
Expected Utility as an Expression of Linear Preference
Intensity∗

Andrés Perea†

Maastricht University

This version: August 2023

Abstract

In a decision problem or game we typically fix the person’s utilities but not his beliefs. What, then, do
these utilities represent? To explore this question we assume that the decision maker holds a conditional
preference relation —a mapping that assigns to every possible probabilistic belief a preference relation
over his choices. We impose a list of axioms on such conditional preference relations that is both necessary
and suffi cient for admitting an expected utility representation. Most of these axioms express the idea that
the decision maker’s preference intensity between two choices changes linearly with the belief. Finally, we
show that under certain conditions the relative utility differences are unique across the different expected
utility representations.
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1 Introduction

In a decision problem or game, we typically write down the decision maker’s (DM) utilities, but not his
beliefs. The interpretation is that these fixed utilities induce the DM’s preferences for all possible beliefs he

∗A previous version of this paper carried the title “A foundation for expected utility in decision problems and games”. A
special word of gratitude goes to Emiliano Catonini, Stephan Jagau and Peter Wakker for their very extensive and detailed
feedback on this paper. I would also like to thank Geir Asheim, Christian Bach, Rubén Becerril, Giacomo Bonanno, Richard
Bradley, Gabriel Frahm, Ángel Hernándo-Veciana, Belén Jerez, Shuige Liu, Andrew Mackenzie, Martin Meier, Rineke Verbrugge,
Marco Zaffalon and Gabriel Ziegler for their useful suggestions and comments. Thanks also to some associate editors and referees
for their valuable comments on earlier versions. Finally, I am grateful to the seminar audiences at the University of Glasgow,
Maastricht University, Universidad Carlos III de Madrid, and the One World Mathematical Game Theory Seminar, for their
constructive feedback. I declare there is no conflict of interest.
†Address: Dept. of Quantitative Economics and EpiCenter, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The

Netherlands. E-mail: a.perea@maastrichtuniversity.nl Web: http://www.epicenter.name/Perea/

1



could possibly have. It thus imposes some consistency between the preference relations that the DM would
hold for the various beliefs he could entertain. But how can we express this consistency in terms of basic
principles?

To answer this question, Gilboa and Schmeidler (2003) developed a framework where the DM holds
a preference relation over the available acts for every possible probabilistic belief about the states. In
this paper, we refer to this object as a conditional preference relation. By imposing certain axioms on
conditional preference relations, Gilboa and Schmeidler single out those that have a diversified expected
utility representation —a utility matrix where no row is weakly dominated by, or equivalent to, an affi ne
combination of at most three other rows. The key axiom in their characterization is diversity, which states
that for every strict ordering of at most four acts there must be a belief for which this ordering obtains.

But what can we say about those conditional preference relations that have an expected utility rep-
resentation, but not a diversified one? This is an important question, because many utility matrices are
non-diversified, and many natural conditional preference relations violate the diversity axiom. Indeed, the
diversity axiom rules out all cases where some act is weakly dominated by another act, all scenarios with
two states and more than two acts, all scenarios with three states and more than three acts, and many other
plausible situations as well.

The purpose of this paper is to fill that gap, by providing a list of axioms that is both necessary and
suffi cient for the conditional preference relation having an expected utility representation —diversified or not.
If there are no weakly dominated acts, then Theorem 2.1 shows that expected utility can be characterized
if we replace Gilboa and Schmeidler’s diversity axiom by two new axioms: three choice linear preference
intensity and four choice linear preference intensity. Both axioms reveal the idea that the intensity with
which the decision maker prefers one choice to another changes linearly with his belief. More precisely, the
first axiom concerns three choices and argues that on two parallel lines of beliefs, the preference intensity
between two choices will change at the same rate. This results in a formula that relates the beliefs on these
two parallel lines where the decision maker is indifferent between the various pairs of choices. The second
axiom concerns four choices, and argues that on a line of beliefs the relative change rates of the preference
intensities between the different pairs of choices must respect the chain rule. Also this axiom is expressed in
terms of a formula, which relates the beliefs on the line where the decision maker is indifferent between the
various pairs of choices. Both axioms may be viewed as testable consequences of the idea that the preference
intensity between choices changes linearly with the belief.

Somewhat surprisingly perhaps, the case where some acts are weakly dominated by other acts proves
to be much more diffi cult. In this case, we extend the axioms above to signed beliefs involving negative
“probabilities”. That is, we move our analysis to areas outside the belief simplex. Although negative
“probabilities”do not exist in the mind of the decision maker, the axioms still have intuitive content as they
impose conditions on how the preference intensities between various pairs of choices change as the beliefs
inside the belief simplex change. Moreover, we introduce two new axioms which deal with scenarios where
the preference intensity between two choices is constant across all beliefs. This set of axioms is shown to be
necessary and suffi cient for admitting an expected utility representation in the general case.

If there are no weakly dominated acts, and there is a belief where the decision maker is indifferent between
some, but not all, choices (provided there are at least three choices), then it is shown in Proposition 2.2 that
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the utility differences are unique up to a positive multiplicative constant. In that case, the utility differences
between two choices a and b may be viewed as expressing the decision maker’s “preference intensity”between
a and b. This is similar to the approaches by Anscombe and Aumann (1963) and Wakker (1989), where the
axioms of state independence and state independent preference intensity, respectively, guarantee that the
utility difference between two consequences is the same at every state, and may be viewed as expressing the
“preference intensity”between these consequences.

This paper is organized as follows. In Section 2 we introduce the notion of a conditional preference
relation, and derive the representation theorem for the case when there are no weakly dominated acts.
Section 3 treats the general case, where weakly dominated acts are allowed. We conclude with a discussion
in Section 4. All the proofs, and the necessary mathematical definitions, can be found in the appendix.

2 Case of No Weak Dominance

In this section we formally introduce conditional preference relations as the primitive notion of our model,
and subsequently impose some axioms on these. For the case where no act is weakly dominated by another
act, we show that these axioms characterize those conditional preference relations that admit an expected
utility representation.

2.1 Conditional Preference Relations

In line with Gilboa and Schmeidler (2003), the primitive object in this paper is that of a conditional preference
relation —a mapping that assigns to every probabilistic belief over the states a preference relation over the
available choices. In this paper, we also refer to such choices as acts. In fact, we will use the terms acts and
choices interchangeably. Consider a decision maker (DM) who must choose from a finite set of acts A. The
final outcome depends not only on the act a ∈ A, but also on the realization of a state s ∈ S from a finite set
of states S. We assume that the decision maker first forms a probabilistic belief p on S, which then induces
a preference relation %p on A. Formally, a preference relation %p on A is a binary relation %p⊆ A × A. If
(a, b) ∈ %p we write a %p b, and the interpretation is that the DM weakly prefers act a to act b if his belief
is p. In the following definition, we denote by ∆(S) the set of probability distributions on S.

Definition 2.1 (Conditional preference relation) Consider a finite set of acts A and a finite set of
states S. A conditional preference relation on (A,S) is a mapping % that assigns to every probabilistic belief
p ∈ ∆(S) a preference relation %p on A.

For two acts a and b, we write that a ∼p b if a %p b and b %p a. Similarly, we write a �p b if a %p b but
not b %p a. For two acts a, b ∈ A we define the sets of beliefs Pa∼b := {p ∈ ∆(S) | a ∼p b}, Pa�b := {p ∈ ∆(S)
| a �p b} and Pa%b := {p ∈ ∆(S) | a %p b}. We say that (a) a strictly dominates b under % if a �p b for all
p ∈ ∆(S); (b) a weakly dominates b under % if a %p b for all p ∈ ∆(S), and a �p b for at least one p ∈ ∆(S);
(c) a is equivalent to b under % if a ∼p b for all p ∈ ∆(S).
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In the remainder of this paper we will assume that the conditional preference relation does not have
equivalent acts. In the discussion section we will briefly explain how our analysis can easily be extended to
cover equivalent acts.

An expected utility representation can be defined as follows.

Definition 2.2 (Expected-utility representation) A conditional preference relation % has an expected
utility representation if there is a utility function u : A × S → R such that for every belief p ∈ ∆(S) and
every two acts a, b ∈ A,

a %p b if and only if
∑
s∈S

p(s) · u(a, s) ≥
∑
s∈S

p(s) · u(b, s).

In this case, we say that the conditional preference relation % is represented by the utility function u.
For a given vector v ∈ RS we use the notation u(a, v) :=

∑
s∈S v(s) ·u(a, s). Hence, the condition above can

be written as a %p b if and only if u(a, p) ≥ u(b, p).

2.2 Regularity Axioms

We will start by reviewing some very basic axioms that have already been introduced in Gilboa and Schmei-
dler (2003), and to which we refer as regularity axioms.

Axiom 2.1 (Completeness) For every belief p and any two acts a, b ∈ A, either a %p b or b %p a.

Axiom 2.2 (Transitivity) For every belief p and every three acts a, b, c ∈ A with a %p b and b %p c, it
holds that a %p c.

Axiom 2.3 (Continuity) For every two different acts a, b ∈ A and every two beliefs p ∈ Pa�b and q ∈ Pb�a,
there is some λ ∈ (0, 1) such that (1− λ)p+ λq ∈ Pa∼b.

Axiom 2.4 (Preservation of indifference) For every two different acts a, b ∈ A and every two beliefs
p ∈ Pa∼b and q ∈ Pa∼b, we have that (1− λ)p+ λq ∈ Pa∼b for all λ ∈ (0, 1).

Axiom 2.5 (Preservation of strict preference) For every two different acts a, b ∈ A and every two
beliefs p ∈ Pa%b and q ∈ Pa�b, we have that (1− λ)p+ λq ∈ Pa�b for all λ ∈ (0, 1).

Completeness and transitivity together resemble the ranking axiom in Gilboa and Schmeidler (2003).
Our definition of continuity is formally different from Gilboa and Schmeidler’s (2003) version, but reveals
the same idea. When taken together, our axioms of preservation of indifference and preservation of strict
preference correspond precisely to Gilboa and Schmeidler’s (2003) axiom of combination.

It can be shown that for the case of two acts, the regularity axioms are both necessary and suffi cient
for a conditional preference relation having an expected utility representation. A proof can be found in the
appendix (see Lemma 5.4).
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Figure 1: Why regularity axioms are not suffi cient

2.3 Three Choice and Four Choice Linear Preference Intensity

If there are more than two acts, the regularity axioms no longer suffi ce to guarantee an expected utility
representation. To see this, consider the conditional preference relation % represented by Figure 1. The area
within the triangle represents the set ∆(S) of all probabilistic beliefs on S = {x, y, z}, with the probability
1 beliefs [x], [y] and [z] as the extreme points. The two-dimensional plane represents all the vectors in RS

where the sum of the coordinates is 1, containing the belief simplex ∆(S) as a subset. It may be verified
that % satisfies all the regularity axioms. Yet, there is no expected utility representation for % . To see
why, suppose there would be a utility function u that represents % . Then, the induced expected utilities of
a and b must be equal on the set span(Pa∼b), which denotes the linear span of Pa∼b, the expected utilities
of b and c must be equal on the set span(Pb∼c) and the expected utilities of a and c must be equal on the
set span(Pa∼c), also at vectors that lie outside the belief simplex. But then, the expected utilities of a and
c must be the same at the vector v where span(Pa∼b) and span(Pb∼c) intersect, which is impossible since
v does not belong to span(Pa∼c). This insight leads us to introduce further axioms which do guarantee an
expected utility representation, at least when no act weakly dominates another act.

Consider three acts a, b, c, and a line L of beliefs as depicted in Figure 2. Here, intb�a denotes, somewhat
informally, the intensity by which the DM prefers b to a, and similarly for intc�a.1 Moreover, pab, pbc and

1On purpose, we are not being very precise about the notion of preference intensity here, since we like to treat it as an
intuitive idea rather than a formal concept. There are some special cases where the idea of preference intensity can be made
more precise, however. Consider, for instance, two acts a and b, two states x and y, and suppose that the DM prefers a to b
at [x], prefers b to a at [y], and becomes indifferent between a and b at the belief pab between [x] and [y]. If the conditional
preference relation satisfies the regularity axioms, the DM will prefer a to b for all beliefs that assign probability at most pab(y)
to y, and will prefer b to a for all beliefs that assign probability at most pab(x) to x. Since the ratio between the sizes of these two
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Figure 2: Linear preference intensity on a line of beliefs

pac are beliefs on the line where the DM is indifferent between a and b, between b and c, and between a
and c, respectively. As such, the intensity intb�a is 0 at pab, the intensity intc�a is 0 at pac, and the two
intensities are the same at pbc.

If we assume that the preference intensities change linearly with the belief, then the change rates ∆intb�a
∆p

and ∆intc�a
∆p are constant on the line L. Moreover, it can be seen from the figure that ∆intb�a

∆p = A
B and

∆intc�a
∆p = −A

C , which implies that
∆intb�a
∆intc�a

= −C
B
. (2.1)

Take a state s such that the probability of s is not constant on the line l. Then, we know that

−C
B

=
pac(s)− pbc(s)
pab(s)− pbc(s)

.

Together with (2.1) we thus conclude that

∆intb�a
∆intc�a

=
pac(s)− pbc(s)
pab(s)− pbc(s)

. (2.2)

Now, consider a line L′ of beliefs that is parallel to L, with beliefs p′ab, p
′
bc and p

′
ac where the DM is

indifferent between the respective acts. If the DM’s preference intensities change linearly with the belief,
then the relative change rate ∆intb�a/∆intc�a should be the same on the parallel lines L and L′. In view
of (2.2) we thus conclude that

pac(s)− pbc(s)
pab(s)− pbc(s)

=
p′ac(s)− p′bc(s)
p′ab(s)− p′bc(s)

,

which implies that

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)).

areas of beliefs is pab(y)/pab(x), it seems natural to assume that the preference intensity between a and b at x is pab(y)/pab(x)
as large as the preference intensity between b and a at y.

6



This equality will be the content of the axiom three choice linear preference intensity.
To state this axiom formally, we need the following definitions. A line of beliefs is a subset L ⊆ ∆(S)

such that L = {(1 − λ)p + λq | λ ∈ [0, 1]} for some beliefs p, q ∈ ∆(S). Two lines of beliefs L and L′ are
parallel if for every p, q ∈ L and every p′, q′ ∈ L′ there is some µ ∈ R with p− q = µ(p′ − q′).

Axiom 2.6 (Three choice linear preference intensity) For every three acts a, b, c, for every line L of
beliefs with beliefs pab, pbc, pac where the DM is indifferent between the respective acts and which contains
a belief where the DM is not indifferent between any of these acts, every line L′ parallel to L with beliefs
p′ab, p

′
bc, p

′
ac where the DM is indifferent between the respective acts and which contains a belief where the

DM is not indifferent between any of these acts, it holds that

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s))

for every state s.

It turns out that this axiom can be verified in an easy way if the conditional preference relation has no
weakly dominated choices: In this case, it is equivalent to checking that every vector v (possible outside the
belief simplex) which is in both span(Pa∼b) and span(Pb∼c), must also be in span(Pa∼c).

Proposition 2.1 (Characterization of three choice linear preference intensity) Consider a condi-
tional preference relation % that has no weakly dominated choices and that satisfies the regularity axioms.
Then, % satisfies three choice linear preference intensity, if and only if, for every three choices a, b, c it holds
that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c).

The conditional preference relation in Figure 1 clearly violates this property, since the vector v in that
figure belongs to both span(Pa∼b) and span(Pb∼c), but not to span(Pa∼c). Hence, in view of the result
above, it cannot satisfy three choice linear preference intensity.

The property above may be seen as a strong version of transitivity of the indifference relation: If a belief
p belongs to both Pa∼b and Pb∼c then, by transitivity of the indifference relation, p will also belong to Pa∼c.
The property above states that this relation must also hold outside the belief simplex, where Pa∼b, Pb∼c and
Pa∼c are replaced by span(Pa∼b), span(Pb∼c) and span(Pa∼c), respectively.

We will now show that in the case of four choices or more, the linearity of preference intensity implies yet
another testable condition. Consider four choices a, b, c, d, a line of beliefs L, and beliefs pab, pac, pad, pbc, pbd, pcd
on that line where the DM is indifferent between the respective choices. Then, we know by (2.2) that

∆intb�a
∆intc�a

=
pac(s)− pbc(s)
pab(s)− pbc(s)

,
∆intc�a
∆intd�a

=
pad(s)− pcd(s)
pac(s)− pcd(s)

and
∆intb�a
∆intd�a

=
pad(s)− pbd(s)
pab(s)− pbd(s)

. (2.3)

Since, by the chain rule, it holds that

∆intb�a
∆intd�a

=
∆intb�a
∆intc�a

· ∆intc�a
∆intd�a

,
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it follows by (2.3) that
pad(s)− pbd(s)
pab(s)− pbd(s)

=
pac(s)− pbc(s)
pab(s)− pbc(s)

· pad(s)− pcd(s)
pac(s)− pcd(s)

.

By cross-multiplication, we thus obtain the following testable condition.

Axiom 2.7 (Four choice linear preference intensity) For every four choices a, b, c, d, and for every
line L of beliefs with beliefs pab, pac, pad, pbc, pbd, pcd where the DM is indifferent between the respective
choices, and such that L contains a belief where the DM is not indifferent between any of these choices, it
holds that

(pab(s)− pbc(s)) · (pac(s)− pcd(s)) · (pad(s)− pbd(s)) = (pab(s)− pbd(s)) · (pac(s)− pbc(s)) · (pad(s)− pcd(s)).

for every state s.

2.4 Representation Theorem

If there are no weakly dominated acts, then the axioms we have gathered so far are not only necessary, but
also suffi cient, for an expected utility representation. We thus obtain the following representation result.

Theorem 2.1 (No weakly dominated choices) Consider a finite set of acts A, a finite set of states S,
and a conditional preference relation % on (A,S) such that no act weakly dominates another act under %.
Then, % has an expected utility representation, if and only if, it satisfies completeness, transitivity, conti-
nuity, preservation of indifference, preservation of strict preference, three choice linear preference intensity
and four choice linear preference intensity.

In Section 3 we will see that these axioms may not be suffi cient for an expected utility representation if
there are weakly dominated acts.

2.5 Unique Relative Utility Differences

So far, we have explored the case where no acts are weakly dominated, and we have identified a system of
axioms that is both necessary and suffi cient for an expected utility representation. But how unique is this
representation? As we will see below, the expected utility differences are “typically”unique up to a positive
multiplicative constant.

Proposition 2.2 Consider a finite set of acts A, a finite set of states S, and a conditional preference relation
% on (A,S), such that it admits an expected utility representation, no act weakly dominates another act
under %, and in the case of at least three acts there is a belief where the DM is indifferent between some,
but not all, acts. Then, for every two utility functions u, v that represent % there is some α > 0 such that
v(a, s)− v(b, s) = α · (u(a, s)− u(b, s)) for all a, b ∈ A and all s ∈ S.
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Under the conditions of the proposition, there would be exactly |S|+ 1 degrees of freedom for choosing a
representing utility function: |S| degrees because we can choose the utilities for one of the choices freely at
each of the |S| states, and another degree of freedom because the utility differences at each of the states may
be multiplied by the same positive number without changing the induced conditional preference relation.

Moreover, under these conditions the utility difference u(a, p) − u(b, p) at a belief p, which is unique
up to a positive multiplicative constant, may be viewed as expressing the “preference intensity” between
a and b at p. The conditions above thus guarantee that the relative preference intensities are unique. As
an example, suppose that 0 < u(a, x) − u(b, x) = 2 · (u(b, y) − u(a, y)). Then, the DM will be indifferent
between a and b at the belief 1/3[x] + 2/3[y],2 which seems to reflect that the intensity by which the DM
prefers a to b at x is twice the intensity by which he prefers b to a at y. This indeed corresponds to the fact
that the utility difference between a and b at x is twice as large as at y, in absolute terms. However, we
will not enter the debates on whether such utility differences, or preference intensities, can be interpreted
as reflecting neo-classical cardinal utility (see, for instance, Baccelli and Mongin (2016), Baumol (1958) and
Moscati (2018)).

The above interpretation of the utility differences may no longer hold, however, if the conditions in the
proposition above are not satisfied. Suppose there are three acts a, b and c, two states x and y, and let
% be such that a �p b �p c if p(x) > 1/2, a ∼p b ∼p c if p(x) = 1/2, and c �p b �p a if p(x) < 1/2.
Hence, the three indifference sets Pa∼b, Pa∼c and Pb∼c are all equal to {1/2[x] + 1/2[y]}, and thus there is
no belief where the DM is indifferent between some, but not all, acts. Note that the utility functions u, v
given by u(a, x) = 3, u(b, x) = 2, u(c, x) = 0, u(a, y) = −3, u(b, y) = −2, u(c, y) = 0 and v(a, x) = 3, v(b, x) =
1, v(c, x) = 0, v(a, y) = −3, v(b, y) = −1, v(c, y) = 0 both represent % . Yet, the utility differences in u and
v differ by more than just a multiplicative constant. The reason is that in this case, % does not provide us
with suffi ciently many data to derive the DM’s preference intensity over the three acts at the various beliefs.
A similar phenomenon may arise if there are weakly dominated acts.

3 Case of Weak Dominance

In this section we start with an example showing that the previous axioms may no longer guarantee an
expected utility representation if weakly dominated acts are allowed. This leads us to introduce a new
system of axioms. The first axioms are translations of the previous axioms to so-called signed beliefs, which
allow for negative “probabilities”. The last few axioms deal with scenarios where the preference intensity
between two choices is constant across all beliefs. It is shown that the new axiom system so obtained is
both necessary and suffi cient for an expected utility representation in the general case.

3.1 Why Previous Axioms are Not Suffi cient

Consider the conditional preference relation % in Figure 3, where b strictly dominates c and d strictly
dominates a. It may be verified that % satisfies the regularity axioms. Moreover, it trivially satisfies three

2Here, [x] denotes the denegerate belief that assigns probability 1 to the state [x]. Similarly for [y].
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Figure 3: Why previous axioms are not suffi cient for general case

choice linear preference intensity since for every three choices there is at least one pair for which the DM
is never indifferent between the choices in that pair. Also, it trivially satisfies four choice linear preference
intensity since the DM is never indifferent between a and d, and never indifferent between b and c.

Despite this, % does not have an expected utility representation. Indeed, if the utility function u were to
represent %, then the utility of b would be equal to the utility of c at the points v and w outside the belief
simplex. This would imply that the utility of b would be equal to the utility of c at the belief p. However,
the DM strictly prefers b to c at p, which is a contradiction.

3.2 Signed Indifference Beliefs

This naturally begs the question: What is “wrong”with the conditional preference relation in Figure 3? We
will see that it violates the idea of linear preference intensity once we step outside the belief simplex.

To see what we mean by this, consider a line of beliefs L, three choices a, b, c, and their relative preference
intensities on L as depicted in Figure 4. In the picture we have extended the line L outside the belief simplex.
The part inside the belief simplex is the line segment between the two dotted lines. Note that on the line
L inside the belief simplex, the intensity by which the DM prefers c to a is always higher than the intensity
by which he prefers b to a, and hence the DM always prefers c to b on the part of the line L inside the belief
simplex. In particular, the DM is never indifferent between b and c on the part of the line L inside the belief
simplex.

However, if we extend the line L and the preference intensities intc�a, intb�a outside the belief simplex,
then there is a point on this line, qbc, where the “preference intensity” between c and a is equal to the
“preference intensity”between b and a.We put “preference intensity”between quotes here because we refer
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Figure 4: Relative change of linear preference intensities

to a point qbc which is not a belief. Such a point qbc is called a signed belief as it involves negative values,
but the sum of all values is still equal to 1. As the “preference intensities”between b and a and between c
and a are the same at qbc, we could say that the DM is “indifferent”at the signed belief qbc.

The real meaning of this signed indifference belief qbc is that it determines the relative change rate of
the preference intensities between b and a and between c and a inside the belief simplex. Indeed, similarly
to what we have seen in Section 2.3, it can be derived from Figure 4 that

∆intb�a
∆intc�a

=
pac(s)− qbc(s)
pab(s)− qbc(s)

whenever the probability of state s is not constant on the line L.
Based on this insight, it becomes meaningful to extend conditional preference relations to signed beliefs

outside the belief simplex. This yields the definition of a signed conditional preference relation below.
Formally, a signed belief is a vector q ∈ RS where

∑
s∈S q(s) = 1. It thus allows for negative values q(s) at

some states.

Definition 3.1 (Signed conditional preference relation) A signed conditional preference relation %∗
assigns to every signed belief q some preference relation %∗q over the acts.

In the following subsection we will extend each of the previous axioms to signed conditional preference
relations.

3.3 Extending Axioms to Signed Beliefs

The axioms we have seen so far can be extended to signed conditional preference relations, as will be shown
below. As an additional piece of notation, let Qa∼∗b be the set of signed beliefs q with a ∼∗q b. The sets Qa%∗b
and Qa�∗b are defined analogously. Moreover, by a line of signed beliefs we mean a set L = {(1− λ)q + λr
| λ ∈ R} where q, r are some signed beliefs. Two lines of signed beliefs L,L′ are called parallel if for every
q, r in L, and every q′, r′ in L′, there is some µ ∈ R with q − r = µ(q′ − r′).
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Definition 3.2 (Extension of axioms to signed beliefs) The following axioms are direct extensions of
our previous axioms to signed conditional preference relations:

Completeness: For every signed belief q and any two acts a, b ∈ A, either a %∗q b or b %∗q a.
Transitivity: For every signed belief q and every three acts a, b, c ∈ A with a %∗q b and b %∗q c, it holds that
a %∗q c.
Continuity: For every two different acts a, b ∈ A and every two signed beliefs q ∈ Qa�∗b and r ∈ Qb�∗a,
there is some λ ∈ (0, 1) such that (1− λ)q + λr ∈ Qa∼∗b.
Preservation of indifference: For every two different acts a, b ∈ A and every two signed beliefs q, r ∈
Qa∼∗b, we have that (1− λ)q + λr ∈ Qa∼∗b for all λ ∈ (0, 1).

Preservation of strict preference: For every two different acts a, b ∈ A and every two signed beliefs
q ∈ Qa%∗b and r ∈ Qa�∗b, we have that (1− λ)q + λr ∈ Qa�∗b for all λ ∈ (0, 1).

Three choice linear preference intensity: For every three acts a, b, c, for every line L of signed beliefs
with signed beliefs qab, qbc, qac where the DM is “indifferent”between the respective acts and which contains
a signed belief where the DM is not indifferent between any of these acts, every line L′ parallel to L with
signed beliefs q′ab, q

′
bc, q

′
ac where the DM is “indifferent”between the respective acts and which contains a

signed belief where the DM is not indifferent between any of these acts, it holds that

(qab(s)− qbc(s)) · (q′ac(s)− q′bc(s)) = (q′ab(s)− q′bc(s)) · (qac(s)− qbc(s))

for every state s.

Four choice linear preference intensity: For every four acts a, b, c, d, and for every line L of signed
beliefs with signed beliefs qab, qac, qad, qbc, qbd, qcd where the DM is “indifferent”between the respective acts
and which contains a signed belief where the DM is not indifferent between any of these acts, it holds that

(qab(s)− qbc(s)) · (qac(s)− qcd(s)) · (qad(s)− qbd(s)) = (qab(s)− qbd(s)) · (qac(s)− qbc(s)) · (qad(s)− qcd(s)).

for every state s.

Let us now go back to the conditional preference relation % in Figure 3, for which we have argued that
no expected utility representation exists. It turns out that % cannot be extended to a signed conditional
preference relation %∗ that satisfies all of the axioms above. To see this, note that, in view of preservation
of indifference and preservation of strict preference, Qa∼∗b and Qa∼∗c must be the linear extensions of Pa∼b
and Pa∼c outside the belief simplex, and thus they meet at the signed belief v in Figure 3. By transitivity of
%∗, it would then follow that v ∈ Qb∼∗c. By a similar argument, it also would follow by the axioms that w ∈
Qb∼∗c. But then, by preservation of indifference and preservation of strict preference, Qb∼∗c must be the line
of signed beliefs that goes through v and w. In particular, Qb∼∗c intersects the belief simplex, which means
that there are beliefs at which the DM is indifferent between b and c. This is a contradiction, since b strictly
dominates c. Thus, % cannot be extended to a signed conditional preference relation %∗ that satisfies all of
the axioms.
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3.4 Constant Preference Intensity

On top of the axioms above, we need some further axioms which deal with situations where the preference
intensity between two choices is “constant”.

Definition 3.3 (Constant preference intensity) A signed conditional preference relation %∗ exhibits
constant preference intensity between two choices a and b if either a �∗q b for all signed beliefs q, or
b �∗q a for all signed beliefs q.

In terms of expected utility, this means that the expected utility difference between a and b is constant.
A necessary consequence of expected utility is “transitivity of constant preference intensity”.

Axiom 3.1 (Transitive constant preference intensity) For every three acts a, b, c where %∗ exhibits
constant preference intensity between a and b and between b and c, there must also be constant preference
intensity between a and c.

If there is constant preference intensity between two or more acts, then this will also have consequences
for the formula of four choice linear preference intensity. To see this, consider four choices a, b, c, d, and
a line L of signed beliefs with associated indifference beliefs. Suppose now that the preference intensity
between c and d is constant. Then, the preference intensity between a and c and the preference intensity
between a and d will only differ by a constant. In particular, the change rate of the preference intensity
between a and c will be the same as between a and d. Thus,

∆(inta�b(q))

∆(inta�d(q))
=

∆(inta�b(q))

∆(inta�c(q))
.

Since
∆(inta�b(q))

∆(inta�d(q))
=
qad(s)− qbd(s)
qab(s)− qbd(s)

and
∆(inta�b(q))

∆(inta�c(q))
=
qac(s)− qbc(s)
qab(s)− qbc(s)

it follows that
qad(s)− qbd(s)
qab(s)− qbd(s)

=
qac(s)− qbc(s)
qab(s)− qbc(s)

.

We thus obtain the formula

(qab(s)− qbc(s)) · (qad(s)− qbd(s)) = (qab(s)− qbd(s)) · (qac(s)− qbc(s)). (3.1)

Suppose, in addition, that the preference intensity between a and b would also be constant. Thus, the
preference intensities between a and b, and between c and d, would both be constant. On a line of signed
beliefs the preference intensities between the various pairs of choices would then yield a picture similar to
that in Figure 5. From the picture it can clearly be seen that

qac(s)− qbc(s) = qad(s)− qbd(s) (3.2)

for every state s. The formulas (3.1) and (3.2) lead to the following axiom.

13



Figure 5: Four choice linear preference intensity with constant preference intensity

Axiom 3.2 (Four choice linear preference intensity with contant preference intensity) For every
line of signed beliefs L, and for every four choices a, b, c, d such that there is a signed belief on this line where
the DM is not “indifferent”between any pair of choices in {a, b, c, d}, the following holds:

(a) if there is a constant preference intensity between c and d, but not between the other five pairs of choices,
then for every five signed beliefs qab, qac, qad, qbc and qbd on the line L where the DM is “indifferent”between
the respective choices, it holds for every state s that

(qab(s)− qbc(s)) · (qad(s)− qbd(s)) = (qab(s)− qbd(s)) · (qac(s)− qbc(s));

(b) if there is a constant preference intensity between a and b, and between c and d, but not between the
other four pairs of choices, then for every four signed beliefs qac, qad, qbc and qbd on the line L where the DM
is “indifferent”between the respective choices, it holds for every state s that

qac(s)− qbc(s) = qad(s)− qbd(s).

3.5 Representation Theorem

It turns out that the axioms we have established in section are both necessary and suffi cient for an expected
utility representation in the general case. We thus obtain the following general representation result.

Theorem 3.1 (Expected utility representation) Consider a finite set of acts A, a finite set of states
S, and a conditional preference relation % on (A,S). Then, % has an expected utility representation, if
and only if, % can be extended to a signed conditional preference relation %∗that satisfies completeness,
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transitivity, continuity, preservation of indifference, preservation of strict preference, three choice linear
preference intensity, four choice linear preference intensity, transitive constant preference intensity and four
choice linear preference intensity with constant preference intensity.

Since most of these axioms may be viewed as instances of linear preference intensity, the result above
shows that we may interpret expected utility as an expression of linear preference intensity.

4 Discussion

(a) Comparison with Savage. One important difference with the framework of Savage (1954) is that
we view the DM’s belief as a primitive notion, from which we can derive his preference relation over acts.
This is precisely how a conditional preference relation is defined: It takes the belief as an input, and delivers
the preferences over acts as an output. One of the beautiful features of the Savage framework is that the
DM’s belief can be derived from his preferences over acts. That is, Savage views the DM’s preferences over
acts as the primitive notion, which then induces his belief. There has been a long-standing debate about
which of the two, belief or preferences, should be taken as the primitive object, and we do not want to enter
this debate here. But the logic that underlies our framework is that the DM first reasons himself towards a
belief, then forms his preferences over acts based on this belief, which finally allows him to make a choice
based on this preference relation.

Another difference with Savage lies in the role of the utility function. In our model, the utility function
generates the DM’s preferences over acts for all possible beliefs over the states. As the Savage axiom system
leads to a unique probabilistic belief over states, the utility function in the Savage framework can only be
viewed in combination with this specific belief.

A final difference we would like to stress concerns the uniqueness of the utility representation. Recall
from Proposition 2.2 that in the absence of weakly dominated acts there are |S|+ 1 degrees of freedom for
the utility function in our framework, provided there is a belief where the DM is indifferent between some,
but not all, acts in the case of at least three acts. Unless all acts are equivalent, this is also the smallest
number of degrees of freedom possible. There may be more degrees of freedom, up to |A| · |S|, which would
be the case if every act strictly dominates, or is strictly dominated by, another act.

In the Savage framework, on the other hand, the utility representation is always unique up to a positive
affi ne transformation, leaving only two degrees of freedom. The reason is that a DM in the Savage framework
holds preferences over all possible mappings from states to consequences, providing us with “more data”
that restrict the possible utilities compared to a DM in our framework. However, the two degrees of freedom
in Savage’s framework are only possible because Savage’s axiom of small event continuity implies that there
are infinitely many states. We assume only finitely many states, but our “richness of data” comes from
the fact that a conditional preference relation specifies a preference relation for infinitely many beliefs (if
there are at least two states). Most comments here also apply to the framework in Anscombe and Aumann
(1963).

(b) Related foundations for expected utility in decision problems and games. The foundation
for expected utility that is closest to ours is by Gilboa and Schmeidler (2003). As already stressed in the
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introduction, their axiom system singles out those conditional preference relations that can be represented
by a diversified utility function, and the crucial axiom in their analysis is diversity. The diversity axiom by
Gilboa and Schmeidler may be viewed as a “richness”condition on the set of states, and seems plausible if
the number of states is very large, or even (countably or uncountably) infinite, as is allowed by the Gilboa-
Schmeidler framework. In contrast, we mainly concentrate on settings like finite games where, tyically, the
number of states is relatively small. In such scenarios, the diversity axiom seems overly restrictive. Our
axiom system, in turn, imposes no such richness condition on the set of states, and puts no restrictions on
the utility matrix that can be used to represent the conditional preference relation.

Jagau (2022) shows that the regularity axioms, together with the axioms of constant preference intensity
and transitive preference sensitivity, are necessary and suffi cient for an expected utility representation if
there are no weakly dominated acts. Constant preference intensity and transitive preference sensitivity are
strongly based on our axioms of three choice linear preference intensity and four choice linear preference
intensity, respectively.

Perea (2020) proves that the regularity axioms, together with the axiom existence of a uniform preference
increase, are both necessary and suffi cient for an expected utility representation. The existence of a uniform
preference increase states that from the conditional preference relation at hand, one should be able to
increase the preference intensity between a fixed choice and each of the other choices by a uniform amount.

Luce and Raiffa (1957)’s formulation of a decision problem under uncertainty is rather similar to ours,
in that they view the DM’s sets of actions and states as primitive notions. On top of this, they assume
a consequence mapping, assigning to every act and state the consequence that results. Battigalli, Cerreia-
Vioglio, Maccheroni and Marinacci (2017) show how the Anscombe-Aumann model can be reconciled with
the Luce-Raiffa framework, by letting the DM hold preferences over mixed actions in the Luce-Raiffa model,
and proposing an axiomatic characterization of expected utility within this setup.

Fishburn (1976) and Fishburn and Roberts (1978) concentrate on games, and assume that every player
holds a preference relation over the combinations of randomized choices —or mixed strategies —of all the
players. Combinations of mixed strategies may be viewed as lotteries with objective probabilities on the
set of possible (pure) choice combinations in the game. By imposing certain axioms on these preference
relations over mixed strategy combinations, they are able to identify those that admit an expected utility
representation. It may thus be viewed as a generalization of von Neumann and Morgenstern’s (1947)
axiomatic characterization of expected utility for lotteries. The crucial difference with our approach is that
we do not consider randomizations over choices, and that we use conditional preference relations as the
primitive, rather than preferences over lotteries with objective probabilities.

In Aumann and Drèze (2002), a game is modelled as a mapping that assigns to every choice combination
by the players a lottery over consequences for each of the players. The DM (a player in the game) is then
assumed to hold a preference relation on the probability distributions over such mappings. Aumann and
Drèze (2005) take a different approach, by supposing that the DM in a game holds a preference relation on
lotteries which are defined over his own choices and over the possible consequences in the game. In both
papers, it is shown that certain axioms on the preference relation lead to an expected utility representation
that involves a unique, or essentially unique, probabilistic belief for the DM about the opponents’choice
combinations. In that sense, these results are similar to Savage (1954).
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Mariotti (1995) points out that a DM in Savage (1954) is required to hold preferences over acts that do
not belong to his actual decision problem, and finds this problematic. Mariotti (1995) goes even further,
and shows that certain game-theoretic principles are inconsistent with the axioms of completeness and
monotonicity in Savage’s framework, thus establishing a degree of “incompatibility”between games on the
one hand and the framework of Savage on the other hand.

(c) Comparison with case-based decision theory. Case-based decision theory, as originally formulated
in Gilboa and Schmeidler (1995), assumes that the DM evaluates an act based on how this act performed
in previous decision problems. More precisely, assume that C represents the collection of decision problems,
or cases, the DM faced in the past, and that s(c) measures the similarity of decision problem c to the
present decision problem. Then, the desirability of an act a in the present decision problem is measured by∑

c∈C s(c) · u(a, c), where u(a, c) is the utility that selecting act a generated in decision problem c.
Our framework can be embedded into case-based decision theory as follows: If a conditional preference

relation is represented by a utility function u, then the desirability of an act a in the present decision
problem, for a given p ∈ ∆(S), is given by

∑
s∈S p(s) · u(a, s). Now suppose that the states s represent

decision problems that the DM faced in the past, and that p(s) measures the similarity of problem s to the
decision problem he is facing now. Then, the measure for the desirability of act a resembles exactly that in
Gilboa and Schmeidler (1995).

Alternatively, one could still interpret p as a probabilistic belief over states, and identify every state s
with the degenerate belief [s] that assigns probability 1 to s. Suppose that, for some reason, the DM has had
each of these degenerate beliefs [s] in the past, and remembers the utility u(a, s) that each act a generated
under that belief. Then, every belief [s] can be viewed as a case in the Gilboa-Schmeidler framework. If the
DM’s actual belief is p, then the belief probability p(s) can be viewed as the similarity of the actual belief p
to the past belief [s]. Also in this scenario, the measure for the desirability of act a in the actual problem,
with the actual belief p , coincides with that of the Gilboa-Schmeidler framework.

(d) Utility differences as preference intensities. In Proposition 2.2 we have shown that under certain
conditions, the utility differences are unique up to a positive multiplicative constant. In that case, the
expected utility difference between two acts a and b at a state s may be interpreted as the “preference
intensity”between a and b at the state s. This is similar to how utility differences are interpreted in Anscombe
and Aumann (1963) and Wakker (1989). The state independence axiom in Anscombe and Aumann (1963)
states that the preference relation over objective lotteries on consequences must be independent of the state.
This implies, in turn, that the utility differences between two consequences must be the same at every state,
and these may be viewed as expressing the “preference intensity”between the two consequences.

The key condition in Wakker’s (1989) axiom system is state independent preference intensity. The main
idea is that the “preference intensity” between two consequences c1 and c2 at a state s can be measured
by taking two acts, where one is strictly preferred to the other, and replacing the two acts at state s by c1

and c2, respectively, such that the DM becomes indifferent between the two new acts. State independent
preference intensity requires that if the preference intensities between c1 and c2 and between c3 and c4

coincide at one state, then they must coincide at all states. In that case, the utility difference between two
consequences will always be the same at all states, and may thus be viewed as expressing the “preference
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intensity”between the two consequences.3

(e) Linear preference intensity. The axiomatic characterizations in this paper show that expected utility
may be viewed as an expression of linear preference intensity. Indeed, some of the regularity axioms for two
choices, the axioms of three and four choice linear preference intensity for more than two choices, and their
extensions to signed beliefs, represent consequences of scenarios where the preference intensity between two
choices changes linearly with the belief. But how natural is this idea of linear preference intensity? From a
behavioral and empirical point of view, one could conduct behavioral experiments to test these axioms. On
a more theoretical basis, the idea states that (i) the change in preference intensity should only depend on the
change in belief, not on the particular initial and final belief, thereby revealing a specific type of invariance,
and (ii) for a given direction of belief change, the change in preference intensity must be proportional to the
size of the belief change. Conceptually, it thus represents the simplest possible way in which the preference
intensity can vary with the belief. A problem, of course, is that preference intensity cannot be measured
directly, but many of the axioms represent verifiable properties that logically follow from the assumption of
linear preference intensity.

(f) Testability of the axioms. The axioms we provide for the scenario when there are no weakly
dominated acts are all empirically testable. Three choice and four choice linear preference intensity, for
instance, describe how the sets of beliefs where the DM is indifferent between the various pairs of choices
must relate to each other. This changes when we move to the scenario where there are weakly dominated
acts. The axioms then impose conditions on extensions of the conditional preference relations outside the
belief simplex. As a consequence, it will no longer be possible to test these axioms directly, as beliefs outside
the belief simplex cannot be observed. However, as we argued before, the axioms still have intuitive content,
as they describe how the preference intensities between the various pairs of choices must change if we change
the belief inside the belief simplex. This raises the question: Can these axioms be replaced by alternative
conditions that are directly empirically verifiable? At this moment I would not know how this can be done,
and I therefore leave this as an open question here.

(g) Equivalent acts. In this paper we have restricted attention to scenarios where no two acts are
equivalent. In fact, our entire analysis can easily be extended to the case where equivalent acts are allowed.
Suppose we start with a set of acts A where some acts are equivalent. Then, we can partition A into
equivalence classes {A1, A2, ..., AK} with representative acts a1, a2, ..., aK , and subsequently restrict the
conditional preference relation % to the set A′ = {a1, a2, ..., aK}, resulting in a new conditional preference
relation %′ . Then, Theorem 3.1 can be generalized as follows: The conditional preference relation % has an
expected utility representation, if and only if, %′ satisfies the conditions in Theorem 3.1. The proof is easy:
If %′ satisfies the conditions in the theorem, then by the same theorem it is represented by a utility function
u. Extend u to a utility function v on A × S by setting v(a, s) := u(ak, s) for all acts a ∈ A and all s ∈ S,
where a ∈ Ak. Clearly, v will then represent % . In the same way, the other results in this paper can also be
extended to cases that allow for equivalent acts.

3Also in vNM-settings, expected utility differences are often interpreted as representing preference intensities. See, for
instance, Börgers and Postl (2009), which focusus on voting scenarios between two parties.
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5 Appendix

5.1 Mathematical Definitions

In this section we introduce the mathematical definitions and notation needed for this paper, mainly from
linear algebra. For a finite set X, we denote by RX the set of all functions v : X → R. Scalar multiplication
and addition on RX are defined in the usual way: For a function v ∈ RX and a number λ ∈ R, the function
λ · v is given by (λ · v)(x) = λ · v(x) for all x ∈ X. Similarly, for functions v, w ∈ RX , the sum v+w is given
by (v + w)(x) = v(x) + w(x) for all x ∈ X. The set RX together with these two operations constitutes a
linear space, and elements in RX are called vectors. By 0 we denote the vector in RX where 0(x) = 0 for
all x ∈ X.

A subset V ⊆ RX is called a linear subspace of RX if for every v, w ∈ V and every α, β ∈ R, we have
that αv + βw ∈ V. For a subset V ⊆ RX , we denote by

span(V ) := {
∑K

k=1
αkvk | K ≥ 1, αk ∈ R and vk ∈ V for all k ∈ {1, ...,K}}

the set of all (finite) linear combinations of elements in V, and call it the (linear) span of V. Here,
∑K

k=1 αkvk
is called a linear combination of the vectors v1, ..., vK . A linear combination v = λ1v1 + ... + λKvK , where
v1, ..., vK ∈ RX and λ1, ..., λK ∈ R, is called a convex combination if λ1, ..., λK ≥ 0 and λ1 + ...+ λK = 1.

The set span(V ) is always a linear subspace, and if V itself is a linear subspace then span(V ) = V .
Vectors v1, ..., vK ∈ RX are called linearly independent if none of the vectors is a linear combination of
the other vectors. The set of vectors {v1, ..., vK} is a basis for V if v1, ..., vK are linearly independent, and
span({v1, ..., vK}) = V. Every basis for V has the same number of vectors, and this number is called the
dimension of V, denoted by dim(V ). If V = {0}, then dim(V ) = 0.

A probability distribution on X is a vector p ∈ RX such that
∑

x∈X p(x) = 1 and p(x) ≥ 0 for all x ∈ X.
The set of probability distributions on X is denoted by ∆(X). For a given element x ∈ X, we denote by
[x] the probability distribution in ∆(X) where [x](x) = 1 and [x](y) = 0 for all y ∈ X\{x}. A probability
distribution p has full support if p(x) > 0 for all x ∈ X.

For every two vectors v, w ∈ RX , the vector product is given by v · w :=
∑

x∈X v(x)w(x). A hyperplane
is a set of the form H = {v ∈ RX | v · w = c}, where w ∈ RX\{0} and c ∈ R. If c = 0 then H is a linear
subspace of dimension |X| − 1, where |X| denotes the number of elements in X.

5.2 Proofs of Section 2

In this subsection we will prove Proposition 2.1, Theorem 2.1 and Proposition 2.2. Before doing so, we
first derive some preparatory results. The first characterizes the span of the set of beliefs where the DM is
indifferent between a and b.

Lemma 5.1 (Span of an indifference set) Consider a conditional preference relation % that satisfies
preservation of indifference, and two choices a and b. Then,

span(Pa∼b) = {λ1p1 + λ2p2 | p1, p2 ∈ Pa∼b and λ1, λ2 ∈ R}.
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Proof. Let
A := {λ1p1 + λ2p2 | p1, p2 ∈ Pa∼b and λ1, λ2 ∈ R}.

We will show that span(Pa∼b) = A. Clearly, A ⊆ span(Pa∼b). Hence, it remains to show that span(Pa∼b) ⊆
A. Take some p ∈ span(Pa∼b). Then, there are some beliefs p1, ..., pk, pk+1, ..., pk+m ∈ Pa∼b and numbers
λ1, ..., λk, λk+1, ..., λk+m > 0 such that

p = λ1p1 + ...+ λkpk − λk+1pk+1 − ...− λk+mpk+m. (5.1)

Let α1 := λ1 + ...+ λk and α2 := λk+1 + ...+ λk+m. If α1 > 0 and α2 > 0, then define the vectors

q1 :=
λ1

α1
p1 + ...+

λk
α1
pk and q2 :=

λk+1

α2
pk+1 + ...+

λk+m

α2
pk+m.

It may be verified that q1 and q2 are convex combinations of beliefs in Pa∼b. Hence, by repeatedly using
preservation of indifference, it follows that q1, q2 ∈ Pa∼b. By (5.1) we have that p = α1q1 − α2q2, and thus
p ∈ A.

If α1 > 0 and α2 = 0, then we have that p = α1q1 +0 ·q1, which is in A. The case when α1 = 0 and α2 > 0
is similar. Finally, when α1 = 0 and α2 = 0, then p = 0 · p1 + 0 · p2 for two arbitrary beliefs p1, p2 ∈ Pa∼b,
and hence p ∈ A.

In general, we thus see that every p ∈ span(Pa∼b) is also in A, and thus span(Pa∼b) ⊆ A. Together with
the observation above that A ⊆ span(Pa∼b), we conclude that span(Pa∼b) = A. This completes the proof.�

The second preparatory result contains some further properties of the set of beliefs where the DM is
indifferent between a and b, gathered in Lemma 5.2. In this lemma, we denote by Sa∼b the set of states
s where a ∼[s] b. Moreover, we say that there are preference reversals between a and b if there are beliefs
p, q ∈ ∆(S) such that a �p b and b �q a.

Lemma 5.2 (Linear structure of indifference sets) Suppose there are two choices, a and b, and n
states. Consider a conditional preference relation % that satisfies the regularity axioms. Then, the following
properties hold:

(a) Pa∼b = span(Pa∼b) ∩∆(S);

(b) if % has preference reversals between a and b, then span(Pa∼b) is a hyperplane with dimension n − 1,
and there is a full support belief p ∈ Pa∼b with p(s) > 0 for all s ∈ S;

(c) if a weakly dominates b under % then Pa∼b = {p ∈ ∆(S) |
∑

s∈Sa∼b p(s) = 1}.

Proof. (a) Clearly, Pa∼b ⊆ span(Pa∼b) ∩∆(S). It remains to show that span(Pa∼b) ∩∆(S) ⊆ Pa∼b. Take
some p ∈ span(Pa∼b) ∩∆(S). Then, by Lemma 5.1, there are beliefs p1, p2 ∈ Pa∼b and numbers λ1, λ2 such
that p = λ1p1 + λ2p2. Since p ∈ ∆(S), we must have that

∑
s∈S p(s) = 1. Moreover, as p1, p2 are beliefs, it

holds that
∑

s∈S p1(s) =
∑

s∈S p2(s) = 1. But then, it must be that λ1 + λ2 = 1.
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Suppose first that λ1 = 0. Then, λ2 = 1, and hence p = p2, which is in Pa∼b. The case where λ2 = 0 is
similar. Assume next that λ1, λ2 > 0. As λ1 + λ2 = 1, it follows that p is a convex combination of p1 and
p2, which are both in Pa∼b. By preservation of indifference, it follows that p ∈ Pa∼b.

Suppose now that λ1 > 0 and λ2 < 0. Since λ1 + λ2 = 1, it must be that λ1 > 1. Hence, we have that

p1 =
1

λ1
p− λ2

λ1
p2 =

1

λ1
p+ (1− 1

λ1
)p2 (5.2)

since λ2 = 1 − λ1. As λ1 > 1, it follows that p1 is a convex combination of p and p2, where p1 and p2 are
both in Pa∼b.

We will show that p must be in Pa∼b. Suppose, on the contrary, that p /∈ Pa∼b. Assume, without loss of
generality, that p ∈ Pa�b. Then, it follows from (5.2) and preservation of strict preference that p1 ∈ Pa�b,
which is a contradiction. Hence, p ∈ Pa∼b. The case where λ1 < 0 and λ2 > 0 is similar. In general, we
conclude that every p ∈ span(Pa∼b) ∩∆(S) is also in Pa∼b. Hence, span(Pa∼b) ∩∆(S) ⊆ Pa∼b. As we have
already seen that Pa∼b ⊆ span(Pa∼b) ∩∆(S), we have that Pa∼b = span(Pa∼b) ∩∆(S).

(b) Suppose that % has preference reversals on {a, b}. Then, there must be a state x where a �x b, and
another state y where b �y a. Here, we write a �x b as a short-cut for a �[x] b. By continuity, there must
be a belief p2 = (1 − λ2)[x] + λ2[y] on the line segment between [x] and [y] where a ∼p2 b. Now, let the
remaining states be numbered s3, ..., sn such that

a �sk b for all k ∈ {3, ...,m},
b �sk a for all k ∈ {m+ 1, ...,m+ l}, and
a ∼sk b for all k ∈ {m+ l + 1, ..., n}.

We choose (i) for every k ∈ {3, ...,m} a belief pk = (1 − λk)[sk] + λk[y] with a ∼pk b, (ii) for every
k ∈ {m+ 1, ...,m+ l} a belief pk = (1−λk)[sk] +λk[x] with a ∼pk b, and (iii) for every k ∈ {m+ l+ 1, ..., n}
the belief pk = [sk] with a ∼pk b.

We will now show that p2, ..., pn are linearly independent. Take some numbers α2, ..., αn such that∑n
k=2 αk · pk = 0. By construction, this sum is equal to

α2((1− λ2)[x] + λ2[y]) +
m∑
k=3

αk((1− λk)[sk] + λk[y]) +
m+l∑

k=m+1

αk((1− λk)[sk] + λk[x]) +
n∑

k=m+l+1

αk[sk]

=

(
α2(1− λ2) +

m+l∑
k=m+1

αkλk

)
[x] +

(
α2λ2 +

m∑
k=3

αkλk

)
[y] +

m+l∑
k=3

αk(1− λk)[sk] +

n∑
k=m+l+1

αk[sk] = 0.

As the vectors [x], [y], [s3], ..., [sn] are linearly independent, and 0 < λk < 1 for all k ∈ {2, ...,m + l}, it
follows that αk = 0 for all k ∈ {3, ..., n}. This, in turn, implies that also α2 = 0. Hence, the indifference
beliefs p2, ..., pn ∈ Pa∼b are linearly independent.

As a consequence, the dimension of span(Pa∼b) is at least n − 1. The dimension of span(Pa∼b) cannot
be n, since otherwise we would have that span(Pa∼b) = RS , and hence, by (a), Pa∼b = RS ∩∆(S) = ∆(S).
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This would contradict the assumption that there are preference reversals between a and b.We thus conclude
that the dimension of span(Pa∼b) must be n− 1, and therefore span(Pa∼b) is a hyperplane.

To show that Pa∼b contains a belief p with p(s) > 0 for every state s, consider the vector p := 1
n−1p2 +

...+ 1
n−1pn. It may be verified that p is a belief. Moreover, by construction of the beliefs p2, ..., pn, we have

that p(s) > 0 for all states s.

(c) Let A = {p ∈ ∆(S) |
∑

s∈Sa∼b p(s) = 1}. To show that Pa∼b ⊆ A, take some p ∈ Pa∼b. Assume, contrary
to what we want to show, that p /∈ A. Then, p(s) > 0 for some s ∈ Sa�b, where Sa�b is the set of states
t with a �t b. As p =

∑
s∈Sa∼b p(s) · [s] +

∑
s∈Sa�b p(s) · [s] it follows by preservation of indifference and

preservation of strict preference that p ∈ Pa�b. This is a contradiction to the assumption that p ∈ Pa∼b.
We thus conclude that p ∈ A. Hence, Pa∼b ⊆ A. The inclusion A ⊆ Pa∼b follows directly by preservation of
indifference. We thus see that Pa∼b = A. This completes the proof. �

The third preparatory result provides suffi cient conditions for an expected utility representation between
two choices.

Lemma 5.3 (Suffi cient conditions for expected utility representation) Consider a conditional pref-
erence relation % that satisfies the regularity axioms, two choices a and b, and a utility function u. Suppose
that % has preference reversals between a and b, and that there are n states. If there is a belief p∗ with
a �p∗ b and u(a, p∗) > u(b, p∗), and n − 1 linearly independent vectors v1, ..., vn−1 in span(Pa∼b) with
u(a, vk) = u(b, vk) for all k ∈ {1, ..., n− 1}, then u represents % on {a, b}.

Proof. Let Pu(a)=u(b) be the set of beliefs p with u(a, p) = u(b, p), and similarly for Pu(a)>u(b). To show
that u represents % on {a, b}, it is thus suffi cient to show that Pa∼b = Pu(a)=u(b) and Pa�b = Pu(a)>u(b).

We start by showing that Pa∼b = Pu(a)=u(b). Consider the set Vu(a)=u(b) := {v ∈ RS | u(a, v) = u(b, v)}.
It may be verified that Vu(a)=u(b) is a linear space. Moreover, Pu(a)=u(b) = Vu(a)=u(b) ∩∆(S). We now show
that span(Pa∼b) = Vu(a)=u(b). We first prove that span(Pa∼b) ⊆ Vu(a)=u(b). In Lemma 5.2 (b) we have seen
that span(Pa∼b) has dimension n− 1. Since the vectors v1, ..., vn−1 in span(Pa∼b) are linearly independent,
we conclude that {v1, ..., vn−1} is a basis of span(Pa∼b). Take some v ∈ span(Pa∼b). Then, we can write
v = λ1v1 + ... + λn−1vn−1 for some numbers λ1, ..., λn−1. Since vk ∈ Vu(a)=u(b) for all k ∈ {1, ...n − 1} and
Vu(a)=u(b) is a linear subspace, it follows that v ∈ Vu(a)=u(b). Thus, span(Pa∼b) ⊆ Vu(a)=u(b).

We now show that Vu(a)=u(b) = span(Pa∼b). Since Vu(a)=u(b) is a linear subspace of RS , its dimension
can be at most n. Moreover, as span(Pa∼b) ⊆ Vu(a)=u(b) and span(Pa∼b) has dimension n− 1, the dimension
of Vu(a)=u(b) is at least n − 1. Suppose, contrary to what we want to prove, that Vu(a)=u(b) 6= span(Pa∼b).

Then, the dimension of Vu(a)=u(b) must be n, and hence Vu(a)=u(b) = RS . However, this is a contradiction
since u(a, p∗) > u(b, p∗), and hence p∗ /∈ Vu(a)=u(b). We thus conclude that Vu(a)=u(b) = span(Pa∼b). Since
Pu(a)=u(b) = Vu(a)=u(b) ∩ ∆(S) and, by Lemma 5.2 (a), Pa∼b = span(Pa∼b) ∩ ∆(S), we conclude that
Pa∼b = Pu(a)=u(b).

We next prove that Pa�b = Pu(a)>u(b). Let p∗ be the belief where a �p∗ b and u(a, p∗) > u(b, p∗). Consider
the set

A := {p ∈ ∆(S) | there is no λ ∈ [0, 1] with (1− λ)p+ λp∗ ∈ Pa∼b}.
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We show that Pa�b = A. To prove that Pa�b ⊆ A, take some p ∈ Pa�b. Since p∗ ∈ Pa�b it follows by
preservation of strict preference that (1 − λ)p + λp∗ ∈ Pa�b for every λ ∈ [0, 1], and hence p ∈ A. Thus,
Pa�b ⊆ A.

To show that A ⊆ Pa�b, take some p ∈ A. Suppose that p /∈ Pa�b. Since p ∈ A, we must have that
p /∈ Pa∼b, and hence p ∈ Pb�a. By continuity, there must then be some λ ∈ (0, 1) with (1−λ)p+λp∗ ∈ Pa∼b.
This, however, contradicts the assumption that p ∈ A. Hence, p ∈ Pa�b, which yields A ⊆ Pa�b. Altogether,
we conclude that Pa�b = A.

We next show that Pu(a)>u(b) = A. Since Pa∼b = Pu(a)=u(b), it follows that

A = {p ∈ ∆(S) | there is no λ ∈ [0, 1] with (1− λ)p+ λp∗ ∈ Pu(a)=u(b)}.

As p∗ ∈ Pu(a)>u(b) by construction, it can be shown in a similar same way as above that Pu(a)>u(b) = A. As
such, Pa�b = A = Pu(a)>u(b).

Since Pa∼b = Pu(a)=u(b) and Pa�b = Pu(a)>u(b), the utility function u represents % on {a, b}. This
completes the proof. �

The following result contains an axiomatic characterization of expected utility for the case of two choices.

Lemma 5.4 (Characterization of expected utility for two choices) Consider a set A consisting of
two acts, a finite set of states S, and a conditional preference relation % on (A,S). Then, % has an
expected utility representation, if and only if, it satisfies completeness, transitivity, continuity, preservation
of indifference and preservation of strict preference.

Proof of Lemma 5.4. Suppose first that % has an expected utility representation u. Then, it can easily
be verified that % satisfies the regularity axioms. We leave this to the reader.

Assume next that % satisfies the regularity axioms. We will show that % has an expected utility
representation. We distinguish three cases: (a) there are preference reversals between a and b, (b) a weakly
dominates b, and (c) b weakly dominates a. For the remainder of this proof, we assume that the number of
states is n.

(a) Suppose that there are preference reversals between a and b. Since we know from Lemma 5.2 (b) that
span(Pa∼b) has dimension n− 1, there are n− 1 linearly independent beliefs p1, ..., pn−1 ∈ Pa∼b. Moreover,
there must be some state x with a �[x] b. As [x] /∈ Pa∼b, we know from Lemma 5.2 (a) that [x] /∈ span(Pa∼b),
and hence the beliefs p1, ..., pn−1, [x] are linearly independent. Fix some number α < u(a, x), and find the
unique utilities {u(b, s) | s ∈ S} such that u(b, x) = α < u(a, x) and u(b, pk) = u(a, pk) for all k ∈ {1, ...n−1}.
By Lemma 5.3 it then follows that u represents % .
(b) Suppose that a weakly dominates b. Choose a utility function u such that, for every state s, we have
u(a, s) > u(b, s) when [s] ∈ Pa�b, and u(a, s) = u(b, s) when [s] ∈ Pa∼b. It then follows by Lemma 5.2 (c)
that Pa∼b = Pu(a)=u(b). Since every belief p is either in Pa∼b or Pa�b, it follows that Pa�b = Pu(a)>u(b). We
thus conclude that the utility function u represents % .
(c) This proof is similar to that for (b). The proof is hereby complete. �

The following result guarantees the existence of a line of beliefs with certain properties.
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Lemma 5.5 (Line containing three indifference beliefs) Consider a conditional preference relation %
that has preference reversals for all pairs of choices, and satisfies the regularity axioms. Then, for every
three choices a, b, c, there is a line of beliefs that contains full support beliefs pab, pac, pbc where the DM is
indifferent between the respective choices, and that contains a belief where the DM is not indifferent between
any of these three choices.

Proof. Suppose first that there is a full support belief p ∈ Pa∼b ∩Pb∼c. Then, by transitivity, p ∈ Pa∼c. We
can then choose a line of beliefs through p that contains a belief where the DM is not indifferent between
any of the three choices. Such a line will satisfy the statement in the lemma.

Assume next that there is no full support belief in Pa∼b ∩ Pb∼c. By transitivity, there will be no full
support belief in Pa∼b ∩ Pa∼c or Pb∼c ∩ Pa∼c either. Let ∆+(S) be the set of full support beliefs. Then, the
sets Pa∼b, Pa∼c and Pb∼c will be pairwise disjoint on ∆+(S). As, by Lemma 5.2 (a), these indifference sets
are the intersections of hyperplanes with ∆(S), it must be that one of these indifference sets is “in between”
the other two. Suppose, without loss of generality, that Pb∼c is in between Pa∼b and Pa∼c. By Lemma 5.2
(b), there is a full support belief pab ∈ Pa∼b and a full support belief pac ∈ Pa∼c. Let l be the line of beliefs
that goes through pab and pac. As the set Pb∼c is in between Pa∼b and Pa∼c, there must be a belief pbc ∈ Pb∼c
on the line l between pab and pac. Moreover, pbc is a full support belief, since pab and pac are full support
beliefs. Finally, the full support beliefs pab and pac can be chosen such that l contains a belief where the DM
is not indifferent between any of the three choices. The line l thus satisfies the requirements of the lemma.
This completes the proof. �

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Consider a conditional preference relation % that has no weakly dominated
choices and satisfies the regularity axioms. Since we exclude equivalent choices, it must be that % has
preference reversals between every pair of choices.

(a) Assume first that % satisfies three choice linear preference intensity. Consider three choices a, b and c.
We must show that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c). Take some q ∈ span(Pa∼b) ∩ span(Pb∼c). We
distinguish two cases: (1)

∑
s∈S q(s) 6= 0, and (2)

∑
s∈S q(s) = 0.

Case 1. Assume that
∑

s∈S q(s) 6= 0. Then, there is some number λ 6= 0 such that q̂ := λq satisfies∑
s∈S q̂(s) = 1. Moreover, q̂ ∈ span(Pa∼b) ∩ span(Pb∼c) also. By Lemma 5.5 there is a line l that contains

full support beliefs pab ∈ Pa∼b, pbc ∈ Pb∼c and pac ∈ Pa∼c. Then, there is some ε ∈ (0, 1) small enough such
that (i) the vectors p′ab := (1 − ε)pab + εq̂, p′bc := (1 − ε)pbc + εq̂ and p′ := (1 − ε)pac + εq̂ are all in ∆(S),
and (ii) the line l′ through p′ab and p

′
bc contains a belief p

′
ac ∈ Pa∼c. Since p′ab − p′bc = (1 − ε) · (pab − pbc),

we conclude that the lines l and l′ are parallel. Moreover, the lines l and l′ can be chosen such that they
contain beliefs where the DM is not indifferent between any of the three choices. Hence, by preservation of
strict preference, p′ac is the unique belief in Pa∼c on the line l

′. Also, the lines l and l′ can be chosen such
that the probability of no state is constant on l or l′.

Recall that q̂ ∈ span(Pa∼b). Thus, we conclude that p′ab ∈ span(Pa∼b) ∩ ∆(S). By Lemma 5.2 (a) it
follows that p′ab ∈ Pa∼b. As q̂ ∈ span(Pb∼c) it can be shown in a similar way that p′bc ∈ Pb∼c.

24



Recall that p′ := (1− ε)pac + εq̂. We will now show that p′ac = p′. Suppose first that pab = pbc. Then, by
transitivity, pac = pab = pbc. Moreover, by definition of p′ab and p

′
bc it follows that p

′
ab = p′bc, and hence by

transitivity we must have that p′ac = p′ab = p′bc. Thus, p
′ = (1− ε)pac + εq̂ = (1− ε)pab + εq̂ = p′ab = p′ac.

Suppose now that pab 6= pbc. Then, by transitivity, the beliefs pab, pbc and pac are pairwise different. By
definition of p′ab and p

′
bc, we then have that p

′
ab 6= p′bc. Hence, by transitivity, the beliefs p

′
ab, p

′
bc and p

′
ac are

pairwise different. By three choice linear preference intensity, we have for every state s that

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)). (5.3)

Note that, by definition, (p′ab(s) − p′bc(s)) = (1 − ε)(pab(s) − pbc(s)). Since the beliefs pab, pbc and pac are
pairwise different, the beliefs p′ab, p

′
bc and p

′
ac are pairwise different, and no state has constant probability on

the lines l and l′, it follows together with (5.3) that (p′ac(s)− p′bc(s)) = (1− ε)(pac(s)− pbc(s)), and thus

p′ac(s) = (1− ε)(pac(s)− pbc(s)) + p′bc(s) = (1− ε)pac(s) + εq̂(s) = p′(s).

As this holds for every state s, we conclude that p′ac = p′. Thus, the belief p′ = (1 − ε)pac + εq̂ is in Pa∼c.
As such, q̂ = 1

εp
′ + (1− 1

ε )pac ∈ span(Pa∼c), which implies that q ∈ span(Pa∼c) also.

Case 2. Assume next that
∑

s∈S q(s) = 0. Let V0 := {v ∈ RS |
∑

s∈S v(s) = 0}. We distinguish two
subcases: (2.1) span(Pa∼b) ∩ span(Pb∼c) * V0, and (2.2) span(Pa∼b) ∩ span(Pb∼c) ⊆ V0.

Case 2.1. Assume that span(Pa∼b)∩span(Pb∼c) * V0. Then, there is some r ∈ span(Pa∼b)∩span(Pb∼c) with∑
s∈S r(s) 6= 0. Hence, we know by Case 1 that r ∈ span(Pa∼c).Moreover, as q, r ∈ span(Pa∼b)∩span(Pb∼c),

we conclude that q − r ∈ span(Pa∼b) ∩ span(Pb∼c) also, with
∑

s∈S(q − r)(s) 6= 0. Hence, by Case 1, also
q−r ∈ span(Pa∼c). As q = r+(q−r), and both r and q−r are in span(Pa∼c), it follows that q ∈ span(Pa∼c).

Case 2.2. Suppose that span(Pa∼b) ∩ span(Pb∼c) ⊆ V0. It can be shown that span(Pa∼b) ∩ span(Pb∼c) =
span(Pa∼b)∩V0. To see this, note first that span(Pa∼b)∩ span(Pb∼c) ⊆ span(Pa∼b)∩V0, since span(Pa∼b)∩
span(Pb∼c) ⊆ V0. Moreover, we also know that span(Pa∼b) 6= span(Pb∼c), since otherwise span(Pa∼b) ∩
span(Pb∼c) would contain beliefs in Pa∼b which would clearly not be in V0. Since, by Lemma 5.2 (b),
span(Pa∼b) and span(Pb∼c) are linear subspaces of dimension n−1, it follows that span(Pa∼b)∩span(Pb∼c) is
a linear subspace of dimension n−2.Now, consider the linear subspace span(Pa∼b)∩V0. Clearly, span(Pa∼b) 6=
V0, since span(Pa∼b) contains beliefs in Pa∼b which are not in V0. Since span(Pa∼b) and V0 are linear
subspaces of dimension n− 1, it follows that span(Pa∼b) ∩ V0 is a linear subspace of dimension n− 2. Since
span(Pa∼b)∩span(Pb∼c) ⊆ span(Pa∼b)∩V0 and both linear subspaces have the same dimension, n−2, both
spaces must be equal. Hence, span(Pa∼b) ∩ span(Pb∼c) = span(Pa∼b) ∩ V0.

Moreover, it must be that span(Pa∼b) ∩ span(Pa∼c) ⊆ V0 also. To see this, assume on the contrary
that span(Pa∼b) ∩ span(Pa∼c) * V0. Then, it would follow from Case 2.1 that span(Pa∼b) ∩ span(Pa∼c) ⊆
span(Pb∼c), and thus span(Pa∼b) ∩ span(Pa∼c) ⊆ span(Pa∼b) ∩ span(Pb∼c) ⊆ V0. This would be a contra-
diction. Hence, we conclude that span(Pa∼b) ∩ span(Pa∼c) ⊆ V0. It can then be shown, in the same way as
above, that span(Pa∼b) ∩ span(Pa∼c) = span(Pa∼b) ∩ V0.

By combining the latter two equalities, we get

span(Pa∼b) ∩ span(Pb∼c) = span(Pa∼b) ∩ V0 = span(Pa∼b) ∩ span(Pa∼c),
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which implies that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c). As q ∈ span(Pa∼b) ∩ span(Pb∼c), it follows that
q ∈ span(Pa∼c). This completes the proof of (a).

(b) Suppose now that span(Pa∼b)∩span(Pb∼c) ⊆ span(Pa∼c) for all three choices a, b, c.We must show that
% satisfies three choice linear preference intensity. Consider two parallel lines of beliefs l, l′ that (i) contain
beliefs where the DM is not indifferent between any two choices from {a, b, c}, (ii) where l contains indifference
beliefs pab ∈ Pa∼b, pbc ∈ Pb∼c and pac ∈ Pa∼c, and (iii) l′ contains indifference beliefs p′ab ∈ Pa∼b, p′bc ∈ Pb∼c
and p′ac ∈ Pa∼c. Let lab be the line through pab and p′ab, let lbc be the line through pbc and p′bc, and lac the
line through pac and p′ac. Note that all these lines belong to the same two-dimensional plane: the plane that
goes through l and l′.

Assume first that the lines lab, lbc and lac are all parallel. Then, there is a vector q such that p′ab = pab+q,
p′bc = pbc + q and p′ac = pac + q. As a consequence, for every state s,

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = (pab(s)− pbc(s)) · (pac(s)− pbc(s)) = (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)).

Hence, the formula for three choice linear preference intensity is satisfied.
Assume next that the lines lab, lbc and lac are not all parallel. Without loss of generality, we suppose

that lab and lbc are not parallel. Since these two lines lie in the same two-dimensional plane, they must
intersect at a unique vector q. Since q lies on lab, which goes through pab and p′ab in Pa∼b, we conclude
that q ∈ span(Pa∼b). Similarly, as q lies on lbc, it follows that q ∈ span(Pb∼c). Since we assume that
span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c), we conclude that q ∈ span(Pa∼c) too.

Let V be the two-dimensional plane that goes through the lines l and l′. Since, by condition (i) above, l
and l′ contain beliefs where the DM is not indifferent between a and c, it follows that span(Pa∼c)∩V = lac.
As q ∈ span(Pa∼c) ∩ V, we conclude that q lies on the line lac.

As q lies on lab, lbc and lac, the beliefs pab, pbc, pac lie on l, the beliefs p′ab, p
′
bc and p

′
ac lie on l

′, and the
lines l and l′ are parallel, there is a unique number λ such that p′ab = (1− λ)q + λpab, p

′
bc = (1− λ)q + λpbc

and p′ac = (1− λ)q + λpac. Hence, for every state s we have that

(pab(s)−pbc(s)) · (p′ac(s)−p′bc(s)) = λ · (pab(s)−pbc(s)) · (pac(s)−pbc(s)) = (p′ab(s)−p′bc(s)) · (pac(s)−pbc(s)).

Thus, the formula for three choice linear preference intensity is satisfied. We therefore conclude that %
satisfies three choice linear preference intensity. This completes the proof. �

In our last preparatory result, we characterize the span of an indifference set Pa∼b in case of an expected
utility representation.

Lemma 5.6 (Span of indifference set under utility representation) Consider a conditional prefer-
ence relation % with an expected utility representation u. Suppose there are preferene reversals between
choices a and b. Then,

span(Pa∼b) = {q ∈ RS | u(a, q) = u(b, q)}.
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Proof. Let A := {q ∈ RS | u(a, q) = u(b, q)}. We first show that span(Pa∼b) ⊆ A. Take some q ∈
span(Pa∼b). Then, by Lemma 5.1, there are p1, p2 ∈ Pa∼b and numbers λ1, λ2 such that q = λ1p1 + λ2p2.
As u(a, p1) = u(b, p1) and u(a, p2) = u(b, p2), it follows that u(a, q) = u(b, q), and hence q ∈ A. Thus,
span(Pa∼b) ⊆ A. By Lemma 5.2 (b) we know that span(Pa∼b) has dimension n − 1. Since A is a linear
subspace with dimension n− 1 also, and span(Pa∼b) ⊆ A, it must be that span(Pa∼b) = A. This completes
the proof. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. (a) Suppose first that % has an expected utility representation u. From Lemma
5.4, we know that % satisfies the regularity axioms.

To show three choice linear preference intensity it suffi ces, in view of Proposition 2.1, to show that
span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c) for all three choices a, b, c. Take some q ∈ span(Pa∼b) ∩ span(Pb∼c).
Then, by Lemma 5.1, there are p1

ab, p
2
ab ∈ Pa∼b, p

1
bc, p

2
bc ∈ Pb∼c and numbers λ1, λ2, µ1, µ2 such that q =

λ1p
1
ab+λ2p

2
ab = µ1p

1
bc+µ2p

2
bc. As u(a, p1

ab) = u(b, p1
ab) and u(a, p2

ab) = u(b, p2
ab), it follows that u(a, q) = u(b, q).

In a similar fashion, it follows that u(b, q) = u(c, q), and hence u(a, q) = u(c, q). By Lemma 5.6 it thus follows
that q ∈ span(Pa∼c). Hence, span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c), which implies by Proposition 2.1 that
% satisfies three choice linear preference intensity.

We finally show four choice linear preference intensity. Consider a line of beliefs l, and four choices
a, b, c, d such that there is a belief on the line where the DM is not indifferent between any pair of choices
in {a, b, c, d}. Moreover, let pab, pac, pad, pbc, pbd and pcd be corresponding indifference beliefs on this line.
Consider some state s. If the probability of s is constant on the line l, then the formula for four choice linear
preference intensity holds trivially.

We therefore assume from now on that the probability of s is not constant on l, so that every belief on
l is uniquely given by the probability it assigns to s. Suppose that pab = pac. Then, by transitivity, it must
be that pab = pac = pbc, and the formula for four choice linear preference intensity would hold trivially.
Similarly, the formula would trivially hold if pab = pad or pac = pad.

We now assume that pab, pac, pad are pairwise different. Then, by transitivity, pbc is different from pab
and pac, the belief pbd is different from pab and pad, and the belief pcd is different from pac and pad.

Consider two arbitrary, but different, beliefs p1, p2 on l, and define

∆(u(a)− u(b)) := (u(a, p1)− u(b, p1))− (u(a, p2)− u(b, p2)).

As there is a belief on the line where the DM is indifferent between a and b, and another belief on the line
where the DM is not, we must have that ∆(u(a)−u(b)) 6= 0. In a similar way, we define ∆(u(a)−u(c)) and
∆(u(a)− u(d)).

By applying the arguments from Section 4.3 to expected utility differences, instead of preference intensity,
it follows that

∆(u(a)− u(b))

∆(u(a)− u(c))
=
pac(s)− pbc(s)
pab(s)− pbc(s)

. (5.4)
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Recall that also ∆(u(a)−u(c)) 6= 0. Moreover, since pab 6= pbc and the belief on the line is uniquely given by
its probability on s, we have that pab(s) 6= pbc(s). Thus, the two ratios above are well-defined. In a similar
fashion, it follows that

∆(u(a)− u(c))

∆(u(a)− u(d))
=
pad(s)− pcd(s)
pac(s)− pcd(s)

and
∆(u(a)− u(b))

∆(u(a)− u(d))
=
pad(s)− pbd(s)
pab(s)− pbd(s)

. (5.5)

As, by definition,
∆(u(a)− u(b))

∆(u(a)− u(d))
=

∆(u(a)− u(b))

∆(u(a)− u(c))
· ∆(u(a)− u(c))

∆(u(a)− u(d))
,

it follows by (5.4) and (5.5) that the formula for four choice linear preference intensity obtains. Thus, %
satisfies four choice linear preference intensity.

(b) Suppose that % satisfies the regularity axioms, three choice linear preference intensity and four choice
linear preference intensity. If there are only two choices, then we know from Lemma 5.4 that there is an
expected utility representation. We therefore assume, from now on, that there are at least three choices.

To show that % has an expected utility representation, we distinguish two cases: (1) Pa∼b = Pc∼d for
every two pairs of choices {a, b} and {c, d}, and (2) Pa∼b 6= Pc∼d for some pairs of choices {a, b} and {c, d}.

Case 1. Suppose that Pa∼b = Pc∼d for every two pairs of choices {a, b} and {c, d}. Let A := Pa∼b for some
pair of choices {a, b}. Note that A 6= ∆(S), as we assume that no two choices are equivalent under % . Since
we also assume that no choice weakly dominates another choice, there will be preference reversals between
all pairs of choices. Let x be a state where [x] /∈ A. Hence, [x] /∈ Pa∼b for every two choices a and b. By
transitivity, we can order the choices c1, c2, ..., cK such that

c1 �[x] c2 �[x] c3 �[x] ... �[x] cK .

Choose numbers v1, ..., vK with v1 > v2 > ... > vK .
For choice c1, set u(c1, x) = v1, and set the utilities u(c1, s) for states s 6= x arbitrarily.
By Lemma 5.2 (b) we know that span(A) has dimension n − 1, where n is the number of states. Let

{p1, ..., pn−1} be a basis for span(A). As [x] /∈ span(A), we know that {p1, ..., pn−1, [x]} is a basis for RS .
For every choice ck with k ≥ 2 find the unique utilities u(ck, s) such that

u(ck, p1) = u(c1, p1), ..., u(ck, pn−1) = u(c1, pn−1) and u(ck, x) = vk. (5.6)

We will show that the utility function u represents % .
Take two choices a, b with a �[x] b. Then, by construction of the utility function, we have that u(a, pk) =

u(b, pk) for all k ∈ {1, ..., n− 1}, and u(a, x) > u(b, x). As {p1, ..., pn−1} is a basis for span(Pa∼b), we know
that p1, ..., pn−1 are linearly independent. It thus follows by Lemma 5.3 that u represents % on the pair of
choices {a, b}. As this holds for every pair of choices {a, b}, we conclude that u represents % .
Case 2. Suppose that Pa∼b 6= Pc∼d for some pairs of choices {a, b} and {c, d}. Then, there must be some
choices a, b, c such that Pa∼c 6= Pb∼c. To see this, suppose on the contrary that Pa∼c = Pb∼c for all three
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choices a, b, c. Then, take two arbitrary pairs of choices {a, b} and {c, d} where {a, b} ∩ {c, d} = ∅. By
assumption we would then have that Pa∼b = Pb∼c = Pc∼d, and hence Pa∼b = Pc∼d for all pairs {a, b} and
{c, d}. This would be a contradiction. Hence, Pa∼c 6= Pb∼c for some choices a, b, c.

Now take some choice d different from a, b and c, if it exists. Then, either Pa∼d 6= Pb∼d or Pa∼d 6= Pc∼d.
To see this, suppose on the contrary that Pa∼d = Pb∼d = Pc∼d. Define A := Pa∼d = Pb∼d = Pc∼d.
Since, by transitivity, Pa∼d ∩ Pb∼d ⊆ Pa∼b and Pb∼d ∩ Pc∼d ⊆ Pb∼c, it follows that A ⊆ Pa∼b ∩ Pb∼c.
Thus, span(A) ⊆ span(Pa∼b) ∩ span(Pb∼c). However, since Pa∼c 6= Pb∼c we have, by transitivity, that
Pa∼b 6= Pb∼c. As, by Lemma 5.2 (b), both span(Pa∼b) and span(Pb∼c) have dimension n−1, it must be that
span(Pa∼b)∩ span(Pb∼c) has dimension n− 2. However, A has dimension n− 1, and hence it cannot be that
span(A) ⊆ span(Pa∼b)∩ span(Pb∼c).We thus obtain a contradiction, and conclude that either Pa∼d 6= Pb∼d
or Pa∼d 6= Pc∼d.

Based on the two insights above, we can order the choices c1, c2, ..., cK such that Pc3∼c1 6= Pc3∼c2 , and
for every k ≥ 4 either Pck∼c1 6= Pck∼c2 or Pck∼c1 6= Pck∼c3 . Let the utilities for c1 and c2 be given as in the
proof of Lemma 5.4. For the other choices, we define their utilities according to the following procedure:

Utilities for c3: By Lemma 5.2 (b), there are n − 1 linearly independent beliefs p1, ..., pn−1 ∈ Pc3∼c1 .
Choose a belief pn ∈ Pc3∼c2\Pc3∼c1 . Note that this is possible since Pc3∼c1 6= Pc3∼c2 , and because of Lemma
5.2 (a) and (b). By Lemma 5.2 (a), pn /∈ span(Pc3∼c1), and hence p1, ..., pn−1, pn are linearly independent.
Find the unique utilities {u(c3, s) | s ∈ S} such that

u(c3, pm) = u(c1, pm) for all m ∈ {1, ..., n− 1}, and u(c3, pn) = u(c2, pn). (5.7)

Utilities for c4, ..., cK . For every k ≥ 4, inductively define the utilities for ck as follows. From above, we
know that either Pck∼c1 6= Pck∼c2 or Pck∼c1 6= Pck∼c3 . Suppose that Pck∼c1 6= Pck∼c2 . Like above, we can
choose linearly independent beliefs p1, ..., pn−1, pn where p1, ..., pn−1 ∈ Pck∼c1 and pn ∈ Pck∼c2\Pck∼c1 . Find
the unique utilities {u(ck, s) | s ∈ S} such that

u(ck, pm) = u(c1, pm) for all m ∈ {1, ..., n− 1}, and u(ck, pn) = u(c2, pn). (5.8)

If Pck∼c1 6= Pck∼c3 , the utilities can be defined analogously,
We will now show that these utilities represents the conditional preference relation % .
We prove, by induction on k, that u represents % on {c1, ..., ck}. For k = 2 we know this is true, in the

light of the proof of Lemma 5.4.
Suppose now that k ≥ 3, and that u represents % on {c1, ..., ck−1}. We must show that u represents %

on all pairs {ck, cm} where m ∈ {1, ..., k − 1}.
We start by showing that u represents % on {ck, c1}. Assume, without loss of generality, that Pck∼c1 6=

Pck∼c2 . Then, by (5.7) and (5.8) we know that u(ck, pn) = u(c2, pn). As pn ∈ Pck∼c2\Pck∼c1 , we may
assume, without loss of generality, that pn ∈ Pck�c1 . As pn ∈ Pck∼c2 , it follows that pn ∈ Pc2�c1 , and hence
u(c2, pn) > u(c1, pn). As, by (5.7) and (5.8), u(ck, pn) = u(c2, pn), we conclude that u(ck, pn) > u(c1, pn).
Thus, pn ∈ Pck�c1 is such that u(ck, pn) > u(c1, pn). Together with (5.7) and (5.8), we conclude from Lemma
5.3 that u represents % on {ck, c1}.
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We next show that u represents % on {ck, c2}. As Pck∼c1 6= Pck∼c2 , it follows by transitivity that Pck∼c1 6=
Pc1∼c2 . Hence, it follows by Lemma 5.2 (a) and (b) that span(Pck∼c1) ∩ span(Pc1∼c2) has dimension n− 2.
Take a basis {q1, ..., qn−2} for span(Pck∼c1)∩ span(Pc1∼c2). By Proposition 2.1 we know that span(Pck∼c1)∩
span(Pc1∼c2) ⊆ span(Pck∼c2), and hence the vectors q1, ..., qn−2 are all in span(Pck∼c2). As each of these
vectors qm is in span(Pck∼c1), it follows by Lemma 5.1 that qm can be written as qm = λ1r1 + λ2r2, where
λ1, λ2 ∈ R and r1, r2 ∈ Pck∼c1 . Since u represents % on {ck, c1}, we know that u(ck, r1) = u(c1, r1) and
u(ck, r2) = u(c1, r2), which implies that u(ck, qm) = u(c1, qm). As qm is also in span(Pc1∼c2), and u represents
& on {c1, c2}, it follows in a similar way that u(c1, qm) = u(c2, qm). Hence, we conclude that

u(ck, qm) = u(c2, qm) for all m ∈ {1, ..., n− 2} and u(ck, pn) = u(c2, pn), (5.9)

where the last equality follows from (5.7) and (5.8). Moreover, as pn /∈ Pck∼c1 , we know that pn /∈
span(Pck∼c1) ∩ span(Pc1∼c2), and hence the n− 1 vectors above are linearly independent.

Since Pck∼c1 6= Pck∼c2 , there is a belief p ∈ Pck∼c1\Pck∼c2 . Assume, without loss of generality, that
p ∈ Pck�c2 . As p ∈ Pck∼c1 , it follows by transitivity that p ∈ Pc1�c2 . As u represents % on {ck, c1} and
{c1, c2}, it follows that u(ck, p) = u(c1, p) and u(c1, p) > u(c2, p), which implies that u(ck, p) > u(c2, p).
Hence, there is some belief p with Pck�c2 and u(ck, p) > u(c2, p). Together with (5.9) and Lemma 5.3, we
conclude that u represents % on {ck, c2}.

We finally show that u represents % on {ck, cm} for every m ∈ {3, ..., k−1}. Take some m ∈ {3, ..., k−1}.
Then, necessarily, k ≥ 4. To abbreviate the notation, we define spanml := span(Pcm∼cl) for every m, l ∈
{1, ..., k}.We distinguish two cases: (1) spank1∩ span1m 6= spank2∩ span2m or spank1∩ span1m 6= spank3∩
span3m, and (2) spank1 ∩ span1m = spank2 ∩ span2m and spank1 ∩ span1m = spank3 ∩ span3m.

Case 1. Assume, without loss of generality, that spank1∩ span1m 6= spank2∩ span2m. Since, by Lemma 5.2
(b), the four linear spans have dimension n − 1, it follows that the two intersections have dimension n − 2
or n− 1. Moreover, as the two intersections are different, we conclude that

A := span[(spank1 ∩ span1m)) ∪ (spank2 ∩ span2m)]

has dimension n−1 or n.Moreover, we know from Proposition 2.1 that spank1∩span1m and spank2∩span2m

are both subsets of spankm, and hence A ⊆ spankm also. As ck and cm are not equivalent, A cannot have
dimension n, and thus the dimension of A must be n− 1.

Take a basis {q1, ..., qn−1} for A, where every ql is either in spank1 ∩ span1m or in spank2 ∩ span2m.
Suppose that ql is in spank1 ∩ span1m. As u represents % on {ck, c1} and {c1, cm}, it can be shown in the
same way as above that u(ck, ql) = u(c1, ql) and u(c1, ql) = u(cm, ql), which implies that u(ck, ql) = u(cm, cl).
If ql is in spank2 ∩ span2m, it can be shown in a similar way that u(ck, ql) = u(cm, ql) also. We thus see that

ql ∈ spankm and u(ck, ql) = u(cm, ql) for every l ∈ {1, ..., n− 1}. (5.10)

Since Pck∼c1 6= Pck∼c2 , either Pck∼c1\Pck∼cm or Pck∼c2\Pck∼cm must be non-empty. Assume, without loss
of generality, that Pck∼c1\Pck∼cm is non-empty. Take some p ∈ Pck∼c1\Pck∼cm . Assume, without loss of
generality, that p ∈ Pck�cm . As p ∈ Pck∼c1 , it follows by transitivity that p ∈ Pc1�cm . Since u represents % on
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{ck, c1} and {c1, cm}, we know that u(ck, p) = u(c1, p) and u(c1, p) > u(cm, p), and thus u(ck, p) > u(cm, p).
We have thus found a belief p ∈ Pck�cm with u(ck, p) > u(cm, p). Together with (5.10) and Lemma 5.3 we
conclude that u represents % on {ck, cm}.
Case 2. Suppose that spank1 ∩ span1m = spank2 ∩ span2m and spank1 ∩ span1m = spank3 ∩ span3m.

Claim. There are i, j ∈ {1, 2, 3} such that for every triple a, b, c ∈ {ci, cj , cm, ck} the sets Pa∼b, Pa∼c and
Pb∼c are pairwise different.
Proof of claim. We first show that Pck∼c1 6= Pc1∼cm . Suppose not. Then, Pck∼c1 = Pc1∼cm and hence, by
transitivity, Pck∼c1 = Pck∼cm . Thus, spank1∩span1m = spank1 = spankm. Since spank1∩span1m = spank2∩
span2m, it follows that spank2∩span2m = spankm, which can only be if Pck∼c2 = Pc2∼cm = Pck∼cm . As such,
Pck∼c1 = Pck∼cm = Pck∼c2 , which contradicts the assumption that Pck∼c1 6= Pck∼c2 . Hence, Pck∼c1 6= Pc1∼cm .
By transitivity, Pck∼c1 , Pc1∼cm and Pck∼cm are pairwise different.

As a consequence, spank1 ∩ span1m has dimension n − 2. Since spank1 ∩ span1m = spank2 ∩ span2m it
follows that spank2 ∩ span2m has dimension n − 2 also, which can only be if Pck∼c2 6= Pc2∼cm . Thus, by
transitivity, Pck∼c2 , Pc2∼cm and Pck∼cm are pairwise different. As spank1 ∩ span1m = spank3 ∩ span3m, it
follows in a similar way that Pck∼c3 , Pc3∼cm and Pck∼cm are pairwise different also.

Consider the sets A = {c1, c2, cm, ck}, B = {c1, c3, cm, ck} and C = {c2, c3, cm, ck}. Suppose, contrary
to what we want to show, that in each of these sets there is a triple a, b, c such that Pa∼b = Pa∼c = Pb∼c.
Since, by assumption, Pck∼c1 6= Pck∼c2 , and we have seen above that Pck∼c1 , Pc1∼cm and Pck∼cm are pairwise
different and Pck∼c2 , Pc2∼cm and Pck∼cm are pairwise different, we must have in set A that Pc1∼c2 = Pc2∼cm =
Pc1∼cm .

By a similar argument, we must have in set B that either Pc1∼c3 = Pc3∼cm = Pc1∼cm or Pc1∼c3 = Pc3∼ck =
Pc1∼ck . However, if Pc1∼c3 = Pc3∼cm = Pc1∼cm then, by the insight above that Pc1∼c2 = Pc1∼cm , it would
follow that Pc1∼c2 = Pc1∼c3 , which is a contradiction to the fact that Pc1∼c2 6= Pc1∼c3 . We must thus have
that Pc1∼c3 = Pc3∼ck = Pc1∼ck .

By a similar argument, we must have in set C that either Pc2∼c3 = Pc3∼cm = Pc2∼cm or Pc2∼c3 =
Pc3∼ck = Pc2∼ck . If Pc2∼c3 = Pc3∼cm = Pc2∼cm then, together with the insight above that Pc1∼c2 = Pc2∼cm ,
it would follow that Pc1∼c2 = Pc2∼c3 . This would contradict the assumption that Pc1∼c2 6= Pc2∼c3 . If
Pc2∼c3 = Pc3∼ck = Pc2∼ck then, together with the fact above that Pc1∼c3 = Pc3∼ck , it would follow that
Pc1∼c3 = Pc2∼c3 . This would contradict the assumption that Pc1∼c3 6= Pc2∼c3 . We thus arrive at a general
contradiction, and hence there are i, j ∈ {1, 2, 3} such that for every triple a, b, c ∈ {ci, cj , cm, ck} the sets
Pa∼b, Pa∼c and Pb∼c are pairwise different. This completes the proof of the claim.

According to the claim, we can choose i, j ∈ {1, 2, 3} such that for every triple a, b, c ∈ {ci, cj , cm, ck}
the sets Pa∼b, Pa∼c and Pb∼c are pairwise different. Define the set of choices D := {ci, cj , cm, ck}, and let

A := spanki ∩ spanim.

We show that A has dimension n − 2, that A ⊆ span(Pa∼b) for all a, b ∈ D, and that A = span(Pa∼b) ∩
span(Pc∼d) whenever Pa∼b 6= Pc∼d.

Since by the choice of i, j we have that Pck∼ci 6= Pci∼cm , it follows that A has dimension n− 2. Note by
Proposition 2.1 that A ⊆ spankm.Moreover, as we assume in Case 2 that spanki∩spanim = spankj∩spanjm,
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it follows that A = spanki ∩ spanim ∩ spankj , and thus we have by Proposition 2.1 that A ⊆ spanij also.
Hence, A ⊆ span(Pa∼b) for all a, b ∈ D.

Now, let Pa∼b 6= Pc∼d for some a, b, c, d ∈ D. Then span(Pa∼b) ∩ span(Pc∼d) has dimension n − 2. As
A ⊆ span(Pa∼b)∩span(Pc∼d) andA has dimension n−2 as well, it must be thatA = span(Pa∼b)∩span(Pc∼d).

Let ∆+(S) := {p ∈ ∆(S) | p(s) > 0 for all s ∈ S} be the set of full support beliefs. We distinguish two
cases: (2.1) A ∩∆+(S) is empty, and (2.2) A ∩∆+(S) is non-empty.

Case 2.1. Suppose that A∩∆+(S) is empty. Recall from Lemma 5.2 (b) that each of the indifference sets
Pa∼b, where a, b ∈ D, has a full support belief in ∆+(S), and thus Pa∼b ∩∆+(S) is non-empty. Moreover,
recall from above that Pa∼b ∩ Pc∼d = A whenever Pa∼b 6= Pc∼d. As A ∩ ∆+(S) is empty, it follows that
Pa∼b ∩ Pc∼d ∩∆+(S) is empty whenever Pa∼b 6= Pc∼d and a, b, c, d ∈ D.

Let {P1, ..., PR} be the collection of pairwise different indifference sets that remains if from {Pa∼b |
a, b ∈ D} we remove all duplicate sets. Since i, j have been chosen such that for every triple a, b, c in D the
sets Pa∼b, Pa∼c and Pb∼c are pairwise different, we know that R ≥ 3.

As Pa∼b ∩ Pc∼d ∩∆+(S) is empty whenever Pa∼b 6= Pc∼d, it follows that the sets P1 ∩∆+(S), ..., PR ∩
∆+(S) are pairwise disjoint. Moreover, we have seen that each of the latter sets are non-empty. Since
span(P1), ..., span(PR) are hyperplanes of dimension n− 1, we can order the sets P1, ..., PR such that P2 ∩
∆+(S), ..., PR−1 ∩ ∆+(S) are in between P1 ∩ ∆+(S) and PR ∩ ∆+(S). Take some p1 ∈ P1 ∩ ∆+(S) and
pR ∈ PR ∩∆+(S), and let l be the line through p1 and pR. Then, the corresponding line segment from p1

to pR is included in ∆+(S). As P2 ∩∆+(S), ..., PR−1 ∩∆+(S) are in between P1 ∩∆+(S) and PR ∩∆+(S),
the line l contains for every r ∈ {2, ..., R− 1} a unique belief pr in Pr. In particular, for every pair of choices
a, b in D, there is a unique belief pab ∈ Pa∼b on the line l, and the line l contains a belief where the DM is
not indifferent between any of the choices in D.

Recall that for every triple a, b, c in D the sets Pa∼b, Pa∼c and Pb∼c are pairwise different. As Pa∼b ∩
Pc∼d ∩∆+(S) is empty whenever Pa∼b 6= Pc∼d, we must have for every triple a, b, c in D that pab, pac and
pbc are pairwise different.

Let s be a state such that the probability of s is not constant on the line l. By four choice linear preference
intensity, we have that

pac(s)− pcd(s)
pad(s)− pcd(s)

=
(pab(s)− pbd(s))(pac(s)− pbc(s))
(pab(s)− pbc(s))(pad(s)− pbd(s))

, (5.11)

where a := ci, b := cj , c := cm and d := ck. Note that both fractions are well-defined since pad 6= pcd, pab 6= pbc
and pad 6= pbd. Moreover, as pac, pad, pcd are pairwise different, we have that pac(s)−pcd(s) 6= pad(s)−pcd(s),
and hence the fraction on the lefthand side is not equal to 1. As such, the fraction on the righthand side is
not equal to 1 either. Let this fraction on the righthand side be called F. Then, by (5.11), pcd is the unique
belief on l where

pcd(s) =
F · pad(s)− pac(s)

F − 1
. (5.12)

Remember that A ⊆ span(Pc∼d), that A has dimension n− 2, and that span(Pc∼d) has dimension n− 1.
Let {q2, ..., qn−1} be a basis for A. As pcd ∈ Pc∼d is not in A, we conclude that {pcd, q2, ..., qn−1} is a basis
for span(Pc∼d).

32



Now, let %u be the conditional preference relation generated by the utility function u. We have already
seen that u represents % on all pairs of choices in {a, b, c, d}, except {c, d}. In particular, we thus know that

u(a, pab) = u(b, pab), u(a, pac) = u(c, pac), u(a, pad) = u(d, pad), u(b, pbc) = u(c, pbc) and u(b, pbd) = u(d, pbd).

As we have seen in part (a) of the proof that %u satisfies four choice linear preference intensity, the unique
belief on the line l where the DM is indifferent between c and d under %u is given by (5.12). Therefore,

u(c, pcd) = u(d, pcd). (5.13)

Recall that A = span(Pd∼a) ∩ span(Pa∼c). As u represents % on {d, a} and {a, c}, it follows that
u(d, v) = u(a, v) and u(a, v) = u(c, v) for every v ∈ span(Pd∼a) ∩ span(Pa∼c). Therefore, u(c, v) = u(d, v)
for every v ∈ A. In particular,

u(c, qk) = u(d, qk) for every k ∈ {2, ..., n− 1}, (5.14)

where {q2, ..., qn−1} is a basis for A. Moreover, we have seen that {pcd, q2, ..., qn−1} is a basis for span(Pc∼d).
Recall that A = span(Pck∼c1) ∩ span(Pc1∼cm) has dimension n − 2, and thus Pck∼c1 6= Pc1∼cm . Thus,

Pd∼a 6= Pa∼c. We can thus choose some p ∈ Pd∼a\Pa∼c. Assume, without loss of generality, that p ∈ Pa�c.
By transitivity, we then have that p ∈ Pd�c. Since u represents % on {d, a} and {a, c}, we know that
u(d, p) = u(a, p) and u(a, p) > u(c, p), and hence

u(d, p) > u(c, p) for some p ∈ Pd�c. (5.15)

In view of (5.13), (5.14) and (5.15), it follows by Lemma 5.3 that u represents % on {c, d} = {ck, cm}.
Case 2.2. Suppose that A ∩ ∆+(S) is non-empty. Then, there is some full support belief p∗ in A, with
p∗(s) > 0 for all states s. As we have seen that A ⊆ span(Pa∼b) for all a, b ∈ D, it follows that p∗ ∈ Pa∼b
for all pairs a, b ∈ D.

Since we have seen that A has dimension n− 2, the linear subspace A is contained in some hyperplane
containing the zero vector. Hence, there is some vector nA ∈ RS such that

nA · v = 0 for all v ∈ A. (5.16)

Moreover, we can choose the vector nA such that for every pair a, b ∈ D there is some p ∈ Pa∼b with
nA · p 6= 0.

In that case, there is for every pair a, b ∈ D some p ∈ Pa∼b with nA · p > 0. To see this, suppose
that a, b are such that nA · p ≤ 0 for every p ∈ Pa∼b. As there is some p ∈ Pa∼b with nA · p 6= 0, there
must be some p ∈ Pa∼b with nA · p < 0. Since p∗ ∈ ∆+(S), there is some λ > 1 close enough to 1 such
that q := (1 − λ)p + λp∗ ∈ ∆(S). Note that p∗ ∈ A ⊆ span(Pa∼b) and p ∈ Pa∼b, which implies that
q ∈ span(Pa∼b) ∩ ∆(S) = Pa∼b. At the same time we know, by (5.16) and the fact that p∗ ∈ A, that
nA · p∗ = 0. Since nA · p < 0 and λ > 1, it follows that nA · q = (1− λ) · (nA · p) + λ · (nA · p∗) > 0. Thus,

for every a, b ∈ D there is some p ∈ Pa∼b with nA · p > 0. (5.17)
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Let P+ := {p ∈ ∆(S) | nA · p > 0}. Then, in view of (5.17),

Pa∼b ∩ P+ is non-empty for all a, b ∈ D. (5.18)

Recall that Pa∼b ∩ Pc∼d = A for every a, b, c, d ∈ D with Pa∼b 6= Pc∼d. In view of (5.16) and (5.18) we
conclude that Pa∼b ∩ Pc∼d ∩ P+ is empty whenever Pa∼b 6= Pc∼d. Hence, (Pa∼b ∩ P+) and (Pc∼d ∩ P+) are
disjoint whenever Pa∼b 6= Pc∼d. But then, the different sets in {Pa∼b | a, b ∈ D} can be numbered P1, ..., PR,
with R ≥ 3, such that P2 ∩ P+, ..., PR−1 ∩ P+ are in between P1 ∩ P+ and PR ∩ P+. In a similar way as in
Case 2.1, it can then be shown that u represents % on {ck, cm}.

We thus conclude that u represents % on {c1, ..., ck}. By induction on k, the proof is complete. �

We next prove Proposition 2.2.

Proof of Proposition 2.2. Let u, v be two different utility representations for % . To prove the statement,
we distinguish three cases: (1) there are two choices, (2) there are three choices, and (3) there are at least
four choices.

Case 1. Suppose there are two choices, a and b. Since there are preference reversals on {a, b}, there is some
p∗ ∈ Pa�b. Define

α :=
v(a, p∗)− v(b, p∗)

u(a, p∗)− u(b, p∗)
. (5.19)

We show that
v(a, p)− v(b, p) = α · (u(a, p)− u(b, p)) for all beliefs p ∈ ∆(S). (5.20)

As there are preference reversals on {a, b}, it follows by Lemma 5.2 (b) that there are n − 1 linearly
independent beliefs p1, ..., pn−1 in Pa∼b. Moreover, by Lemma 5.2 (a) we know that p∗ /∈ span(Pa∼b). Hence,
{p1, ..., pn−1, p

∗} are linearly independent, and thus form a basis for RS . As, by construction, v(a, pk) −
v(b, pk) = α · (u(a, pk) − u(b, pk)) = 0 for all k ∈ {1, ..., n − 1} and, by (5.19), v(a, p∗) − v(b, p∗) = α ·
(u(a, p∗) − u(b, p∗)), it follows that (5.20) holds for every p in the basis {p1, ..., pn−1, p

∗}. Now, take some
arbitrary belief p ∈ ∆(S). Then, p = λ1p1 + ...+ λn−1pn−1 + λnp

∗ for some numbers λ1, ..., λn. Thus,

v(a, p)− v(b, p) =

n−1∑
k=1

λk · (v(a, pk)− v(b, pk)) + λn · (v(a, p∗)− v(b, p∗))

= α ·
(
n−1∑
k=1

λk · (u(a, pk)− u(b, pk)) + λn · (u(a, p∗)− u(b, p∗))

)
= α · (u(a, p)− u(b, p)),

which establishes (5.20).

Case 2. Suppose there are three choices, a, b and c. Since, by assumption, there is a belief where the DM
is indifferent between some, but not all, choices, it must be that Pc∼a 6= Pc∼b. Let the number α be given
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by (5.19). We show, for every two choices d, e ∈ {a, b, c}, that

v(d, p)− v(e, p) = α · (u(d, p)− u(e, p)) for all beliefs p ∈ ∆(S). (5.21)

By the proof of Case 1, we know that (5.21) holds for the choices a and b. We now show that (5.21)
holds for the choices c and a. Let p1, ..., pn−1 ∈ ∆(S) be a basis for span(Pc∼a). Then,

v(c, pk)− v(a, pk) = α · (u(c, pk)− u(a, pk)) = 0 for all k ∈ {1, ..., n− 1}. (5.22)

Since Pc∼a 6= Pc∼b, there is a belief pn ∈ Pc∼b\Pc∼a. By Lemma 5.2 (a) we must then have that
pn /∈ span(Pc∼a), and hence {p1, ..., pn−1, pn} is a basis for RS . As pn ∈ Pc∼b, it must be that

v(c, pn)− v(b, pn) = α · (u(c, pn)− u(b, pn)) = 0. (5.23)

Moreover, we know from Case 1 that

v(b, pn)− v(a, pn) = α · (u(b, pn)− u(a, pn)). (5.24)

If we combine (5.23) and (5.24), we get

v(c, pn)− v(a, pn) = (v(c, pn)− v(b, pn)) + (v(b, pn)− v(a, pn))

= α · (u(c, pn)− u(b, pn)) + α · (u(b, pn)− u(a, pn))

= α · (u(c, pn)− u(a, pn)). (5.25)

From (5.22) and (5.25) we conclude, in a similar way as in the proof of Case 1, that

v(c, p)− v(a, p) = α · (u(c, p)− u(a, p)) for all beliefs p.

In a similar fashion we can show (5.21) for the choices c and b.

Case 3. Suppose there are at least four choices. By assumption, there is a belief where the DM is indifferent
between some, but not all, choices. That is, there are choices a, b, c, d such that Pa∼b 6= Pc∼d. Following the
proof of Theorem 2.1, it can then be shown that there are three choices a, b and c with Pc∼a 6= Pc∼b. Let
the number α be given by (5.19). Then, we know by Case 2 that (5.21) holds for every d, e ∈ {a, b, c}.

We now show (5.21) for choices d and a, where d is some arbitrary choice not in {a, b, c}. From the proof
of Theorem 2.1 we know that either Pd∼a 6= Pd∼b or Pd∼a 6= Pd∼c. Assume, without loss of generality, that
Pd∼a 6= Pd∼b. Then it can be shown in a similar way as for Case 2 that (5.21) holds for the choices d and a.

Now, take some choice d /∈ {a, b, c}, and some arbitrary choice e /∈ {a, d}. Since we know that (5.21)
holds for the choices d and a, and for the choices e and a, it follows that

v(d, p)− v(a, p) = α · (u(d, p)− u(a, p)) for all beliefs p

and
v(a, p)− v(e, p) = α · (u(a, p)− u(e, p)) for all beliefs p.
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This implies that

v(d, p)− v(e, p) = (v(d, p)− v(a, p)) + (v(a, p)− v(e, p))

= α · (u(d, p)− u(a, p)) + α · (u(a, p)− u(e, p))

= α · (u(d, p)− u(e, p)) for all beliefs p.

Hence, (5.21) holds for every two choices d, e. This completes the proof. �

5.3 Proof of Section 3

Before we can prove Theorem 3.1 we need a preparatory result. It describes, for a given signed conditional
preference relation meeting the axioms, the structure of the set of signed beliefs for which the DM is
“indifferent”between two choices. To formally state the preparatory result, we must introduce some new
notions and notation. For a signed conditional preference relation %∗ and two choices a and b, we denote
by Qa∼∗b the set of signed beliefs q for which a ∼∗q b. By ∆∗(S) := {q ∈ RS |

∑
s∈S q(s) = 1} we denote the

set of all signed beliefs. Two subsets Q,Q′ ⊆ ∆∗(S) are called parallel if there is some vector v ∈ RS such
that Q′ = {q + v | q ∈ Q}.

Lemma 5.7 (Signed indifference sets) Let %∗ be a signed conditional preference relation without equiv-
alent choices which satisfies continuity, preservation of indifference and preservation of strict preference.

(a) Consider two choices a, b such that there is no constant preference intensity between a and b. Then,
span(Qa∼∗b) has dimension |S| − 1, and Qa∼∗b = ∆∗(S) ∩ span(Qa∼∗b);

(b) Consider three choices a, b, c such that there is constant preference intensity between a and b, but not
between a and c, and not between b and c. Then, the sets Qa∼∗c and Qb∼∗c are parallel.

Proof. (a) As there is no constant preference intensity between a and b, there must be signed beliefs q1

and q2 such that a �∗q1 b and b �
∗
q2 a. But then, it can be shown in a similar way as in the proof of Lemma

5.2 (a) that Qa∼∗b = ∆∗(S) ∩ span(Qa∼∗b) and that span(Qa∼∗b) has dimension |S| − 1. We therefore omit
this proof here.

(b) Suppose that there is constant preference intensity between a and b, but not between a and c, and not
between b and c. Then, we know from (a) that Qa∼∗c = span(Qa∼∗c) ∩∆∗(S) and Qb∼∗c = span(Qb∼∗c) ∩
∆∗(S) where span(Qa∼∗c) and span(Qb∼∗c) both have dimension |S| − 1. Suppose, contrary to what we
want to show, that Qa∼∗c and Qb∼∗c are not parallel. Then, it must be that Qa∼∗c and Qb∼∗c intersect, and
hence there is some signed belief q which is both in Qa∼∗c and Qb∼∗c. By transitivity, it would then follow
that q ∈ Qa∼∗b. This, however, is a contradiction, since there is constant preference intensity between a and
b, and we exclude equivalent choices. We thus conclude that Qa∼∗c and Qb∼∗c are parallel. This completes
the proof. �

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. (a) Suppose first that % has an expected utility representation u. Let %∗ be
the signed conditional preference relation where for every signed belief q, and every two choices a and b, we
have that a %∗q b if and only if u(a, q) ≥ u(b, q). Then, %∗ extends % . Similarly to the proofs of Lemma
5.4 and Theorem 2.1, it can then be shown that %∗ satisfies the signed beliefs versions of the regularity
axioms, three choice preference intensity and four choice preference intensity. Moreover, transitive constant
preference intensity and four choice linear preference intensity with constant preference intensity follow
rather easily. This proof is therefore left to the reader. Thus, % can be extended to a signed conditional
preference relation that satisfies all of the axioms above.

(b) Suppose now that % can be extended to a signed conditional preference relation %∗ that satisfies all of
the axioms above. We will show that there is a utility function u that represents %∗, and thereby represents
% as well. We distinguish two cases: (1) for every two choices a, b there is no constant preference intensity
between a and b, and (2) there are at least two choices a and b with a constant preference intensity between
them.

Case 1. Suppose that, for every two choices a and b, there is no constant preference intensity between a
and b. Then, for every two choices a and b there must be signed beliefs q1 and q2 such that a �∗q1 b and
b �∗q2 a.

Choose some full support belief p∗ with p∗(s) > 0 for all states s. For every number λ, consider the
conditional preference relation %λ where for every two choices a and b, and every belief p,

a %λp b if and only if a %∗(1−λ)p∗+λp b.

By choosing λ large enough, we can guarantee that %λ has preference reversals between a and b. But then,
we can choose λ large enough such that %λ has preference reversals for all pairs of choices.

The reader may verify that %λ satisfies the regularity axioms, three choice linear preference intensity and
four choice linear preference intensity. By Theorem 2.1 we then conclude that %λ has an expected utility
representation uλ. Define the utility function u by

u(c, s) := (1− 1/λ) · uλ(c, p∗) + (1/λ) · uλ(c, s)

for every choice c and state s. We will show that u represents % .
Take some arbitrary belief p. Then, p = (1 − λ)p∗ + λp′ for the belief p′ := (1 − 1/λ)p∗ + (1/λ)p. We

conclude, for two arbitrary choices a and b, that

a %p b ⇐⇒ a %∗p b⇐⇒ a %∗(1−λ)p∗+λp′ b ⇐⇒ a %λp′ b⇐⇒ uλ(a, p′) ≥ uλ(b, p′)

⇐⇒ uλ(a, (1− 1/λ)p∗ + (1/λ)p) ≥ uλ(b, (1− 1/λ)p∗ + (1/λ)p)

⇐⇒ (1− 1/λ)uλ(a, p∗) + (1/λ)uλ(a, p) ≥ (1− 1/λ)uλ(b, p∗) + (1/λ)uλ(b, p)⇐⇒ u(a, p) ≥ u(b, p).

Thus, we see that the utility function u represents %, which completes the proof of Case 1.
Case 2. Suppose now that there are at least two choices a and b such that %∗ exhibits a constant preference
intensity between a and b. We start by constructing a set of choices D, as follows. Take an arbitrary choice
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d1 ∈ C. If there is a choice d2 6= d1 such that there is no constant preference intensity between d2 and d1,
then select such a choice d2. In the next step, if there is a choice d3 6= d1, d2 such that there is no constant
preference intensity between d3 and d1 and between d3 and d2 then select such a choice d3. Continue in this
way until no further choice can be selected in this way. Let D = {d1, ..., dK} be the resulting set. Then, by
construction, there is no constant preference intensity between any two choices in D, and for every choice
c /∈ D there is a choice d ∈ D such that there is constant preference intensity between c and d. But we can
show even more, as the following claim shows.

Claim. For every choice c /∈ D there is exactly one choice d(c) ∈ D such that there is constant preference
intensity between c and d(c).
Proof of claim. Suppose there are two choices d1, d2 ∈ D such that there is a constant preference intensity
between c and d1 and between c and d2. By transitivity of constant preference intensity, it would then follow
that there is a constant preference intensity between d1 and d2, which is a contradiction. This completes
the proof of the claim.

We distinguish two cases: (2.1) the set D only contains one choice, and (2.2) the set D contains more
than one choice.

Case 2.1. Suppose that D only contains one choice, say d. Then, for every choice c 6= d, there is constant
preference intensity between c and d. By transitivity of constant preference intensity, it would follow that for
every two choices a, b ∈ C we have constant preference intensity between a and b. Consider an arbitrary signed
belief q, with the induced ranking c1 �∗q c2 �∗q ... �∗q cM . Since there is constant preference intensity between
any two choices, this same ranking is induced at every signed belief. Take some numbers α1 > α2 > ... > αM .
Then, the utility function u with u(cm, s) := αm for every choice cm and every state s represents %∗, and
thereby % .
Case 2.2. Suppose that D contains at least two choices. By the claim, there are for every choice a /∈ D two
choices d(a), e(a) ∈ D such that there is constant preference intensity between a and d(a), but not between
a and e(a). We define the utility function u as follows.

Since there is no constant preference intensity between any two choices in D, we know from Case 1 that
there is a utility function v that represents %∗ on D. We set u(d, s) := v(d, s) for every choice d ∈ D and
state s ∈ S.

Now take some choice a /∈ D. As there is no constant preference intensity between a and e(a), there
is a signed belief qae(a) where the DM is “indifferent” between a and e(a). Recall that there is constant
preference intensity between a and d(a) ∈ D. We define, for every state s,

u(a, s) := u(d(a), s) + u(e(a), qae(a))− u(d(a), qae(a)). (5.26)

We show that this utility function u represents %∗, by proving that u represents %∗ on {a, b} for every
two choices a, b ∈ C.We distinguish the following cases: (2.2.1) a, b ∈ D, (2.2.2) a /∈ D and b = d(a), (2.2.3)
a /∈ D and b = e(a), (2.2.4) a /∈ D and b ∈ D\{d(a), e(a)}, and (2.2.5) a, b /∈ D.

Case 2.2.1. Suppose that a, b ∈ D. Then, u represents %∗ on {a, b} since v represents %∗ on D.
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Case 2.2.2. Suppose that a /∈ D and b = d(a). Since there is constant preference intensity between a
and d(a), it must be that either a �∗q d(a) for all signed beliefs q, or d(a) �∗q a for all signed beliefs q.
Assume, without loss of generality, that a �∗q d(a) for all signed beliefs q. Since e(a) ∼∗qae(a) a, it follows
that e(a) �∗qae(a) d(a). As u represents %∗ on D, we have that u(e(a), qae(a)) > u(d(a), qae(a)). By (5.26) we
conclude that u(a, q) > u(d(a), q) for all signed beliefs q, and hence u represents %∗ on {a, d(a)}.

Case 2.2.3. Assume that a /∈ D and b = e(a). Recall from above that e(a) ∼∗qae(a) a. Moreover, by (5.26),
we know that u(a, qae(a)) = u(e(a), qae(a)), and thus qae(a) ∈ Qu(a)=u(e(a)). Here, we denote by Qu(a)=u(e(a))

the set of signed beliefs q where u(a, q) = u(e(a), q). As there is constant preference intensity between a and
d(a), but not between a and e(a) and not between d(a) and e(a), we know from Lemma 5.7 (b) that the sets
Qa∼∗e(a) and Qd(a)∼∗e(a) are parallel. Since, by (5.26), the expected utility difference between a and d(a) is
constant across all signed beliefs, we know that also the sets Qu(a)=u(e(a)) and Qu(d(a))=u(e(a)) are parallel.
As u represents %∗ on D, we must have that Qd(a)∼∗e(a) = Qu(d(a))=u(e(a)).

Summarizing, we thus see that (i) Qu(a)=u(e(a)) and Qu(d(a))=u(e(a)) are parallel, (ii) Qu(d(a))=u(e(a)) =
Qd(a)∼∗e(a), and (iii) Qd(a)∼∗e(a) and Qa∼∗e(a) are parallel. Thus, Qu(a)=u(e(a)) and Qa∼∗e(a) are parallel.
Since qae(a) is in both Qa∼∗e(a) and Qu(a)=u(e(a)), it follows that Qu(a)=u(e(a)) = Qa∼∗e(a).

Since there is no constant preference intensity between d(a) and e(a), there must be some qd(a)e(a) with
d(a) ∼∗qd(a)e(a) e(a). Recall from above that a �∗q d(a) for all signed beliefs q, and thus a �∗qd(a)e(a) d(a).

Hence, a �∗qd(a)e(a) e(a). As u represents %∗ on {a, d(a)} and {d(a), e(a)}, we have that u(a, qd(a)e(a)) >

u(d(a), qd(a)e(a)) and u(d(a), qd(a)e(a)) = u(e(a), qd(a)e(a)). This implies u(a, qd(a)e(a)) > u(e(a), qd(a)e(a)). We
have thus found a belief qd(a)e(a) with a �∗qd(a)e(a) e(a) and u(a, qd(a)e(a)) > u(e(a), qd(a)e(a)).

As Qu(a)=u(e(a)) = Qa∼∗e(a) it can be shown, in a similar way as in the proof of Lemma 5.4, that u
represents %∗ on {a, e(a)}.

Case 2.2.4. Assume that a /∈ D and b ∈ D\{d(a), e(a)}. We distinguish three cases: (2.2.4.1) Qa∼∗e(a)

is not parallel to Qb∼∗e(a), (2.2.4.2) Qa∼∗e(a) is parallel to Qb∼∗e(a) but Qa∼∗e(a) 6= Qb∼∗e(a), and (2.2.4.3)
Qa∼∗e(a) = Qb∼∗e(a).

Case 2.2.4.1. Suppose that Qa∼e(a) is not parallel to Qb∼e(a). Then, there is some signed belief qab ∈
Qa∼e(a) ∩ Qb∼e(a). As %∗ is transitive, it follows that qab ∈ Qa∼b. Since u represents %∗ on {a, e(a)} and
{b, e(a)}, we know that u(a, qab) = u(e(a), qab) = u(b, qab). We have thus found a signed belief qab ∈ Qa∼b
with qab ∈ Qu(a)=u(b).

As there is constant preference intensity between a and d(a), but not between a and b and not between
b and d(a), we know by Lemma 5.7 (b) that Qa∼b is parallel to Qb∼d(a). Moreover, as u represents %∗ on
{b, d(a)}, we know that Qb∼d(a) = Qu(b)=u(d(a)). Since, by (5.26), the expected utility between a and d(a)
is constant across all signed beliefs, we have that Qu(a)=u(b) is parallel to Qu(b)=u(d(a)). Summarizing, we
see that (i) Qu(a)=u(b) is parallel to Qu(b)=u(d(a)), (ii) Qu(b)=u(d(a)) = Qb∼d(a), and (iii) Qb∼d(a) is parallel
to Qa∼b. Thus, Qu(a)=u(b) is parallel to Qa∼b. Since qab is both in Qa∼b and Qu(a)=u(b), we conclude that
Qu(a)=u(b) = Qa∼b.

Take some signed belief qd(a)b in Qd(a)∼∗b. Since we assume that a �∗q d(a) for all signed beliefs q, we
have that a �∗qd(a)b d(a) ∼∗qd(a)b b, and thus a �

∗
qd(a)b

b. As u represents %∗ on {a, d(a)} and {d(a), b}, we have
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that u(a, qd(a)b) > u(d(a), qd(a)b) = u(b, qd(a)b). Hence, we have a found a belief qd(a)b with a �∗qd(a)b b and
u(a, qd(a)b) > u(b, qd(a)b). Since Qu(a)=u(b) = Qa∼b, we can use a similar argument as in the proof of Lemma
5.4 to show that u represents %∗ on {a, b}.
Case 2.2.4.2. Suppose that Qa∼∗e(a) is parallel to Qb∼∗e(a) but Qa∼∗e(a) 6= Qb∼∗e(a). We show that the
sets Qa∼∗e(a), Qb∼∗e(a), Qa∼∗b, Qd(a)∼∗e(a) and Qd(a)∼∗b must all be parallel. As there is constant preference
intensity between a and d(a), but not between a and e(a) and not between e(a) and d(a), it follows by
Lemma 5.7 (b) that Qa∼∗e(a) and Qd(a)∼∗e(a) are parallel. Similarly, since there is constant preference
intensity between a and d(a), but not between a and b and not between b and d(a), it follows by Lemma
5.7 (b) that Qa∼∗b and Qd(a)∼∗b are parallel. Moreover, by assumption, Qa∼∗e(a) is parallel to Qb∼∗e(a).
Now suppose, contrary to what we want to show, that Qa∼∗b is not parallel to Qa∼∗e(a). Then, there is
some q ∈ Qa∼∗b ∩ Qa∼∗e(a) and hence, by transitivity of %∗, we have that q ∈ Qb∼∗e(a). But then, q is in
both Qa∼∗e(a) and Qb∼∗e(a), which is impossible since both sets are parallel but not equal. Hence, we must
conclude that Qa∼∗b is parallel to Qa∼∗e(a). But then, all five sets Qa∼∗e(a), Qb∼∗e(a), Qa∼∗b, Qd(a)∼∗e(a) and
Qd(a)∼∗b are parallel.

Take a line l of signed beliefs that crosses each of these five sets once, and let qae(a), qbe(a), qab, qd(a)e(a)

and qd(a)b be the signed beliefs on the line where the DM is “indifferent”between the respective choices. As
u represents %∗ on {a, e(a)}, {b, e(a)}, {d(a), e(a)} and {d(a), b}, we conclude that

u(a, qae(a)) = u(e(a), qae(a)), u(b, qbe(a)) = u(e(a), qbe(a)),

u(d(a), qd(a)e(a)) = u(e(a), qd(a)e(a)) and u(d(a), qd(a)b) = u(b, qd(a)b).

Recall that there is constant preference intensity between a and d(a). Since %∗ satisfies part (a) of four
choice linear preference intensity with constant preference intensity, we know that qab is uniquely given by
the other four signed indifference beliefs. Moreover, as the signed conditional preference relation %∗u induced
by u also satisfies part (a) of four choice linear preference intensity with constant preference intensity, and
coincides with %∗ on {a, e(a)}, {b, e(a)}, {d(a), e(a)} and {d(a), b}, we conclude that qab ∈ Qa∼∗ub and hence
u(a, qab) = u(b, qab). Thus, we have found a signed belief qab ∈ Qa∼∗b with qab ∈ Qu(a)=u(b).

Since the expected utility difference between a and d(a) is constant across all signed beliefs, we know
that (i) Qu(a)=u(b) is parallel to Qu(d(a))=u(b). Moreover, as u represents %∗ on {d(a), b}, we have that (ii)
Qu(d(a))=u(b) = Qd(a)∼∗b. Finally, we know that (iii) Qd(a)∼∗b is parallel to Qa∼∗b. By combining (i), (ii) and
(iii), we conclude that Qu(a)=u(b) is parallel to Qa∼∗b. But since we have found a signed belief qab ∈ Qa∼∗b
with qab ∈ Qu(a)=u(b), it must be that Qu(a)=u(b) = Qa∼∗b.

Now, take some signed belief q with d(a) ∼∗q b. As a �∗q′ d(a) for all signed beliefs q′, we conclude that
a �∗q b. Since u represents %∗ on {d(a), b} and {a, d(a)}, we know that u(a, q) > u(d(a), q) = u(b, q). Hence,
we have found some signed belief q with a �∗q b and u(a, q) > u(b, q). Since Qu(a)=u(b) = Qa∼∗b, we can show
in a similar way as in the proof of Lemma 5.4 that u represents %∗ on {a, b}.
Case 2.2.4.3. Assume that Qa∼∗e(a) = Qb∼∗e(a). As a and b are not equivalent, it follows by transitivity
of %∗ that Qa∼∗b = Qa∼∗e(a) = Qb∼∗e(a). Take an arbitrary qab ∈ Qa∼∗b. As qab is in both Qa∼∗e(a) and
Qb∼∗e(a), and u represents %∗ on {a, e(a)} and {b, e(a)}, it follows that u(a, q) = u(e(a), q) = u(b, q). Thus,

40



Qa∼∗b ⊆ Qu(a)=u(b). Moreover, since span(Qa∼∗b) and span(Qu(a)=u(b)) both have dimension n− 1, it must
be that Qa∼∗b = Qu(a)=u(b).

Take some signed belief q with d(a) ∼∗q b. Since a �∗q′ d(a) for all signed beliefs q′, we know that a �∗q b.
As u represents %∗ on {d(a), b} and {a, d(a)}, it follows that u(a, q) > u(d(a), q) = u(b, q). Thus, we have
found some signed belief q with a �∗q b and u(a, q) > u(b, q).

Summarizing, we see that Qu(a)=u(b) = Qa∼∗b, and there is a signed belief q where a �∗q b and u(a, q) >
u(b, q). We can then show in a similar way as in the proof of Lemma 5.4 that u represents %∗ on {a, b}.
Case 2.2.5. Suppose finally that a, b /∈ D. We distinguish two cases: (2.2.5.1) d(a) = d(b), and (2.2.5.2)
d(a) 6= d(b).

Case 2.2.5.1. Assume that d(a) = d(b). Then, there is constant preference intensity between a and d(a)
and between b and d(a). By transitivity of constant preference intensity, there is also constant preference
intensity between a and b. That is, either a �∗q b for all signed beliefs q, or b �∗q a for all signed beliefs q.
Assume, without loss of generality, that a �∗q b for all signed beliefs q.

Take some choice c ∈ D\{d(a)}. Then, we know by the claim that there is no constant preference
intensity between a and c, and hence there is a signed belief q with a ∼∗q c. As a �∗q b, we know by
transitivity of %∗ that c �∗q b. Since, by the previous cases, u represents %∗ on {a, c} and {b, c}, it follows
that u(a, q) = u(c, q) > u(b, q). We have thus found a signed belief q with u(a, q) > u(b, q).

Since d(a) = d(b) we know, by construction of the utility function u in (5.26), that the expected utility
difference between a and b is constant across all signed beliefs. As we have found a signed belief q with
u(a, q) > u(b, q), we conclude that u(a, q′) > u(b, q′) for all signed beliefs q′. Since a �∗q′ b for all signed
beliefs q′, we conclude that u represents %∗ on {a, b}.
Case 2.2.5.2. Suppose that d(a) 6= d(b). Then, we know by the claim that there is no constant preference
intensity between a and d(b), and also not between b and d(a). Since there is constant preference intensity
between a and d(a), but not between a and d(b) and not between d(a) and d(b), it follows by Lemma 5.7 (b)
that (i) Qd(a)∼∗d(b) is parallel to Qa∼∗d(b). In a similar fashion, it follows that (ii) Qd(a)∼∗d(b) is also parallel
to Qb∼∗d(a).

Moreover, since there is constant preference intensity between a and d(a), but not between b and d(a),
it must be, by transitive constant preference intensity, that there is also no constant preference intensity
between a and b. But then, since there is constant preference intensity between a and d(a) but not between
b and d(a), and not between a and b, it follows by Lemma 5.7 (b) that (iii) Qb∼∗d(a) is parallel to Qa∼∗b. By
combining (i), (ii) and (iii) we conclude that Qa∼∗b, Qb∼∗d(a), Qd(a)∼∗d(b) and Qa∼∗d(b) are all parallel.

Take a line l of signed beliefs that cross each of these four parallel sets exactly once, and let qab, qbd(a), qd(a)d(b)

and qad(b) be the signed beliefs on this line where the DM is “indifferent”between the respective choices.
As there is constant preference intensity between a and d(a), and between b and d(b), and since %∗ satisfies
part (b) of four choice linear preference intensity with constant preference intensity, we know that qab is
uniquely given by the other three signed “indifference”beliefs.

Now, consider the conditional preference relation %∗u induced by the utility function u. Since also %∗u
satisfies part (b) of four choice linear preference intensity with constant preference intensity, and since, by
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the previous cases, u represents %∗ on {b, d(a)}, {d(a), d(b)} and {a, d(b)}, we know that qab ∈ Qa∼∗ub, and
hence u(a, qab) = u(b, qab). We have thus found a signed belief qab with qab ∈ Qa∼∗b and qab ∈ Qu(a)=u(b).

Since, by (5.26), the expected utility difference between a and d(a) is constant across all signed beliefs,
we know that (i) Qu(a)=u(b) is parallel to Qu(b)=u(d(a)). Since, by the previous cases, u represents %∗ on
{d(a), b}, it follows that (ii) Qu(b)=u(d(a)) = Qb∼∗d(a). Moreover, we have seen above that (iii) Qb∼∗d(a) is
parallel to Qa∼∗b. By combining (i), (ii) and (iii) we conclude that Qu(a)=u(b) is parallel to Qa∼∗b. Since above
we have found a signed belief qab with qab ∈ Qa∼∗b and qab ∈ Qu(a)=u(b), it follows that Qa∼∗b = Qu(a)=u(b).

Now, take some signed belief q with b ∼∗q d(a). Since we are assuming that a �∗q′ d(a) for all signed
beliefs q′, it follows by transitivity of %∗ that a �∗q b. As u represents %∗ on {b, d(a)} and {a, d(a)}, we know
that u(a, q) > u(d(a), q) = u(b, q). We have thus found a signed belief q with a �∗q b and u(a, q) > u(b, q).
Since Qa∼∗b = Qu(a)=u(b) we can show, in a similar way as in the proof of Lemma 5.4, that u represents %∗
on {a, b}.

Since we have covered all the possible cases, we conclude that u represents %∗ on every pair of choices
{a, b}, and thus u represents %∗ . Since %∗ extends %, it follows that u represents % . This completes the
proof. �
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