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Abstract. By a player splitting we mean a mechanism that distributes the in-
formation sets of a player among so-called agents. A player splitting is called
independent if each path in the game tree contains at most one agent of every
player. Following Mertens (1989), a solution is said to have the player split-
ting property if, roughly speaking, the solution of an extensive form game
does not change by applying independent player splittings. We show that
Nash equilibria, perfect equilibria, Kohlberg-Mertens stable sets and Mertens
stable sets have the player splitting property. An example is given to show that
the proper equilibrium concept does not satisfy the player splitting property.
Next, we give a definition of invariance under (general) player splittings which
is an extension of the player splitting property to the situation where we also
allow for dependent player splittings. We come to the conclusion that, for any
given dependent player splitting, each of the above solutions is not invariant
under this player splitting. The results are used to give several characterizations
of the class of independent player splittings and the class of single appearance
structures by means of invariance of solution concepts under player splittings.

JEL classification: C72.
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1. Introduction

In an extensive form game, the moments in time at which players have to
make decisions are modeled by so-called decision nodes. At a given decision

* We thank an anonymous referee for his comments.
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node, the corresponding player can base his decision only on the information
available to him in that node. The collection of decision nodes between which
the player can not distinguish a-priori is called an information set. Hence, the
player can deduce from his information that he is in one of the nodes in this
set, but he can make no further distinction between these nodes.

In this paper we analyze the situation in which each player delegates the
decision making at his information sets to a number of representatives which
are called his agents. In effect, this means that the original extensive form
game is transformed into a new game in which the player set equals the set of
agents. Such a transformation is called a player splitting. As an extreme ex-
ample, every player could decide to assign each of his information sets to a
different agent, transforming the game into its agent normal form. However,
we allow for a more general setting in which it is possible to assign several
information sets to the same agent. The aim of the paper is to study different
types of player splittings and check to what extent various solution concepts
are robust against these player splittings.

In most literature, attention is restricted to independent player splittings in
which in every play of the game at most one agent of every player appears.
Intuitively, by applying an independent player splitting a player only loses the
capability to coordinate his actions in different branches of the game tree.
However, once the play has reached one branch of the game tree, what hap-
pens in other branches is irrelevant. For this reason, robustness against inde-
pendent player splittings seems to be an appealing property for a solution
concept, as Mertens (1989) already indicated. This type of robustness is for-
malized in the well-known player splitting property (Mertens, 1989). We verify
this property for a number of solution concepts.

Next, we make the step to dependent player splittings in which in a certain
play of the game two agents of the same player appear. It seems logical that
under a dependent player splitting, the loss of capability to coordinate actions
in the same branch of the game tree highly restricts the strategic abilities of a
player. This intuition is supported by the fact that all solution concepts con-
sidered in this paper are sensitive to dependent player splittings.

The paper is organized as follows. In Section 2 and 3 we present some
preliminaries and a formal definition of the player splitting property. Further,
we discuss some useful technical results on independent player splittings.

In Section 4 we prove that Nash equilibria, perfect equilibria, Kohlberg-
Mertens stable sets and Mertens stable sets satisfy the player splitting prop-
erty. In an example, it is shown that the proper equilibrium concept does not
satisfy the player splitting property. However, proper equilibria are shown to
satisfy a weaker version of the player splitting property which is called the
weak player splitting property.

Section 5 contains the definition of invariance under general player split-
tings, which is an extension of the player splitting property to the case where
player splittings may be dependent. In Section 6 we show that, for every given
dependent player splitting, each of the solution concepts mentioned above is
not invariant under this player splitting. These results are in accordance with
the intuition that dependent player splittings, in contrast to independent
player splittings, really change the strategic abilities of the players.

This insight is used in Section 7 to give several characterizations of the
class of independent player splittings. It turns out to be the largest class of
player splittings under which Nash equilibria, perfect equilibria, Kohlberg-
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Mertens stable sets and Mertens stable sets are invariant. Furthermore, it is
the largest class of player splittings under which the proper equilibrium con-
cept is weakly invariant. Finally in this section, we consider the class of single
appearance games in which every player appears at most once in every play of
the game. Using previous results, we give several characterizations of this class
by means of the invariance of solutions under player splittings.

2. Preliminaries

In an extensive form game, the graphical structure of the game consisting of
the game tree, the information sets, the actions, the chance moves and the
player labels is called the extensive form structure. We denote the set of players
by N. The information sets are denoted by 4, whereas H is the collection of all
information sets. At an information set /1, A(h) is the set of actions available
at h. We assume that |4(/)| > 2 for all &. The set of terminal nodes is denoted
by Z. The payoff for player i at a terminal node z is given by u;(z). An ex-
tensive form game with extensive form structure . and payoffs u is denoted as
I' = (¥, uy. Often, we write game instead of extensive form game and struc-
ture instead of extensive form structure.

In an extensive form game, a pure strategy for player i is a function m;
assigning to each information set 4 € H; an action m;(h) € A(h). The set of
player i pure strategies will be denoted by M,;. For a pure strategy profile

m = (my,...,my,), v;(m) is the payoff to player i when m is played.
The normal form game I'y = {(M,v), where M :=][[, M; and v:=
(v1,...,vy) is called the normal form of I

A mixed strategy for player i is a probability distribution p; on M;. For a
mixed strategy profile p = (py, ..., pa), IP, denotes the probability distribution
on the terminal nodes generated by p and v;(p) is the (expected) payoff to
player i induced by p.

For a mixed strategy profile p and a mixed strategy p/, the mixed strategy
profile in which player i plays according to p/ and all other players play ac-
cording to p is denoted by p\ p;.

Since the set of mixed strategies profiles depends only on the extensive
form structure %, we sometimes talk about mixed strategies in .% instead of
mixed strategies in /.

Player splitting property

Consider an extensive form structure .. A player splitting on % is a mecha-
nism which divides the information sets of each player between so-called
agents. Formally, a player splitting on % is a function 7= which defines for
every player i a partition {Hj|je J(i)} of the collection H; of information
sets controlled by player i.

The player splitting 7 induces a new extensive form structure %" in which
the player set is given by N’ = {ij|li € N,j € J(i)} and every player ij controls
the information sets in H;;. The players ij are called agents of player i.

For every extensive form game I” with structure .%, = induces a new game
I'" with structure %™ and payoffs u;(z) given by u;(z) := u;(z) for every ter-
minal node z.
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In &7, pure strategies are usually denoted by my;; and the set of pure
strategies of agent jj is given by M;. We use ¢; and ¢ to represent mixed
strategies and mixed strategy profiles in ¥" repectively.

A player splitting on & is called independent if on every path in the game
tree, at most one agent of every player is present.

As is argued by Mertens (1989), independent player splittings do not really
change the strategic abilities of the players. Therefore, it is considered a de-
sirable property for a solution to be robust against independent player split-
tings: a property which is known as the player splitting property and has been
introduced by Mertens (1989). In order to recall the definition of the player
splitting property, we need some more definitions.

Let n be an independent player splitting on . By f™ we denote the
function which assigns to every mixed strategy profile p in . the mixed strat-

cgy proﬁle q= (qij)ieN,jej(i) in " giVCn by

gg(my) = Y pilmy)

m:(m;) ;=my;

forevery i € N, j € J(i) and every my € Mj;. Here, (m;);; denotes the restriction
of m; on the information sets in Hj;.

The function f” transforms every mixed strategy pi of & into an equivalent
mixed strategy vector! (%)Je J(» for the agents of i in &". The word equiva-
lent means that in every mlxed strategy profile ¢’ of ™ in which player i plays
(94); ey, We can replace (g;7) I by p; without changing the probabilities on
the terminal nodes. Throughout tins paper, we say that p generates q.

Note that the function /™ also works for games without perfect recall. This
is the reason that we do not require perfect recall when working with inde-
pendent player splittings. Later on, when studying dependent player splittings,
perfect recall is needed.

Two extensive form games I’ =<%,u) and I'' = (¥, u') are called
equivalent if u;(z) = u!(z) whenever player i appears on the path to z. In-
tuitively, this means that, whenever a player has to move, the payoffs for this
player are the same in the remainder of the games I" and I"'.

Let ¢ be a solution assigning to every extensive form game a collection of
sets of mixed strategy profiles. We say that the solution ¢ has the player split-
ting property if for every extensive form game I', every independent player
splitting 7 on the structure of I" and every game I"’ which is equivalent to I'"
we have that

p(I'") ={/"(S)[S € p(I')} (2.1)
and for every T € o(I"') it holds that
ULS ep()/7(8) = T} = (/) H(T). (2.2)

! In the sequel, when we write mixed strategy vector, we always mean a set of mixed strategies in
the game I'”" belonging to agents ij of the same player i. This is done in order to avoid confusion
with mixed strategy profiles in I'”", which contain a mixed strategy for each agent.
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Here, S and T denote sets of mixed strategy profiles. In words, condition (2.1)
means that the solution sets in I"’ are exactly the images under /™ of the so-
lution sets in I", whereas condition (2.2) states that the inverse image of a so-
lution set T in I"’ is the union of solution sets in I” which are mapped onto T.

In the case where ¢ is a point valued solution, the two conditions are
equivalent to

~mty—1

o(I') = (/") (p(I")).
We say that ¢ satisfies the weak player splitting property if it holds that

{/(S)ISen)} = p(I').
Intuitively, this means that ™ transforms solution sets in I into solution sets
in I

The definition of the player splitting property is illustrated by the following
diagram.

gy L r L o)
I I’ o(I'")
u’ ]

3. Technical properties of independent player splittings

Independent player splittings have the special property that in the resulting
game every path crosses at most one agent of every player. In this section, we
show that this leads to some very special relationships between the expected
payoffs of the original game and the expected payoffs of the new game. Since
these results are used repeatedly in section 4, we dedicate a separate section to
these relationships.

Throughout this section, let 7 be an independent player splitting on an
extensive form structure &, I' = (&, u) an extensive form game with struc-
ture & and I'' = (%", u’) a game which is equivalent to I'". Let p be a mixed
strategy profile in I” and ¢ a mixed strategy profile in I’ generated by p. The
expected payoffs in I” and I'' are denoted by v;(p),v;(¢) and vi(gq) re-
spectively, whereas the payoffs at the terminal nodes are given by u;(z), u;(z)
and uj;(z) respectively.

For a collection H' of information sets, Z(H’) denotes the set of terminal
nodes which follow H'. Since 7 is independent, Z(H;) is the disjoint union of
the sets Z(H;). Hence, for every mixed strategy profile ¢ in I"" and every
agent ij,

vp(e) =Y Py(ujz) = Y PyRu(z)+ Y Pyujz),  (3.1)

zeZ ZEZ(H,’/) ZéZ(Hij)

where the second equality follows from the fact that u;(z) = u;(z) for all

z € Z(Hy). This relation plays an important role as well as the following
lemma.
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Lemma 3.1. (a) If

vi(g\my) < vi(q\ly),

then for all pure strategies m; and l; of player i with (m,) = my;, (I,-)l-/ =l and
mj(h) = [;(h) for all h e H\H; it holds that '

vi(p\mi) < vi(p\li).

(b) If
vi(p\mi) < vi(p\l;)

then there is an agent ij with pure strategies my = (m;); and Iy = (l;);; such that
vj;(q\my) < vj;(q\ly).

Proof: () Suppose that vj(¢\my;) < v;;(q\l;). Let m; and [; be pure strategies

of player i with (m;); = my, (I;); = l; and m;(h) = [;(h) if h € H;\H;. Then,
we have

(p\m,)—v,, q\m, - Z ]Pq\ml “l )"’ Z ]Pq\m/(z)u (Z)

ze Z(Hy) ¢ Z(Hy)

= 2 P @)+ Y Pou )

’EZ H,/ '¢Z HI/)

=V q\mlj Z IPq\m,, ) Z IPq\m,(Z)ui(Z)
7¢Z( ZéZ(H,‘,‘)

< U i (4\lyj) — Z Py, (2) l] Z Py, (2)ui(2)
¢ Z(Hy) ¢ Z(Hjy)

= vi(p\li).

Here, the inequality follows from the fact that (1) v;;(¢\my) < v;(¢\l;) and (2)
P\, (z) = Py, (2) and Py, (2) = Py, (z) for z ¢ Z(Hj;). The last equality is
obtained if we substitute m; by /; in the first three equations.

(b) Suppose that v;(p\m;) < vi(p\l;). For a terminal node z ¢ Z(H;), IP,(z)
does not depend on player i’s strategy. Hence, for such a z and any pure
strategy r; of player i it holds that IP, (z) = IP,(z) leading to

p\}’, Z Z IPq\i Z IPq(Z)ui(Z)'

jeJ(i) ze Z(Hy) 7¢Z(H,-)

Hence, the inequality v;(p\m;) < v;(p\/;) implies that

Z Z Py, (2 Z Z Py (2

JjeJ(i) zeZ(Hy) jelJ(i) ze Z(Hy)
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So we can find an agent ij such that

Z ]Pq\m, ul Z ]Pq\l

zeZ(Hy) zeZ(Hy)

By defining my; := (m;);; and I;; := (I;); we obtain

Uy i(q\my) = Z IPcl\mU i(z) + Z IPq\m,-(Z)“;{;(Z)

zeZ(H, ’¢Z(H,:,-)
- Z IPq\m,-(Z)”i(Z)Jr Z IPq(z)u,.’j(z)

zeZ(Hy) ¢ Z(Hj)

< Z ]Pq\l Z IP,(

ze Z(Hy) 2¢ Z(Hy)
= v;(q\ly)- .

4. Behavior of solutions under independent player splittings

In this section, we investigate how Nash equilibria, perfect equilibria, proper
equilibria, Kohlberg-Mertens stable sets and Mertens stable sets behave under
independent player splittings. It turns out that all solution concepts listed
above, except the proper equilibria, satisfy the player splitting property.

4.1. Nash equilibria

The correspondence which assigns to every extensive form game I” the set of
Nash equilibria (Nash, 1950) of the normal form is denoted by NE.

Theorem 4.1. The Nash equilibrium concept satisfies the player splitting
property.

Proof: Let I' be an extensive form game, n an independent player splitting on
the structure of I” and I’ a game which is equivalent to I'". The expected
payoffs in I, I'" and I"" are denoted by v;(p), v;(¢) and v};(¢) respectively. We
show that

(/)" (NE(I')) = NE(I).

(a) First we prove that NE(I') = (f™) " (NE(I')).

Let p e NE(I') and let ¢ = f™(p). We prove that g e NE(I'').

Let my,l; € Hy and g;(my) > 0. We can choose m;, l; with (m;);; = my;,
(1:); = Iy and m;(h) = I;(h) for all h e H;\H;. Since p is a Nash equilibrium
and p;(m;) > 0 we have v;(p\m;) > v:(p\/;). By Lemma 3.1 (a), it follows that

v;;(¢\my) > vj;(q\ly). Since this holds for all such m;;, [; we may conclude that
¢ is a Nash equilibrium in 1™
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(b) Now, we show that (™)' (NE(I"")) = NE(I').

Let pe (™) " (NE(I'")) and ¢ = /™(p). So, by construction, g € NE(I'').
We prove that p e NE(I'). Let m;,[; € M; be such that v;,(p\m;) < vi(p\f).
Then, by Lemma 3.1 (b), there is an agent ij with pure strategies m; = (m;);
and /; = (/;); such that v/;(¢\my;) < vj;(¢\ly). Since ¢ is a Nash equilibrium in
I'', it follows that ¢;;(m;;) = 0. Therefore,

0=gy(my) = > pilri) = pi(my),

ris(ry) =njs

which implies that p;(m;) = 0. Since this holds for every such m;, it follows
that p is a Nash equilibrium in 7. O

4.2. Perfect equilibria

In this paper, we exploit the following characterization of perfect equilibria
(Selten, 1975) for normal form games.

A mixed strategy profile p is a perfect equilibrium in a normal form game
if and only if there is a sequence (p*) ren Of completely mixed mixed strategy
profiles converging to p such that v;(p¥\m;) < v;(p¥\/;) for some k implies
pi(m;) = 0. By completely mixed, we mean that every pure strategy is played
with strictly positive probability. By PE, we denote the correspondence which
assigns to every extensive form game the set of perfect equilibria of the normal
form. This correspondence is therefore different from the original definition of
perfect equilibria for extensive form games, which makes use of the agent
normal form and is given in terms of behavior strategy profiles. Whenever we
speak about a perfect equilibrium of the extensive form game I, we mean a
perfect equilibrium of the normal form of I".

Before we come to the main result we need two technical lemmas. The first
lemma can be found in Cook et al. (1986).

Lemma 4.2. Let A be a real m x n matrix, B := {b|Ax < b is solvable} and
W(b) .= {x]|Ax < b} for every b € B. Then, there is an L > 0 such that

du((b), Y (b)) < L-||b—b|
for every b, b’ € B.

Here, dy denotes the Hausdorff-distance and || - || represents the maximum
norm.

Lemma 4.3. Let & be an extensive form structure and n an independent player
splitting on . Moreover, let p be a mixed strategy profile in &, g = f™(p) and
g~ a sequence of completely mixed mixed strateqy profiles in ¥ converging to
q. Then, there is a sequence p* of completely mixed mixed strategy profiles in
converging to p with f™(p*) = ¢* for every k.

Proof: Let 4 () and 4 (S ™) be the sets of mixed strategy profiles in & and
" respectively. Since the function 7 : .#(¥) — M (™) is linear and sur-
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jective and the set .#(%) is determined by linear equalities and inequalities,
there is a matrix 4 and an affine function b on .# (") such that

(f™) " (q) = {pl4p < b(q)}.

So, by Lemma 4.2, we can find a constant L > 0 such that

du((f™) (), (f™) "' (")) < L-1|b(g) — b(q)||

for all ¢, ¢’. Therefore, since b(q) is affine, there is an L’ > 0 with

d (S5 @), (@) <L llg =4

for all ¢,q’. Now, let p be a mixed strategy profile in ., ¢ = f*(p) and ¢* a
sequence of completely mixed mixed strategy profiles in %" converging to q.
By the inequality above we can find a sequence jp* € (f™)"'(¢*) converging
to p.

For every k, let pX be the mixed strategy profile in % given by

ﬁ,k(mz) = H %{;((mi)gj)

iieJi)

for all i e N and m; € M;. Obviously, p* is completely mixed for every k. For
each k we define p¥ by

1 1
k_ R T Y
)4 <1 k) +kp.

Since f*(p¥) =¢* and f(p*) = ¢*, it follows by linearity of f” that
f™(p*) = ¢*. The observation that p* converges to p and p* is completely
mixed completes the proof. O

Theorem 4.4. The perfect equilibrium concept satisfies the player splitting
property.

Proof: Let I' be an extensive form game, n an independent player splitting on
the structure of I” and I’ a game which is equivalent to I'". The expected
payoffs in I, I'" and I"" are denoted by v;(p), v;;(¢) and vj(q) respectively.

(a) First we show that (™) ' (PE(I"")) « PE(T).

Suppose that p € (™)' (PE(I"")), which means that ¢ = /™(p) is a perfect
equilibrium in I"’. Then there is a sequence g of completely mixed mixed
strategy profiles converging to ¢ such that g;(m;) =0 if vi’j(qk\mi/) <
vi’/(qk\ll-j). By Lemma 4.3 there is a sequence p* of completely mixed mixed

strategy profiles in I” converging to p with f7(p*) = ¢*.

In order to show that p is perfect, we suppose that v;(p\m;) < v;(p*\1;)
for pure strategies m; and /; of player i. By Lemma 3.1 (b) there is an agent

ij with pure strategies my = (m;); and I; = (/;); such that vg/(qk\mij) <
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vf;(q*\l). This implies that g;;(m;) = 0. Since

ag(my) =Y pilr),

rit(ri) y=m

it follows that p;(r;) = 0 for all r; with (r;); = my. In particular, p;(m;) =0,
which implies that p is a perfect equilibrium for the game 7.

(b) Next, we show that PE(I') = (™) ' (PE(I")).

Let pe PE(I'). So there is a sequence p* of completely mixed mixed
strategy profiles converging to p such that p;(m;) = 0 if v;(p*\m;) < v;(p*\L).
We prove that ¢ = f™(p) is a perfect equilibrium in I"". If ¢ is the mixed
strategy profile in I’ generated by p*, then ¢* is completely mixed and the
sequence ¢X converges to ¢.

In order to show that ¢ is perfect, we suppose that v];(¢*\my;) < v},(¢"\l;).
Let m;, [; be pure strategies with (m;);; = my;, (1;); = Iy and m;(h) = I;(h) for all
h e H\H;. Then, by Lemma 3.1 (a), v;(p*\m;) < v;(p*\;) which implies that

pi(m;) = 0. Since this holds for every pure strategy m; with (mi)y = my; it fol-
lows that
gi(my) = Y pilm) =0.
i715:(111i),]:m,]
Hence ¢ is a perfect equilibrium for the game I™’. O

4.3. Proper equilibria

A mixed strategy profile p is called ¢-proper in a normal form game for some
& > 0 if it is completely mixed and v;(p\m;) < v;(p\/;) implies p;(m;) < ep;(L;).
We call p a proper equilibrium (Myerson, 1978) if there is a sequence (&), .
of strictly positive numbers converging to zero and a sequence (pX), .y of e*-
proper mixed strategy profiles converging to p. The correspondence which
assigns to every extensive form game the set of proper equilibria of the normal
form is called PR.

Remark 1. The proper equilibrium concept does not satisfy the player splitting
property.

Proof: Consider the signaling game I’ below which is taken from Cho
and Kreps (1987), pp. 200-201. Let = be the independent player splitting
which divides the information sets of player 1 among the agents la and 1b
respectively.

First we prove that ¢ = (a;¢;e) is a proper equilibrium in I'*. For ¢ > 0
sufficiently small

q° = ((1 —=&a+e&b; (1 —&*)c + &2d; (1 — &2)e + & f)

is e-proper for the game I'". Since lim, )y ¢* = ¢ it follows that ¢ is a proper
equilibrium in "7,
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Fig. 1.

Next, we show that the unique mixed strategy profile p = (ac;e) in I'
which induces ¢ is not a proper equilibrium in I". The normal form of I is
given by

e S
ac | 0,0 0,0

ad | —0.9,09 | —0.9,0

be | —0.1,0 | 0.1,0.1

bd | —1,09 | —0.8,0.1

Assume that p is a proper equilibrium for the game /. Then, for ¢ > 0 small
enough there is an e-proper profile p* = (p{,p5) in I" with lim, o p® = p. If p5
is close to e then ad and bd are both worse responses than bc. Hence, ad and
bd are played with a very small probability compared to bc. But then, e is a
worse response than f implying that e should be played with probability zero
in p. This is a contradiction. Therefore, p is not a proper equilibrium in I”
implying that the proper equilibrium correspondence does not satisfy the
player splitting property. O

However, we can show that the proper equilibria correspondence satisfies
the weak player splitting property. In order to prove this, we need the follow-
ing lemma. In this lemma, let I” be an extensive form game, # an independent
player splitting on the structure of " and I’ a game which is equivalent to I'”.

Lemma 4.5. If p is e-proper in I', then f™(p) is e-proper in I"'.

Proof: Let ¢ >0 and p an e-proper mixed strategy profile for the game I'.
Then, obviously, the mixed strategy profile ¢ = f”(p) is completely mixed
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since p is completely mixed. In order to show that ¢ is e-proper for the game
I'', we prove that g;;(m;) < eq,j(l,j) if v;( \mj) < ul’](q\l,j)

So suppose that v,](q\m,]) < v;(¢\ly). Then by Lemma 3.1 (a), v;(p\m;) <
vi(p\l;) for all pure strategies m; and /; with (m;); =my, (I;}); =1I; and
m;(h) = [;(h) for all h e H;\Hj;. Since p is an e-proper ' mixed strategy profile
for the game I, p;(m;) < ep;(1;) for all such pairs m;, I;.

For every pure strategy m; with (m;) ;j = my we can find a corresponding
pure strategy m;\/; which prescribes /; at Hj; and coincides with m; at H;\ H;;.
Since p;(m;) < ep;(m:\l;) for such m; we have

qi(my) = pilm) < Y epilm\ly)

m;:(m,)[j:m,y m;:(m,)[j:m;f

= epi(li) = eqy(ly).
1)y =ly

Since this holds for every m; and /; with v/;(¢\my) < vj;(¢\ly), it follows that ¢
is e-proper in the game 7', O

This result immediately implies the following theorem.

Theorem 4.6. The proper equilibria concept satisfies the weak player splitting
property.

4.4. Stable sets
Stable sets

In a normal form game I, a set .S of mixed strategy profiles is called a Kohl-
berg-Mertens stable set (KM-stable set) (Kohlberg and Mertens, 1986) if it is
minimal with respect to the following property: S is closed and for every open
set ¢ containing S there is an ¢ > 0 such that for every strictly positive mistake
vector 7 = (17;(m;));c v, e iy < € We have

NE(I'") A0 # .

Here, I'" is the restriction of the game /" to mixed strategies p; with p;(m;) >
n; (m,) for all j and all m; € M;. The game I'" is called a perturbed game. Let
A M be the correspondence Wthh assigns to every extensive form game the
collection of KM-stable sets of the normal form. In order to prove the fol-
lowing theorem, we need the definition of invariant solutions which can be
found in Mertens (1987), Theorem 2 (b).? As to distinguish it from invariance
under player splittings, we call this concept Mertens invariance.

A normal form solution ¢ is called Mertens invariant if for every two
games I, I'* with the same player set and every linear, payoff preserving

2 Mertens did not use the word invariance in this paper.
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function f mapping the strategy space of 1" onto the strategy space of I"* we
have

o(I") ={/(S)[Sep(l)} (4.1)
and for every T € ¢(I'*) it holds that
U{SenD)|f(S)=T}=/"1(T). (4.2)

Theorem 4.7. The KM-stability concept satisfies the player splitting property.

Proof: Let I be an extensive form game, = an independent player splitting on
the structure of I" and I'’ a game which is equivalent to I'". Let I'* be the
normal form game with the same player set as I in which the strategy space of
player i is the product of the mixed strategy spaces of the corresponding
agents ij. Let f be the payoff preserving, linear function from the strategy
space of I' onto the strategy space of I'* which is obtained by taking the
marginals. Since it is shown in Mertens (1987), section 4.2.5 that A4 is
Mertens invariant, it follows that the Kohlberg-Mertens stable sets of /" and
I'" satisfy equations (4.1) and (4.2).

It remains to show that the KM-stable sets of I'* and I'' are the same.
However, this follows from the fact that the perturbed games of I'* and I"’ are
the same as is shown in Mertens (1989), proof of Theorem 4. Consequently,
the KM-stable sets of " and I'’ satisfy equations (2.1) and (2.2). O

In 1989, Mertens introduced a new stability concept called Mertens stable
sets. Since it would require too much space to give an exact description
of Mertens stable sets we refer to Mertens (1989) for a precise definition.
Mertens (1989) showed that the Mertens stability concept has the player
splitting property.

5. Invariance under general player splittings

The player splitting property can be viewed as a tool which is used to investi-
gate the behavior of solutions under independent player splittings. Among the
solution concepts considered, all but one are robust against independent
player splittings. This result supports the idea, stated by Mertens (1989), that
independent player splittings do not really change the strategic abilities of the
players. On the other hand, Mertens argues that dependent player splittings do
change the strategic situation of the game. A natural question which arises is
whether this statement can be supported by the behavior of solution concepts
under dependent player splittings.

In order to answer this question, we introduce a definition of invariance of
solutions under player splittings. This definition mainly follows the idea of the
player splitting property: the solutions should not change by applying the
player splitting. In the next section, we show that each of the solution concepts
considered above is not invariant under any dependent player splitting. More
precisely, for every extensive form structure and every dependent player split-
ting, we can find payoffs for the terminal nodes such that the solution of the
new game, obtained by player splitting, is different from the solution of the
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Fig. 2.

original game. Consequently, the class of independent player splittings can be
regarded as the largest class of player splittings leaving the strategic situation
of the game unchanged.

Definition of invariance under player splittings

Let & be an extensive form structure and 7 a player splitting on .%. In order
to compare the solutions in I” and I'*, we need an onto function f which
transforms every mixed strategy profile in /" into an equivalent mixed strategy
profile of the new game I'". By the latter, we mean that f transforms every
mixed strategy p; in I" into an equivalent mixed strategy vector (‘b‘/)je J00) in
I'". Such a function is called a transformation function.

In the extreme case where 7 assigns a different agent to every information
set, the mixed strategy vectors in I'" are exactly the behavior strategies in 1.
Kuhn (1953) has shown that every mixed strategy has an equivalent behavior
strategy if and only if the extensive form structure has perfect recall. Since, in
particular, we want the transformation function f to exist for such ‘maximal’
player splittings, we assume from now on that & satisfies perfect recall.

In case the player splitting is maximal, we may use Kuhn’s function
transforming mixed strategies into equivalent behavior strategies as a candi-
date for f. If the player splitting is independent, the function f” defined in
Section 2 may serve as a transformation function. However, there may be
many transformation functions, as is shown by the following example.

Let 7 be the trivial player splitting which leaves the extensive form struc-
ture unchanged. Then, mapping bc onto bd and vice versa, while keeping ac
and ad fixed, generates a transformation function.

Now, a solution is said to be invariant under the player splitting 7 if we
can find a transformation function f'such that the solution of the orginal game
coincides with the solution of the new game, when applying the function f.
Formally, we say that the solution ¢ is invariant under = if there is a transfor-
mation function f'such that for every extensive form game I with structure &
and every game I which is equivalent to I'™ we have

p(I'") ={/(S)|S e (I} (5.1)
and for every T € o(I"') it holds that

LS ep(D) | £(S) =T} =f1(T). (52)
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Fig. 3.

If the solution ¢ is a point valued solution, both conditions are equivalent to

p(I) =f""(p(I'")).
If it holds that

{/(S)SepN} = o)

we say that ¢ is weakly invariant under 7.

From the definition, it is clear that a solution concept satisfying the player
splitting property is invariant under every independent player splitting, since
the function f” in Section 2 can be used as transformation function. The
converse is not necessarly true, since for a given independent player splitting
7, the transformation function f ‘justifying’ the invariance under 7= does not
have to coincide with the function /™ in Section 2. However, this gap dis-
appears if the solution ¢ is Mertens invariant (see Section 4 for an exact defi-
nition).

6. Behavior of solutions under dependent player splittings

In this section we show that the solution concepts considered in Section 4 are
not invariant under any dependent player splitting.

Nash equilibria

Lemma 6.1. Let & be an extensive form structure and © a dependent player
splitting on . Then, the Nash equilibrium concept is not invariant under 7.

Proof: Let ¥ be an extensive form structure and = a dependent player split-
ting on .. Then there are two different agents ij and ik in %" which appear
both in a certain play of the game. Formally, this means that we can find a
path from the root to Z containing two nodes, say x € & and x' € &/, con-
trolled by agents ij and ik respectively. Let a be the unique action on this path
leaving x. Since |A4(h)| > 2, we can find another action, say b at x. Next,
choose two different actions ¢’ and b’ at x'.

Note that the line from the root to x does not represent one single action.
This line covers all the actions and chance moves that are present on the path
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to x. The same holds for the line ending at x’ and the lines ending at terminal
nodes.

By Z' we denote the set of terminal nodes which follow the action a’. Let
the payoff function u be given by

i (2) .:{1 ifj=iand ze Z’
AN 0 otherwise

and let I" be the game {%,u). Choose a pure strategy profile m in I'* such
that

(1) m, chooses all the actions on the path from the root to x’, except a and
(2) m chooses the actions b and b'.

Then m is a Nash equilibrium for the game " which gives player i payoff 0.

Let f be an arbitrary transformation function and let m e f~'(m). We
show that /m is not a Nash equilibrium in I". Clearly, m is not a Nash equi-
librium in I” since player i can strictly increase his payoff by deviating unilat-
erally to a pure strategy selecting the actions a and a’. Since /m and m are
payoff equivalent® for each player and Nash equilibrium is Mertens invariant
(1987), m is not a Nash equilibrium. Consequently, the Nash equilibrium
correspondence is not invariant under 7. O

The other solution concepts

Lemma 6.2. Let & be an extensive form structure and n a dependent player
splitting on &. Then, perfect equilibria ( proper equilibria, KM-stable sets, M-
stable sets) are not weakly invariant under 7.

Proof: Let & be an extensive form structure and z a dependent player split-
ting on . Then we can choose i, h',x,x',a,b,a’,b’ as in Lemma 6.1.

By Z’ we denote the set of those terminal nodes following the action 5’.
Let the payoff function u be given by

3 Two mixed strategies for a given player are called payoff equivalent if they induce the same
expected payoff for all players against any mixed strategy profile of the other players.
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0i(2) = 0 ifj=iandzeZ’
1 otherwise,

and let I" = (%, u). Choose a pure strategy profile m such that

(1) all the actions on the path to x’, including «, are chosen and
(2) the action «’ is chosen.

We show that m is a strictly perfect equilibrium in I". This follows easily from
the fact that player i’s strategy in m is a best response against any strategy
profile in I". Since the other players always receive 1 the strategy profile m is
strictly perfect. As a consequence, m is perfect and the set {m} is a KM-stable
set since every single point set consisting of a strictly perfect equilibrium is a
KM-stable set. Moreover, it can be shown that {m} is a M-stable set in I
Since a M-stable set always contains a proper equilibrium, it follows that m is
proper in I".

Let 7 be a player splitting which assigns information sets 4 and 4’ to dif-
ferent agents. We prove that for every transformation function f, f(m) is not a
perfect equilibrium in I"*. Take an arbitrary transformation function f. Let ik
be the agent controlling information set /4. Since the mixed strategy vector for
player i in f(m) should be equivalent to his strategy in m, and all actions
leading to x are chosen in m, it follows that f(m) should specify action a at
information set 4. However, the action « is weakly dominated by b for agent
ik in I'", and therefore f(m) can not be perfect in I'". Consequently, f(m) is
not proper in I'* and the set f({m}) is not a KM-stable set and not a M-stable
set in I'" since KM- and M-stable sets consist solely of perfect equilibria.

Combining all the insights above leads to the conclusion that perfect
equilibria, proper equilibria, KM-stable sets and M-stable sets are not weakly
invariant under 7.* [J

7. Characterization of independent player splittings and single appearance
structures

By combining the results of section 4 and 6, we obtain the following charac-
terizations of the class of independent player splittings.

Theorem 7.1. The class of independent player splittings is the largest class of
player splittings under which

(a) Nash equilibria (perfect equilibria, KM-stable sets, M-stable sets) are
invariant,
(b) proper equilibria are weakly invariant.

By largest, we mean largest with respect to set inclusion.
Next, we consider a special class of extensive form structures which we call
single appearance structures. An extensive form structure is called a single

4 We thank an anonymous referee for detecting an error in the proof in an earlier version of the
paper.
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appearance structure if every path in the game tree crosses at most one infor-
mation set of every player. In other words, each player appears at most one
single time in every play of the game. Obviously, the class of single appear-
ance structures can be characterized by stating that it is the largest class of
structures for which every player splitting is independent.

Using the theorem above, we can give the following characterizations of
the class of single appearance structures in terms of invariance of solution
concepts under player splittings.

Theorem 7.2. The class of single appearance structures is the largest class of
extensive form structures & for which

(@) Nash equilibria (perfect equilibria, KM-stable sets, M-stable sets) are
invariant under every player splitting on &,
(b) proper equilibria are weakly invariant under every player splitting on & .
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