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Abstract
We propose a model of reasoning in dynamic games in which a player, at each information

set, holds a conditional belief about his own future choices and the opponents’future choices.
These conditional beliefs are assumed to be cautious, that is, the player never completely
rules out any feasible future choice by himself or the opponents. We impose the following
key conditions: (a) a player always believes that he will choose rationally in the future, (b) a
player always believes that his opponents will choose rationally in the future, and (c) a player
deems his own mistakes infinitely less likely than the opponents’mistakes. Common belief
in these conditions leads to the new concept of strong sequential rationalizability. We show
that strongly sequentially rationalizable strategies exist in every finite dynamic game. We
prove, moreover, that strong sequential rationalizability constitutes a refinement of both per-
fect rationalizability (a rationalizability analogue to Selten’s (1975) perfect equilibrium) and
procedural quasi-perfect rationalizability (a rationalizability analogue to van Damme’s (1984)
quasi-perfect equilibrium). As a consequence, it avoids both weakly dominated strategies
in the normal form and strategies containing weakly dominated actions in the agent normal
form.

JEL Classification: C72

Keywords: Dynamic games, strong sequential rationalizability, strong sequential equilib-
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1 Introduction

When reasoning in a game, it is natural to assume that your opponents —and even you yourself
—may make mistakes with some small probability. This assumption, to which we often refer
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Figure 1: Belief about your own future mistakes

as cautious reasoning, has first been implemented by Selten (1975) in his concept of perfect
equilibrium. The main idea is that a player, at each of his information sets in a dynamic
game, assigns a —possibly infinitesimal —strictly positive probability to each of the opponents’
choices and to each of his own future choices. Since then, Selten’s idea of cautious reasoning
has inspired many other concepts in game theory, such as proper equilibrium (Myerson (1978)),
permissibility (Brandenburger (1992), Börgers (1994)) and proper rationalizability (Schuhmacher
(1999), Asheim (2001)) for static games, and quasi-perfect equilibrium (van Damme (1984)) and
quasi-perfect rationalizability (Asheim and Perea (2005)) for dynamic games.

Among these, perfect equilibrium is the only concept in which a player believes that he
may make mistakes himself in the future. Indeed, in each of the other concepts the cautious
reasoning of a player only concerns the strategy choices by his opponents, but not the choices
by himself. As an illustration, consider the game Γ1 in the left-hand panel of Figure 1, where
player 1 is the only player. If player 1 fears that, by mistake, he may choose d in the future,
then his unique best choice is to go for strategy b. This is the only perfect equilibrium strategy
for player 1, whereas the other concepts above also allow for strategy (a, c). Intuitively, b seems
the only plausible choice for player 1 here. Indeed, why would player 1 risk making a future
mistake by choosing a, if by choosing b he achieves the maximum possible utility with no risk
of making future mistakes? This argument speaks for perfect equilibrium in this game.

At the same time, perfect equilibrium allows a player to believe that his own future mistakes
are more likely than the opponents’mistakes. Consider, for instance, the game Γ2 in the right-
hand panel of Figure 1. According to perfect equilibrium, player 1 is free to believe that his
own future mistake d is more likely than player 2’s mistake f, which allows player 1 to go for
strategy b. The other concepts above uniquely select player 1’s strategy (a, c), since under these
concepts player 1 believes that he will not make mistakes himself. In this particular game, (a, c)
seems the only plausible strategy for player 1. Indeed, believing that your own future mistakes
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are more likely than those of your opponents strikes us as rather counterintuitive.
Summarizing, none of the established concepts above uniquely selects player 1’s intuitive

choice in both of the games Γ1 and Γ2. In fact, we are not aware of any concept in the published
game theory literature —be it an equilibrium concept or rationalizability concept —that filters
player 1’s plausible choice in both of the games Γ1 and Γ2. This raises the question: Can we
develop a new concept that does? This is precisely the question we wish to answer in this paper.

Blume and Meier (2021) have taken a first important step by developing the new concept
of strong sequential equilibrium. Like perfect equilibrium and quasi-perfect equilibrium, they
simulate mistakes by trembles —that is, sequences of full-support probability distributions that
converge to the strategy profile under consideration. When evaluating the strategy of player
i, Blume and Meier (2021) also consider trembles in player i’s own strategy, similarly to how
perfect equilibrium proceeds. However, the key condition in strong sequential equilibrium is
that player i deems the trembles in his own strategy much smaller, in fact infinitely smaller,
than the trembles in the opponents’strategies. By this feature, strong sequential equilibrium
selects the “right”choice for player 1 in both games Γ1 and Γ2 above.

In this paper, we develop a rationalizability concept, termed strong sequential rationalizabil-
ity, that shares some of the key properties of strong sequential equilibrium. More precisely, in
strong sequential rationalizability a player holds, at each of his information sets, a cautious belief
about his opponents’strategies and a cautious belief about his own continuation strategy. Here,
by cautious we mean that the player never rules out any feasible opponent’s strategy, and never
rules out any of his own continuation strategies, although he may deem some of these strategies
infinitely more likely than other strategies.

We impose the following key conditions on these beliefs: (a) a player always believes that
he will himself choose rationally in the future, given his future beliefs about the opponents’
strategies and his future beliefs about himself; (b) a player always believes that his opponents will
choose rationally in the future; and (c) a player always deems his own future mistakes infinitely
less likely than the mistakes by others.1 In (a) and (b), when we say that a player believes that
he, or another player, chooses rationally, we mean that he only assigns infinitesimal probability
to all suboptimal strategies. Common belief in the properties (a), (b) and (c) throughout the
game yields the concept of strong sequential rationalizability. Formally, we define the concept by
the recursive elimination of strategies and beliefs in the game (see Section 3).2 In Theorem 3.1 we
show that this elimination procedure always yields a non-empty output in every finite dynamic

1Alternatively, one could consider a weaker concept in which a player believes that his own mistakes are less
likely, but not necessarily infinitely less likely, than those of the opponents. In this paper we adopt the stronger
version. This is analogous to proper equilibrium and proper rationalizability, where a player deems more costly
mistakes by the opponents infinitely less likely than less costly mistakes.

2A problem we would like to explore in the near future is characterizing strong sequential rationalizability
epistemically. That is, what are precisely the epistemic conditions on the players’beliefs that lead us to strong
sequential rationalizability? Our current formulation of this concept is by means of a non-epistemic recursive
elimination procedure, although the conditions of “belief in your own future rationality”and “deeming your own
mistakes least likely”already have some epistemic flavour.
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game, and hence strongly sequentially rationalizable strategies always exist. The existence proof,
which can be found in Appendix B, is constructive.

Property (b) shows that, in terms of reasoning, strong sequential rationalizability is very
similar to common belief in future rationality (Perea (2014)), in which players also always be-
lieve that their opponents will choose rationally in the future. In that sense, strong sequential
rationalizability is a true backward induction concept in which the players only reason about
the game that lies ahead.

By virtue of the properties (a), (b) and (c) above, especially property (c), the concept of
strong sequential rationalizability uniquely selects the “right”choice for player 1 in both of the
games Γ1 and Γ2 above. Indeed, in game Γ1 strong sequential rationalizability uniquely selects
strategy b for player 1, as player 1 does not rule out his own future mistake d. The selection
here thus coincides with that of perfect equilibrium. In game Γ2, player 1’s reasoning in line
with strong sequential rationalizability is as follows: Player 1 deems it possible that he himself
will make the mistake d and that player 2 will make the mistake f, but by (c) he deems player
2’s mistake infinitely more likely than his own mistake. Therefore, player 1 will go for strategy
(a, c), which is also the prediction of quasi-perfect equilibrium and quasi-perfect rationalizability.

In this paper we show that this is not a coincidence: In every dynamic game, strong sequential
rationalizability is a refinement of both perfect rationalizability (see Remark 1 in Section 3) and
procedural quasi-perfect rationalizability (see Theorem 4.1). Here, by perfect rationalizability
we mean the rationalizability analogue to perfect equilibrium, whereas procedural quasi-perfect
rationalizability is a slight weakening of quasi-perfect rationalizability which we introduce in
this paper. The main difference between the two versions of quasi-perfect rationalizability is
that the former is defined by means of a recursive procedure, whereas the latter is characterized
by epistemic conditions. But both concepts are based on the same principles: a player always
believes in the opponents’ future rationality, believes that the opponents make mistakes with
infinitesimal probability, but believes that he himself will make no mistakes in the future. Typ-
ically, both concepts coincide behaviorally, but there are dynamic games where the former is
behaviorally weaker than the latter.

The two results mentioned above thus show that, in every dynamic game, strong sequential
rationalizability inherits the desirable properties of both perfect rationalizability (that you take
into account your own future mistakes) and procedural quasi-perfect rationalizability (that you
focus primarily on the opponents’mistakes). As a consequence, strong sequential rationalizabil-
ity rules out strategies containing weakly dominated actions in the agent normal form, as well
as weakly dominated strategies in the normal form. This follows from the fact that perfect ra-
tionalizability avoids strategies containing weakly dominated actions in the agent normal form,
and procedural quasi-perfect rationalizability avoids weakly dominated strategies in the normal
form.

Remarkably, the result that strong sequential rationalizability is a refinement of both per-
fect rationalizability and procedural quasi-perfect rationalizability does not have an equilibrium
counterpart. As is shown in Blume and Meier (2021), strong sequential equilibrium is a re-
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finement of quasi-perfect equilibrium but not of perfect equilibrium. In fact, it cannot be a
refinement of both as the sets of quasi-perfect equilibria and perfect equilibria may be disjoint.

Differences between the various cautious reasoning concepts listed above only appear when
there are relevant ties in the dynamic game. If we consider, for instance, a dynamic game with
perfect information without relevant ties, then all the above mentioned concepts (except for
permissibility) would single out the unique backward induction strategy for each of the players.
More generally, if we take a dynamic game (with or without perfect information) where the back-
ward dominance procedure (Perea (2014)) singles out a unique strategy for every player, then all
these concepts would also coincide, as they all constitute refinements of the backward dominance
procedure. That is, to appreciate the difference between the above mentioned concepts we must
necessarily turn to games with relevant ties.

Compared to Blume and Meier’s (2021) strong sequential equilibrium concept, the concept of
strong sequential rationalizability differs in various dimensions. First, strong sequential rational-
izability is not an equilibrium concept, and hence does not impose “correct beliefs assumptions”
stating that a player must believe that his opponents are correct about his beliefs, or that player
i must believe that player j has the same belief about player k as player i has. Strong se-
quential equilibrium, on the other hand, does impose such correct beliefs conditions. Second,
beliefs about the opponents’ choices and mistakes and beliefs about your own future choices
and mistakes are explicitly modelled in strong sequential rationalizability, whereas these are
only implicitly present —in terms of trembles of the equilibrium strategies —in strong sequential
equilibrium. Finally, we use non-standard probability distributions (Robinson (1973), Hammond
(1994) and Halpern (2010)) with infinitesimals to model beliefs about mistakes, which greatly
simplifies the presentation and analysis in our case. In contrast, Blume and Meier start by using
the traditional framework of converging sequences of full-support standard probability distrib-
utions, but subsequently provide a characterization in terms of non-standard probabilities.

This leaves the question why we did not opt for lexicographic probability systems (Blume,
Brandenburger and Dekel (1991)) to model such cautious beliefs, as is common nowadays in
epistemic game theory. The reason is that lexicographic probability systems are not expressive
enough for our purposes: In the concept of strong sequential rationalizability, player i holds, at
each of his information sets, both (a) a cautious belief about his own future choices, and (b)
a cautious belief about the opponents’ future choices. To determine which choice is optimal
for player i at that information set, we must take the “product” of the belief about his own
choices and the belief about the opponents’choices. Taking such products is not well-defined
for lexicographic probability distributions, whereas it comes for free when using non-standard
probability distributions.

The outline of this paper is as follows. In Section 2 we introduce the necessary notation for
dynamic games and provide a brief overview of non-standard analysis, which will be suffi cient
for understanding the main body of this paper. In Section 3 we introduce the new concept
of strong sequential rationalizability, show its existence, and observe that it is a refinement
of perfect rationalizability. In Section 4 we introduce a slight weakening of the quasi-perfect
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rationalizability concept, called procedural quasi-perfect rationalizability, and show that strong
sequential rationalizability is a refinement of procedural quasi-perfect rationalizability. Section
5 concludes with some final remarks. Appendix A gives a more extensive treatment of non-
standard analysis, which is needed for some of the proofs. Appendices B and C contain the
proofs for Sections 3 and 4, respectively. Appendix D, finally, explores the relation between our
notion of procedural quasi-perfect rationalizability and quasi-perfect rationalizability as defined
in Asheim and Perea (2005).

2 Definitions

In this section we introduce the notation for dynamic games, and provide a short overview of
non-standard analysis which is needed for our definitions of strong sequential rationalizability
and quasi-perfect rationalizability.

2.1 Dynamic Games

In this paper we will focus on finite dynamic games with complete information that allow for si-
multaneous moves and imperfect information. The restriction to complete information is merely
for the sake of simplicity. The definition below, and the concept presented in this paper, can
easily be extended to games with incomplete information. Moreover, to keep our notation and
definitions simple we exclude moves of nature in the definition that follows. However, our de-
finition can easily be generalized to situations that involve moves of nature. Formally, a finite
dynamic game is a tuple

G = (I,X,Z, (Xi)i∈I , (Ci(x))i∈I,x∈Xi , (Hi)i∈I , (ui)i∈I)

where
(a) I = {1, 2, ..., n} is the finite set of players;
(b) X is the finite set of histories, consisting of non-terminal and terminal histories. At

every non-terminal history, one or more players must make a choice, whereas at every terminal
history the game ends. By ∅ we denote the history that marks the beginning of the game;

(c) Z ⊆ X is the set of terminal histories;
(d) Xi ⊆ X is the set of non-terminal histories where player i must make a choice. For a

given non-terminal history x, we denote by I(x) := {i ∈ I | x ∈ Xi} the set of active players at
x. We allow I(x) to contain more than one player, that is, we allow for simultaneous moves. At
the same time, we require I(x) to be non-empty for every non-terminal history x;

(e) Ci(x) is the finite set of choices available to player i at a history x ∈ Xi;
(f) Hi is the collection of information sets for player i. Every information set h ∈ Hi is a

subset of histories in Xi such that ∪h∈Hih = Xi and h∩h′ = ∅ for every two different h, h′ ∈ Hi.
That is, Hi is a partition of Xi. Moreover, we assume that Ci(x) = Ci(y) whenever x, y belong
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to the same information set in Hi, and Ci(x) ∩Ci(y) = ∅ whenever x and y belong to different
information sets in Hi. The interpretation of an information set h ∈ Hi is that player i at h
knows that a history in h has been realized. However, if h contains more than one history,
player i does not know which of these histories has been realized. Hence, we allow for imperfect
information;

(g) ui : Z → R is player i’s utility function, assigning to every terminal history z ∈ Z some
utility ui(z).

For practical purposes, we assume that all players are active at the beginning of the game
∅, that is, I(∅) = I. If, in reality, player i does not choose at ∅, then we define Ci(∅) to be a
singleton.

For every non-terminal history x and choice combination (ci)i∈I(x) in ×i∈I(x)Ci(x), we denote
by x′ = (x, (ci)i∈I(x)) the (terminal or non-terminal) history that immediately follows this choice
combination at x. In this case, we say that x′ immediately follows x. We say that a history x
follows a non-terminal history x′ if there is a sequence of histories x1, ..., xK such that x1 = x′,
xK = x, and xk+1 immediately follows xk for all k ∈ {1, ...,K − 1}. A history x is said to weakly
follow x′ if either x follows x′ or x = x′. In the obvious way, we can then also define what it
means for x to (weakly) precede another history x′. Analogously, for two information sets h and
h′, we say that h (weakly) follows h′ if there is some x ∈ h and x′ ∈ h′ such that x (weakly)
follows x′.We assume that the dynamic game has non-overlapping information sets, that is, for
every two information sets h, h′ it is never the case that h weakly follows h′ and h′ follows h.

In view of (f), we can write Ci(h) to denote the (unique) set of choices that player i has
available at information set h ∈ Hi. We assume perfect recall, that is, for every information set
h ∈ Hi and every two histories x, y ∈ Hi, the sequence of player i choices leading to x is the
same as the sequence of player i choices leading to y. In particular, since different information
sets in Hi prescribe disjoint sets of available choices, the sequence of player i information sets
on the path to x and on the path to y must be the same. That is, player i always remembers,
at each of his information sets h ∈ Hi, the choices he made in the past and the information he
had in the past.

We view a strategy for player i as a plan of action (Rubinstein (1991)), assigning choices
only to those histories h ∈ Hi that are not precluded by previous choices. Formally, consider a
collection of information sets Ĥi ⊆ Hi, and a mapping si : Ĥi → ∪h∈ĤiCi(h) assigning to every

information set h ∈ Ĥi some available choice si(h) ∈ Ci(h). We say that an information set
h ∈ H is reachable under si if at every information set h′ ∈ Ĥi preceding h, the choice si(h′) is
the unique choice that leads to h. The mapping si : Ĥi → ∪h∈ĤiCi(h) is called a strategy if Ĥi
contains exactly those information sets in Hi that are reachable under si.

By Si we denote the set of strategies for player i. For every information set h ∈ H and player
i, we denote by Si(h) the set of strategies for player i under which h is reachable. Similarly, for a
given strategy si we denote by Hi(si) the collection of information sets in Hi that are reachable
under si.
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2.2 Non-Standard Numbers

The analysis of non-standard numbers was initiated by Robinson (1973). It has later been
incorporated into the analysis of games by Hammond (1994) and Halpern (2010), who review
non-standard analysis and connect it to conditional and lexicographic probability systems.

Consider a number ε > 0 with the property that ε < a for every strictly positive real number
a ∈ R, a > 0. The number ε is called an infinitesimal. Following Robinson (1973), Hammond
(1994) and Halpern (2010), let R(ε) be the smallest field that includes all real numbers and the
infinitesimal ε. That is, R(ε) contains all numbers a that can be written as

a =
a0 + a1ε+ a2ε

2 + ...+ aKε
K

b0 + b1ε+ b2ε2 + ...+ bKεK
,

where ak, bk ∈ R for all k ∈ {0, ...,K}, bk 6= 0 for some k ∈ {0, ...,K}, and where either a0 6= 0
or b0 6= 0. In other words, R(ε) contains all fractions of finite polynomials in ε. Numbers in R(ε)
are called non-standard.

A non-standard number a ∈ R(ε) is finite if there is a strictly positive real number b ∈ R,
b > 0 with −b < a < b. Every finite non-standard number a ∈ R(ε) can uniquely be written as

a = a0 + a1ε+ a2ε
2 + ... ,

where ak ∈ R for every k ≥ 0. (See Appendix A for a proof). By st(a) := a0 we denote the
standard part of a, which is the real number that is “closest”to a. By v(a) we denote the smallest
index k for which ak 6= 0, and call it the valuation of a. For two finite numbers a, b ∈ R(ε), we
say that a is of infinitely smaller size than b if v(a) > v(b). We use the term “infinitely smaller
size” rather than the more familiar “infinitely smaller” because we also apply it to negative
numbers. For instance, ε is of infinitely smaller size than −1, although ε is not smaller than −1.

2.3 Non-Standard Probability Distributions

Consider a finite set X. A non-standard probability distribution on X is a function p : X → R(ε)
such that p(x) ≥ 0 for all x ∈ X and

∑
x∈X p(x) = 1. We say that p is cautious on X if

p(x) > 0 for all x ∈ X. We say that p believes an event E ⊆ X if
∑
x∈E p(x) has standard part

1. Consider, for instance, the set X = {x, y, z} and the non-standard probability distribution
p on X with p(x) = 1 − ε − ε2, p(y) = ε and p(z) = ε2. Note that p is cautious, since every
probability is strictly positive. Moreover, ε is of infinitely smaller size than 1 − ε − ε2, and ε2
is of infinitely smaller size than ε. Hence, p can be interpreted as a cautious belief in which you
deem event {x} infinitely more likely than {y}, and event {y} infinitely more likely than {z},
while deeming each of these three events possible. Note that p believes the event {x}.

For a subset Y ⊆ X with
∑
x∈Y p(x) > 0, the conditional probability distribution on Y

induced by p is the non-standard probability distribution pY on Y given by

pY (x) :=
p(x)∑
y∈Y p(y)
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for every x ∈ Y.
A more extensive treatment of non-standard analysis, which is needed for some of the proofs,

can be found in Appendix A.

3 Strong Sequential Rationalizability

The main ideas behind strong sequential equilibrium (Blume and Meier (2021)) are that a player
(a) is cautious about the opponents’ behavior and his own behavior, that is, he assigns a —
possibly infinitesimal —strictly positive probability to every opponent’s strategy and every con-
tinuation strategy by himself, (b) always believes that his opponents and he himself will choose
rationally in the future, and (c) believes that he may make mistakes himself in the future,
but deems his own future mistakes much less likely — in fact, infinitely less likely — than the
mistakes by his opponents. In this section we attempt to incorporate this idea in a rationaliz-
ability concept that we call strong sequential rationalizability. We first give a formal definition of
strong sequential rationalizability, subsequently prove that strongly sequentially rationalizable
strategies always exist, and finally illustrate the concept by means of an example.

For every player i, let Bselfi be the set of cautious non-standard probability distributions on
the set Si of i’s own strategies. A member b

self
i ∈ Bselfi will be interpreted as a belief that player

i has about his own future choices in the game. Hence, every belief in Bselfi always deems each
of his own future choices possible. The assumption that a player holds a belief about his own
future choices seems natural, but is certainly not standard in game theory. Battigalli, di Tillio
and Samet (2013) and Battigalli and de Vito (2019) are some of the few papers that incorporate
beliefs about own choices in a game-theoretic setting.

Moreover, let Boppi be the set of cautious non-standard probability distributions on the set S−i
of opponents’ strategy combinations, where S−i := ×j 6=iSj . A member boppi ∈ Boppi represents
a belief of player i about the opponents’strategies. By definition, every belief in Boppi deems
each of the opponents’strategy combinations possible. By Bi we denote the set of belief pairs
bi = (bselfi , boppi ) where bselfi ∈ Bselfi and boppi ∈ Boppi .

Consider an information set h ∈ Hi and a choice ci ∈ Ci(h) available at h. By Si(h, ci)
we denote the set of strategies si ∈ Si(h) with si(h) = ci. By S−i(h) := {s−i ∈ S−i | there is
some si ∈ Si such that (si, s−i) reaches a history in h} we denote the set of opponents’strategy
combinations that are possible when h is reached. For a given belief pair bi = (bselfi , boppi ),

let bselfi (h, ci) be the induced conditional belief on Si(h, ci), and let b
opp
i (h) be the induced

conditional belief on S−i(h). By

ui(ci, bi, h) :=
∑

si∈Si(h,ci)

∑
s−i∈S−i(h)

bselfi (h, ci)(si) · boppi (h)(s−i) · ui(z(si, s−i))

we denote the expected (non-standard) utility at information set h of making choice ci under
the belief pair bi. Here, z(si, s−i) is the outcome reached by the strategy combination (si, s−i).

9



Note that defining ui(ci, bi, h) would not be possible by using lexicographic probability systems,
as we need to take the product of player i’s belief bselfi (h, ci) over his own future choices and
player i’s belief boppi (h) over the opponents’strategies. If we would use lexicographic probability
systems, it is not clear how to define such product.

A choice ci ∈ Ci(h) is locally rational for the belief pair bi = (bselfi , boppi ) at information set
h ∈ Hi if

ui(ci, bi, h) ≥ ui(c′i, bi, h) for all c′i ∈ Ci(h).

For every information set h we define

Srati (bi, h) := {si ∈ Si(h) | si(h′) locally rational for bi at every h′ ∈ Hi(si) following h}.

We say that the belief pair bi = (bselfi , boppi ) believes in his own future rationality if for every
information set h ∈ Hi and every choice ci ∈ Ci(h), the induced conditional belief bselfi (h, ci)
believes Srati (bi, h). Note that at information set h ∈ Hi, player i need not believe that his choice
at h is optimal. Indeed, it may well be that ci is suboptimal. The definition above only requires
player i to believe at h ∈ Hi that his own choices strictly following h are optimal. This condition
is similar to the notion of optimal planning in Battigalli and de Vito (2019).

We say that bi deems his own mistakes least likely3 if for every information set h ∈ Hi, every
choice ci ∈ Ci(h), every strategy si ∈ Si(h, ci) and every strategy combination s−i ∈ S−i we
have that

v[bselfi (h, ci)(si)− st(bselfi (h, ci)(si))] > v(boppi (s−i)).

Recall from Section 2.2 that for a non-standard number a = a0 + a1ε+ a2ε
2 + ..., the valuation

v(a) is the lowest index k with ak 6= 0. That is, the infinitesimal mistake part bselfi (h, ci)(si) −
st(bselfi (h, ci)(si)) in the belief about i’s own strategy is of infinitely smaller size than each of
the belief probabilities boppi (s−i) about the opponent’s strategies. Also here it is crucial that we
use non-standard probability distributions instead of lexicographic probability systems, as we
need to compare the size of two possibly infinitesimal probabilities. Lexicographic probability
systems are not expressive enough to do this.

We now define strong sequential rationalizability by recursively defining sets of strategies
Ski (h), for every information set h, and sets of belief pairs Bki , as follows. Remember that ∅ is
the information set that marks the beginning of the game.

Definition 3.1 (Strong sequential rationalizability) (Initial step) Set S0i (h) := Si(h) and

B0i : = {bi ∈ Bi | bi believes in his own future rationality and
deems own mistakes least likely}

3A more accurate description would be “deems his own mistakes infinitely less likely than the opponents’
mistakes”. However, we use “least likely” instead, as to keep the description short.
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for all players i and all information sets h.4

(Inductive step) Let k ≥ 1, and suppose that Sk−1i (h) and Bk−1i have been defined for all players
i and all information sets h. Then define, for every player i and every information set h,

Ski (h) := {si ∈ Sk−1i (h) | there is some bi ∈ Bk−1i such that si(h′) is locally rational

for bi at every h′ ∈ Hi(si) weakly following h}

and
Bki := {bi = (bselfi , boppi ) ∈ Bk−1i | boppi (h) believes Sk−i(h) for all h ∈ Hi}.

A strategy si ∈ Si is called strongly sequentially rationalizable if si ∈ Ski (∅) for all k ≥ 0.

Here, Sk−i(h) need not be equal to
∏
j 6=i S

k
j (h). By construction, if k ≥ 1 and a belief in Bki

assigns, at information set h ∈ Hi, a non-infinitesimal probability to an opponent’s strategy sj ,
then sj must be in Skj (h), and hence there must be a belief in Bk−1j for which sj is optimal from
h onwards. In other words, a belief in Bki believes, at every information set, that each opponent
will choose rationally now and in the future. This resembles the idea of belief in the opponents’
future rationality as formalized in Perea (2014). Similar ideas can be found in Penta (2015) and
Baltag, Smets and Zvesper (2009).

Note that in the definition of strong sequential rationalizability, the beliefs for player i can
always be summarized by a pair (bselfi , boppi ). Thus, we implicitly assume that player i’s belief
about his own future choices are always independent from his belief about the opponents’future
choices.

One important question, of course, is whether in every finite dynamic game we can find for
every player at least one strategy that is strongly sequentially rationalizable. The answer to this
question is “yes”, as will be shown by the following theorem.

Theorem 3.1 (Existence) For every finite dynamic game, and every player i, there is at least
one strategy for player i that is strongly sequentially rationalizable.

The proof, which is constructive, can be found in Appendix B.

If in the definition of strong sequential rationalizability we drop the condition of “own mis-
takes being deemed least likely” in B0i , then we obtain a rationalizability analogue to Selten’s
(1975) perfect equilibrium which we call perfect rationalizability.

Definition 3.2 (Perfect rationalizability) (Initial step) Set S0i (h) := Si(h) and

B0i := {bi ∈ Bi | bi believes in his own future rationality}
4Here, and at other places in the definition, information set h need not belong to player i.

11



for all players i and all information sets h.

(Inductive step) Let k ≥ 1, and suppose that Sk−1i (h) and Bk−1i have been defined for all players
i and all information sets h. Then define, for every player i and every information set h,

Ski (h) := {si ∈ Sk−1i (h) | there is some bi ∈ Bk−1i such that si(h′) is locally rational

for bi at every h′ ∈ Hi(si) weakly following h}

and
Bki := {bi = (bselfi , boppi ) ∈ Bk−1i | boppi (h) believes Sk−i(h) for all h ∈ Hi}.

A strategy si ∈ Si is called perfectly rationalizable if si ∈ Ski (∅) for all k ≥ 0.

The following observation is an immediate consequence of the definitions.

Remark 1 Every strategy that is strongly sequentially rationalizable, is also perfectly rational-
izable.

This remark thus states that strong sequential rationalizability inherits all the desirable
properties from perfect equilibrium, except for the “correct beliefs”conditions that separate it
from perfect rationalizability.

The other direction in the remark above is not true, as can be seen from the game Γ2 in
Figure 1. In that game, the strategy b is perfectly rationalizable but not strongly sequentially
rationalizable. Indeed, if player 1 believes that his own mistake d is infinitely less likely than
the opponent’s mistake f, then he must go for (a, c).

We will now illustrate the strong sequential rationalizability procedure by means of an ex-
ample.

Example 1: Illustration of strong sequential rationalizability procedure.

Consider the game in Figure 2. This game starts at ∅, where player 1 can choose between a
and b, and player 2 has a unique choice which we do not explicitly model. If player 1 chooses a
the game reaches information set h1, where players 1 and 2 can simultaneously choose between
c and d, and between e and f, respectively. If he chooses b instead, the game reaches h2 where
players 1 and 2 can simultaneously choose between g and h, and between i and j, respectively.

In the analysis that follows we do not explicitly consider player 2’s beliefs at ∅ as these are
not relevant for our purposes. Remember that bself1 denotes player 1’s cautious belief about his
own strategy choice, whereas his cautious belief about player 2’s strategy choice is denoted by
bopp1 . Then, b1 = (bself1 , bopp1 ) constitutes player 1’s belief about his own behavior and player 2’s
behavior. Let bself1 (∅, a) be player 1’s conditional belief about his own future choice at h1, and
bself1 (∅, b) his conditional belief about his own future choice at h2. As an abbreviation, we denote
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Figure 2: Illustration of strong sequential rationalizability

by bopp1 (e) := bopp1 (e, i) + bopp1 (e, j) the probability that player 1 assigns to player 2 choosing e at
h1, and similarly for b

opp
1 (f). Then, by definition, player 1’s expected utility of choosing a at ∅

is

u1(a, b1, ∅) = bself1 (∅, a)(a, c) · bopp1 (e) · 1 + bself1 (∅, a)(a, d) · bopp1 (f) · 2
= 1− bself1 (∅, a)(a, d) · (1− 3bopp1 (f))− bopp1 (f). (3.1)

Here, we have used the fact that bself1 (∅, a)(a, c) = 1 − bself1 (∅, a)(a, d), and that bopp1 (e) =
1− bopp1 (f). Similarly, player 1’s expected utility of choosing b at ∅ is

u1(b, b1, ∅) = bself1 (∅, b)(b, g) = 1− bself1 (∅, b)(b, h). (3.2)

Initial step. Note that (b, g) is player 1’s only optimal strategy at h2, and hence (b, h)
is a mistake. As in B01 player 1 must believe in his own future rationality, we have that
v(bself1 (∅, b)(b, h)) > 0 for all b1 ∈ B01 .

Step 1. Clearly, S11(h2) = {(b, g)}. By construction, every b2 ∈ B12 must believe S
1
1(h2) =

{(b, g)}, and therefore v(bopp2 (h2)(b, h)) > 0 for all b2 ∈ B12 .
Similarly, note that e is player 2’s only optimal choice at h1, and hence f is a mistake. We

thus conclude that S12(h1) = {(e, i), (e, j)}. By definition, every b1 ∈ B11 must believe S12(h1) at
h1, and hence v(bopp1 (f)) > 0 for all b1 ∈ B11 .

13



Remember that v(bself1 (∅, b)(b, h)) > 0 for all b1 ∈ B01 . Therefore, st(b
self
1 (∅, b)(b, h)) = 0. As

every b1 ∈ B01 deems his own mistakes least likely, we see that

v(bself1 (∅, b)(b, h)) = v(bself1 (∅, b)(b, h)− st(bself1 (∅, b)(b, h))) > v(bopp1 (f))

for all b1 ∈ B01 , and hence in particular for all b1 ∈ B11 . Together with the insight above that
v(bopp1 (f)) > 0 for all b1 ∈ B11 , we conclude that

v(bself1 (∅, b)(b, h)) > v(bopp1 (f)) > 0 for all b1 ∈ B11 . (3.3)

Step 2. We have seen that v(bopp2 (h2)(b, h)) > 0 for all b2 ∈ B12 . Hence, i is player 2’s unique
optimal choice at h2 for every belief b2 ∈ B12 . As e is player 2’s unique optimal choice at h1 for
any belief, we conclude that S22(∅) = {(e, i)}.

We now turn to player 1’s beliefs. By combining (3.1), (3.2) and (3.3), it holds for every
b1 ∈ B11 that

u1(a, b1, ∅) = 1− bself1 (∅, a)(a, d) · (1− 3bopp1 (f))− bopp1 (f)

< 1− bopp1 (f) < 1− bself1 (∅, b)(b, h) = u1(b, b1, ∅).

Hence, b is the only optimal choice for player 1 at ∅ for every belief b1 ∈ B11 . As g is the only
optimal choice for player 1 after b for every b1 ∈ B11 , we conclude that S21(∅) = {(b, g)}.

We thus see that S21(∅) = {(b, g)} and S22(∅) = {(e, i)}. By Theorem 3.1, there is at least one
strategy for player 1 and 2 that survives the procedure, and hence (b, g) and (e, i) must be the
only strategies for player 1 and 2 that survive the procedure. Therefore, (b, g) and (e, i) are the
unique strongly sequentially rationalizable strategies for players 1 and 2 in this game.

It turns out that that these are also the only quasi-perfectly rationalizable strategies in this
game. However, strategy (a, c) for player 1 is perfectly rationalizable, whereas it is not strongly
sequentially rationalizable. The reason is that according to perfect rationalizability, player 1 is
free to believe that his own mistakes are more likely than player 2’s mistakes. In particular,
player 1 is free to believe that his mistake h after choosing b is much more likely than his own
mistake d, and player 2’s mistake f, after choosing a. In that case, it would be optimal for player
1 to choose a at ∅ and c at h1. �

4 Relation to Procedural Quasi-Perfect Rationalizability

In this section we propose procedural quasi-perfect rationalizability as a non-equilibrium coun-
terpart to van Damme’s (1984) quasi-perfect equilibrium. We will show in Appendix D that
quasi-perfect rationalizability as defined in Asheim and Perea (2005) is always a refinement of
procedural quasi-perfect rationalizability, and that there are dynamic games where both con-
cepts differ in terms of the strategies induced. Yet, in “most”dynamic games the two concepts
yield exactly the same sets of strategies.
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Like strong sequential rationalizability, procedural quasi-perfect rationalizability is defined
by iteratively eliminating strategies and beliefs from the game. The main idea that distinguishes
(procedural) quasi-perfect rationalizability and quasi-perfect equilibrium from strong sequential
rationalizability, is that a player believes, at each of his information sets, that his opponents
will always make mistakes with some positive infinitesimal probability, but that he will not
make mistakes himself. Similarly to strong sequential rationalizability, both (procedural) quasi-
perfect rationalizability and quasi-perfect equilibrium are still based on the assumption that
players deem all opponents’ strategies possible, and that a player, at each of his information
sets, believes in the opponents’future rationality.

We will show that strong sequential rationalizability is always a refinement of procedural
quasi-perfect rationalizability. That is, every strategy that is strongly sequentially rationalizable
is also procedurally quasi-perfectly rationalizable. The other direction is not true, as can be seen
from the game Γ1 in Figure 1. Indeed, in that game the strategy (a, c) is procedurally quasi-
perfectly rationalizable but not strongly sequentially rationalizable, since (a, c) induces the risk
of making the mistake d in the future (that is, at the second node). In behavioral terms, this is
precisely the key difference between the two concepts: Strong sequential rationalizability may
additionally rule out strategies that are inferior because of the risk of own future mistakes.

Asheim and Perea (2005)’s definition of quasi-perfect rationalizability differs both method-
ologically and behaviorally from procedural quasi-perfect rationalizability. Instead of using a
procedure that recursively eliminates strategies and beliefs from the game, Asheim and Perea
use belief hierarchies as a primitive notion to define quasi-perfect rationalizability. That is,
Asheim and Perea do not only consider first-order beliefs about the opponents’strategies, as
we do in procedural quasi-perfect rationalizability, but also explore the players’ second-order
beliefs about the opponents’beliefs about the strategies of others, and higher-order beliefs as
well. Asheim and Perea encode such belief hierarchies by means of epistemic models with types
and lexicographic beliefs, and impose epistemic conditions on such belief hierarchies which give
rise to their definition of quasi-perfect rationalizability.

In Appendix D we explore, in detail, the formal relation between procedural quasi-perfect
rationalizability and quasi-perfect rationalizability. We show that every strategy that is quasi-
perfectly rationalizable is also procedurally quasi-perfectly rationalizable, but not vice versa.
Hence, quasi-perfect rationalizability is stronger than procedural quasi-perfect rationalizability.
Intuitively, the key difference is the following: According to procedural quasi-perfect rational-
izabilit, if a player i at information set h deems an opponent’s strategy sj most plausible, then
there is a belief bj that survives all rounds and for which the strategy sj is optimal from h
onwards. Quasi-perfect rationalizability requires more: If player i, at information set h, deems
an opponent’s belief bj possible, and at (a possibly different) information set h′ deems the op-
ponent’s strategy sj most plausible given the opponent’s belief bj , then the strategy sj must
be optimal for bj from h′ onwards. Here, when we say that player i deems strategy sj most
plausible at h, we mean that there is no other strategy s′j ∈ Sj(h) that bi deems infinitely more
likely than sj . Hence, according to quasi-perfect rationalizability, the opponent’s belief bj that
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player i assigns to his opponent at information set h is not only used to justify his behavior
from h onwards, but also to form his belief about j’s behavior at information sets that do not
follow h. In that sense, quasi-perfect rationalizability imposes restrictions that go beyond belief
in the opponents’future rationality. In contrast, procedural quasi-perfect rationalizability only
imposes rationality restrictions that are in line with belief in the opponents’future rationality.

In order to formally introduce procedural quasi-perfect rationalizability, we need the following
additional notation and definitions. As before, let Boppi be the set of cautious non-standard
probability distributions on the set of opponents’strategy combinations S−i. For a belief b

opp
i ∈

Boppi and information set h ∈ Hi, let boppi (h) be the induced conditional probability distribution
on S−i(h). Consider an information set h ∈ Hi and a strategy si ∈ Si(h). By

ui(si, b
opp
i (h)) :=

∑
s−i∈S−i(h)

boppi (h)(s−i) · ui(z(si, s−i))

we denote the expected utility at information set h ∈ Hi of choosing strategy si under the
conditional belief boppi (h). We say that the strategy si ∈ Si(h) is globally rational for boppi at h if

ui(si, b
opp
i (h)) ≥ ui(s′i, b

opp
i (h)) for all s′i ∈ Si(h).

Strategy si is globally rational for b
opp
i if si is globally rational for b

opp
i at every h ∈ Hi(si).

In procedural quasi-perfect rationalizability, we recursively define sets of strategies Ski (h), for
all information sets h, and sets of non-standard beliefs Bopp,ki , as follows.

Definition 4.1 (Procedural quasi-perfect rationalizability) (Initial step) Set S0i (h) :=
Si(h) and Bopp,0i := Boppi for all players i and all information sets h.

(Inductive step) Let k ≥ 1, and suppose that Sk−1i (h) and Bopp,k−1i have been defined for all
players i and all information sets h. Then define, for every player i and every information set h,

Ski (h) := {si ∈ Sk−1i (h) | there is some boppi ∈ Bopp,k−1i such that si is globally rational

for boppi at every h′ ∈ Hi(si) weakly following h}

and
Bopp,ki := {bi ∈ Bopp,k−1i | boppi (h) believes Sk−i(h) for all h ∈ Hi}.

A strategy si ∈ Si is procedurally quasi-perfectly rationalizable if si ∈ Ski (∅) for all k ≥ 0.

Similar to strong sequential rationalizability, also procedural quasi-perfect rationalizability
embodies the idea of belief in the opponents’ future rationality as proposed by Perea (2014).
Indeed, if a belief in Bopp,ki assigns, at information set h ∈ Hi, a non-infinitesimal probability
to an opponent’s strategy sj , then sj must be in Skj (h), and hence there must be some belief

16



in Bopp,k−1j for which sj is optimal from h onwards. The crucial difference between procedural
quasi-perfect rationalizability and strong sequential rationalizability is that in the latter concept,
a player also deems possible future mistakes by himself, whereas in the first concept a player only
takes into account mistakes by his opponents. However —and that is crucial —under the latter
concept the player deems his own mistakes infinitely less likely than the opponents’mistakes.
Due to this last property, it can be shown that every strongly sequentially rationalizable strategy
is also procedurally quasi-perfectly rationalizable.

Theorem 4.1 (Relation with procedural quasi-perfect rationalizability) Every strongly
sequentially rationalizable strategy is procedurally quasi-perfectly rationalizable.

The other direction is not true. Indeed, in game Γ1 from Figure 1 the strategy (a, c) is pro-
cedurally quasi-perfectly rationalizable but not strongly sequentially rationalizable. The proof
of Theorem 4.1 can be found in Appendix C. What makes the proof challenging is that strong
sequential rationalizability and procedural quasi-perfect rationalizability are defined in funda-
mentally different ways: In strong sequential rationalizability a player holds beliefs about his
own future choices, and optimality of a strategy is defined locally, on a choice-by-choice basis.
That is, optimality requires that at every information set the prescribed choice is locally optimal,
given the player’s belief about his own future choices and given his belief about the opponents’
strategies. In contrast, procedural quasi-perfect rationalizability does not involve beliefs about
the player’s own future choices, and optimality is defined globally. That is, optimality requires
that at every information set the player’s strategy is optimal, given his belief about the oppo-
nents’strategies. A key step in the proof is to show that, given a fixed belief, a sequence of
locally optimal choices in the strong sequential rationalizability concept always yields a globally
optimal strategy in the procedural quasi-perfect rationalizability concept. See Corollary 8.1 in
Appendix C.

In Appendix D we show that Theorem 4.1 is no longer true if we replace procedural quasi-
perfect rationalizability by quasi-perfect rationalizability as defined in Asheim and Perea (2005).
Indeed, we provide a counterexample where some strategy is strongly sequentially rationalizable,
but not quasi-perfectly rationalizable. Apparently, the extra conditions that quasi-perfect ra-
tionalizability imposes relative to procedural quasi-perfect rationalizability, as discussed at the
beginning of this section, are not shared by strong sequential rationalizability. At the same time,
quasi-perfect rationalizability is not a refinement of strong sequential rationalizability, as can be
seen from the game Γ1 in Figure 1. In that game, strategy (a, c) is quasi-perfectly rationalizable,
but not strongly sequentially rationalizable.

It is easily seen that procedural quasi-perfect rationalizability is a refinement of the backward
dominance procedure in Perea (2014). Indeed, every strategy that is procedurally quasi-perfectly
rationalizable also survives the backward dominance procedure, but not vice versa. The key
difference between the two procedures is that the backward dominance procedure does not
impose cautious reasoning, as a player, at each of his information sets, is free to assign probability
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0 to certain opponents’ strategies. Perea (2014) has shown that in every game with perfect
information without relevant ties, the only strategies that survive the backward dominance
procedure are the backward induction strategies. In the light of Theorem 4.1 it thus follows that
in every such game, the only procedurally quasi-perfectly rationalizable (and hence the only
strongly sequentially rationalizable) strategies are the backward induction strategies. This also
holds for the perfectly rationalizable strategies.

Since we have seen in the previous section that strong sequential rationalizability is a re-
finement of perfect rationalizability, it follows from Theorem 4.1 that strong sequential ratio-
nalizability refines both perfect rationalizability and procedural quasi-perfect rationalizability.
Hence, it inherits all the desirable properties that perfect rationalizability and procedural quasi-
perfect rationalizability display. Yet, it adds the requirement that a player deems his own future
mistakes infinitely less likely than his opponents’mistakes, without completely discarding his
own future mistakes as procedural quasi-perfect rationalizability does.

Corollary 4.1 (Relation with perfect and procedural quasi-perfect rationalizability)
Every strongly sequentially rationalizable strategy is both perfectly rationalizable and procedu-
rally quasi-perfectly rationalizable.

In particular, strong sequential rationalizability rules out both strategies containing weakly
dominated actions in the agent normal form, as well as weakly dominated strategies in the normal
form. This follows from the fact that perfect rationalizability avoids strategies containing weakly
dominated actions in the agent normal form, and procedural quasi-perfect rationalizability avoids
weakly dominated strategies in the normal form.

Interestingly, Corollary 4.1 does not have an equilibrium counterpart. In Blume and Meier
(2021) it is shown that strong sequential equilibrium is a refinement of quasi-perfect equilib-
rium but not of perfect equilibrium. Even more, there are dynamic games where the sets of
quasi-perfect equilibria and perfect equilibria are disjoint, rendering Corollary 4.1 impossible
in an equilibrium framework. Apparently, the correct beliefs assumption which is implicit in
equilibrium concepts renders the logic behind perfect equilibrium and quasi-perfect equilibrium
incompatible. However, in view of Corollary 4.1, both logics become compatible once we drop
the correct beliefs assumption.

In each of the examples we have seen so far, the other direction of Corollary 4.1 was also
true. Indeed, in each of those examples every strategy that was both perfectly rationalizable
and procedurally quasi-perfectly rationalizable was also strongly sequentially rationalizable. It is
easily seen that this direction is always true in every game with perfect information and without
relevant ties, as in such games the three concepts above all uniquely select the backward induction
strategies for the players. Whether this direction is still true for games with perfect information
and relevant ties is still an open question to us.

However, as the following example will show, the opposite direction of the corollary is not
generally true for games with imperfect information. There are games where a strategy is
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Figure 3: Combining perfect and procedural quasi-perfect rationalizability
does not lead to strong sequential rationalizability

both perfectly rationalizable and procedurally quasi-perfectly rationalizable, but not strongly
sequentially rationalizable.

Example 2: Combining perfect and procedural quasi-perfect rationalizability does
not lead to strong sequential rationalizability.

Consider the game in Figure 3. Then, strategy g for player 2 is both perfectly rationalizable and
procedurally quasi-perfectly rationalizable, but not strongly sequentially rationalizable. To see
that g is perfectly rationalizable, note first that strategy b is perfectly rationalizable for player
1 if he believes that his own mistake (c, e) is much more likely than player 2’s mistake i. Hence,
under perfect rationalizability, player 2 may assign at his information set a high probability to
player 1 choosing b, which makes g optimal for player 2.

To see that g is procedurally quasi-perfectly rationalizable, note that under procedural quasi-
perfect rationalizability player 1 believes that he will not make mistakes himself, and hence
strategy (a, c, f) will be among his optimal strategies. Therefore, player 2 may assign at his
information set a high probability to player 1 choosing (a, c, f), which makes g optimal for
player 2.

Under strong sequential rationalizability, however, player 1 believes that he will make the
mistake (c, e) with positive probability, but he deems the probability of player 2 making the
mistake i much higher. As such, the only strongly sequentially rationalizable strategy for player
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1 is (a, d). Hence, player 2 must at his information set assign a high probability to player 1
choosing (a, d), which implies that player 2 must choose h. That is, h is the only strongly
sequentially rationalizable strategy for player 2. In particular, g is not strongly sequentially
rationalizable. �

5 Concluding Remarks

This paper presents a new rationalizability concept for dynamic games, based on three principles:
(a) a player always believes in his own future rationality and in the opponents’future rationality,
(b) a player always believes that he himself, and his opponents, will make mistakes with positive
infinitesimal probability, and (c) a player deems his own mistakes infinitely less likely than those
of his opponents. The concept may open the door to variations, or extensions, across different
dimensions.

First, it could be extended —probably without major diffi culties —to dynamic games with in-
complete information. Second, condition (a), which guarantees that the concept has a backward
induction flavour, could be replaced, for instance, by strong belief in the opponents’rationality
(Battigalli and Siniscalchi (2002)), turning it into a forward induction concept. Third, as dis-
cussed in Footnote 1, the concept could be weakened if condition (c) is replaced by the weaker
requirement that a player deems his own mistakes less likely, but not necessarily infinitely less
likely, than those of his opponents.

On a more technical level, this paper shows that non-standard probabilities can be a very
convenient tool for modelling cautious reasoning in games. One advantage compared to lexico-
graphic probabilities is that the product of two probabilities can be taken without any problems.
This is crucial in this paper, where a player at a given information set needs to “take the product”
of his belief about his own future mistakes and his belief about the opponents’future mistakes.

6 Appendix A: Non-Standard Analysis

6.1 Non-Standard Numbers

Recall that the field of non-standard numbers R(ε) contains all numbers a that can be written
as

a =
a0 + a1ε+ a2ε

2 + ...+ aKε
K

b0 + b1ε+ b2ε2 + ...+ bKεK
, (6.1)

where ak, bk ∈ R for all k ∈ {0, ...,K}, bk 6= 0 for some k ∈ {0, ...,K}, and where either a0 6= 0
or b0 6= 0. We call the non-standard number a ∈ R(ε) finite if there is some number b ∈ R such
that |a| < b. It is easily seen that a is finite, if and only if, b0 6= 0.We now show that every finite
non-standard number can be written as a (possibly infinite) polynomial in ε. Since b0 6= 0, we
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can write the denominator in (6.1) as

b0(1 +
b1
b0
ε+

b2
b0
ε2 + ...+

bK
b0
εK).

Moreover, by the property of ε we know that | bkb0 ε
k| < (12)k for every k ∈ {1, ...,K}, and hence

∣∣∣∣b1b0 ε+
b2
b0
ε2 + ...+

bK
b0
εK
∣∣∣∣ ≤ K∑

k=1

∣∣∣∣bkb0 εk
∣∣∣∣ < K∑

k=1

(
1

2
)k < 1.

But then, by the formula for geometric series it immediately follows that

(1 +
b1
b0
ε+

b2
b0
ε2 + ...+

bK
b0
εK)−1 = 1 +

∞∑
m=1

(−1)m
(
b1
b0
ε+

b2
b0
ε2 + ...+

bK
b0
εK
)m

.

Combining this with (6.1) then yields

a =
1

b0

(
a0 + a1ε+ a2ε

2 + ...+ aKε
K
)(

1 +
∞∑
m=1

(−1)m
(
b1
b0
ε+

b2
b0
ε2 + ...+

bK
b0
εK
)m)

which is a power series in ε.We thus conclude that every finite number a ∈ R(ε) can be written
as

a = a0 + a1ε+ a2ε
2 + ... , (6.2)

where ak ∈ R for every k ≥ 0. We call this a power series representation of the number a.
Below, we will show that this power series representation is unique.

6.2 Properties of Non-Standard Numbers

In this subsection we will investigate some important properties of finite non-standard numbers.
First, we show that the sign of a non-standard number is fully determined by the sign of the
leading coeffi cient in the power series representation (6.2). This property thus illustrates the
lexicographic nature of the power series representation of non-standard numbers, as the leading
coeffi cient ak turns out to be “ infinitely more important”than the collection of all the coeffi cients
that follow.

Lemma 6.1 (Leading coeffi cient determines sign) Consider a finite number a ∈ R(ε) where
a = a0 + a1ε+ a2ε

2 + ... . Then, a > 0 if and only if there is some k ≥ 0 with ak > 0 and am = 0
for all m < k.

21



Proof. For the “if”part, suppose that ak > 0 and am = 0 for all m < k. Hence,

a = akε
k + ak+1ε

k+1 + ...

where ak > 0. By the property of ε we know that

|am| εm < ak

(
1

2

)m
εk

for every m ≥ k + 1. Hence,∣∣∣∣∣
∞∑

m=k+1

amε
m

∣∣∣∣∣ ≤
∞∑

m=k+1

|am| εm <
∞∑

m=k+1

ak

(
1

2

)m
εk ≤ akεk,

which immediately implies that a > 0.
For the “only if”part, assume that a > 0. If ak = 0 for all k ≥ 0, then a = 0, which would

be a contradiction. Hence, there must be some k ≥ 0 with ak 6= 0 and am = 0 for all m < k.
If ak < 0, then it follows by the “if” part above that a < 0, which would be a contradiction.
Hence, we conclude that ak > 0. �

The lemma above really is the key result in this section, as all other properties follow rather
directly from this lemma. A first consequence of Lemma 6.1 is that a non-standard number is
0 precisely when all coeffi cients in the power series representation are equal to 0.

Lemma 6.2 (Zero has unique representation) Consider a finite number a ∈ R(ε) where
a = a0 + a1ε+ a2ε

2 + ... . Then, a = 0 if and only if ak = 0 for all k ≥ 0.

Proof. The “if”direction is trivial. For the “only if”direction, assume that a = 0. Contrary
to what we want to show, assume that there is some k ≥ 0 with ak 6= 0 and am = 0 for all
m < k. If ak > 0 then it follows from Lemma 6.1 that a > 0, which would be a contradiction.
If ak < 0 then it follows by Lemma 6.1 that a < 0, which would also be a contradiction. Hence,
we conclude that ak = 0 for all k ≥ 0. �

This lemma implies that for every finite non-standard number a, the power series represen-
tation is unique. Indeed, suppose that

a = a0 + a1ε+ a2ε
2 + ... = b0 + b1ε+ b2ε

2 + ... .

Then,
(a0 − b0) + (a1 − b1)ε+ (a2 − b2)ε2 + ... = 0,

which implies by Lemma 6.2 that ak = bk for all k ≥ 0. We can therefore refer to (6.2) as the
power series representation of the non-standard number a.
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If a 6= 0, we denote by v(a) the smallest index k for which ak 6= 0, and call it the valuation
of the number a. We set v(0) :=∞. For two finite non-standard numbers a and b we say that a
is of infinitely smaller size than b if v(a) > v(b).We use the term “infinitely smaller size” rather
than the more familiar “infinitely smaller”because we also apply it to negative numbers. For
instance, ε is of infinitely smaller size than −1, although ε is not smaller than −1. Note that,
by definition, 0 is of infinitely smaller size than any finite non-zero non-standard number.

For a finite non-standard number a with power series representation (6.2), and a given k ≥ 0,
we call

trunck(a) = a0 + a1ε+ ...akε
k

the k-th order truncation of a. The 0-th order truncation a0 ∈ R is also called the standard part
of a, and is denoted by st(a). Hence, st(a) is the unique real number that is closest to a.

A consequence of Lemma 6.2 and Lemma 6.1 is that the k-th order truncation of a will either
be zero, or have the same sign as a. This property will be important for our proofs.

Lemma 6.3 (Truncation has the same sign ) Consider a finite number a ∈ R(ε) with a ≥
0. Then, trunck(a) ≥ 0 for every k ≥ 0.

Proof. Suppose first that a = 0. Then, by Lemma 6.2, ak = 0 for all k ≥ 0, and hence
trunck(a) = 0 for all k ≥ 0.

Assume next that a > 0. Then, by Lemma 6.1, there is some r with ar > 0 and am = 0 for
all m < r. If k < r, then trunck(a) = 0. If k ≥ r, then trunck(a) > 0 by Lemma 6.1. �

In the following subsection we will use the properties above to investigate non-standard
probability distributions.

6.3 Non-Standard Probability Distributions

Consider a finite set X. A non-standard probability distribution on X is a function p : X → R(ε)
such that p(x) ≥ 0 for all x ∈ X and

∑
x∈X p(x) = 1. By ∆ns(X) we denote the set of non-

standard probability distributions on X. Such non-standard probability distributions will often
be interpreted as beliefs. We therefore use the terms “non-standard probability distribution”
and “belief”interchangeably in this paper. For two elements x and y in X, we say that p deems
x infinitely more likely than y if p(y) is of infinitely smaller size than p(x).

Consider a non-standard probability distribution p onX. For a subset Y ⊆ X with
∑
x∈Y p(x) >

0, the conditional probability distribution on Y induced by p is the non-standard probability
distribution pY on Y given by

pY (x) :=
p(x)∑
y∈Y p(y)

for every x ∈ Y.
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We say that p is cautious on X if p(x) > 0 for all x ∈ X, such that conditional probability
distributions can be formed for every subset Y ⊆ X.We call p a standard probability distribution
on X if p(x) ∈ R for all x ∈ X, and the set of standard probability distributions on X is denoted
by ∆(X). A standard zero-sum distribution on X is a function f : X → R with

∑
x∈X f(x) = 0.

Consider a non-standard probability distribution p on X. From above we know that every
probability p(x) has a unique power series representation

p(x) = p0(x) + p1(x)ε+ p2(x)ε2 + ... ,

where pk(x) ∈ R for every k ≥ 0. As
∑
x∈X p(x) = 1, it follows that

(
∑
x∈X

p0(x)− 1) + ε

(∑
x∈X

p1(x)

)
+ ε2

(∑
x∈X

p2(x)

)
+ ... = 0.

By Lemma 6.2 we thus conclude that∑
x∈X

p0(x) = 1 and
∑
x∈X

pk(x) = 0 for all k ≥ 1.

Moreover, since p(x) ≥ 0 for every x ∈ X, it follows by Lemma 6.3 that p0(x) = trunc0(p(x)) ≥ 0
for every x ∈ X. Hence, we conclude that p0 := (p0(x))x∈X is a standard probability distribution
in ∆(X), and that pk := (pk(x))x∈X is a standard zero-sum distribution on X.

As such, every non-standard probability distribution p on X can uniquely be written as

p = p0 + εp1 + ε2p2 + ... (6.3)

where p0 ∈ ∆(X) is a standard probability distribution on X, and pk is a standard zero-sum
distribution on X for every k ≥ 1. We call this the (unique) power series representation of the
non-standard probability distribution p. This representation will be important for our game-
theoretic analysis later on.

By st(p) := p0 we denote the standard part of the non-standard probability distribution p.
For a subset Y ⊆ X we say that p believes Y if st(

∑
x∈Y p(x)) = 1. By the representation (6.3),

this thus means that
∑
x∈Y p0(x) = 1.

Consider an element x ∈ X. As p(x) ≥ 0, it follows from (6.3) and Lemma 6.3 that
trunck(p(x)) = p0(x) + εp1(x) + ...+ εkpk(x) ≥ 0 for every k ≥ 0. Hence, p0 + εp1 + ...+ εkpk is
a non-standard probability distribution on X as well.

Suppose that p is cautious on X, and let k be the minimal index such that the truncated non-
standard probability distribution p0+εp1+ ...+εkpk is cautious on X. Then, p0+εp1+ ...+εkpk
is called the minimal cautious truncation of p on X.
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7 Appendix B: Proof of Theorem 3.1

Remember that Bki denotes the set of belief pairs (bselfi , boppi ) for player i that survives round k
of the procedure. Similarly, Ski (h) is the set of strategies for player i that survive round k of the
procedure at information set h. By construction, Bki ⊆ Bk−1i and Ski (h) ⊆ Sk−1i (h) for all k ≥ 1.
Since the collection of information sets is finite, and the set of strategies Si(h) is finite for every
player i and every information set h, the procedure must terminate within finitely many steps.
To prove the existence of strongly sequentially rationalizable strategies, it is therefore suffi cient
to show that Bki and S

k
i (h) are always non-empty for every player i, every information set h and

every k ≥ 0. We prove so by induction on k.

For k = 0 we have that S0i (h) = Si(h), and hence S0i (h) is non-empty. To prove that B0i is
non-empty, we must show that there is a belief pair (bselfi , boppi ) for player i that believes in his
own future rationality and deems his own mistakes least likely.

Take an arbitrary cautious non-standard probability distribution boppi on the set S−i of op-
ponents’strategy combinations. For every opponents’strategy combination, let v(boppi (s−i)) be
the valuation of the probability boppi (s−i), as defined in Section 5.2. That is, if b

opp
i (s−i) =

a0 + a1ε + a2ε
2 + ..., then v(boppi (s−i)) is the smallest number m such that am 6= 0. Let

v := max{v(boppi (s−i)) | s−i ∈ S−i} be the maximal valuation of boppi (s−i) across all opponents’
strategy combinations s−i ∈ S−i.

We now define the cautious non-standard probability distribution bselfi on the set Si of i’s
own strategies by a backward induction construction, as follows. For every m ≥ 0, let Hm

i be
the collection of information sets in Hi that are followed by at most m consecutive information
sets in Hi.

We start by considering all information sets in H0
i , that is, player i information sets that are

not followed by any other player i information set. Consider an information set h ∈ H0
i , and let

c∗i (h) be an optimal choice for player i at h given the conditional belief boppi (h). Let σih be the
cautious non-standard probability distribution on the set of available choices Ci(h) given by

σih(ci) :=

{
1− (|Ci(h)| − 1) · εv+1, if ci = c∗i (h)

εv+1, if ci 6= c∗i (h)
. (7.1)

Now let m ≥ 1 and consider some h ∈ Hm
i . Suppose that the choice c

∗
i (h
′) and the cautious

non-standard probability distribution σih′ have been defined at all h′ ∈ H l
i where l ≤ m − 1.

In particular, c∗i (h
′) and σih′ have been defined for all information sets h′ ∈ Hi following h.

For every choice ci ∈ Ci(h), let ui(ci, ((σih′)h′∈Hi:h′�h, b
opp
i ), h) be the expected utility of making

choice ci at h, given the conditional belief b
opp
i (h) about the opponents’strategy combinations,

and given the non-standard probability distributions σih′ on i’s own choices at h′ for every
h′ ∈ Hi that follows h. Above, we have used the expression “h′ � h”as a shortcut for “h′ follows
h”. Let c∗i (h) be an optimal choice for player i at h, that is,

ui(c
∗
i (h), ((σih′)h′∈Hi:h′�h, b

opp
i ), h) ≥ ui(ci, ((σih′)h′∈Hi:h′�h, b

opp
i ), h) for all ci ∈ Ci(h). (7.2)
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Moreover, let σih be the cautious non-standard probability distribution on the set of available
choices Ci(h) given by

σih(ci) :=

{
1− (|Ci(h)| − 1) · εv+1, if ci = c∗i (h)

εv+1, if ci 6= c∗i (h)
. (7.3)

By induction on m we have thus defined, for every information set h ∈ Hi, the cautious non-
standard probability distribution σih on Ci(h).

Let bselfi be the cautious non-standard probability distribution on i’s own strategies given
by

bselfi (si) :=
∏

h∈Hi(si)
σih(si(h)) for every si ∈ Si. (7.4)

We will now show that bi = (bselfi , boppi ) believes in his own future rationality and deems his own
mistakes least likely.

To prove that bi believes in his own future rationality, we must show that b
self
i (h, ci) believes

Srati (bi, h) for every h ∈ Hi and ci ∈ Ci(h). Take some h ∈ Hi and ci ∈ Ci(h). By (7.4) we
conclude that

ui(ci, bi, h) = ui(ci, ((σih′)h′∈Hi:h′�h, b
opp
i ), h). (7.5)

By (7.5) and (7.2) it then follows that

ui(c
∗
i (h), bi, h) ≥ ui(ci, bi, h) for all ci ∈ Ci(h). (7.6)

Let s∗i (h, ci) be the unique strategy in Si(h, ci) such that s
∗
i (h, ci) prescribes the optimal

choice c∗i (h
′) at every h′ ∈ Hi(s∗i (h, ci)) not weakly preceding h. Hence, in particular, s∗i (h, ci)

prescribes the optimal choice c∗i (h
′) at every h′ ∈ Hi(s∗i (h, ci)) following h. Then, by (7.6) applied

to every h′ ∈ Hi(s∗i (h, ci)) following h, we conclude that s∗i (h, ci) ∈ Srati (bi, h).
Moreover, by (7.4) and (7.3) we conclude that the standard part of the conditional non-

standard probability distribution bselfi (h, ci) assigns probability 1 to s∗i (h, ci) ∈ Srati (bi, h). This
implies that bselfi (h, ci) believes Srati (bi, h). As this is true for every h ∈ Hi and ci ∈ Ci(h), we
conclude that bi believes in his own future rationality.

We next prove that bi = (bselfi , boppi ) deems his own mistakes least likely. Consider an
information set h ∈ Hi and a choice ci ∈ Ci(h). From (7.4) and (7.3) we see that for every
strategy si ∈ Si(h, ci), the infinitesimal mistake part b

self
i (h, ci)(si) − st(bselfi (h, ci)(si)) has a

valuation which is at least v+1. On the other hand, the non-standard probability boppi (s−i) has a
valuation of at most v for every opponents’strategy combination s−i, by definition of v.We thus
conclude that bselfi (h, ci)(si)−st(bselfi (h, ci)(si)) is of infinitely smaller size than b

opp
i (s−i). As this

holds for every information set h ∈ Hi, choice ci ∈ Ci(h), strategy si ∈ Si(h, ci) and opponents’
strategy combination s−i ∈ S−i, we know that bi = (bselfi , boppi ) deems his own mistakes least
likely.
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Overall, we have thus constructed a belief bi = (bselfi , boppi ) that believes in his own future
rationality and deems his own mistakes least likely. Hence, by definition, bi ∈ B0i , which implies
that B0i is non-empty.

Now, let k ≥ 1 and assume that Sk−1i (h) and Bk−1i are non-empty for every player i and
every information set h. Consider some player i and information set h.We will show that Ski (h)
and Bki are non-empty.

To show that Ski (h) is non-empty, take some bi = (bselfi , boppi ) in Bk−1i . This is possible since
we assume that Bk−1i is non-empty. At every information set h′ ∈ Hi, let ci[h′] be a locally
rationally choice for bi = (bselfi , boppi ) at h′. Let si be a strategy in Si(h) such that si(h′) = ci[h

′]
for every h′ ∈ Hi(si) weakly following h. Then, by construction, si ∈ Ski (h), and hence Ski (h) is
non-empty.

We will next construct a belief bi = (bselfi , boppi ) in Bki . We start by defining b
opp
i . That is, we

must find a belief boppi such that boppi (h) believes Sk−i(h) for all h ∈ Hi. For every opponent j 6= i,

let bj be an arbitrary belief pair in Bk−1j . This is possible since we assume that Bk−1j is non-empty.
For every information set h ∈ Hi let s−i[h] = (sj [h])j 6=i be an opponents’strategy combination
in S−i(h) with the following property: For every opponent j 6= i and every information set
h′ ∈ Hj(sj) that does not precede h, the choice (sj [h])(h′) is locally rational for bj at h′. Clearly,
such a strategy sj [h] can always be found. Then, by construction, sj [h] ∈ Skj (h′) for every h′

that does not precede h and such that sj [h] ∈ Sj(h′). Hence,

s−i[h] ∈ Sk−i(h′) for every h′ that does not precede h (7.7)

and such that s−i[h] ∈ S−i(h′).

Since s−i[h] ∈ S−i(h), it follows in particular that s−i[h] ∈ Sk−i(h).
Let h0i , h

1
i , ..., h

M
i be a numbering of the information sets of player i which respects their

precedence ordering. That is, if hli precedes h
m
i then l < m. Hence, it must be that h0i = ∅. Let

boppi be the cautious non-standard belief about the opponents’strategy combinations given by

boppi (s−i) =


1− a, if s−i = s−i[h0i ]
εm, if s−i 6= s−i[h0i ], and m ∈ {1, ...,M} is minimal with s−i = s−i[hm],

εM+1, otherwise,

where a is chosen such that
∑
s−i∈S−i b

opp
i (s−i) = 1. Hence, st(a) = 0.

We will now show that boppi (h) believes Sk−i(h) for all h ∈ Hi. Take some arbitrary h ∈ Hi,
and let h = hmi . Let l ∈ {0, 1, ...,M} be the smallest number such that s−i[hli] ∈ S−i(hmi ). Then,
by construction, the standard part of the conditional belief boppi (hmi ) assigns probability 1 to
s−i[hli]. That is, b

opp
i (hmi ) believes {s−i[hli]}. Since s−i[hmi ] ∈ S−i(hmi ), we know that l ≤ m, and

hence hmi does not precede hli. We thus conclude that s−i[h
l
i] ∈ S−i(hmi ) and that hmi does not

precede hli. But then, by (7.7), s−i[h
l
i] ∈ Sk−i(h

m
i ). As the conditional belief boppi (hmi ) believes

27



{s−i[hli]}, we conclude that b
opp
i (hmi ) believes Sk−i(h

m
i ). This holds for every m, and hence boppi (h)

believes Sk−i(h) for all h ∈ Hi.
In this way, we can construct a cautious non-standard belief boppi on the opponents’strategy

combinations such that boppi (h) believes Sk−i(h) for all h ∈ Hi. With boppi at hand, we can then

define the belief bselfi in the same way as above, guaranteeing that bi = (bselfi , boppi ) believes in his
own future rationality and deems his own mistakes least likely. Hence, bi ∈ B0i . Since, moreover,
boppi (h) believes Sk−i(h) for all h ∈ Hi, we conclude that bi ∈ Bki . We have thus shown that Bki
is non-empty.

By induction on k, it follows that Ski (h) and Bki are always non-empty for every player i,
every information set h and every k ≥ 0. In particular, Ski (∅) is always non-empty for all k ≥ 0.
Since the procedure terminates within finitely many steps, it follows that for every player i there
is at least one strongly sequentially rationalizable strategy. �

8 Appendix C: Proof of Theorem 4.1

To prove Theorem 4.1, we proceed by three preparatory steps.
For the first step, consider a belief pair (bselfi , boppi ) in Bi. For every information set h ∈ Hi

and choice ci ∈ Ci(h), let st(bselfi (h, ci)) be the standard part of the conditional belief b
self
i (h, ci)

on Si(h, ci). Moreover, let tr(b
opp
i ) be the minimal cautious truncation of the cautious belief

boppi on S−i, as defined in Section 5.3. For every h ∈ Hi, this truncated belief tr(boppi ) induces
a conditional cautious belief tr(boppi )(h) on S−i(h). We say that a choice c∗i ∈ Ci(h) is locally
rational for ((st(bselfi (h, ci)))ci∈Ci(h), tr(b

opp
i )) at h if∑

si∈Si(h,c∗i )

∑
s−i∈S−i(h)

st(bselfi (h, c∗i ))(si) · tr(b
opp
i )(h)(s−i) · ui(z(si, s−i))

≥
∑

si∈Si(h,ci)

∑
s−i∈S−i(h)

st(bselfi (h, ci))(si) · tr(boppi )(h)(s−i) · ui(z(si, s−i))

for every ci ∈ Ci(h).

Lemma 8.1 (Truncation preserves local rationality) Let (bselfi , boppi ) be a belief pair in
Bi that deems own mistakes least likely, h ∈ Hi an information set for player i, and c∗i ∈ Ci(h)

a choice for player i at h. If c∗i is locally rational for (bselfi , boppi ) at h, then c∗i is also locally
rational at h for the truncated beliefs ((st(bselfi (h, ci)))ci∈Ci(h), tr(b

opp
i )).

Proof. Let the power series representation of the belief boppi on S−i, as defined in Section 5.3,
be given by

boppi = p0 + εp1 + ε2p2 + ... ,
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and let the minimal cautious truncation on S−i be

tr(boppi ) = p0 + εp1 + ...+ εKpK .

By definition of the minimal cautious truncation, there must be some s∗−i ∈ S−i such that

boppi (s∗−i) = εKpK(s∗−i) + εK+1pK+1(s
∗
−i) + ... (8.1)

with pK(s∗−i) > 0.
Then, the conditional beliefs at h induced by boppi and tr(boppi ) are given by

boppi (h)(s−i) =
1

a
(p0(s−i) + εp1(s−i) + ε2p2(s−i) + ...) (8.2)

for every s−i ∈ S−i(h), where a :=
∑
s−i∈S−i(h) b

opp
i (s−i), and

tr(boppi )(h)(s−i) =
1

b
(p0(s−i) + εp1(s−i) + ...+ εKpK(s−i)) (8.3)

for every s−i ∈ S−i(h), where b :=
∑
s−i∈S−i(h) tr(b

opp
i )(s−i).

For every choice ci ∈ Ci(h), let the power series representation of the conditional belief
bselfi (h, ci) on Si(h, ci) be given by

bselfi (h, ci) = qci0 + εqci1 + ε2qci2 + ... ,

which implies that

bselfi (h, ci)(si)− st(bselfi (h, ci))(si) = εqci1 (si) + ε2qci2 (si) + ... (8.4)

for every si ∈ Si(h, ci).
As (bselfi , boppi ) deems own mistakes least likely, we must have that

bselfi (h, ci)(si)− st(bselfi (h, ci))(si) is of infinitely smaller size than b
opp
i (s∗−i) for every ci ∈ Ci(h)

and every si ∈ Si(h, ci). By (8.1) and (8.4) it thus follows that

bselfi (h, ci)(si)− st(bselfi (h, ci))(si) = εK+1qciK+1(si) + εK+2qciK+2(si) + ... ,

and hence
bselfi (h, ci) = qci0 + εK+1qciK+1 + εK+2qciK+2 + ... . (8.5)
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Let bi = (bselfi , boppi ). By (8.2) and (8.5) it follows, for every choice ci ∈ Ci(h), that

ui(ci, bi, h) =
∑

si∈Si(h,ci)

∑
s−i∈S−i(h)

bselfi (h, ci)(si) · boppi (h)(s−i) · ui(z(si, s−i))

=
∑

si∈Si(h)

∑
s−i∈S−i(h)

bselfi (h, ci)(si) · boppi (h)(s−i) · ui(z(si, s−i))

=
∑

si∈Si(h)

∑
s−i∈S−i(h)

(
qci0 (si) + εK+1qciK+1(si) + εK+2qciK+2(si) + ...

)
·

·1
a

(
p0(s−i) + εp1(s−i) + ε2p2(s−i) + ...

)
· ui(z(si, s−i))

=
1

a

∑
si∈Si(h)

∑
s−i∈S−i(h)

(qci0 (si)p0(s−i) + εqci0 (si)p1(s−i) + ...

+εKqci0 (si)pK(s−i) + dci(si, s−i)) · ui(z(si, s−i)),

where v(dci(si, s−i)) ≥ K+1. Remember that v(dci(si, s−i)) denotes the valuation of dci(si, s−i),
which is the index of the leading coeficient in the power series representation of dci(si, s−i).
Moreover, recall that the choice c∗i is locally rational for bi = (bselfi , boppi ) at h. Then, for every
choice ci ∈ Ci(h),

ui(c
∗
i , bi, h)− ui(ci, bi, h) =

1

a

∑
si∈Si(h)

∑
s−i∈S−i(h)

((q
c∗i
0 (si)− qci0 (si))p0(s−i) +

+ε(q
c∗i
0 (si)− qci0 (si))p1(s−i) + ...

+εK(q
c∗i
0 (si)− qci0 (si))pK(s−i) + d̂ci(si, s−i)) · ui(z(si, s−i)),(8.6)

where v(d̂ci(si, s−i)) ≥ K + 1.

Since c∗i is locally rational for bi = (bselfi , boppi ) at h, we have that ui(c∗i , bi, h)−ui(ci, bi, h) ≥ 0
for all ci ∈ Ci(h). This implies that ab · (ui(c

∗
i , bi, h) − ui(ci, bi, h)) ≥ 0. By Lemma 6.3 we thus

know that truncK(ab · (ui(c
∗
i , bi, h)− ui(ci, bi, h))) ≥ 0.

By (8.6) we thus conclude that

truncK(
a

b
· (ui(c∗i , bi, h)− ui(ci, bi, h))) =

1

b
(
∑

si∈Si(h)

∑
s−i∈S−i(h)

((q
c∗i
0 (si)− qci0 (si))p0(s−i)+

+ε(q
c∗i
0 (si)− qci0 (si))p1(s−i) + ...+ εK(q

c∗i
0 (si)− qci0 (si))pK(s−i)) · ui(z(si, s−i))) ≥ 0
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for every ci ∈ Ci(h). Hence,

1

b
·
∑

si∈Si(h)

∑
s−i∈S−i(h)

(q
c∗i
0 (si)p0(s−i) + εq

c∗i
0 (si)p1(s−i) + ...+ εKq

c∗i
0 (si)pK(s−i)) · ui(z(si, s−i))

≥ 1

b
·
∑

si∈Si(h)

∑
s−i∈S−i(h)

(qci0 (si)p0(s−i) + εqci0 (si)p1(s−i) + ...+ εKqci0 (si)pK(s−i)) · ui(z(si, s−i))

for all ci ∈ Ci(h). As st(bselfi (h, ci)) = qci0 for all ci ∈ Ci(h) and tr(boppi )(h) is given by (8.3), the
above inequality is equivalent to∑

si∈Si(h)

∑
s−i∈S−i(h)

st(bselfi (h, c∗i ))(si) · tr(b
opp
i )(h)(s−i) · ui(z(si, s−i))

≥
∑

si∈Si(h)

∑
s−i∈S−i(h)

st(bselfi (h, ci))(si) · tr(boppi )(h)(s−i) · ui(z(si, s−i))

for all ci ∈ Ci(h). This, in turn, means that c∗i is locally rational at h for ((st(bselfi (h, ci)))ci∈Ci(h),
tr(boppi )), which was to show. �

As a second step, we prove that if a player believes in his own future rationality, then local
rationality of a strategy at all information sets weakly following information set h∗ implies
global rationality of this strategy at h∗. To define this lemma formally, we need some additional
notation and definitions. Let b̂selfi = (b̂selfi (h, ci))h∈Hi,ci∈Ci(h), where b̂

self
i (h, ci) is a standard

probability distribution on Si(h, ci) for every h ∈ Hi and every ci ∈ Ci(h). Moreover, let boppi ∈
Boppi . For a given information set h ∈ Hi and choice ci ∈ Ci(h), we define the expected utility

ui(ci, (b̂
self
i , boppi ), h) :=

∑
si∈Si(h,ci)

∑
s−i∈S−i(h)

b̂selfi (h, ci)(si) · boppi (h)(s−i) · ui(z(si, s−i)).

We call ci locally rational for (b̂selfi , boppi ) at h if

ui(ci, (b̂
self
i , boppi ), h) ≥ ui(c′i, (b̂

self
i , boppi ), h) for all c′i ∈ Ci(h).

We say that (b̂selfi , boppi ) believes in his own future rationality if for every h ∈ Hi and ci ∈ Ci(h),

the standard probability distribution b̂selfi (h, ci) only assigns positive probability to strategies
si ∈ Si(h, ci) where si(h′) is locally rational for (b̂selfi , boppi ) at every h′ ∈ Hi(si) following h.

Lemma 8.2 (When local rationality implies global rationality) Let
b̂selfi = (b̂selfi (h, ci))h∈Hi,ci∈Ci(h) where b̂

self
i (h, ci) is a standard probability distribution on

Si(h, ci) for every h ∈ Hi and every ci ∈ Ci(h). Let boppi ∈ Boppi and assume that (b̂selfi , boppi )
believes in his own future rationality. Let s∗i ∈ Si and h∗ ∈ Hi(s∗i ) such that s∗i (h) is locally
rational for (b̂selfi , boppi ) at every h ∈ Hi(s∗i ) weakly following h∗. Then, s∗i is globally rational
for boppi at h∗.
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Proof. We first introduce some additional notation. For every information set h ∈ Hi and
every choice ci ∈ Ci(h), let

umaxi (boppi , h) := max
si∈Si(h)

ui(si, b
opp
i (h))

and
umaxi (boppi , h, ci) := max

si∈Si(h,ci)
ui(si, b

opp
i (h)).

Then, we have that
umaxi (boppi , h) = max

ci∈Ci(h)
umaxi (boppi , h, ci) (8.7)

for every h ∈ Hi. Moreover, strategy si is globally rational for boppi at h ∈ Hi(si) if

ui(si, b
opp
i (h)) = umaxi (boppi , h).

For every information set h ∈ Hi and every choice ci ∈ Ci(h) we also define

ui(ci, (b̂
self
i , boppi ), h) :=

∑
si∈Si(h,ci)

∑
s−i∈S−i(h)

b̂selfi (h, ci)(si) · boppi (h)(s−i) · ui(z(si, s−i)).

Hence, strategy si is locally rational for (b̂selfi , boppi ) at h ∈ Hi(si) if

ui(si(h), (b̂selfi , boppi ), h) ≥ ui(ci, (b̂selfi , boppi ), h) for all ci ∈ Ci(h).

We prove the statement in the lemma by induction on the number of player i information
sets that follow h∗. If h∗ is not followed by any player i information set, then the statement
holds because local rationality for (b̂selfi , boppi ) at h∗ coincides with global rational for boppi at h.

Suppose now that h∗ is followed by k ≥ 1 consecutive player i information sets, and that
the statement holds for every player i information set that follows h∗. Consider some choice
ci ∈ Ci(h

∗). By H+
i (h∗, ci) we denote the collection of information sets h ∈ Hi such that h

weakly follows h∗ and ci, and there is no h′ ∈ Hi preceding h that also weakly follows h∗ and ci.
Let Snot−i (h∗, ci) be the collection of those opponents’strategy combinations s−i ∈ S−i(h∗) that
after h∗ and ci do not lead to any player i information set.
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Then, for every ci ∈ Ci(h∗) we have that

ui(ci, (b̂
self
i , boppi ), h∗) =

∑
si∈Si(h∗,ci)

∑
s−i∈S−i(h∗)

b̂selfi (h∗, ci)(si) · boppi (h∗)(s−i) · ui(z(si, s−i))

=
∑

si∈Si(h∗,ci)
b̂selfi (h∗, ci)(si) ·

·[
∑

h∈H+
i (h

∗,ci)

∑
s−i∈S−i(h)

boppi (h∗)(s−i) · ui(z(si, s−i)) +

+
∑

s−i∈Snot−i (h∗,ci)

boppi (h∗)(s−i) · ui(z(si, s−i))]

=
∑

si∈Si(h∗,ci)
b̂selfi (h∗, ci)(si) ·

·[
∑

h∈H+
i (h

∗,ci)

boppi (h∗)(S−i(h))
∑

s−i∈S−i(h)

boppi (h∗)(s−i)

boppi (h∗)(S−i(h))
· ui(z(si, s−i))

+
∑

s−i∈Snot−i (h∗,ci)

boppi (h∗)(s−i) · ui(z(si, s−i))]

=
∑

si∈Si(h∗,ci)
b̂selfi (h∗, ci)(si) ·

[
∑

h∈H+
i (h

∗,ci)

boppi (h∗)(S−i(h))
∑

s−i∈S−i(h)
boppi (h)(s−i) · ui(z(si, s−i))

+
∑

s−i∈Snot−i (h∗,ci)

boppi (h∗)(s−i) · ui(z(si, s−i))]

=
∑

si∈Si(h∗,ci)
b̂selfi (h∗, ci)(si) · [

∑
h∈H+

i (h
∗,ci)

boppi (h∗)(S−i(h)) · ui(si, boppi (h))

+
∑

s−i∈Snot−i (h∗,ci)

boppi (h∗)(s−i) · ui(z(si, s−i))]. (8.8)

Here, the fourth equality follows from the rules of conditional probabilities.
As (b̂selfi , boppi ) believes in his own future rationality, b̂selfi (h∗, ci) only assigns positive prob-

ability to si ∈ Si(h∗, ci) where si is locally rational for (b̂selfi , boppi ) at every h ∈ H+
i (h∗, ci), and

every h′ ∈ Hi(si) that follows h. By the induction assumption, we know that every such si is
globally rational at every h ∈ H+

i (h∗, ci). Hence, b̂
self
i (h∗, ci) only assigns positive probability to

si ∈ Si(h∗, ci) where
ui(si, b

opp
i (h)) = umaxi (boppi , h)
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for every h ∈ H+
i (h∗, ci). Together with (8.8) we conclude that

ui(ci, (b̂
self
i , boppi ), h∗) =

∑
si∈Si(h∗,ci)

b̂selfi (h∗, ci)(si) · [
∑

h∈H+
i (h

∗,ci)

boppi (h∗)(S−i(h)) · umaxi (boppi , h)

+
∑

s−i∈Snot−i (h∗,ci)

boppi (h∗)(s−i) · ui(z(si, s−i))]

=
∑

h∈H+
i (h

∗,ci)

boppi (h∗)(S−i(h)) · umaxi (boppi , h) +

+
∑

s−i∈Snot−i (h∗,ci)

boppi (h∗)(s−i) · ui(z(si, s−i)) (8.9)

= umaxi (boppi , h∗, ci).

Here, the last equality follows from the fact that the terminal node z(si, s−i) does not depend
on the specific si ∈ Si(h∗, ci) if s−i ∈ Snot−i (h∗, ci). Hence, we see that

ui(ci, (b̂
self
i , boppi ), h∗) = umaxi (boppi , h∗, ci) for all ci ∈ Ci(h∗). (8.10)

As s∗i (h
∗) is locally rational for (b̂selfi , boppi ) at h∗, we know that

ui(s
∗
i (h
∗), (b̂selfi , boppi ), h∗) = max

ci∈Ci(h∗)
ui(ci, (b̂

self
i , boppi ), h∗)

= max
ci∈Ci(h∗)

umaxi (boppi , h∗, ci) = umaxi (boppi , h∗), (8.11)

where the second equality follows from (8.10) and the last equality from (8.7).
On the other hand, we know by (8.9) that

ui(s
∗
i (h
∗), (b̂selfi , boppi ), h∗) =

∑
h∈H+

i (h
∗,s∗i (h

∗))

boppi (h∗)(S−i(h)) · umaxi (boppi , h) +

+
∑

s−i∈Snot−i (h∗,s∗i (h∗))

boppi (h∗)(s−i) · ui(z(si, s−i)). (8.12)

As s∗i (h) is assumed to be locally rational for (b̂selfi , boppi ) at every h ∈ Hi(s∗i ) weakly following h∗,
we know that, for every h ∈ H+

i (h∗, s∗i (h
∗)), the choice s∗i (h

′) is locally rational for (b̂selfi , boppi )
at every h′ ∈ Hi(s

∗
i ) weakly following h. Hence, by the induction assumption, s

∗
i is globally

rational for boppi at every h ∈ H+
i (h∗, s∗i (h

∗)), which means that

ui(s
∗
i , b

opp
i (h)) = umaxi (boppi , h) for every h ∈ H+

i (h∗, s∗i (h
∗)). (8.13)
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By combining (8.12) and (8.13) we obtain that

ui(s
∗
i (h
∗), (b̂selfi , boppi ), h∗) =

∑
h∈H+

i (h
∗,s∗i (h

∗))

boppi (h∗)(S−i(h)) · ui(s∗i , b
opp
i (h)) +

+
∑

s−i∈Snot−i (h∗,s∗i (h∗))

boppi (h∗)(s−i) · ui(z(si, s−i))

= ui(s
∗
i , b

opp
i (h∗)). (8.14)

From (8.14) and (8.11) we can thus conclude that

ui(s
∗
i , b

opp
i (h∗)) = ui(s

∗
i (h
∗), (b̂selfi , boppi ), h∗) = umaxi (boppi , h∗).

This means that s∗i is globally rational for b
opp
i at h∗, which was to show. By induction, the

proof is thus complete. �

As a third step, we are able to derive the following important result by combining Lemma
8.1 and Lemma 8.2. This step will be crucial for proving our main theorem below.

Corollary 8.1 (From local to global rationality) Let (bselfi , boppi ) be a belief pair in Bi that
deems own mistakes least likely and believes in his own future rationality. Let s∗i ∈ Si and
h∗ ∈ Hi(s

∗
i ) such that s

∗
i is locally rational for (bselfi , boppi ) at every h ∈ Hi(s

∗
i ) that weakly

follows h∗. Then, s∗i is globally rational at h
∗ for the minimal cautious truncation tr(boppi ) of

boppi .

Proof. Suppose that s∗i is locally rational for (bselfi , boppi ) at every h ∈ Hi(s
∗
i ) that weakly

follows h∗. That is, s∗i (h) is locally rational for (bselfi , boppi ) at every h ∈ Hi(s
∗
i ) that weakly

follows h∗. Since (bselfi , boppi ) deems own mistakes least likely, it follows from Lemma 8.1 that
s∗i (h) is also locally rational for the truncated belief pair ((st(bselfi (h, ci)))ci∈Ci(h), tr(b

opp
i )) at

every h ∈ Hi(s∗i ) that weakly follows h∗.
Define b̂selfi := (st(bselfi (h, ci)))h∈Hi,ci∈Ci(h). We will show that (b̂selfi , tr(boppi )) believes in

his own future rationality. As the original belief pair (bselfi , boppi ) believes in his own future
rationality, we know that for every h ∈ Hi and ci ∈ Ci(h), the standard part of bselfi (h, ci)
only assigns positive probability to strategies si ∈ Si(h, ci) where si(h′) is locally rational for
(bselfi , boppi ) at every h′ ∈ Hi(si) following h. By Lemma 8.1 we know that every such si(h′) is
also locally rational for (b̂selfi , tr(boppi )) at h′. Hence, we conclude that for every h ∈ Hi and
ci ∈ Ci(h), the belief b̂selfi (h, ci) = st((bselfi (h, ci)) only assigns positive probability to strategies
si ∈ Si(h, ci) where si(h′) is locally rational for (b̂selfi , tr(boppi )) at every h′ ∈ Hi(si) following h.
Therefore, (b̂selfi , tr(boppi )) believes in his own future rationality.
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As such, we conclude that s∗i (h) is locally rational for the truncated belief pair (b̂selfi , tr(boppi ))

at every h ∈ Hi(s∗i ) that weakly follows h∗, and that (b̂selfi , tr(boppi )) believes in his own future
rationality. By Lemma 8.2 it follows that s∗i is globally rational for tr(b

opp
i ) at h∗, which was to

show. �

We are now fully equipped to prove Theorem 4.1.

Proof of Theorem 4.1. For every k ≥ 0, every player i and every h ∈ Hi, let Ski,qp(h) and

Bopp,ki,qp be the sets of strategies and beliefs that survive round k of the procedural quasi-perfect
rationalizability procedure. Similarly, let Ski,ss(h) and Bki,ss be the sets of strategies and belief
pairs that survive round k of the strong sequential rationalizability procedure. As before, for
every boppi ∈ Boppi we denote by tr(boppi ) the minimal cautious truncation of boppi on S−i. We
prove the following claim.

Claim. For every k ≥ 0, every player i and every h∗ ∈ Hi, (a) Ski,ss(h∗) ⊆ Ski,qp(h
∗), and (b) for

every (bselfi , boppi ) ∈ Bki,ss it holds that tr(b
opp
i ) ∈ Bopp,ki,qp .

Proof of claim. We prove so by induction on k. For k = 0 the statement is trivial since S0i,ss(h
∗) =

S0i,qp(h
∗) = Si(h

∗) and Bopp,0i,qp is the set of all cautious non-standard probability distributions on
S−i.

Let k ≥ 1, and suppose that (a) and (b) are true for k − 1. To show (a) for k, take some
strategy s∗i ∈ Ski,ss(h∗). Then, by definition, s∗i ∈ Sk−1i,ss (h∗), and there is some (bselfi , boppi ) ∈ Bk−1i,ss

such that s∗i (h) is locally rational for (bselfi , boppi ) at every h ∈ Hi(s
∗
i ) weakly following h

∗.
Since, by the induction assumption on (a), Sk−1i,ss (h∗) ⊆ Sk−1i,qp (h∗), we know that s∗i ∈ Sk−1i,qp (h∗).

Moreover, as (bselfi , boppi ) ∈ Bk−1i,ss ⊆ B0i,ss we know that (bselfi , boppi ) deems own mistakes least

likely and believes in his own future rationality. Since s∗i is locally rational for (bselfi , boppi ) at
every h ∈ Hi(s

∗
i ) weakly following h

∗, we thus conclude by Corollary 8.1 that s∗i is globally
rational for tr(boppi ) at every h ∈ Hi(s∗i ) weakly following h∗. Moreover, as (bselfi , boppi ) ∈ Bk−1i,ss ,

we know by the induction assumption on (b) that tr(boppi ) ∈ Bopp,k−1i,qp .

Summarizing, we see that s∗i ∈ Sk−1i,qp (h∗), and that s∗i is globally rational for tr(b
opp
i ) ∈

Bopp,k−1i,qp at every h ∈ Hi(s∗i ) weakly following h∗. Hence, by definition, s∗i ∈ Ski,qp(h∗). We thus
conclude that Ski,ss(h

∗) ⊆ Ski,qp(h∗).
To show (b), take some (bselfi , boppi ) ∈ Bki,ss. Then, by definition, (bselfi , boppi ) ∈ Bk−1i,ss and

boppi (h) believes Sk−1−i,ss(h) for every h ∈ Hi. By the induction assumption on (b) we already

know that tr(boppi ) ∈ Bopp,k−1i,qp . Since boppi (h) believes Sk−1−i,ss(h), the standard part of boppi (h) only

assigns positive probability to opponents’strategy combinations s−i ∈ Sk−1−i,ss(h). Note that the
standard part of boppi (h) is the same as the standard part of tr(boppi )(h). Hence, the standard part
of tr(boppi )(h) only assigns positive probability to s−i ∈ Sk−1−i,ss(h). By the induction assumption
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on (a) we know that Sk−1−i,ss(h) ⊆ Sk−1−i,qp(h), and therefore the standard part of tr(boppi )(h) only

assigns positive probability to s−i ∈ Sk−1−i,qp(h). In other words, tr(boppi )(h) believes Sk−1−i,qp(h).

Summarizing, we see that tr(boppi ) ∈ Bopp,k−1i,qp and that tr(boppi )(h) believes Sk−1−i,qp(h) for every

h ∈ Hi. Hence, by definition, tr(boppi ) ∈ Bopp,ki,qp , as was to show.
By induction on k, (a) and (b) are true for every k ≥ 0, which completes the proof of the

claim.

To prove the theorem, consider some strongly sequentially rationalizable strategy s∗i for player
i. Then, by definition, s∗i ∈ Ski,ss(∅) for all k ≥ 0. Hence, by part (a) of the claim, s∗i ∈ Ski,qp(∅)
for all k ≥ 0, which means that s∗i is procedurally quasi-perfectly rationalizable. This completes
the proof. �

9 Appendix D: Relation with Quasi-Perfect Rationalizability

In this section we will compare our notion of procedural quasi-perfect rationalizability to quasi-
perfect rationalizability as defined by Asheim and Perea (2005). To that purpose, we first
review the definition of quasi-perfect rationalizability, and subsequently show that in all games,
every quasi-perfectly rationalizable strategy is also procedurally quasi-perfectly rationalizable
in our sense. We then show by means of a counterexample that there are procedurally quasi-
perfectly rationalizable strategies which are not quasi-perfectly rationalizable. Hence, quasi-
perfect rationalizability is a strict refinement of procedural quasi-perfect rationalizability. The
same example also demonstrates that even a strongly sequentially rationalizable strategy need
not be quasi-perfectly rationalizable.

9.1 Quasi-Perfect Rationalizability

We have defined procedural quasi-perfect rationalizability by means of a procedure, that recur-
sively eliminates strategies and beliefs from the game. Asheim and Perea (2005) take a different
approach, since they define quasi-perfect rationalizability by looking at belief hierarchies encoded
by types within an epistemic model. Also, they use lexicographic beliefs (Blume, Brandenburger
and Dekel (1991)) rather than non-standard beliefs to model cautious reasoning. That is, they
take as a primitive not only beliefs about the opponents’ strategies, as we do, but also be-
liefs about the opponents’beliefs about the other players’strategies (second-order beliefs), and
higher-order beliefs. Quasi-perfect rationalizability is defined by imposing epistemic conditions
on such belief hierarchies. Since we have used non-standard beliefs, rather than lexicographic
beliefs, to define strong sequential rationalizability and procedural quasi-perfect rationalizability,
we will reproduce the definition of quasi-perfect rationalizability by using non-standard beliefs
instead of lexicographic beliefs.

Definition 9.1 (Epistemic model with non-standard beliefs) For a given dynamic game
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G, a finite epistemic model with non-standard beliefs is a tuple M = (Ti, βi)i∈I such that, for
every player i,

(a) Ti is a finite set of types, and

(b) βi is a function that assigns to every type ti ∈ Ti a non-standard belief βi(ti) on S−i × T−i.

An epistemic model is used to encode non-standard belief hierarchies for the players, in-
cluding beliefs about the opponents’strategies, beliefs about the opponents’beliefs about their
opponents’strategies, and so on. The concept of quasi-perfect rationalizability restricts to types
that express common full belief in “caution” and the “event that types induce sequentially
rational behavioral strategies”. We will now formally define these events.

Definition 9.2 (Caution) Consider a finite epistemic model M = (Ti, βi)i∈I for a dynamic
game G. A type ti ∈ Ti is cautious if for every opponents’ type combination t−i ∈ T−i with
βi(ti)(t−i) > 0, it holds that βi(ti)(s−i, t−i) > 0 for every s−i ∈ S−i.

Here, βi(ti)(t−i) is an abbreviation for the marginal probability βi(ti)(S−i × {t−i}). We will
use such abbreviations for marginals more often in the remainder of this section. Hence, caution
states that if ti seems possible a type combination t−i for his opponents, then he must deem
possible every strategy combination for that type combination. In particular, ti holds a cautious
non-standard belief on the set S−i of opponents’ strategy combinations. Consider a cautious
type ti and an information set h ∈ Hi. By βi(ti, h) we denote the induced (cautious) conditional
belief on S−i(h)× T−i. For every strategy si ∈ Si(h) we denote by

ui(si, ti, h) :=
∑

(s−i,t−i)∈S−i(h)×T−i

βi(ti, h)(s−i, t−i) · ui(z(si, s−i))

the expected (non-standard) utility at h of choosing strategy si under the conditional belief
βi(ti, h). We say that a strategy si ∈ Si(h) is globally rational for the cautious type ti at h ∈ Hi
if

ui(si, ti, h) ≥ ui(s′i, ti, h) for all s′i ∈ Si(h).

To define what it means for a type to “induce a sequentially rational behavioral strategy”we
need some additional terminology. A behavioral strategy for player i is a tuple σi = (σi(h))h∈Hi
such that σi(h) is a (standard) probability distribution on the set of choices Ci(h) available for
player i at h. For a behavioral strategy σi and a strategy si ∈ Si, let

σi(si) :=
∏

h∈Hi(si)
σi(si(h)) (9.1)

be the induced probability that σi assigns to the strategy si. For a given behavioral strategy σi
and information set h ∈ Hi, let σi|h be the behavioral strategy that (i) at every h′ ∈ Hi preceding
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h assigns probability 1 to the unique choice for player i at h′ leading to h, and (ii) coincides with
σi at all other information sets. We say that a behavioral strategy σi is sequentially rational
for a cautious type ti if at every information set h ∈ Hi, we have that σi|h(si) > 0 only if si is
globally rational for ti at h.

Recall that, for an information set h ∈ Hi and a choice ci ∈ Ci(h), we denote by Si(h, ci)
the set of strategies si ∈ Si(h) with si(h) = ci. For a cautious type ti and an opponent’s type tj
with βi(ti)(tj) > 0, let σti|tjj be the induced behavioral strategy for player j given by

σ
ti|tj
j (h)(cj) := st

(
βi(ti)(Sj(h, cj)× {tj}
βi(ti)(Sj(h)× {tj}

)
(9.2)

for every information set h ∈ Hj and every choice cj ∈ Cj(h).

Definition 9.3 (Inducing sequentially rational behavioral strategies) Consider a finite
epistemic model M = (Ti, βi)i∈I for a dynamic game G. A cautious type ti ∈ Ti induces se-
quentially rational behavioral strategies if for every opponent j 6= i and every type tj ∈ Tj with
βi(ti)(tj) > 0, the induced behavioral strategy σti|tjj is sequentially rational for tj .

We are now ready to define quasi-perfectly rationalizable types as those types that are cau-
tious, induce sequentially rational behavioral strategies, and express common full belief in these
two events. Formally, a type ti expresses 1-fold full belief in caution and the event that types
induce sequentially rational behavioral strategies if βi(ti) only assigns positive (non-standard)
probability to opponents’ types that are cautious and induce sequentially rational behavioral
strategies. For every k ≥ 2, type ti expresses k-fold full belief in caution and the event that types
induce sequentially rational behavioral strategies if βi(ti) only assigns positive (non-standard)
probability to opponents’ types that express (k − 1)-fold full belief in caution and the event
that types induce sequentially rational behavioral strategies. A type ti expresses common full
belief in caution and the event that types induce sequentially rational behavioral strategies if
ti expresses k-fold full belief in caution and the event that types induce sequentially rational
behavioral strategies, for every k ≥ 1.

Definition 9.4 (Quasi-perfect rationalizability) Consider a finite epistemic model M =
(Ti, βi)i∈I for a dynamic game G. A type ti ∈ Ti is quasi-perfectly rationalizable if it is cautious,
induces sequentially rational behavioral strategies, and expresses common full belief in caution
and the event that types induce sequentially rational behavioral strategies. A strategy si ∈ Si
is quasi-perfectly rationalizable if there is a finite epistemic model M = (Ti, βi)i∈I and a quasi-
perfectly rationalizable type ti ∈ Ti, such that si is globally rational for ti at every h ∈ Hi(si).

In the following subsection we will show that every quasi-perfectly rationalizable strategy is
procedurally quasi-perfectly rationalizable in our sense, but not vice versa.
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9.2 Relation Between the Two Quasi-Perfect Rationalizability Concepts

We first show that, in all dynamic games, every strategy that is quasi-perfectly rationalizable is
also procedurally quasi-perfectly rationalizable in our sense.

Theorem 9.1 (Relation with quasi-perfect rationalizability) Consider a dynamic
game G. Then, every strategy that is quasi-perfectly rationalizable is also procedurally quasi-
perfectly rationalizable.

Proof. Let Ski (h) and Bopp,ki be the sets of strategies and beliefs that survive round k of the
procedural quasi-perfect rationalizability procedure. Consider a finite epistemic model M =
(Ti, βi)i∈I for G, as in Asheim and Perea (2005). We prove, by induction on k, that for every
player i, every quasi-perfectly rationalizable type ti ∈ Ti, and every information set h ∈ Hi, we
have that (a) every strategy si ∈ Si(h) that is globally rational for ti at every h′ ∈ Hi(si) weakly
following h is in Ski (h), and (b) the marginal of βi(ti) on S−i is in B

opp,k
i .

For k = 0 this statement is true because S0i (h) = Si(h), the type ti is cautious, and B
opp,0
i =

Boppi contains all cautious beliefs on S−i.
Now let k ≥ 1 and suppose that (a) and (b) are true for k − 1 and all players i. Consider a

player i, a quasi-perfectly rationalizable type ti ∈ Ti, and an information set h ∈ Hi. To show
(a), take some strategy si ∈ Si(h) that is globally rational for ti at every h′ ∈ Hi(si) weakly
following h. By the induction assumption on (a) we know that si ∈ Sk−1i (h). Let boppi (ti) be the
marginal of βi(ti) on S−i. By the induction assumption on (b) we know that b

opp
i (ti) ∈ Bopp,k−1i .

Hence, si ∈ Sk−1i (h) is globally rational for boppi (ti) ∈ Bopp,k−1i at every h′ ∈ Hi(si) weakly
following h. This implies that si ∈ Ski (h), which completes the induction step for (a).

To show (b), let boppi (ti) be the marginal of βi(ti) on S−i. By the induction assumption
on (b) we know that boppi (ti) ∈ Bopp,k−1i . To show that boppi (ti) ∈ Bopp,ki , we must show that
boppi (ti)(h) believes Sk−i(h) for all h ∈ Hi. That is, we must show that st(boppi (ti)(h)(s−i)) > 0
only if s−i ∈ Sk−i(h).

Consider some information set h ∈ Hi and some opponents’strategy combination s−i such
that st(boppi (ti)(h)(s−i)) > 0. We will show that s−i ∈ Sk−i(h). As, by the induction assumption

on (b), boppi (ti) ∈ Bopp,k−1i , it follows that boppi (ti)(h) believes Sk−1−i (h), and hence s−i ∈ Sk−1−i (h).

Let s−i = (sj)j 6=i. To show that s−i ∈ Sk−i(h), we will show that for every opponent j 6= i there

is some boppj ∈ Bopp,k−1j such that sj is globally rational for b
opp
j at every h′ ∈ Hj(sj) weakly

following h.
Fix an opponent j. Since st(boppi (ti)(h)(sj)) > 0, the belief boppi (ti) is the marginal of βi(ti)

on S−i, and b
opp
i (ti)(h) is the induced conditional belief on S−i(h), there must be some type

tj ∈ Tj with βi(ti)(tj) > 0 such that

st

(
βi(ti)(sj , tj)

βi(ti)(Sj(h)× {tj}

)
> 0. (9.3)
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Now, let boppj (tj) be the marginal of βj(tj) on S−j . We show that b
opp
j (tj) ∈ Bopp,k−1j and that

sj is globally rational for b
opp
j (tj) at every h′ ∈ Hj(sj) weakly following h.

As βi(ti)(tj) > 0 and ti is quasi-perfectly rationalizable, it must be that tj is quasi-perfectly
rationalizable as well. Hence, by our induction assumption on (b) we conclude that boppj (tj) ∈
Bopp,k−1j .

Consider now some h′ ∈ Hj(sj) weakly following h. We show that sj is globally rational for
boppj (tj) at h′. Take some arbitrary h′′ ∈ Hj(sj) weakly following h′. Then, h′′ weakly follows h
and hence Sj(h′′) ⊆ Sj(h). Moreover, sj ∈ Sj(h′′, sj(h′′)). It thus follows by (9.3) that

st

(
βi(ti)(Sj(h

′′, sj(h′′))× {tj}
βi(ti)(Sj(h

′′)× {tj}

)
≥ st

(
βi(ti)(Sj(h

′′, sj(h′′))× {tj}
βi(ti)(Sj(h)× {tj}

)
≥ st

(
βi(ti)(sj , tj)

βi(ti)(Sj(h)× {tj}

)
> 0.

We therefore conclude by (9.2) that

σ
ti|tj
j (h′′)(sj(h

′′)) = st

(
βi(ti)(Sj(h

′′, sj(h′′))× {tj}
βi(ti)(Sj(h

′′)× {tj}

)
> 0

for all h′′ ∈ Hj(sj) weakly following h′. But then, it follows by (9.1) that there is some ŝj ∈ Sj(h′)
with ŝj(h′′) = sj(h

′′) for all h′′ ∈ Hj(sj) weakly following h′ such that

σ
ti|tj
j |h′(ŝj) > 0. (9.4)

Since ti is quasi-perfectly rationalizable, we know in particular that ti induces sequentially
rational behavioral strategies. Hence, the induced behavioral strategy σti|tjj must be sequentially

rational for tj . Since by (9.4) we have that σ
ti|tj
j |h′(ŝj) > 0, it follows that ŝj must be globally

rational for tj at h′. Since sj and ŝj coincide at all h′′ ∈ Hj(ŝj) that weakly follow h′, it follows
that also sj is globally rational for tj at h′. But then, we conclude that sj is globally rational
for boppj (tj) at h′. As h′ ∈ Hj(sj) weakly following h was chosen arbitrarily, it follows that sj is
globally rational for boppj (tj) at every h′ ∈ Hj(sj) weakly following h. Since we have seen that
boppj (tj) ∈ Bopp,k−1j and sj ∈ Sk−1j (h), we conclude that sj ∈ Skj (h).

We thus see that st(boppi (ti)(h)(sj)) > 0 only if sj ∈ Skj . Since this holds for every h ∈ Hi and
every opponent j, it follows that boppi (ti) believes Sk−i(h) for all h ∈ Hi. As boppi (ti) ∈ Bopp,k−1i ,

we conclude that boppi (ti) ∈ Bopp,ki , which completes the induction step for (b).
By induction on k, it thus follows that for every player i, every quasi-perfectly rationalizable

type ti ∈ Ti, and every information set h ∈ Hi, (a) every strategy si ∈ Si(h) that is globally
rational for ti at every h′ ∈ Hi(si) weakly following h is in Ski (h) for all k ≥ 0, and (b) the
marginal of βi(ti) on S−i is in B

opp,k
i for all k ≥ 0.
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Figure 4: Procedural quasi-perfect rationalizability does not imply quasi-perfect
rationalizability

Now, take a player i, and a quasi-perfectly rationalizable strategy si ∈ Si. Then, there is an
epistemic model M = (Ti, βi)i∈I and a quasi-perfectly rationalizable type ti ∈ Ti such that si is
globally rational for ti at every h ∈ Hi(si). Then, by (a) above, si ∈ Ski (∅) for all k ≥ 0, and
hence si is procedurally quasi-perfectly rationalizable. This completes the proof. �

We next prove, by means of a counter-example, that the opposite direction of this theorem
is not true. Consider the dynamic game in Figure 4. Note that player 1 is always indifferent
between his strategies a and b. We will show that the strategy a is procedurally quasi-perfectly
rationalizable, but not quasi-perfectly rationalizable.

Before we give a formal proof, we first provide an informal intuitive argument. According to
procedural quasi-perfect rationalizability, player 1 can rationally choose a because he may deem
player 2’s strategy f infinitely more likely than (d, g), strategy (d, g) infinitely more likely than
(d, h), and (d, h) infinitely more likely than e. Indeed, under such belief player 1 would assign,
at the beginning of the game ∅, only non-infinitesimal probability to player 2’s strategy f, which
is optimal for player 2 from ∅ onwards if player 2 assigns a high probability to player 1 choosing
b.

Such a belief, however, is not possible under the concept of quasi-perfect rationalizability.
In order for player 1 to rationally choose a, he must deem player 2’s strategy (d, g) at least as

42



likely as (d, h). Hence, conditional on information set h2 being reached, player 1 must assign a
non-infinitesimal probability to player 2 choosing g. According to quasi-perfect rationalizability,
this is only possible if player 1 believes that g is optimal for player at h2. Hence, player 1 must
believe, conditional on h2 being reached, that player 2 holds a belief b2 that assigns probability
at least 3/4 to player 1 having chosen a. Under such a belief b2, however, e would be the only
optimal strategy for player 2 at h1. According to quasi-perfect-rationalizability, player 1 must
induce a sequentially rational behavioral strategy for player 2. In particular, conditional on
player 2’s belief b2, and conditional on the information set h1, player 1 must only assign non-
infinitesimal probability to strategies that are optimal for player 2 under the belief b2 at h1. That
is, conditional on player 2’s belief b2, and conditional on the information set h1, player 1 must
only assign non-infinitesimal probability to strategy e. In particular, this means that player 1
must deem player 2’s strategy e infinitely more likely than (d, g). However, if that is the case
player 1’s expected utility from choosing a will always be lower than 1, and therefore a cannot
be a quasi-perfectly rationalizable strategy.

We will now turn the formal proof. We first show that a survives the procedural quasi-
perfect rationalizability procedure. Let Ski (h) and Bopp,ki be the sets of strategies and beliefs
that survive round k of the procedural quasi-perfect rationalizability procedure, and define
S∞i (h) := ∩k≥1Ski (h) and Bopp,∞i := ∩k≥1Bopp,ki . Then, it is easily verified that S∞2 (∅) = {e, f}.
Consider player 1’s belief

bopp1 := (1− ε− ε2 − ε3) · f + ε · (d, g) + ε2 · (d, h) + ε3 · e

which clearly is in Bopp1 . As

st(bopp1 (∅)) = f where f ∈ S∞2 (∅)

it follows that bopp1 (∅) believes S∞−1(∅). Hence, b
opp
1 ∈ Bopp,∞1 .

We now verify that strategy a is globally rational for bopp1 at ∅. By construction of the belief
bopp1 ,

u1(a, b
opp
1 (∅)) = u1(b, b

opp
1 (∅)) = (1− ε− ε2 − ε3) · 1 + ε · 2 + ε2 · 0 + ε3 · 0

= 1 + ε− ε2 − ε3 > 1, and u1(c, b
opp
1 (∅)) = 1,

and hence a is indeed globally rational for bopp1 at ∅. As bopp1 ∈ Bopp,∞1 , it follows that a ∈ S∞1 (∅),
and hence a is procedurally quasi-perfectly rationalizable.

We next prove that a is not quasi-perfectly rationalizable. Suppose, contrary to what we
want to show, that a were quasi-perfectly rationalizable. Then, there is an epistemic model
M = (Ti, βi)i∈I for G, as in Asheim and Perea (2005), and a type t1 ∈ T1, such that t1 is
quasi-perfectly rationalizable, and a is globally rational for t1 at ∅. Let β1(t1) be the cautious
non-standard belief that t1 holds on S2 × T2. For every s2 ∈ S2, let β1(t1)(s2) be the marginal
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probability that β1(t1) assigns to s2. Then, the expected utility of strategy a at ∅ for type t2 is
given by

u1(a, t1, ∅) = β1(t1)(f) · 1 + β1(t1)(d, g) · 2 + β1(t1)(d, h) · 0 + β1(t1)(e) · 0. (9.5)

Since u1(c, t1, ∅) = 1 and a is globally rational for t1 at ∅, we must have that u1(a, t1, ∅) ≥ 1,
which is only possible if β1(t1)(d, g) ≥ β1(t1)(d, h). Let t2 ∈ T2 be such that

β1(t1)((d, g), t2) ≥ β1(t1)((d, g), t′2) for all t
′
2 ∈ T2. (9.6)

Since β1(t1)(d, g) ≥ β1(t1)(d, h) we must have, by (9.6), that β1(t1)((d, g), t2) is not of infinitely
smaller size than β1(t1)((d, h), t2). This implies, by (9.2), that σ

t1|t2
2 |h2(d, g) > 0. Since t1 is

quasi-perfectly rationalizable, the behavioral strategy σt1|t22 must be sequentially rational for t2.

In particular, σt1|t22 |h2(d, g) > 0 implies that (d, g) must be globally rational for t2 at h2. This,
in turn, is only possible if β2(t2)(a) ≥ 3

4 . Hence, the only strategy that is globally rational for

t2 at h1 is e. Since the behavioral strategy σ
t1|t2
2 must be sequentially rational for t2, we must

have that σt1|t22 |h1(e) = 1. Hence, in particular, β1(t1)(e, t2) must be of infinitely larger size
than β1(t1)((d, g), t2). But then, it follows by (9.6) that β1(t1)(e) is of infinitely larger size than
β1(t1)(d, g). However, this insight, together with (9.5), would imply that u1(a, t1, ∅) < 1, and
hence a cannot be globally rational for t1 at ∅. That is a contradiction. We thus conclude that a
cannot be quasi-perfectly rationalizable. Hence, we have found a strategy a that is procedurally
quasi-perfectly rationalizable, but not quasi-perfectly rationalizable.

In fact, we can show even more in this example. The strategy a is not only procedurally
quasi-perfectly rationalizable, it is even strongly sequentially rationalizable. To see this, let
Ski (h) and Bki be the sets of strategies and beliefs that survive round k of the strong sequential
rationalizability procedure, and define S∞i (h) := ∩k≥1Ski (h) and B∞i := ∩k≥1Bki . Then, it may
be verified that S∞2 (∅) = {e, f}. Consider player 1’s belief b1 = (bself1 , bopp1 ) where

bself1 := 1
2(1− ε) · a+ 1

2(1− ε) · b+ ε · c

and
bopp1 := (1− ε− ε2 − ε3) · f + ε · (d, g) + ε2 · (d, h) + ε3 · e.

Then,

u1(a, b1(∅)) = u1(b, b1(∅)) = (1− ε− ε2 − ε3) · 1 + ε · 2 + ε2 · 0 + ε3 · 0
= 1 + ε− ε2 − ε3 > 1, and u1(c, b

opp
1 (∅)) = 1,

which implies that choices a and b are locally rational for b1 at ∅. Therefore, Srat1 (b1, ∅) = {a, b}.
As bself1 (∅) believes {a, b}, we conclude that b1 believes in his own future rationality. Note that

44



player 1 only makes a choice at ∅, and therefore he trivially deems his own mistakes least likely
under the belief b1. We thus conclude that b1 ∈ B01 .

Since
st(bopp1 (∅)) = f where f ∈ S∞2 (∅)

it follows that bopp2 (∅) believes S∞−1(∅). It therefore follows that b1 = (bself1 , bopp1 ) ∈ B∞1 .
Since we have seen above that a is locally rational for b1 at ∅, it follows that a ∈ S∞2 (∅), and

hence a is strongly sequentially rationalizable. We have thus found a strategy a that is strongly
sequentially rationalizable but not quasi-perfectly rationalizable. This means that Theorem
4.1 is no longer true if procedural quasi-perfect rationalizability is replaced by quasi-perfect
rationalizability.
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