈hm−1

j (T j(ti)):hm−2
j (T j [hm−1

j ])={hm−2
j }

hm
i (ti)(c j,hm−1

j )

=
∑

hm−1
j ∈hm−1

j (T j(ti)):hm−2
j (T j [hm−1

j ])={hm−2
j }

hm
i (θi)(c j,hm−1

j )

=
∑

hm−1
j ∈hm−1

j (� j(θi)):hm−2
j (� j[hm−1

j ])={hm−2
j }

hm
i (θi)(c j,hm−1

j )

= hm−1
i (θi)(c j,hm−2

j ),

which implies that hm−1
i (ti) = hm−1

i (θi). Here, the second equality follows from the fact that bi(ti) only assigns positive 
probability to types in T j(ti). The third equality follows from (12). The fourth equality follows, again, from the fact that bi(ti)

only assigns positive probability to types in T j(ti). The fifth equality follows from the definition of hm
i (ti). The sixth equality 

follows from the assumption that hm
i (ti) = hm

i (θi). The seventh equality follows from (9), that hm−1
j (T j(ti)) = hm−1

j (� j(θi)), 
and from (10) which implies that hm−2

j (T j[hm−1
j ]) = {hm−2

j } if and only if hm−2
j (� j[hm−1

j ]) = {hm−2
j }. The eighth equality 

follows from mimicking the first five equalities, in reverse order, to∑
hm−1

j ∈hm−1
j (� j(θi)):hm−2

j (� j[hm−1
j ])={hm−2

j }
hm

i (θi)(c j,hm−1
j ).

In a similar way, it can be shown that any two types in Ti , or any two types in �i , which induce the same m-th order 
belief, also induce the same (m − 1)-th order belief.

By induction on m, the proof is complete. �
Proof of Lemma 5.2. We only prove (a), as the proof for (b) is very similar. Remember that

�∗
i (θ

∗
i ) =

⋃
k∈N �k

i (θ
∗
i ), �∗

j (θ
∗
i ) =

⋃
k∈N �k

j(θ
∗
i ),

T ∗
i (t∗

i ) =
⋃

k∈N T k
i (t∗

i ), T ∗
j (t

∗
i ) =

⋃
k∈N T k

j (t
∗
i ).

We prove, by induction on k, that for every θi ∈ �k
i (θ

∗
i ) there is some ti ∈ T k

i (t∗
i ) with hi(θi) = hi(ti), and for every θ j ∈

�k
j(θ

∗
i ) there is some t j ∈ T k

j (t
∗
i ) with h j(θ j) = h j(t j).

From Lemma 5.1 we know that any two types in Ti ∪ �i which induce the same m-th order belief, also induce the same 
first-order, second order, ... , (m − 1)-th order belief on choices. As Mco and Min contain only finitely many types, there 
must be some m ∈ N such that, for every ti ∈ Ti and θi ∈ �i ,

hi(ti) = hi(θi) if and only if hm(ti) = hm(θi). (13)
i i
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So, it is sufficient to show that for every θi ∈ �k
i (θ

∗
i ) there is some ti ∈ T k

i (t∗
i ) with hm

i (θi) = hm
i (ti), and for every θ j ∈ �k

j(θ
∗
i )

there is some t j ∈ T k
j (t

∗
i ) with hm

j (θ j) = hm
j (t j).

Consider first the case where k = 1. By definition, �1
i (θ

∗
i ) = {θ∗

i } and T 1
i (t∗

i ) = {t∗
i }. As, by assumption, hi(θ

∗
i ) = hi(t∗

i ), 
the statement holds for �1

i (θ
∗
i ) and T 1

i (t∗
i ).

Now, turn to �1
j (θ

∗
i ) and T 1

j (t
∗
i ). By definition,

�1
j (θ

∗
i ) = {θ j ∈ � j | βi(θ

∗
i )(C j × {θ j}) > 0,

and

T 1
j (t

∗
i ) = {t j ∈ T j | bi(t

∗
i )(C j × {t j}) > 0.

Take some arbitrary θ j ∈ �1
j (θ

∗
i ). Then, βi(θ

∗
i )(C j × {θ j}) > 0. Now, choose m as in (13). Then,

hm+1
i (θ∗

i )(C j × {hm
j (θ j)}) = βi(θ

∗
i )(C j × � j[hm

j (θ j)])
≥ βi(θ

∗
i )(C j × {θ j}) > 0,

where the inequality follows from the fact that θ j ∈ � j[hm
j (θ j)]. As hi(θ

∗
i ) = hi(t∗

i ), we must have that

hm+1
i (θ∗

i )(C j × {hm
j (θ j)}) = hm+1

i (t∗
i )(C j × {hm

j (θ j)}),
and hence hm+1

i (t∗
i )(C j × {hm

j (θ j)}) > 0. Therefore,

hm+1
i (t∗

i )(C j × {hm
j (θ j)}) = bi(t

∗
i )(C j × T j[hm

j (θ j)])
= bi(t

∗
i )(C j × {t j ∈ T j | hm

j (t j) = hm
j (θ j)})

= bi(t
∗
i )(C j × {t j ∈ T 1

j (t
∗
i ) | hm

j (t j) = hm
j (θ j)}) > 0,

where the third equality follows from the fact that bi(t∗
i ) only assigns positive probability to j’s types in T 1

j (t
∗
i ). Hence, 

there must be some t j ∈ T 1
j (t

∗
i ) with hm

j (t j) = hm
j (θ j). By (13) it then follows that h j(t j) = h j(θ j).

So, we see that for every θ j ∈ �1
j (θ

∗
i ) there is some t j ∈ T 1

j (t
∗
i ) with h j(t j) = h j(θ j). This completes the induction start, 

with k = 1.
Take now some k ≥ 2, and suppose, by the induction assumption, that for every θi ∈ �k−1

i (θ∗
i ) there is some ti ∈ T k−1

i (t∗
i )

with hi(θi) = hi(ti), and for every θ j ∈ �k−1
j (θ∗

i ) there is some t j ∈ T k−1
j (t∗

i ) with h j(θ j) = h j(t j). We prove that for every 
θi ∈ �k

i (θ
∗
i ) there is some ti ∈ T k

i (t∗
i ) with hi(θi) = hi(ti), and for every θ j ∈ �k

j(θ
∗
i ) there is some t j ∈ T k

j (t
∗
i ) with h j(θ j) =

h j(t j).
Take first some θk

i ∈ �k
i (θ

∗
i ). Then, there is some θk−1

j ∈ �k−1
j (θ∗

i ) such that β j(θ
k−1
j )(Ci ×{θk

i }) > 0. Choose m as in (13). 
Then,

hm+1
j (θk−1

j )(Ci × {hm
i (θk

i )}) = β j(θ
k−1
j )(Ci × �i[hm

i (θk
i )])

≥ β j(θ
k−1
j )(Ci × {θk

i }) > 0,

where the inequality follows from the fact that θk
i ∈ �i[hm

i (θk
i )]. Since θk−1

j ∈ �k−1
j (θ∗

i ), we know by the induction assump-

tion that there must be some tk−1
j ∈ T k−1

j (t∗
i ) with h j(θ

k−1
j ) = h j(t

k−1
j ). As such,

hm+1
j (θk−1

j )(Ci × {hm
i (θk

i )}) = hm+1
j (tk−1

j )(Ci × {hm
i (θk

i )}),
which implies that hm+1

j (tk−1
j )(Ci × {hm

i (θk
i )}) > 0. Therefore,

hm+1
j (tk−1

j )(Ci × {hm
i (θk

i )}) = b j(t
k−1
j )(Ci × Ti[hm

i (θk
i )])

= b j(t
k−1
j )(Ci × {ti ∈ Ti | hm

i (ti) = hm
i (θk

i )})
= b j(t

k−1
j )(Ci × {ti ∈ T k

i (t∗
i ) | hm

i (ti) = hm
i (θk

i )}) > 0,

where the third equality follows from the fact that b j(t
k−1
j ) only assigns positive probability to i’s types in T k

i (t∗
i ), since 

tk−1
j ∈ T k−1

j (t∗
i ). Hence, there must be some tk

i ∈ T k
i (t∗

i ) with hm
i (tk

i ) = hm
i (θk

i ). By (13) it follows that hi(tk
i ) = hi(θ

k
i ).

Hence, we can find for every θk ∈ �k(θ∗) some tk ∈ T k(t∗) with hi(tk) = hi(θ
k).
i i i i i i i i
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In a similar fashion, we can then show that for every θ j ∈ �k
j(θ

∗
i ) there is some t j ∈ T k

j (t
∗
i ) with h j(θ j) = h j(t j). This 

completes the induction step.
By induction on k, we can thus conclude that for every θi ∈ �∗

i (θ
∗
i ) there is some ti ∈ T ∗

i (t∗
i ) with hi(θi) = hi(ti), and for 

every θ j ∈ �∗
j (θ

∗
i ) there is some t j ∈ T ∗

j (t
∗
i ) with h j(θ j) = h j(t j). This completes the proof. �

Proof of Lemma 5.3. (If) Suppose first that there are mappings f i : �∗
i (θ

∗
i ) → T ∗

i (t∗
i ) and f j : �∗

j (θ
∗
i ) → T ∗

j (t
∗
i ) with f i(θ

∗
i ) =

t∗
i which satisfy the conditions (1) and (2). We show that hi(t∗

i ) = hi(θ
∗
i ). In fact, we will show that hi(θi) = hi( f i(θi)) for all 

θi ∈ �∗
i (θ

∗
i ) and h j(θ j) = h j( f j(θ j)) for all θ j ∈ �∗

j (θ
∗
i ).

In order to show the latter, we prove, by induction on m, that hm
i (θi) = hm

i ( f i(θi)) for all θi ∈ �∗
i (θ

∗
i ) and hm

j (θ j) =
hm

j ( f j(θ j)) for all θ j ∈ �∗
j (θ

∗
i ).

Consider first the case m = 1. Take some θi ∈ �∗
i (θ

∗
i ). Then, by definition, h1

i (θi) and h1
i ( f i(θi)) are both in �(C j). 

Moreover, for every c j ∈ C j ,

h1
i (θi)(c j) = βi(θi)({c j} × � j)

= βi(θi)({c j} × �∗
j (θ

∗
i ))

= βi(θi)({c j} × f −1
j (T ∗

j (t
∗
i ))

= bi( f i(θ))({c j} × T ∗
j (t

∗
i ))

= bi( f i(θ))({c j} × T j)

= h1
i ( f i(θi))(c j),

which implies that h1
i (θi) = h1

i ( f i(θi)). Here, the second equality follows from the observation that θi only deems possible 
j’s types in �∗

j (θ
∗
i ), as θi ∈ �∗

i (θ
∗
i ). The third equality follows from the assumption that f j : �∗

j (θ
∗
i ) → T ∗

j (t
∗
i ). The fourth 

equality follows from condition (1). The fifth equality follows from the observation that f i(θi) only deems possible j’s types 
in T ∗

j (t
∗
i ), as f i(θi) ∈ T ∗

i (t∗
i ).

In a similar way we can prove that h1
j (θ j) = h1

j ( f j(θ j)) for all θ j ∈ �∗
j (θ

∗
i ).

Consider now some m ≥ 2, and assume that hm−1
i (θi) = hm−1

i ( f i(θi)) for all θi ∈ �∗
i (θ

∗
i ) and hm−1

j (θ j) = hm−1
j ( f j(θ j)) for 

all θ j ∈ �∗
j (θ

∗
i ). Take some θi ∈ �∗

i (θ
∗
i ). Then, hm

i (θi) ∈ �(C j × hm−1
j (�∗

j (θ
∗
i ))) and hm

i ( f i(θi)) ∈ �(C j × hm−1
j (T ∗

j (t
∗
i ))).

We will now show that hm
i (θi) = hm

i ( f i(θi)). For every c j ∈ C j and every hm−1
j ∈ hm−1

j (�∗
j (θ

∗
i )) we have

hm
i (θi)(c j,hm−1

j ) = βi(θi)({c j} × � j[hm−1
j ])

= βi(θi)({c j} × {θ j ∈ � j | hm−1
j (θ j) = hm−1

j })
= βi(θi)({c j} × {θ j ∈ �∗

j (θ
∗
i ) | hm−1

j (θ j) = hm−1
j })

= βi(θi)({c j} × {θ j ∈ �∗
j (θ

∗
i ) | hm−1

j ( f j(θ j)) = hm−1
j })

= βi(θi)({c j} × {θ j ∈ �∗
j (θ

∗
i ) | f j(θ j) ∈ T j[hm−1

j ]})
= βi(θi)({c j} × f −1

j (T j[hm−1
j ]))

= bi( f i(θi))({c j} × T j[hm−1
j ])

= hm
i ( f i(θi))(c j,hm−1

j ),

which implies that hm
i (θi) = hm

i ( f i(θi)). Here, the third equality follows from the fact that θi only assigns positive probability 
to j’s types in �∗

j (θ
∗
i ). The fourth equality follows from the induction assumption that hm−1

j (θ j) = hm−1
j ( f j(θ j)) for all 

θ j ∈ �∗
j (θ

∗
i ). The seventh equality follows from condition (1).

Hence, we have shown that hm
i (θi) = hm

i ( f i(θi)) for all θi ∈ �∗
i (θ

∗
i ). In a similar way, it can be shown that hm

j (θ j) =
hm

j ( f j(θ j)) for all θ j ∈ �∗
j (θ

∗
i ).

By induction on m, we may conclude that hi(θi) = hi( f i(θi)) for all θi ∈ �∗
i (θ

∗
i ) and h j(θ j) = h j( f j(θ j)) for all θ j ∈ �∗

j (θ
∗
i ). 

In particular, since f i(θ
∗
i ) = t∗

i , we may conclude that hi(θ
∗
i ) = hi(t∗

i ), which was to show.

(Only if) Suppose now that hi(θ
∗
i ) = hi(t∗

i ). We prove that there are mappings f i : �∗
i (θ

∗
i ) → T ∗

i (t∗
i ) and f j : �∗

j (θ
∗
i ) →

T ∗
j (t

∗
i ) with f i(θ

∗
i ) = t∗

i which satisfy the conditions (1) and (2).
As hi(θ

∗
i ) = hi(t∗

i ), we know by Lemma 5.2 that for every θi ∈ �∗
i (θ

∗
i ) there is some ti ∈ T ∗

i (t∗
i ) with hi(θi) = hi(ti), and for 

every θ j ∈ �∗
j (θ

∗
i ) there is some t j ∈ T ∗

j (t
∗
i ) with h j(θ j) = h j(t j). That is, we can find a mapping f i : �∗

i (θ
∗
i ) → T ∗

i (t∗
i ) such 

that hi(θi) = hi( f i(θi)) for all θi ∈ �∗(θ∗), and we can find a mapping f j : �∗(θ∗) → T ∗(t∗) such that h j(θ j) = h j( f j(θ j))
i i j i j i
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for all θ j ∈ �∗
j (θ

∗
j ). Moreover, as hi(θ

∗
i ) = hi(t∗

i ), and any two different types in Mco induce different belief hierarchies, we 
necessarily have that f i(θ

∗
i ) = t∗

i .
We will now prove that these mappings f i and f j satisfy the conditions (1) and (2).
We will first prove condition (1). From Lemma 5.1 we know that any two types in Ti ∪ �i which induce the same m-th 

order belief, also induce the same first-order, second order, ... , (m − 1)-th order belief on choices. As Mco and Min contain 
only finitely many types, there must be some m ∈ N such that, for every two types ri, r′

i ∈ Ti ∪ �i ,

hi(ri) = hi(r
′
i) if and only if hm

i (ri) = hm
i (r′

i), (14)

and similarly for player j. As, by assumption, any two different types in Mco induce different belief hierarchies, it holds that 
hm

i (ti) 
= hm
i (t′

i) for any two different types ti, t′
i ∈ Ti , and similarly for player j. Or, in other words, Ti[hm

i (ti)] = {ti} for all 
ti ∈ Ti , where

Ti[hm
i (ti)] = {t′

i ∈ Ti | hm
i (t′

i) = hm
i (ti)},

and similarly for player j. Take some θi ∈ �∗
i (θ

∗
i ) and some t j ∈ T ∗

j (t
∗
i ). Then, for every c j ∈ C j , we have that

bi( f i(θ))(c j, t j) = bi( f i(θ))({c j} × T j[hm
j (t j)])

= hm+1
i ( f i(θ))(c j,hm

j (t j))

= hm+1
i (θi)(c j,hm

j (t j))

= βi(θi)({c j} × � j[hm
j (t j)])

= βi(θi)({c j} × {θ j ∈ � j | hm
j (θ j) = hm

j (t j)})
= βi(θi)({c j} × {θ j ∈ �∗

j (θ
∗
i ) | hm

j (θ j) = hm
j (t j)})

= βi(θi)({c j} × {θ j ∈ �∗
j (θ

∗
i ) | h j(θ j) = h j(t j)})

= βi(θi)({c j} × {θ j ∈ �∗
j (θ

∗
i ) | h j( f j(θ j)) = h j(t j)})

= βi(θi)({c j} × {θ j ∈ �∗
j (θ

∗
i ) | f j(θ j) = t j})

= βi(θi)({c j} × f −1
j (t j))

which establishes condition (1). Here, the first equality follows from the fact that T j[hm
j (t j)] = {t j}, as we have seen above. 

The second equality follows from the definition of hm+1
i ( f i(θ)). The third equality follows from the fact that we have chosen 

f i such that hi( f i(θ)) = hi(θ). The fourth equality follows from the definition of hm+1
i (θi). The sixth equality follows from 

the fact that θi only assigns positive probability to j’s types in �∗
j (θ

∗
i ). The seventh equality follows from (14), which 

implies that hm
j (θ j) = hm

j (t j) if and only if h j(θ j) = h j(t j). The eighth equality follows from the fact that h j(θ j) = h j( f j(θ j)), 
by construction of f j . The ninth equality follows from the assumption that any two different types in T j have different 
belief hierarchies.

Hence, condition (1) holds. In a similar way, one can prove that also condition (2) holds. The proof is hereby com-
plete. �
Proof of Lemma 5.4. Let V i be the set of all utility functions for player i. Take an arbitrary utility function v∗

i ∈ V i such that 
choice ci is optimal for the utility function v∗

i and the belief bi . Let M := d(v∗
i , ui). Then, the set

V ∗
i := {vi ∈ V i | ci optimal for vi and bi, and d(vi, ui) ≤ M}

is closed and bounded, and hence compact. As the distance function d(·, ui) is continuous on V i , it follows from Weierstrass’ 
theorem that d(·, ui) takes a minimum on V ∗

i . That is, there is some vi ∈ V ∗
i with d(vi, ui) ≤ d(v ′

i, ui) for all v ′
i ∈ V ∗

i .
We now show that there is only one vi ∈ V ∗

i with this property. Suppose, on the contrary, that were would be two 
different utility functions vi, ̂vi ∈ V ∗

i with

d(vi, ui) = d(v̂ i, ui) ≤ d(v ′
i, ui) for all v ′

i ∈ V ∗
i . (15)

Then, it may easily be verified that also ṽ i := 1
2 vi + 1

2 v̂ i is in V ∗
i , and that d(ṽ i, ui) < d(vi, ui) = d(v̂ i, ui). This, however, 

contradicts (15). Hence, we conclude that there is a unique vi ∈ V ∗
i with d(vi, ui) ≤ d(v ′

i, ui) for all v ′
i ∈ V ∗

i . But then, this is 
also the unique vi ∈ V i such that (a) ci is optimal for the utility function vi and the belief bi , and (b) there is no other utility 
function v ′

i ∈ V i with d(v ′
i, ui) < d(vi, ui) such that choice ci is optimal for the utility function v ′

i and the belief bi . �
Proof of Lemma 5.5. (Only if) Suppose first that ui(ci, bi) > ui(c′

i, bi). We prove that d(vi[ci, bi], ui) < d(vi[c′
i, bi], ui).

Consider the utility function v ′
i := vi[c′

i, bi]. We show that there is a utility function vi with d(vi, ui) = d(v ′
i, ui) such 

that vi(ci, bi) > vi(c′′, bi) for every c′′ ∈ Ci\{ci}.
i i
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Remember that we fixed the choices ci and c′
i . We define the utility function vi by

vi(ci, c j) : = ui(ci, c j) + v ′
i(c′

i, c j) − ui(c′
i, c j) for all c j ∈ C j,

vi(c′
i, c j) : = ui(c′

i, c j) + v ′
i(ci, c j) − ui(ci, c j) for all c j ∈ C j,

vi(c′′
i , c j) : = v ′

i(c′′
i , c j) for all c′′

i ∈ Ci\{ci, c′
i} and all c j ∈ C j.

Then, by construction,

d(vi, ui)
2 =

∑
c′′

i ∈Ci

∑
c j∈C j

(
vi(c′′

i , c j) − ui(c′′
i , c j)

)2

=
∑

c j∈C j

(
vi(ci, c j) − ui(ci, c j)

)2 +
∑

c j∈C j

(
vi(c′

i, c j) − ui(c′
i, c j)

)2

+
∑

c j∈C j

∑
c′′

i ∈Ci\{ci ,c
′
i}

(
vi(c′′

i , c j) − ui(c′′
i , c j)

)2

=
∑

c j∈C j

(
v ′

i(c′
i, c j) − ui(c′

i, c j)
)2 +

∑
c j∈C j

(
v ′

i(ci, c j) − ui(ci, c j)
)2

+
∑

c j∈C j

∑
c′′

i ∈Ci\{ci ,c
′
i}

(
v ′

i(c′′
i , c j) − ui(c′′

i , c j)
)2

= d(v ′
i, ui)

2,

which implies that d(vi, ui) = d(v ′
i, ui).

We next show that vi(ci, bi) > vi(c′′
i , bi) for every c′′

i ∈ Ci\{ci}. Take some c′′
i ∈ Ci\{ci}. We distinguish two cases.

Case 1. If c′′
i = c′

i . Then,

vi(ci,bi) − vi(c′
i,bi) = [

ui(ci,bi) + v ′
i(c′

i,bi) − ui(c′
i,bi)

] − [
ui(c′

i,bi) + v ′
i(ci,bi) − ui(ci,bi)

]
= 2

[
ui(ci,bi) − ui(c′

i,bi)
] + [

v ′
i(c′

i,bi) − v ′
i(ci,bi)

]
.

Recall our assumption that ui(ci, bi) > ui(c′
i, bi). Moreover, since v ′

i = vi[c′
i, bi], choice c′

i is optimal for bi and v ′
i , and hence 

v ′
i(c′

i, bi) ≥ v ′
i(ci, bi). We thus conclude that vi(ci, bi) − vi(c′

i, bi) > 0, and hence vi(ci, bi) > vi(c′
i, bi).

Case 2. If c′′
i ∈ Ci\{ci, c′

i}. Then,

vi(ci,bi) − vi(c′′
i ,bi) = [

ui(ci,bi) + v ′
i(c′

i,bi) − ui(c′
i,bi)

] − v ′
i(c′′

i ,bi)

= [
ui(ci,bi) − ui(c′

i,bi
] + [

v ′
i(c′

i,bi) − v ′
i(c′′

i ,bi)
]
.

Recall that ui(ci, bi) > ui(c′
i, bi). Moreover, as c′

i is optimal for bi and v ′
i , it follows that v ′

i(c′
i, bi) ≥ v ′

i(c′′
i , bi). We thus 

conclude that vi(ci, bi) − vi(c′′
i , bi) > 0, and hence vi(ci, bi) > vi(c′′

i , bi).
Summarizing, we see that vi(ci, bi) > vi(c′′

i , bi) for all c′′
i ∈ Ci\{ci}. Since ui(ci, bi) > ui(c′

i, bi), we know that c′
i is not 

optimal for bi and ui , which implies that d(v ′
i, ui) > 0. As d(vi, ui) = d(v ′

i, ui) > 0, and vi(ci, bi) > vi(c′′
i , bi) for all c′′

i ∈
Ci\{ci}, we can find a utility function v̂ i with d(v̂ i, ui) < d(v ′

i, ui) such that ci is optimal for bi and v̂ i . This implies that

d(vi[ci,bi], ui) ≤ d(v̂ i, ui) < d(v ′
i, ui) = d(vi[c′

i,bi], ui),

which was to show.

(If) Suppose now that d(vi[ci, bi], ui) < d(vi[c′
i, bi], ui). We show that ui(ci, bi) > ui(c′

i, bi).
Let vi := vi[ci, bi]. We construct the utility function v ′

i by

v ′
i(ci, c j) : = ui(ci, c j) + vi(c′

i, c j) − ui(c′
i, c j) for all c j ∈ C j,

v ′
i(c′

i, c j) : = ui(c′
i, c j) + vi(ci, c j) − ui(ci, c j) for all c j ∈ C j,

v ′
i(c′′

i , c j) : = vi(c′′
i , c j) for all c′′

i ∈ Ci\{ci, c′
i} and all c j ∈ C j.

Then, in the same way as above, it can be shown that d(v ′
i, ui) = d(vi, ui). Since vi = vi[ci, bi], and d(vi[c′

i, bi], ui) >
d(vi[ci, bi], ui), the choice c′

i cannot be optimal for the belief bi and the utility function v ′
i . Hence, there must be some 

c′′ ∈ Ci\{c′} such that v ′(c′′, bi) > v ′(c′, bi). We distinguish two cases.
i i i i i i



328 A. Perea, S. Roy / Games and Economic Behavior 104 (2017) 309–328
Case 1. If c′′
i = ci . Then, v ′

i(ci, bi) − v ′
i(c′

i, bi) > 0. Hence,

v ′
i(ci,bi) − v ′

i(c′
i,bi) = [

ui(ci,bi) + vi(c′
i,bi) − ui(c′

i,bi)
] − [

ui(c′
i,bi) + vi(ci,bi) − ui(ci,bi)

]
= 2

[
ui(ci,bi) − ui(c′

i,bi)
] + [

vi(c′
i,bi) − vi(ci,bi)

]
> 0.

As vi = vi[ci, bi], we know that ci is optimal for bi and vi , and hence vi(c′
i, bi) − vi(ci, bi) ≤ 0. We thus must have that 

ui(ci, bi) − ui(c′
i, bi) > 0, implying that ui(ci, bi) > ui(c′

i, bi).

Case 2. If c′′
i ∈ Ci\{ci, c′

i}. Then, v ′
i(c′′

i , bi) − v ′
i(c′

i, bi) > 0. Hence,

v ′
i(c′′

i ,bi) − v ′
i(c′

i,bi) = vi(c′′
i ,bi) − [

ui(c′
i,bi) + vi(ci,bi) − ui(ci,bi)

]
= [

ui(ci,bi) − ui(c′
i,bi)

] + [
vi(c′′

i ,bi) − vi(ci,bi)
]
> 0.

Since vi = vi[ci, bi], choice ci is optimal for bi and vi , and hence vi(c′′
i , bi) − vi(ci, bi) ≤ 0. It thus follows that ui(ci, bi) −

ui(c′
i, bi) > 0, which means that ui(ci, bi) > ui(c′

i, bi).
Summarizing, we can thus conclude that ui(ci, bi) > ui(c′

i, bi), which was to show. This completes the proof. �
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