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Abstract

In a decision problem or game we typically fix the person’s utilities but not his beliefs. What, then, do
these utilities represent? To explore this question we assume that the decision maker holds a conditional
preference relation —a mapping that assigns to every possible probabilistic belief a preference relation
over his choices. We impose a list of axioms on such conditional preference relations, and show that they
single out those conditional preference relations that admit an expected utility representation. If there are
no weakly dominated choices, the key property is the existence of a uniform preference increase, which
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choices without contradicting the conditional preference relation. In the presence of weakly dominated
choices this condition is strengthened to the existence of coherent uniform preference increases. We also
present a procedure that can be used to construct, for a given conditional preference relation satisfying
the axioms, a utility function that represents it. If there are no weakly dominated choices, the existence
of a uniform preference increase can be replaced by two easily verifiable conditions: strong transitivity
and the line property.
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1 Introduction

What do the utilities in a decision problem or game represent? This is the key question we wish to explore
in this paper. It is often argued that such utilities may be derived from Savage’s (1954) framework. Indeed,
from a particular player’s point of view in a game, his opponents’choice combinations may be viewed as
the set of states about which this player is uncertain, whereas his own choices correspond to acts that
assign to every state some consequence. In that sense, a game can be embedded into Savage’s model. The
framework by Savage provides an axiomatic foundation for subjective expected utility maximization, by
imposing axioms on the decision maker’s preference relation over acts, and showing that the preference
relations satisfying these axioms are precisely those that admit an expected utility representation. Such an
expected utility representation consists of a subjective probabilistic belief about the set of states, together
with a utility function assigning to every possible consequence some utility. One could thus argue that the
utilities in a game, or a decision problem in general, may be derived from the player’s preferences over acts,
provided they satisfy the axioms as proposed by Savage.

In my view there are at least two problems with this approach. First, Savage assumes that the decision
maker holds preferences over all possible acts, that is, over all possible functions from the set of states to
the set of consequences. In a decision problem or game, however, many of these acts will not correspond to
choices, and will therefore be unrelated to the decision problem or game at hand. It thus seems problematic
to assume that the decision maker holds preferences even over these acts.

A second problem is that the axioms provided by Savage yield a unique subjective probabilistic belief
for the decision maker about the set of states. In a game, therefore, these axioms lead, for a given player,
to a unique probabilistic belief about the opponents’choices. At the same time, most game theory concepts
select, for every player, several possible beliefs. Consider, for instance, the concepts of Nash equilibrium
(Nash (1950, 1951)) and rationalizability (Bernheim (1984) and Pearce (1984)). In the spirit of Aumann
and Brandenburger (1995), a mixed strategy in a Nash equilibrium may be interpreted as the belief that
the other players have about this player’s pure strategy. As a game typically has several Nash equilibria,
the concept selects several possible beliefs for the same player. Analogously, a game typically has several
rationalizable pure strategies for the same player. Therefore, also rationalizability typically selects multiple
beliefs for a given player in the game. But also in one-person decision problems it may be natural to allow
for several different beliefs. Consider, for instance, a decision problem where the consequence of a choice
depends on the state of the weather. Then, we may naturally be interested in how the decision maker would
rank his choices under several different weather forecasts.

Despite the multiplicity of beliefs, decision problems and games typically view the utility function of a
person as given. This, however, seems to be at odds with Savage’s model, where the axioms on the decision
maker’s preferences over acts do not only lead to a utility function which is unique up to positive affi ne
transformations, but also to a unique belief. What does it mean, then, that a decision problem or game
specifies the person’s utilities but not his belief?

As a possible answer to this question, this paper adopts a decision theoretic view on games which
resembles Gilboa and Schmeidler’s (2003), and which is fundamentally different from Savage (1954). Instead
of assuming that a person holds preferences over all possible acts that can be derived from the decision
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problem or game, we suppose that the person’s probabilistic belief is variable, and that he holds, for every
possible belief, a preference relation over his own choices in the decision problem or game. The primitive
object in our setup is thus a mapping which assigns to every probabilistic belief about the states a preference
relation over his own choices. Such mappings are called conditional preference relations, and these are
precisely the mappings used by Gilboa and Schmeidler (2003) for their foundation of expected utility in
games. By adopting this approach we thus no longer fix the probabilistic belief of a decision maker, yet at
the same time we make sure that the preferences of a decision maker only concern those acts that correspond
to his actual choices in the decision problem or game.

We then ask: When does such a conditional preference relation have an expected utility representation?
In other words, when can we find a utility function, assigning a utility index to every combination of a
choice and a state, such that for every belief p and every two choices a and b, the decision maker prefers a
to b exactly when the expected utility of a under p is larger than that of b under p ? We impose six axioms
on conditional preference relations, and prove in Theorem 5.1 that the conditional preference relations
satisfying the axioms are precisely those that admit an expected utility representation. Importantly, the
proof of Theorem 5.1 is constructive and procedural: For a given conditional preference relation satisfying
the axioms, we explictly show how to construct a utility function that represents it, by means of an easy
and intuitive procedure.

On the road towards this theorem we zoom in on two special cases of conditional preference relations:
The case of two choices and the case where there are no weakly dominated choices. For the first case we
show in Theorem 3.1 that the basic regularity axioms of completeness, transitivity, continuity, preservation
of indifference and preservation of strict preference, which also appear in Gilboa and Schmeidler (2003), are
suffi cient to characterize the conditional preference relations having an expected utility representation.

If there are no weakly dominated choices, but possibly more than two choices in total, then Theorem
4.1 shows that expected utility can be characterized by the regularity axioms together with a new axiom,
the existence of a uniform preference increase. The latter axiom states that for at least one choice there
must be an alternative conditional preference relation that uniformly increases the preference intensity for
this choice by a constant degree.

For the general case, the conditional preference relations having an expected utility representation are
precisely those that satisfy the regularity axioms together with a strengthening of the axiom above, called
the existence of coherent uniform preference increases. This is the content of Theorem 5.1. Existence of
coherent uniform preference increases states that for every choice there must be an alternative conditional
preference relation that uniformly increases the preference intensity for this choice by a constant degree,
and such that this collection of uniform preference increases induces at every belief a preference intensity
between any two choices that never contradicts the original conditional preference relation.

An important feature of an expected utility representation in our setting is that the same utility function
is used to represent the decision maker’s preferences for all possible beliefs. This reflects the idea that the
beliefs of the decision maker are often prone to change, due to reasoning or when new information is received,
whereas the decision maker’s tastes are generally viewed as more robust. When we write down a utility
matrix, we thus assume that these various possible beliefs lead to preferences that are “consistent”with
one another, in the sense that they are all governed by the same utilities. The axiom system in this paper
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reveals what is needed on behalf of the conditional preference relation to achieve such consistency.
Gilboa and Schmeidler (2003) also propose axioms on conditional preference relations. Contrary to the

present paper, their axioms are suffi cient but not necessary for guaranteeing an expected utility representa-
tion. More precisely, their axioms characterize those conditional preference relations that can be represented
by a special type of utility function which they call diversified. The key axiom in their system is diversity,
which states that for every strict ordering of at most four choices, there must be a belief that induces pre-
cisely that ordering. The diversity axiom, however, rules out many cases of interest, such as all scenarios
with two states and at least three choices, all scenarios with three states and at least four choices, and all
cases where there are weakly dominated choices. The axiom system we adopt allows for these scenarios,
and does not impose any restriction on the utility function that can be used to represent the conditional
preference relation at hand.

For the case of three or more choices, this paper shows that either the existence of one uniform preference
increase, or the existence of a coherent collection of uniform preference increases, is required to make an
expected utility representation possible. In fact, adding this condition to the regularity axioms is precisely
what is needed. But what does this axiom entail intuitively?

Let us start with the existence of a (single) uniform preference increase. It requires that for at least one
choice a, the decision maker should envisage a new, hypothetical conditional preference relation in which
the attractiveness of a, compared to the other choices, is uniformly lifted by a constant degree. Then, this
constant degree can be used as a “common scale”on which the preference intensities between a and every
other choice, at each of the possible beliefs, can be expressed. For this common scale to be compatible with
the original conditional preference relation, the beliefs at which the decision maker is indifferent between
two choices b and c other than a must then be exactly the beliefs at which the induced preference intensity
between a and b is the same as between a and c. Thus, the axiom intuitively states that it must be possible for
the decision maker to uniformly lift the preference intensity for a particular choice by a constant amount, such
that the induced preference intensities between the other choices never contradict the original conditional
preference relation.

The existence of coherent uniform preference increases imposes more: First of all, it requires the decision
maker to envisage, for each of the possible choices, a new, hypothetical conditional preference relation that
uniformly lifts the preference intensity for this choice by a constant degree. We thus obtain a whole system
of uniform preference increases. At a given belief, and for a given pair of choices b and c, the preference
intensity between b and c can typically be derived from different chains of uniform preference increases
in this system. For this system of uniform preference increases to be coherent, the preference intensities
induced by all these chains must never contradict the original conditional preference relation. This is the
intuitive content of the stronger axiom “existence of coherent uniform preference increases”.

The case in which there are no weakly dominated choices plays a prominent role in this paper. First, it
may be viewed as a canonical case for a rational decision maker. To see this, note that a rational decision
maker may reasonably be expected not to go for any of the weakly dominated choices. Indeed, for a weakly
dominated choice there will always be another choice that is weakly preferred at all states, and strictly
preferred at some state. But if we eliminate all weakly dominated choices from the problem, then we will
be left with a collection of choices that do not weakly dominate one another.
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We have seen above that in this case, the regularity axioms together with the existence of a (single)
uniform preference increase are both necessary and suffi cient for guaranteeing an expected utility represen-
tation. That is, the stronger axiom “existence of coherent uniform preference increases”is not needed. If, in
addition, the sets of beliefs for which the decision maker is indifferent between two choices do not all coincide,
then Theorem 4.2 states that the utility differences are uniquely determined up to a positive multiplicative
constant. In that case, the utility differences between two choices a and b may be viewed as expressing the
decision maker’s “preference intensity”between a and b. That is, the utility difference between two choices
does not only indicate which choice is preferred by the decision maker, but also by “how much”. This is
similar to the approaches by Anscombe and Aumann (1963) and Wakker (1989), where the axioms of state
independence and state independent preference intensity, respectively, guarantee that the utility difference
between two consequences is the same at every state, and may be viewed as expressing the “preference
intensity”between these consequences.

Moreover, in the absence of weakly dominated choices we are able to provide an alternative character-
ization of expected utility, in Theorem 6.1, by relying on two conditions, strong transitivity and the line
property. Strong transitivity states that for every three choices a, b and c, the linear extensions of the sets
of beliefs where the decision maker is indifferent between a and b, between b and c, and between a and c,
respectively, must have a common intersection, possibly outside the belief simplex. The second condition
states that for four choices a, b, c and d and a line L, if we know for which beliefs on the line L the decision
maker is indifferent between e and f, for any {e, f} 6= {a, b}, then we also know for which belief on the line
he will be indifferent between a and b. The advantage of these conditions is that they do not require us to
construct alternative conditional preference relations, but purely relate to the original conditional preference
relation, making them directly and easily verifiable. The drawback is that the intuitive content of these
properties is not as obvious, and it is not clear at this moment how these properties could be extended to
allow for weakly dominated choices.

This paper is organized as follows. In Section 2 we present the necessary mathematical definitions. In
Section 3 we introduce the notion of a conditional preference relation, present the regularity axioms, and
show that for the case of two choices these are necessary and suffi cient for an expected utility representation.
In Section 4 we discuss the case where there are no weakly dominated choices, whereas Section 5 treats the
general case. In Section 6 we zoom in on strong transitivity and the line property. We conclude with a
discussion in Section 7. All the proofs can be found in the appendix and the online appendix.

2 Mathematical Definitions

In this section we introduce the mathematical definitions and notation needed for this paper, mainly from
linear algebra. For a finite set X, we denote by RX the set of all functions v : X → R. Scalar multiplication
and addition on RX are defined in the usual way: For a function v ∈ RX and a number λ ∈ R, the function
λ · v is given by (λ · v)(x) = λ · v(x) for all x ∈ X. Similarly, for functions v, w ∈ RX , the sum v+w is given
by (v + w)(x) = v(x) + w(x) for all x ∈ X. The set RX together with these two operations constitutes a
linear space, and elements in RX are called vectors. By 0 we denote the vector in RX where 0(x) = 0 for

5



all x ∈ X. For two subsets V,W ⊆ RX and numbers α, β ∈ R, we define the set

αV + βW := {αv + βw | v ∈ V and w ∈W}.

For every two vectors v, w ∈ RX , the vector product is given by v · w :=
∑

x∈X v(x)w(x).
A subset V ⊆ RX is called a linear subspace of RX if for every v, w ∈ V and every α, β ∈ R, we have

that αv + βw ∈ V. For a subset V ⊆ RX , we denote by

〈V 〉 := {
∑K

k=1
αkvk | K ≥ 1, αk ∈ R and vk ∈ V for all k ∈ {1, ...,K}}

the set of all (finite) linear combinations of elements in V, and call it the (linear) span of V. Here,
∑K

k=1 αkvk
is called a linear combination of the vectors v1, ..., vK . The span 〈V 〉 is always a linear subspace, and if V
itself is a linear subspace then 〈V 〉 = V . Vectors v1, ..., vK ∈ RX are called linearly independent if none
of the vectors is a linear combination of the other vectors. Consider a linear subspace V of RX , and
vectors v1, ..., vK ∈ V. The set of vectors {v1, ..., vK} is a basis for V if v1, ..., vK are linearly independent,
and 〈{v1, ..., vK}〉 = V. Every basis for V has the same number of vectors, and this number is called the
dimension of V, denoted by dim(V ). If V = {0}, then dim(V ) = 0.

For a subset V ⊆ RX , we denote by

conv(V ) := {
∑K

k=1
αkvk | K ≥ 1, αk ∈ R, αk ≥ 0, vk ∈ V for all k ∈ {1, ...,K}

and
∑K

k=1
αk = 1}

the set of all (finite) convex combinations of elements in V, and call it the convex hull of V.
A hyperplane is a set of the form H = {v ∈ RX | v · w = c}, where w ∈ RX\{0} and c ∈ R. If c = 0

then H is a linear subspace of dimension |X| − 1, where |X| denotes the number of elements in X. Two
hyperplanes H and H ′ are parallel if there is some v ∈ RX such that H ′ = H + {v}. In that case, there is
some w ∈ RX\{0} and c, c′ ∈ R such that H = {v ∈ RX | v · w = c} and H ′ = {v ∈ RX | v · w = c′}.

A mapping f : RX → R is linear if for every v, w ∈ RX and every α, β ∈ R it holds that f(αv+ βw) =
αf(v) + βf(w). A mapping f : RX → R is affi ne if for every v, w ∈ RX and every α ∈ R it holds that
f(αv + (1− α)w) = αf(v) + (1− α)f(w).

A probability distribution on X is a vector p ∈ RX such that
∑

x∈X p(x) = 1 and p(x) ≥ 0 for all x ∈ X.
The set of probability distributions on X is denoted by ∆(X). For a given element x ∈ X, we denote by
[x] the probability distribution in ∆(X) where [x](x) = 1 and [x](y) = 0 for all y ∈ X\{x}. A probability
distribution p has full support if p(x) > 0 for all x ∈ X.

A (directed) graph is a pair (V,E) where V is a set of vertices, and E ⊆ V ×V the set of (directed) edges.
We assume that (v, v) /∈ E for every v ∈ V. A path from v ∈ V to w ∈ V is a sequence (v1, v2, ..., vK) where
v1 = v, vK = w and (vk, vk+1) ∈ E for all k ∈ {1, ...,K − 1}. Similarly, (v1, v2, ..., vK) is an undirected path
from v to w if for every k ∈ {1, ...,K − 1} either (vk, vk+1) ∈ E or (vk+1, vk) ∈ E. A tree is a graph (V,E)
with a vertex r ∈ V, the root, such that for every v ∈ V \{r} there is a unique path from r to v. Within a
tree T with root r, and for a given vertes v, we denote by depth(v) the number of edges on the unique path
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from r to v. By depth(T ) we denote the maximal depth within T. For a given vertex v 6= r, the predecessor
of v is the vertex that comes before v in the unique path from r to v. A graph (V,E′) is a spanning tree for
(V,E) if (V,E′) is a tree and E′ ⊆ E. For a graph (V,E), a subgraph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E is
an undirected connected component if (i) E′ = E ∩ (V ′ × V ′), (ii) for every v, w ∈ V ′ there is an undirected
path in (V,E) from v to w, and (iii) for every v ∈ V ′, w ∈ V \V ′ there is no undirected path in (V,E) from
v to w.

3 Case of Two Choices

In this section we formally introduce a conditional preference relation as the primitive notion of our model.
Subsequently, we impose some regularity axioms on conditional preference relations, and show that for the
case of two choices these suffi ce to single out the conditional preference relations that admit an expected
utility representation.

3.1 Conditional Preference Relations

In line with Gilboa and Schmeidler (2003), the primitive object in this paper is that of a conditional preference
relation —a mapping that assigns to every probabilistic belief over the states a preference relation over the
available choices. In accordance with the literature on decision making under uncertainty, we refer to such
choices as acts. Consider a decision maker (DM) who must choose from a finite set of acts A. The final
outcome depends not only on the act a ∈ A, but also on the realization of a state s ∈ S from a finite set
of states S. We assume that the decision maker first forms a probabilistic belief p on S, which then induces
a preference relation %p on A. Formally, a preference relation %p on A is a binary relation %p⊆ A × A. If
(a, b) ∈ %p we write a %p b, and the interpretation is that the DM weakly prefers act a to act b if his belief
is p.

Definition 3.1 (Conditional preference relation) Consider a finite set of acts A and a finite set of
states S. A conditional preference relation on (A,S) is a mapping % that assigns to every probabilistic belief
p ∈ ∆(S) a preference relation %p on A.

In a game, the DM would be one of the players, A would be his set of actions in the game, and S the
set of opponents’action combinations. For two acts a and b, we write that a ∼p b if a %p b and b %p a.
The interpretation is that the DM is indifferent between a and b while having the belief p. Similarly, we
write a �p b if a %p b but not b %p a, representing a case where the DM strictly prefers a to b. For two
acts a, b ∈ A we define the sets of beliefs Pa∼b := {p ∈ ∆(S) | a ∼p b}, Pa�b := {p ∈ ∆(S) | a �p b} and
Pa%b := {p ∈ ∆(S) | a %p b}. Similarly, we define the sets of states Sa∼b := {s ∈ S | a ∼[s] b}, Sa�b := {s ∈ S
| a �[s] b} and Sa%b := {s ∈ S | a %[s] b}. We say that (a) a strictly dominates b under % if a �p b for all
p ∈ ∆(S); (b) a weakly dominates b under % if a %p b for all p ∈ ∆(S), and a �p b for at least one p ∈ ∆(S);
(c) a is equivalent to b under % if a ∼p b for all p ∈ ∆(S); and (d) % has preference reversals on {a, b} if
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there is a belief p with a �p b and another belief q with b �q a. Hence, % either exhibits weak dominance,
equivalence, or preference reversals on {a, b}.

In the remainder of this paper we will assume that the conditional preference relation does not have
equivalent acts. That is, % either exhibits weak dominance or preference reversals on every pair of acts
{a, b}. In the discussion section we will briefly explain how our analysis can easily be extended to cover
equivalent acts.

A conditional preference relation is said to have an expected utility representation if there is a utility
function, assigning a utility index to every act-state pair (a, s), such that for every possible belief, the DM
prefers act a to act b precisely when his expected utility from a is higher than that from b under the belief
at hand.

Definition 3.2 (Expected-utility representation) A conditional preference relation % has an expected
utility representation if there is a utility function u : A × S → R such that for every belief p ∈ ∆(S) and
every two acts a, b ∈ A,

a %p b if and only if
∑
s∈S

p(s) · u(a, s) ≥
∑
s∈S

p(s) · u(b, s).

In this case, we say that the conditional preference relation % is represented by the utility function u.
For a given vector v ∈ RS we use the notation u(a, v) :=

∑
s∈S v(s) ·u(a, s). Hence, the condition above can

be written as a %p b if and only if u(a, p) ≥ u(b, p).

3.2 Regularity Axioms

We will now impose some very basic axioms on conditional preference relations, to which we refer as regularity
axioms.

Axiom 3.1 (Completeness) For every belief p and any two acts a, b ∈ A, either a %p b or b %p a.

Axiom 3.2 (Transitivity) For every belief p and every three acts a, b, c ∈ A with a %p b and b %p c, it
holds that a %p c.

Axiom 3.3 (Continuity) For every two different acts a, b ∈ A and every two beliefs p ∈ Pa�b and q ∈ Pb�a,
there is some λ ∈ (0, 1) such that (1− λ)p+ λq ∈ Pa∼b.

Axiom 3.4 (Preservation of indifference) For every two different acts a, b ∈ A and every two beliefs
p ∈ Pa∼b and q ∈ Pa∼b, we have that (1− λ)p+ λq ∈ Pa∼b for all λ ∈ (0, 1).

Axiom 3.5 (Preservation of strict preference) For every two different acts a, b ∈ A and every two
beliefs p ∈ Pa%b and q ∈ Pa�b, we have that (1− λ)p+ λq ∈ Pa�b for all λ ∈ (0, 1).
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Figure 1: A typical regular conditional preference relation

Completeness and transitivity together resemble the ranking axiom in Gilboa and Scmeidler (2003).
Our definition of continuity is formally different from Gilboa and Schmeidler’s (2003) version, but reveals
the same idea. When taken together, our axioms of preservation of indifference and preservation of strict
preference correspond precisely to Gilboa and Schmeidler’s (2003) axiom of combination.

In the remainder of the paper, whenever we say that a conditional preference relation is regular, or
satisfies the regularity axioms, we mean that it satisfies completeness, transitivity, continuity, preservation
of indifference and preservation of strict preference. See Figure 1 for a typical regular conditional preference
relation % with two acts a and b, and three states x, y and z. The area within the triangle represents the set
∆(S) of all probabilistic beliefs on S = {x, y, z}, with the probability 1 beliefs [x], [y] and [z] as the extreme
points. The two-dimensional plane represents all the vectors in RS where the sum of the coordinates is 1,
containing the belief simplex ∆(S) as a subset. Hence, a ∼p b for all beliefs p on the line segment, a �p b for
all beliefs p above the line segment, and b �p a for all beliefs p below the line segment. It may be verified
that % satisfies all the regularity axioms.

The following theorem shows that a conditional preference relation on two acts has an expected utility
representation precisely when it satisfies the regularity axioms.

Theorem 3.1 (Two choices) Consider a set A consisting of two acts, a finite set of states S, and a
conditional preference relation % on (A,S). Then, % has an expected utility representation, if and only
if, it satisfies completeness, transitivity, continuity, preservation of indifference and preservation of strict
preference.
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Figure 2: Regularity axioms are not suffi cient for expected utility representation

In particular, the conditional preference relation % in Figure 1 has an expected utility representation.
One way to generate a utility function u that represents % is as follows: Choose the utilities u(a, x), u(a, y)
and u(a, z) arbitrarily. Then, choose the utilities u(b, x), u(b, y) and u(b, z) such that the expected utility for
b at the beliefs p1 and p2 is equal to the expected utility for a at these beliefs, and such that u(b, z) < u(a, z).

4 Case of No Weak Dominance

In this section we consider the case of more than two acts and show, by means of an example, that the
regularity axioms are no longer suffi cient to guarantee an expected utility representation. The reason for this
failure is that, starting from this conditional preference relation, we cannot uniformly increase the preference
intensity for any given act without contradicting the conditional preference relation. This leads to a new
axiom, “existence of a uniform preference increase”, which we formally present below. It is shown that in the
absence of weakly dominated acts, this axiom, together with the regulariy axioms, characterizes precisely
those conditional preference relations that have an expected utility representation. We finally prove that in
the absence of weakly dominated acts, the utility differences are uniquely given up to a positive multiplicative
constant, provided the sets of beliefs where the DM is indifference between two acts do not all coincide.

4.1 Why Regularity Axioms Are Not Suffi cient

Consider the conditional preference relation % represented by Figure 2. It may be verified that % satisfies
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Figure 3: When there is no uniform preference increase

all the regularity axioms. Yet, there is no expected utility representation for % . To see why, suppose there
would be a utility function u that represents % . Then, the induced expected utilities of a and b must be
equal on the hyperplane 〈Pa∼b〉, the expected utilities of b and c must be equal on the hyperplane 〈Pb∼c〉
and the expected utilities of a and c must be equal on the hyperplane 〈Pa∼c〉 , also at vectors that lie outside
the belief simplex. But then, the expected utilities of a and c must be the same at the vector v where 〈Pa∼b〉
and 〈Pb∼c〉 intersect, which is impossible since v does not belong to 〈Pa∼c〉 .

This raises the question: What is “wrong”with this conditional preference relation? As it turns out,
we cannot uniformly increase the preference intensity for act a by a fixed degree without contradicting the
conditional preference relation. To see this, suppose there would be an alternative conditional preference
relation %′ that uniformly increases the preference intensity for act a by a fixed degree, relative to % . Then,
the preference intensity between a and b and the preference intensity between a and c should both be raised
by the same amount. The indifference set Pb∼c contains precisely those beliefs where the DM is indifferent
between b and c. Hence, intuitively, these are precisely the beliefs where his preference intensity between a
and b is equal to his preference intensity between a and c. If we move from one belief in Pb∼c to another
belief in Pb∼c, we thus increase, or decrease, the preference intensity between a and b and the preference
intensity between a and c by the same amount. Therefore, the new indifference sets Pa∼′b and Pa∼′c must
be obtained from the original indifference sets Pa∼b and Pa∼c by a common parallel shift w that moves from
one point in 〈Pb∼c〉 to another point in 〈Pb∼c〉 . See Figure 3 for an illustration. However, as can be seen
from Figure 3, the resulting conditional preference relation %′ is not transitive: At the belief p, the DM is
indifferent between a and b, and indifferent between b and c, but not indifferent between a and c under %′ .
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In fact, starting from the original conditional preference relation %, there is no uniform preference
increase for act a. The reason is that any uniform preference increase for a must result in shifting the
original indifference sets Pa∼b and Pa∼c along a multiple of the vector w. Hence, if a uniform preference
increase for a would exist then, by scaling this preference increase up or down by an appropriate amount,
there should also be a uniform preference increase for a where Pa∼′b passes through the belief p in Figure 3.
This, as we have seen, is impossible. By a similar reasoning, it can also be verified that there is no uniform
preference increase for act b or for act c in this example.

As we will show, the absence of a uniform preference increase is precisely what prevents a regular
conditional preference relation from having an expected utility representation, provided there are no weakly
dominated acts. In the following subsection we formally define a uniform preference increase, and use it to
introduce a new axiom, “existence of a uniform preference increase”, which states that a uniform preference
increase should exist for at least one of the acts.

4.2 The Axiom “Existence of Uniform Preference Increase”

Imagine the DM holds a conditional preference relation %, and decides to uniformly increase his preference
intensity for act a by a certain degree which we normalize to 1 That is, for every belief p, and relative to
every other act b, the preference intensity for a is increased by 1. How would the new conditional preference
relation %′ compare to % ? Our arguments below will be based on two informal principles:

Principle 1: If we move from a belief p to a belief q on a line, then the “preference intensity”between a
and b will change linearly.

Principle 2: The DM is indifferent between b and c precisely when the “intensity”by which he prefers
a to b is equal to the “intensity”by which he prefers a to c.

The intensity by which the DM prefers a to b may also be negative, which means that he prefers b to a.
Of course, “preference intensity”is not formally defined here, but it helps to motivate our new axiom.

Consider a belief pab ∈ Pa∼b, a belief p′ab ∈ Pa∼′b and some belief p such that p = (1 − λ)pab + λp′ab.
See Figure 4 for the case where λ > 1. Here, the numbers 1 and λ − 1 indicate the relative lengths of the
corresponding line segments. Recall that the new conditional preference relation %′ increases the preference
intensity for a by 1, relative to % . As intb�′a(p′ab) = 0, this implies that intb�a(p′ab) = 1, where intb�′a(p′ab)
and intb�a(p′ab) denote the intensity by which the DM prefers b to a at the belief p′ab under %′ and %,
respectively. Since p = (1− λ)pab + λp′ab and intb�a(pab) = 0, it follows by principle 1 that intb�a(p) = λ.

Now consider an alternative belief qab ∈ Pa∼b and some belief q′ such that p = (1 − λ)qab + λq′. See
Figure 4. As intb�a(qab) = 0, it follows by principle 1 that

λ = intb�a(p) = λ · intb�a(q′),

which implies that intb�a(q′) = 1, and hence q′ ∈ Pa∼′b. We thus see that, whenever

(1− λ)pab + λp′ab = (1− λ)qab + λq′

for some pab, qab ∈ Pa∼b and p′ab ∈ Pa∼′b, then the belief q′ must be in Pa∼′b as well. This means that the
indifference sets Pa∼b and Pa∼′b are homothetic with respect to the belief p, and are thus parallel. See Figure
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Figure 4: A uniform preference increase generates parallel indifference sets Pa∼b and Pa∼′b

4. This bears some similarity with Burghart (2020) who defines, and studies, the notion of homotheticity
for preference relations over lotteries. In particular, as Pa∼b and Pa∼′b are parallel, there is for every belief p
a unique number λ with p ∈ (1− λ)Pa∼b + λPa∼′b. Since we have seen above that λ reflects the intensity by
which the DM prefers b to a at the belief p, we refer to the number intb�a(p) := λ as the derived preference
intensity between b and a at p.

Such a derived preference intensity can only exist if both sets Pa∼b and Pa∼′b are non-empty. Therefore,
a must not weakly dominate b under %, since otherwise a would strictly dominate b under %′, and Pa∼′b
would be empty. Moreover, b must not strictly dominate a under %, since otherwise Pa∼b would be empty.
This leads to the definition below.

Definition 4.1 (Domination graph) The domination graph DG[%] is the directed graph where the ver-
tices are the acts in A, and where the edge (a, b) is present precisely when a does not weakly dominate b,
and b does not strictly dominate a.

Hence, the edge (a, b) is present in DG[%] precisely when the preference intensity between b and a at
the various beliefs can be derived from increasing the preference intensity of a in the way illustrated above.

Consider now a third act c, and assume that also (a, c) is in DG[%]. Then, at a given belief p the
preference intensity between c and a is given by intc�a(p) = µ, where µ is the unique number such that p ∈
(1 − µ)Pa∼c + µPa∼′c. By principle 2 it then follows that p ∈ Pb∼c precisely when intb�a(p) = intc�a(p).
See Figure 5 where intb�a(p) = intc�a(p) = λ. This leads to the following definition of a uniform preference
increase.

13



Figure 5: A uniform preference increase for a with three choices

Definition 4.2 (Uniform preference increase) Consider a conditional preference relation %, an act a,
and an alternative conditional preference relation %′ . Then, %′ uniformly increases the preference for a
relative to % if
(a) %′ is regular and Pa%b ⊆ Pa�′b for all acts b 6= a;

(b) for every act b 6= a with (a, b) ∈ DG[%], the conditional preference relation %′ has preference reversals
on {a, b}, and for every belief p there is a unique number intb�a(p) such that p ∈ (1 − intb�a(p)) · Pa∼b +
intb�a(p) · Pa∼′b; and

(c) for every two acts b, c 6= a the conditional preference %′ coincides with % on {b, c}, and if (a, b), (a, c) ∈
DG[%] then

p ∈ Pb∼c if and only if intb�a(p) = intc�a(p).

Here, the condition Pa%b ⊆ Pa�′b makes sure that %′ increases the preference for a. Condition (c), in
turn, guarantees that the derived preference intensities between b and a and between c and a are consistent
with the DM’s preferences between b and c. The following axiom states that one should always be able to
find a new conditional preference relation that uniformly increases the preference for one of the acts.

Axiom 4.1 (Existence of a uniform preference increase) There is an act a and a conditional prefer-
ence relation %′ that uniformly increases the preference for a relative to % .
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Intuitively, this axiom requires the DM to think about the hypothetical situation in which one of the acts
would become “uniformly more attractive”relative to the other acts, and demands that such a hypothetical
scenario be compatible with the current conditional preference relation. As it turns out, this new axiom,
together with the regularity axioms, characterizes precisely those conditional preference relations that admit
an expected utility representation, provided no act is weakly dominated.

Theorem 4.1 (No weakly dominated choices) Consider a finite set of acts A, a finite set of states S,
and a conditional preference relation % on (A,S) such that no act weakly dominates another act under
%. Then, % has an expected utility representation, if and only if, it satisfies completeness, transitivity,
continuity, preservation of indifference, preservation of strict preference, and existence of a uniform preference
increase.

In Section 5 we will see that these axioms may no longer be suffi cient if there are weakly dominated acts.

4.3 Almost Unique Utility Representation

If the conditional preference relation % has an expected utility representation and there are no weakly
dominated acts, then “typically”the utility differences will be unique up to a positive multiplicative constant.
This is the content of the theorem below.

Theorem 4.2 (Almost unique utility representation) Consider a finite set of acts A, a finite set of
states S, and a conditional preference relation % on (A,S), such that no act weakly dominates another
act under %, and not all indifference sets Pa∼b are the same. Suppose that % is regular and satisfies the
existence of a uniform preference increase. Then, for every two utility functions u, v that represent % there
is some α > 0 such that u(a, s)− u(b, s) = α · (v(a, s)− v(b, s)) for all a, b ∈ A and all s ∈ S.

In this case there would thus be |S| + 1 degrees of freedom for the expected utility representation.
Moreover, under the conditions of the theorem, the utility difference u(a, p) − u(b, p) at a belief p, which
is unique up to a positive multiplicative constant, may be viewed as expressing the “preference intensity”
between a and b at p. As an example, suppose that 0 < u(a, x)− u(b, x) = 2 · (u(b, y)− u(a, y)). Then, the
DM will be indifferent between a and b at the belief 1/3[x]+ 2/3[y], which seems to reflect that the intensity
by which the DM prefers a to b at x is twice the intensity by which he prefers b to a at y. This indeed
corresponds to the fact that the utility difference between a and b at x is twice as large as at y, in absolute
terms. However, we will not enter the debates on whether such utility differences, or preference intensities,
can be interpreted as reflecting neo-classical cardinal utility (see, for instance, Baccelli and Mongin (2016),
Baumol (1958) and Moscati (2018)).

The above interpretation of the utility differences may no longer hold, however, if the conditions in the
theorem above are not satisfied. Suppose there are three acts a, b and c, two states x and y, and let % be
such that a �p b �p c if p(x) > 1/2, a ∼p b ∼p c if p(x) = 1/2, and c �p b �p a if p(x) < 1/2. Hence, the
three indifference sets Pa∼b, Pa∼c and Pb∼c are all equal to {1/2[x] + 1/2[y]}, and thus coincide. Note that
the utility functions u, v given by u(a, x) = 3, u(b, x) = 2, u(c, x) = 0, u(a, y) = −3, u(b, y) = −2, u(c, y) = 0
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and v(a, x) = 3, v(b, x) = 1, v(c, x) = 0, v(a, y) = −3, v(b, y) = −1, v(c, y) = 0 both represent % . Yet, the
utility differences in u and v differ by more than just a multiplicative constant. The reason is that in this
case, % does not provide us with suffi ciently many data to derive the DM’s preference intensity over the
three acts at the various beliefs. A similar phenomenon may arise if there are weakly dominated acts.

5 General Case

In this section we start with an example showing that the regularity axioms, in combination with the
existence of a uniform preference increase, may no longer guarantee an expected utility representation if
weakly dominated acts are allowed. This leads to a new axiom, “existence of coherent uniform preference
increases”, which is formally presented below. It is shown that this new axiom, in combination with the
regularity axioms, characterize in general precisely those conditional preference relations that have an ex-
pected utility representation. We also provide a procedure, the “utility design procedure”, which can be
used to generate a utility function that represents the conditional preference relation, provided it satisfies
the axioms below. This procedure explicitly uses the existence of a coherent system of uniform preference
increases. We conclude with a numerical example that illustrates the procedure.

5.1 Why Existence of a Uniform Preference Increase is Not Suffi cient

Consider the conditional preference relation % in Figure 6, where b strictly dominates c and d strictly
dominates a. It may be verified that % satisfies the regularity axioms, and that there is a uniform preference
increase for each of the acts a, b, c and d. Despite this, % does not have an expected utility representation.
Indeed, if the utility function u were to represent %, then the utility of b would be equal to the utility of c
at the points v and w outside the belief simplex. This would imply that the utility of b would be equal to
the utility of c at the belief p∗. However, the DM strictly prefers b to c at p∗, which is a contradiction.

The problem with % is that a uniform preference increase for a is necessarily incoherent with a uniform
preference increase for b. To see this, consider uniform preference increases %a,%b for a and b, respectively,
that increase the preference intensity for the associated act by the same degree, normalized to 1. For a
given belief p, let intd�b(p) be the unique number such that p ∈ (1− intd�b(p)) ·Pb∼d + intd�b(p) ·Pb∼bd. As
before, this represents the derived preference intensity between d and b at p.

Similarly, let the derived preference intensities intc�a(p) and inta�b(p) be such that p ∈ (1− intc�a(p)) ·
Pa∼c + intc�a(p) · Pa∼ac and p ∈ (1− inta�b(p)) · Pb∼a + inta�b(p) · Pb∼ba. Then, we can “indirectly”derive
the preference intensity between c and b by

intc�b(p) = intc�a(p) + inta�b(p).

Here, we assume that the preference intensity between acts is additive, in the sense that intc�b(p) =
intc�a(p) + inta�b(p). If the uniform preference increases %a and %b are to be coherent, then p ∈ Pc∼d if
and only if intc�b(p) = intd�b(p), and hence

p ∈ Pc∼d if and only if intc�a(p) + inta�b(p) = intd�b(p). (5.1)
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Figure 6: Existence of a uniform preference increase is not suffi cient

Consider the point w in Figure 6, outside the belief simplex. Since w is on the line generated by Pb∼d we
have that intd�b(w) = 0. Moreover, since w is on the line generated by Pc∼d, it follows from (5.1) that
intc�a(w) + inta�b(w) = 0.

Consider next the point v in Figure 6, also outside the belief simplex. As v is on the lines generated by
Pa∼b and Pa∼c, we have that intc�a(v) = inta�b(v) = 0, and hence, in particular, intc�a(w)+ inta�b(w) = 0.

Note that the belief p∗ in Figure 6 is on the line through v and w. Since intc�a(v) + inta�b(v) =
intc�a(w) + inta�b(w) = 0, it must be that intc�a(p∗) + inta�b(p

∗) = 0 also. This would imply that
intc�b(p

∗) = 0, and hence the DM should be indifferent between b and c at p∗. This, however, is a contraction
to %, and we thus conclude that the uniform preference increases for a and b are necessarily incoherent.

5.2 Existence of Coherent Uniform Preference Increases

Recall the definition of the domination graph DG[%] from Definition 4.1. Consider two acts a and b, and a
path a = c1 → c2 → ...→ cK = b in DG[%], which we denote by Π1. Then, the preference intensity between
b and a at a belief p can “indirectly”be retrieved on the basis of this path, as follows: For every act d in
this path, select a uniform preference increase %d that uniformly increases the preference intensity for d
by 1. By Definition 4.2 (b), there is for every edge (d, e) in this path a unique number inte�d(p) such that
p ∈ (1 − inte�d(p) · Pd∼e + inte�d(p) · Pd∼de. As we have seen, inte�d(p) is the derived preference intensity
between e and d. If we assume that the preference intensity between two acts is additive, then the preference
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intensity between b and a at p that can (directly or indirectly) be retrieved from the path Π1 is

intb�a(p) = intcK�c1(p) =
∑K−1

k=1
intck+1�ck(p) =

∑
(d,e)∈Π1

inte�d(p).

Similarly, if we consider another act c 6= a, b, and a path Π2 from a to c in DG[%], then the preference
intensity between c and a at p which can be retrieved from the path Π2 is

intc�a(p) =
∑

(d,e)∈Π2

inte�d(p).

If the system of uniform preference increases is to be coherent, then p ∈ Pb∼c if and only if intb�a(p) =
intc�a(p). Hence,

p ∈ Pb∼c if and only if
∑

(d,e)∈Π1

inte�d(p) =
∑

(d,e)∈Π2

inte�d(p),

independent of the act a and the chosen paths Π1,Π2 from a to b and a to c, respectively. This gives rise to
the following definition.

Definition 5.1 (Coherent system of uniform preference increases) Let % be a conditional prefer-
ence relation, and {%a | a ∈ A} a system of conditional preference relations. Then, {%a | a ∈ A} is a
coherent system of uniform preference increases relative to % if
(a) %a is regular for every act a, and Pa%b ⊆ Pa�ab for every two acts a, b;
(b) for every two acts a, b with (a, b) ∈ DG[%], the conditional preference relation %a has preference reversals
on {a, b}, and for every belief p there is a unique number intb�a(p) such that p ∈ (1 − intb�a(p)) · Pa∼b +
intb�a(p) · Pa∼ab; and
(c) for every three acts a, b, c the conditional preference %a coincides with % on {b, c}, and for every path
Π1 from a to b and every path Π2 from a to c in DG[%] we have

p ∈ Pb∼c if and only if
∑

(d,e)∈Π1

inte�d(p) =
∑

(d,e)∈Π2

inte�d(p).

In particular, every conditional preference relation %a must uniformly increase the preference for a
relative to % . Moreover, all uniform preference increases %a should increase the preference intensity of the
corresponding act by the same degree. Condition (c) makes sure that the (directly or indirectly) derived
preference intensities between b and a and between c and a are always consistent with the DM’s preferences
between b and c.

In this definition we allow for the empty path Π, from an act to itself, and use the convention that∑
(d,e)∈Π inte�d(p) = 0 in this case. Also, b and c may be equal, and accordingly we set Pb∼b = ∆(S). In

the example of Figure 6, our argument above shows that there is no coherent system of uniform preference
increases for the conditional preference relation at hand. The new axiom, which is stronger than the
existence of a uniform preference increase, states that there should be a coherent system of uniform preference
increases.
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Axiom 5.1 (Existence of coherent uniform preference increases) There is a coherent system {%a |
a ∈ A} of uniform preference increases relative to %.

This axiom, together with the regularity axioms, characterizes those conditional preference relations that
have an expected utility representation.

Theorem 5.1 (Expected utility representation) Consider a finite set of acts A, a finite set of states
S, and a conditional preference relation % on (A,S). Then, % has an expected utility representation, if and
only if, it satisfies completeness, transitivity, continuity, preservation of indifference, preservation of strict
preference, and existence of coherent uniform preference increases.

In the following subsection we present a procedure to generate a representing utility function, provided
the conditional preference relation satisfies the axioms above. This procedure explicitly uses a system of
coherent uniform preference increases, the existence of which is guaranteed by the last axiom.

5.3 Utility Design Procedure

To formulate the procedure we rely on the following properties.

Lemma 5.1 (Properties needed for the procedure) Let % be a regular conditional preference rela-
tion. Then,

(a) there is a spanning tree for every undirected connected component of the domination graph DG[%];

(b) for every two undirected connected components G1 and G2 in DG[%], either a strictly dominates b for
every a in G1 and b in G2, or b strictly dominates a for every a in G1 and b in G2;

(c) for every edge (a, b) in DG[%], and every conditional preference relation %a that uniformly increases the
preference for a relative to %, there is a belief p1 ∈ Pa∼b and beliefs p2, ..., p|S| ∈ Pa∼ab such that p1, p2, ..., p|S|
are linearly independent.

The utility design procedure below can be used to construct a utility function that represents the con-
ditional preference relation at hand, provided it satisfies the axioms from Theorem 5.1.

Definition 5.2 (Utility design procedure) Consider a regular conditional preference relation %, to-
gether with a coherent system {%a | a ∈ A} of uniform preference increases. Let G1, ..., GK be the undirected
connected components of DG[%] such that a strictly dominates b for every k ∈ {1, ...,K − 1}, every a in Gk
and every b in Gk+1.

For every undirected connected component Gk, select a spanning tree T for Gk, with root r. Choose some
α > 0. For every k ∈ {0, ..., depth(T )}, we define the utilities for acts with depth k by induction on k. If
depth(a) = 0, then a = r and we choose the utility v(r, s) arbitrarily for every s ∈ S. For every k > 0 and
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act b with depth k, consider the predecessor a with depth k− 1. Select beliefs p1 ∈ Pa∼b, p2, ..., p|S| ∈ Pa∼ab
such that p1, p2, ..., p|S| are linearly independent, and find the unique linear mapping vb : RS → R such that

vb(p1) = v(a, p1) and vb(pk) = v(a, pk) + α for all k ∈ {2, ..., |S|}.

Set v(b, s) := vb([s]) for every s ∈ S.

Finally, select numbers n1, ..., nK such that v(a, s) + nk > v(b, s) + nk+1 for every k ∈ {1, ...,K − 1}, every
a in Gk and every b in Gk+1. Set u(a, s) := v(a, s) + nk for every k ∈ {1, ...,K}, every a in Gk and every
s ∈ S.

The ordering of the undirected connected components in terms of strict dominance, the existence of a
spanning tree for every undirected connected component, and the selection of linearly independent beliefs
p1, ..., p|S| in the way indicated above, are all possible in the light of Lemma 5.1. For every undirected
connected component there are at least |S|+ 1 degrees of freedom for constructing the associated utilities:
First, the “baseline utilities” v(r, s) for the root can be chosen arbitrarily, and moreover we can freely
select the “numeraire”α > 0, measuring the utility increase associated with each of the uniform preference
increases in the system. Additional degrees of freedom within a connected component may arise because of
the choice of the particular coherent system of uniform preference increases.

5.4 Illustration of Procedure

We will now illustrate the utility design procedure by means of an example. Consider the conditional
preference relation % in Figure 7, with three states and four acts. The vector (1/4, 0, 3/4) denotes the
belief that assigns probabilities 1/4, 0 and 3/4 to x, y and z, respectively, and similarly for the other vectors.
Note that b strictly dominates c and d strictly dominates a. There is a coherent system {%a, %b, %c, %d} of
uniform preference increases, represented by the grey lines in Figure 8. Below we will explain why this system
is coherent. In the figure, Pa∼ab, Pa∼ac, Pd∼db and Pd∼dc are the grey lines just below Pa∼b, Pa∼c, Pb∼d and
Pc∼d, respectively, whereas Pb∼ba, Pc∼ca, Pb∼bd , and Pc∼cd are the grey lines just above Pa∼b, Pa∼c, Pb∼d and
Pc∼d, respectively. Also,

p1 = (1/4, 0, 3/4), p2 = (7/24, 0, 17/24), p3 = (0, 7/24, 17/24)

q1 = (1/3, 0, 2/3), q2 = (9/24, 0, 15/24), q3 = (0, 9/16, 7/16),

r1 = (5/6, 0, 1/6), r2 = (3/4, 0, 1/4), r3 = (0, 9/14, 5/14).

The domination graph DG[%] is given by
a ←→ b
l l
c ←→ d

,

where a ←→ b means that there is an edge from a to b and an edge from b to a. Hence, there is only one
undirected connected component.
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Figure 7: Illustration of utility design procedure

Figure 8: Coherent system of uniform preference increases
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We will now show that the system of uniform preference increases is coherent. First, it may be verified
that for all p ∈ ∆(S)

inte�f (p) + intf�e(p) = 0 for all (e, f) ∈ {(a, b), (b, d), (d, c), (c, a)} (5.2)

inta�c(p) + intc�d(p) + intd�b(p) + intb�a(p) = 0 (5.3)

intd�b(p) + intb�a(p) > 0 and intc�d(p) + intd�b(p) < 0. (5.4)

Here, (5.2) holds since Pe∼f = 1/2Pe∼ef + 1/2Pf∼f e for all (e, f) ∈ {(a, b), (b, d), (d, c), (c, a)}.
To see why (5.3) holds, we extend the coordinates intf�e(p) to all vectors in RS with

∑
s∈S v(s) = 1,

as follows. For every vector v ∈ RS with
∑

s∈S v(s) = 1, and for all (e, f) ∈ {(a, b), (b, d), (d, c), (c, a)}, let
intf�e(v) be the unique number with v ∈ (1− intf�e(v)) · 〈Pe∼f 〉 +intf�e · 〈Pe∼ef 〉 . Recall that 〈Pe∼f 〉 is the
linear span of Pe∼f . Consider the vectors w1 and w2 on the line L1 in Figure 8. As w1 ∈ 〈Pa∼b〉∩ 〈Pa∼c〉 and
w2 ∈ 〈Pa∼ab〉∩ 〈Pa∼ac〉 it follows that intb�a(w1) = inta�c(w1) = 0, intb�a(w2) = 1 and inta�c(w2) = −1. In
particular, intb�a(w1) + inta�c(w1) = intb�a(w2) + inta�c(w2) = 0. Since the line L1 passes through w1 and
w2, and the coordinate intf�e(v) is linear in the vector v for every e, f (see Lemma 8.3 in Appendix A), it
follows that intb�a(v)+inta�c(v) = 0 for every v on L1. Similarly, it can be shown that intc�d(v)+intd�b(v) =
0 for every v on L1, by considering the vectors w3 and w4 on L1 in Figure 8. In particular, we have that
inta�c(v) + intc�d(v) + intd�b(v) + intb�a(v) = 0 for every v on the line L1. In a similar fashion, it can also
be shown that inta�c(v) + intc�d(v) + intd�b(v) + intb�a(v) = 0 for every v on the line L2 in Figure 8. As
every belief can be written as a linear combination of a vector in L1 and a vector in L2, and the coordinate
intf�e(v) is linear in the vector v, equation (5.3) follows.

Finally, (5.4) follows from the fact that for every vector v to the left of L2 we have that intd�b(v) +
intb�a(v) > 0, whereas for every vector v to the right of L1 we have that intc�d(v) + intd�b(v) < 0. It may
be verified that (5.2), (5.3) and (5.4) imply that the system of uniform preference increases is coherent.

We now implement the utility design procedure by choosing the coherent system of uniform preference
increases from Figure 8, the spanning tree T with root a given by

a −→ b
↓
c −→ d

and by setting α := 1.
We start by choosing u(a, x), u(a, y) and u(a, z) equal to 0. The acts of depth 1 are b and c. To find the

utilities for b, consider the beliefs p1 = (1/4, 0, 3/4) ∈ Pa∼b, p2 = (7/24, 0, 17/24) ∈ Pa∼ab and p3 = (0,
7/24, 17/24) ∈ Pa∼ab. We must find the unique linear mapping vb : RS → R with vb(p1) = u(a, p1),
vb(p2) = u(a, p2) + 1 and vb(p3) = u(a, p3) + 1. This gives rise to the system of linear equations

1/4vb(x) + 3/4vb(z) = 0, 7/24vb(x) + 17/24vb(z) = 1 and 7/24vb(y) + 17/24vb(z) = 1,

which has the unique solution vb(x) = 18, vb(y) = 18 and vb(z) = −6. Thus, u(b, x) = u(b, y) = 18 and
u(b, z) = −6.
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In a similar fashion, we can use the beliefs q1, q2 and q3 in Figure 8 to derive that u(c, x) = 16, u(c, y) = 8
and u(c, z) = −8.

The unique act of depth 2 is d. To find the utilities for d, consider the beliefs r1 = (5/6, 0, 1/6) ∈ Pc∼d,
r2 = (3/4, 0, 1/4) ∈ Pc∼cd and r3 = (0, 9/14, 5/14) ∈ Pc∼cd. We must find the unique linear mapping
vd : RS → R with vd(r1) = u(c, r1), vd(r2) = u(c, r2) + 1 and vd(r3) = u(c, r3) + 1. This gives rise to the
system of linear equations

5/6vd(x) + 1/6vd(z) = 12, 3/4vd(x) + 1/4vd(z) = 11 and 9/14vd(y) + 5/14vd(z) = 46/14,

which has the unique solution vd(x) = 14, vd(y) = 4 and vd(z) = 2. Thus, u(d, x) = 14, u(d, y) = 5 and
u(d, z) = 2. Altogether, this yields the utility representation u given by

x y z

a 0 0 0
b 18 18 −6
c 16 8 −8
d 14 4 2

.

The coherent system of uniform preference increases on which this representation is built is obtained by
uniformly increasing the utility of a particular act by 1.

For the representation there are precisely 4 degrees of freedom: Three because the baseline utilities for
a can be chosen freely, and one because the numeraire α > 0 is arbitrary. As in this particular example
the coherent system of uniform preference increases is unique up to a common proportionality factor, no
additional degrees of freedom arise.

6 Strong Transitivity and the Line Property

In Section 4 we have seen that in the absence of weakly dominated acts, a regular conditional preference
relation has an expected utility representation precisely when there is a uniform preference increase for at
least one of the acts. But is there a way to easily verify whether such a uniform preference increase exists or
not? In this section we provide an affi rmative answer, by showing that in the absence of weakly dominated
acts, the existence of a uniform preference increase is equivalent to two easily verifiable conditions: strong
transitivity and the line property, provided the conditional preference relation is regular. These conditions
can be tested directly by only considering the original conditional preference relation, without having to
search for a uniform preference increase explicitly.

The first condition, strong transitivity, states that for every three acts a, b and c, the linear spans of the
indifference sets Pa∼b, Pa∼c and Pb∼c are such that the three pairwise intersections coincide.

Axiom 6.1 (Strong transitivity) For every three acts a, b, c ∈ A it holds that 〈Pa∼b〉 ∩ 〈Pa∼c〉 ⊆ 〈Pb∼c〉 .
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See, for instance, Figure 5 where the linear spans of Pa∼b, Pa∼c and Pb∼c, when restricted to the plane
where the sum of the coordinates is 1, all meet at the same point outside the belief simplex ∆(S), and
hence the conditional preference relation at hand satisfies strong transitivity. If Pa∼b, Pa∼c and Pb∼c would
all meet inside the belief simplex, then strong transitivity would correspond to the usual transitivity of the
indifference relation between acts. In that sense, strong transitivity can indeed be viewed as a strong version
of transitivity, where this intersection property is also required outside the belief simplex. Note that the
conditional preference relation in Figure 2, for which we have informally argued that there is no uniform
preference increase, violates strong transitivity.

The diversity axiom in Gilboa and Schmeidler (2003) implies that for every strict ordering between a, b
and c there must be a belief at which this ordering is realized. In particular, the indifference sets Pa∼b,
Pa∼c and Pb∼c must already meet inside the belief simplex, and hence strong transitivity would have no bite
beyond plain transitivity under the diversity axiom.

The second condition, which we call the line property, is of a more technical nature, and only has bite
if there are at least four acts. It states that, whenever we take four acts a, b, c, d, there must be a line that
intersects the linear span of each of the six associated indifference sets at a unique point, such that the
locations of these six intersection points are related to each other according to a specific formula.

Axiom 6.2 (Line property) There is a line L = {v + λw | λ ∈ R}, with v, w ∈ RS , that intersects each
of the sets 〈Pa∼b〉 at a single point v + λabw, and where λab 6= λac whenever Pa∼b 6= Pa∼c, such that

(λab − λbd)(λac − λbc)(λad − λcd) = (λab − λbc)(λac − λcd)(λad − λbd)

for all a, b, c, d ∈ A.

The following theorem shows that, under regularity and the absence of weakly dominated acts, the
existence of a uniform preference increase is equivalent to the two conditions above.

Theorem 6.1 (Strong transitivity and line property) Let% be a conditional preference relation where
no act weakly dominates another act. Then, % has an expected utility representation, if and only if, it is
regular, satisfies strong transitivity and satisfies the line property.

This result has an interesting consequence for the case of two states. If S = {x, y}, strong transitivity
is equivalent to the usual transitivity of the indifference relation between acts, whereas the line property is
equivalent to the condition that

(pab(x)− pbd(x))(pac(x)− pbc(x))(pad(x)− pcd(x)) = (pab(x)− pbc(x))(pac(x)− pcd(x))(pad(x)− pbd(x)),

where pef is the unique belief in Pe∼f for every {a, b, c, d}. This leads to the following result.

Corollary 6.1 (Characterization for the case of two states) Let S = {x, y} and % a conditional
preference relation where no act weakly dominates another act. Let Pa∼b = {pab} for all acts a, b ∈ A.
Then, % has an expected utility representation, if and only if, % is regular and

(pab(x)− pbd(x))(pac(x)− pbc(x))(pad(x)− pcd(x)) = (pab(x)− pbc(x))(pac(x)− pcd(x))(pad(x)− pbd(x))

for all a, b, c, d ∈ A.
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A direct consequence is that for two acts and three states, every regular conditional preference relation
for which there are no weakly dominated acts will have an expected utility representation. In fact, this
property even holds if we would allow for weakly dominated acts.

7 Discussion

(a) Comparison with Savage. One important difference with the framework of Savage (1954) is that
we view the DM’s belief as a primitive notion, from which we can derive his preference relation over acts.
This is precisely how a conditional preference relation is defined: It takes the belief as an input, and delivers
the preferences over acts as an output. One of the beautiful features of the Savage framework is that the
DM’s belief can be derived from his preferences over acts. That is, Savage views the DM’s preferences over
acts as the primitive notion, which then induces his belief. There has been a long-standing debate about
which of the two, belief or preferences, should be taken as the primitive object, and we do not want to enter
this debate here. But the logic that underlies our framework is that the DM first reasons himself towards a
belief, then forms his preferences over acts based on this belief, which finally allows him to make a choice
based on this preference relation.

Another difference with Savage lies in the role of the utility function. In our model, the utility function
generates the DM’s preferences over acts for all possible beliefs over the states. As the Savage axiom system
leads to a unique probabilistic belief over states, the utility function in the Savage framework can only be
viewed in combination with this specific belief.

A final difference we would like to stress concerns the uniqueness of the utility representation. Recall
from Theorem 4.2 that in the absence of weakly dominated acts, there are |S| + 1 degrees of freedom for
the utility function in our framework, provided the sets of beliefs where the DM is indifferent beween two
acts do not all coincide. Indeed, the utilities for one act can be chosen arbitrarily, leading to |S| degrees
of freedom, whereas the utility differences with a are all uniquely given, up to a positive multiplicative
constant, leading to one additional degree of freedom. Unless all acts are equivalent, this is also the smallest
number of degrees of freedom possible. There may be more degrees of freedom, up to |A| · |S|, which would
be the case if every act strictly dominates, or is strictly dominated by, another act.

In the Savage framework, on the other hand, the utility representation is always unique up to a positive
affi ne transformation, leaving only two degrees of freedom. The reason is that a DM in the Savage framework
holds preferences over all possible mappings from states to consequences, providing us with “more data”
that restrict the possible utilities compared to a DM in our framework. However, the two degrees of freedom
in Savage’s framework are only possible because Savage’s axiom of small event continuity implies that there
are infinitely many states. We assume only finitely many states, but our “richness of data”comes from the
fact that a conditional preference relation specifies a preference relation for infinitely many beliefs (if there
are at least two states).

(b) Other foundations for expected utility in decision problems and games. The foundation
for expected utility that is closest to ours is by Gilboa and Schmeidler (2003). As already stressed in the
introduction, they also impose conditions on conditional preference relations. However, their axiom system
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is suffi cient but not necessary for an expected utility representation. More precisely, it singles out those
conditional preference relations that can be represented by a diversified utility function. By this we mean a
utility matrix where no row is weakly dominated by, or equivalent to, an affi ne combination of at most three
other rows. The crucial axiom in their analysis is diversity, which states that for every strict ordering of at
most four acts there must be at least one belief for which that ordering obtains in the conditional preference
relation at hand.

In contrast, we impose no restrictions on the utility matrix that can be used to represent the conditional
preference relation. In particular, we allow for non-diversified utility matrices and, correspondingly, allow
for non-diversified conditional preference relations. Note that all examples in this paper with three or
four acts were examples of non-diversified conditional preference relations, having a non-diversified utility
representation. By definition, diversity does not allow for weak dominance between acts. It may also be
verified that the diversity condition exludes all cases with two states and more than two acts, and all cases
with three states and more than three acts. Indeed, if we have two states and at least three acts, then
there are 6 possible strict orderings on three acts, but at most 4 of these orderings will be possible in
a regular conditional preference relation. Similarly, if we have three states and at least four acts, then
there are 24 possible strict orderings on four acts, but at most 16 of these will be possible in a regular
conditional preference relation. On the other hand, Gilboa and Schmeidler (2003) allow for infinitely many,
even uncountably many, acts and states, whereas we do not.

Fishburn (1976) and Fishburn and Roberts (1978) concentrate on games, and assume that every player
holds a preference relation over the combinations of randomized choices —or mixed strategies —of all the
players. Combinations of mixed strategies may be viewed as lotteries with objective probabilities on the
set of possible (pure) choice combinations in the game. By imposing certain axioms on these preference
relations over mixed strategy combinations, they are able to identify those that admit an expected utility
representation. It may thus be viewed as a generalization of von Neumann and Morgenstern’s (1947)
axiomatic characterization of expected utility for lotteries. The crucial difference with our approach is that
we do not consider randomizations over choices, and that we use conditional preference relations as the
primitive, rather than preferences over lotteries with objective probabilities.

In Aumann and Drèze (2002), a game is modelled as a mapping that assigns to every choice combination
by the players a lottery over consequences for each of the players. The DM (a player in the game) is then
assumed to hold a preference relation on the probability distributions over such mappings. Aumann and
Drèze (2005) take a different approach, by supposing that the DM in a game holds a preference relation on
lotteries which are defined over his own choices and over the possible consequences in the game. In both
papers, it is shown that certain axioms on the preference relation lead to an expected utility representation
that involves a unique, or essentially unique, probabilistic belief for the DM about the opponents’choice
combinations. In that sense, these results are similar to Savage (1954). Another similarity is that also the
models by Aumann and Drèze require the DM to hold preferences over objects that do not correspond to
acts in the decision problem at hand.

Much in the spirit of the present paper, Mariotti (1995) also points out that a DM in Savage (1954)
is required to hold preferences over acts that do not belong to his actual decision problem, and finds
this problematic. Mariotti (1995) goes even further, and shows that certain game-theoretic principles are
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inconsistent with the axioms of completeness and monotonicity in Savage’s framework, thus establishing a
degree of “incompatibility”between games on the one hand and the framework of Savage on the other hand.

(c) Comparison with von Neumann and Morgenstern. In their foundation for expected utility,
von Neumann and Morgenstern (1947) (vNM from now on) concentrate on lotteries, which are objective
probability distributions on a fixed set of possible consequences. They impose axioms on preference relations
over such lotteries, and show that they single out those preference relations admitting an expected utility
representation. Despite the conceptual difference between objective probabilities and subjective beliefs, as
we use them in our framework, there is a strong mathematical relationship between our approach and that of
von vNM. In our framework, an act a, in combination with a belief p, can mathematically be identified with
a vNM lottery over consequences (b, s) ∈ A×S, where every consequence (b, s) occurs with probability p(s) if
b = a, and occurs with probability zero if b 6= a. Call this lottery l(a, p). Now consider a conditional preference
relation, which is a collection of preference relations %p over acts, one for each possible probabilistic belief
p. It can thus be identified with a partial preference relation in vNM where only lotteries l(a, p) and l(b, p)
corresponding to the same belief p are ranked. In that sense, vNM require the DM to rank more lotteries
than in our framework. As most of the vNM axioms require comparisons between lotteries that are not
ranked within our framework, the vNM axiom system is not directly applicable to our setup.

(d) Comparison with state-dependent preference theory. Our notion of a conditional preference
relation requires the DM to envisage a preference relation over acts for every probabilistic belief over states
that is possible. Assuming that the DM holds an “actual”belief, this means that the DM must also reason
about preference relations he would have contingent on hypothetical beliefs. In a decision problem this makes
sense as the DM could change his belief in the light of new information, or because of new insights during
his reasoning process. If the DM anticipates on revising his belief in the future then it seems natural for
him to think about the preferences he would have as a result of changing beliefs. In games the need for
preferences contingent on hypothetical beliefs is even more prominent, as the DM will be uncertain about
the actual belief that his opponent holds in the game. The DM must therefore reason about the preference
relation over acts that his opponent will hold for every possible belief the opponent may have. By fixing a
utility matrix in a game with complete information, we thus assume that the players know the opponents’
conditional preference relations, without knowing their precise beliefs.

Our axiom system singles out precisely those conditional preference relations where the DM’s preferences
at the various beliefs can all be represented by the same utility function. It thus imposes some “consistency”
between the preference relations at the different beliefs. In this sense, our analysis is similar to the state-
dependent preference framework that has been presented in Karni, Schmeidler and Vind (1983) and Wakker
(1987), for instance. Different from Savage, these papers assume that the DM’s preferences over consequences
may depend on the specific state. In their consistency axiom, Karni, Schmeidler and Vind (1983) assume
the DM to envisage a preference relation over acts contingent on a hypothetical belief, and require the DM’s
actual preference relation to be consistent with the latter preference relation. In our setting, we impose even
more: We require the DM’s actual preference relation over acts, based on his actual belief, to be consistent
with the entire system of preference relations contingent on each of the other possible beliefs.
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(e) Comparison with case-based decision theory. Case-based decision theory, as originally formulated
in Gilboa and Schmeidler (1995), assumes that the DM evaluates an act based on how this act performed
in previous decision problems. More precisely, assume that C represents the collection of decision problems,
or cases, the DM faced in the past, and that s(c) measures the similarity of decision problem c to the
present decision problem. Then, the desirability of an act a in the present decision problem is measured by∑

c∈C s(c) · u(a, c), where u(a, c) is the utility that selecting act a generated in decision problem c.
Our framework can be embedded into case-based decision theory as follows: If a conditional preference

relation is represented by a utility function u, then the desirability of an act a in the present decision
problem, for a given p ∈ ∆(S), is given by

∑
s∈S p(s) · u(a, s). Now suppose that the states s represent

decision problems that the DM faced in the past, and that p(s) measures the similarity of problem s to the
decision problem he is facing now. Then, the measure for the desirability of act a resembles exactly that in
Gilboa and Schmeidler (1995).

Alternatively, one could still interpret p as a probabilistic belief over states, and identify every state s
with the degenerate belief [s] that assigns probability 1 to s. Suppose that, for some reason, the DM has had
each of these degenerate beliefs [s] in the past, and remembers the utility u(a, s) that each act a generated
under that belief. Then, every belief [s] can be viewed as a case in the Gilboa-Schmeidler framework. If the
DM’s actual belief is p, then the belief probability p(s) can be viewed as the similarity of the actual belief p
to the past belief [s]. Also in this scenario, the measure for the desirability of act a in the actual problem,
with the actual belief p , coincides with that of the Gilboa-Schmeidler framework.

(f) Utility differences as preference intensities. In Theorem 4.2 we have shown that in the absence of
weakly dominated acts, the utility differences are unique up to a positive multiplicative constant, provided
the sets of beliefs where the DM is indifferent between two acts do not all coincide. In that case, the expected
utility difference between two acts a and b at a state s may be interpreted as the “preference intensity”
between a and b at the state s. This is similar to how utility differences are interpreted in Anscombe and
Aumann (1963) and Wakker (1989). The state independence axiom in Anscombe and Aumann (1963) states
that the preference relation over objective lotteries on consequences must be independent of the state. This
implies, in turn, that the utility differences between two consequences must be the same at every state, and
these may be viewed as expressing the “preference intensity”between the two consequences.

The key condition in Wakker’s (1989) axiom system is state independent preference intensity. The main
idea is that the “preference intensity” between two consequences c1 and c2 at a state s can be measured
by taking two acts, where one is strictly preferred to the other, and replacing the two acts at state s by c1

and c2, respectively, such that the DM becomes indifferent between the two new acts. State independent
preference intensity requires that if the preference intensities between c1 and c2 and between c3 and c4

coincide at one state, then they must coincide at all states. In that case, the utility difference between two
consequences will always be the same at all states, and may thus be viewed as expressing the “preference
intensity”between the two consequences.

Analogously, the key condition in our axiom system, existence of coherent uniform preference increases,
guarantees that the preference intensity between any two acts and at any belief is always uniquely defined
(up to a scaling constant), provided there are no weakly dominated acts, and the sets of beliefs where the
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DM is indifferent between two acts do not all coincide. To see this, consider a coherent system of uniform
preference increases, which exists by the axiom. Then, at any belief, and for every two acts a and b, there
are in general various chains of uniform preference increases in the system that can be used to derive the
preference intensity between a and b. See Section 5.2 for the details. However, the axiom ensures that all
these different chains result in the same preference intensity, thus establishing a unique preference intensity
between every two acts and at every belief.

(g) Belief revision. A conditional preference relation does not only specify the DM’s preferences over
acts for a given belief, but also describes how these preferences would change if he were to revise his belief
in the light of new information. In a dynamic decision problem or game it may happen, for instance, that
some state is ruled out by some new information, forcing the DM to change his belief in response. And such
information events may even take place sequentially, such that more and more states can be ruled out. The
notion of a conditional preference relation is thus able to describe how the DM’s preferences would change
as a result of belief revision during the course of a dynamic decision problem or game.

(h) Game theory with conditional preference relations. In principle we could build an entire theory
of games based on conditional preference relations, which may or may not satisfy our system of axioms. In
a game, the DM would be a player i, his set of acts Ai would be the set of actions in the game, and the
states would be the set Si = ×j 6=iAj of opponents’action profiles. Fix a conditional preference relation
%i for every player i. A Nash equilibrium (Nash (1950, 1951)) could be defined as a tuple of probability
distributions (σi)i∈I , with σi ∈ ∆(Ai) for every player i, such that σi(ai) > 0 only if ai is optimal for the
induced preference relation %iσ−i . Here, σ−i denotes the product of the probability distributions σj for
j 6= i, which is a probability distribution over A−i and hence a belief for player i. With this definition, a
Nash equilibrium is thus interpreted as a tuple of beliefs about the opponents’actions, as in Aumann and
Brandenburger (1995).

Similarly, correlated rationalizability (Brandenburger and Dekel (1987), Bernheim (1984), Pearce (1984))
could be defined by the recursive procedure where A0

i := Ai for all players i, and

Aki := {ai ∈ Ak−1
i | ai optimal for %ipi for some pi ∈ ∆(Ak−1

−i )}

for every k ≥ 1. In fact, most — if not all — concepts in game theory could be generalized in terms of
conditional preference relations.

(i) Equivalent acts. In this paper we have restricted attention to scenarios where no two acts are
equivalent. In fact, our entire analysis can easily be extended to the case where equivalent acts are allowed.
Suppose we start with a set of acts A where some acts are equivalent. Then, we can partition A into
equivalence classes {A1, A2, ..., AK} with representative acts a1, a2, ..., aK , and subsequently restrict the
conditional preference relation % to the set A∗ = {a1, a2, ..., aK}, resulting in a new conditional preference
relation %∗ . Then, Theorem 5.1 can be generalized as follows: The conditional preference relation % has an
expected utility representation, if and only if, %∗ is regular and satisfies the existence of coherent uniform
preference increases. The proof is easy: If %∗ is regular and satisfies the existence of coherent uniform
preference increases, then by Theorem 5.1 it is represented by a utility function u. Extend u to a utility
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function v on A× S by setting v(a, s) := u(ak, s) for all acts a ∈ A and all s ∈ S, where a ∈ Ak. Clearly, v
will then represent % . In the same way, the other results in this paper can also be extended to cases that
allow for equivalent acts.

8 Appendix

In the appendix we start by providing the proofs of Section 5, before giving the proofs for Sections 3 and
4. The reason is that Theorem 5.1 is the main, and most general, result in this paper. Various parts in the
proof of Theorem 5.1 also occur in the proofs of Theorems 3.1 and 4.1. Rather than fully repeating these
steps in the proofs of Theorems 3.1 and 4.1, we simply refer back to the corresponding steps in the proof of
Theorem 5.1.

8.1 Appendix A: Proofs of Section 5

We first prove Lemma 5.1, and subsequently Theorem 5.1.

8.1.1 Proof of Lemma 5.1

To prove Lemma 5.1 we need the following properties.

Lemma 8.1 (Linear structure of indifference sets) Suppose that the conditional preference relation
% is regular. Then, for every pair of acts a, b the following properties hold:
(a) Pa∼b = 〈Pa∼b〉 ∩∆(S);

(b) if % has preference reversals on {a, b}, then 〈Pa∼b〉 is a hyperplane, there are |S|−1 linearly independent
beliefs in Pa∼b, and there is a full support belief p ∈ Pa∼b with p(s) > 0 for all s ∈ S;

(c) if a weakly dominates b under % then Pa∼b = {p ∈ ∆(S) |
∑

s∈Sa∼b p(s) = 1}; and

(d) there is a hyperplane H such that Pa∼b = H ∩∆(S).

Proof. (a) Clearly, Pa∼b ⊆ 〈Pa∼b〉 ∩∆(S). It remains to show that 〈Pa∼b〉 ∩∆(S) ⊆ Pa∼b. We prove, by
induction on k, that every p ∈ 〈Pa∼b〉 ∩∆(S) which can be written as the linear combination of k elements
in Pa∼b, is in Pa∼b. For k = 1 this is clear.

Take some k ≥ 2, and assume that the statement above is true for k − 1. Consider a p ∈ 〈Pa∼b〉 ∩∆(S)
that can be written as the linear combination of k elements in Pa∼b. That is, p = λ1p1 + ... + λkpk, with
p1, ..., pk ∈ Pa∼b and λ1, ..., λk 6= 0. Assume, without loss of generality, that λ1 ≤ λ2 ≤ ... ≤ λk. As p ∈ ∆(S)
and p1, ..., pk ∈ ∆(S), we have that

∑
s∈S p(s) =

∑
s∈S pm(s) = 1 for all m, and hence λ1 + ... + λk = 1.

Thus, λ1 ≤ 1
2 and p can be written as

p = λ1p1 + (1− λ1)w, with w =
1

1− λ1
(λ2p2 + ...+ λkpk).
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We show that w ∈ ∆(S). By construction,
∑

s∈S w(s) = 1, and it thus remains to show that w(s) ≥ 0 for all
s. We distinguish two cases: If λ1 > 0, then λm > 0 for all m. As p2, ..., pk ∈ ∆(S), it follows that w(s) ≥ 0
for all s. Suppose now that λ1 < 0. Then, w = 1

1−λ1 (p− λ1p1). As p, p1 ∈ ∆(S) and λ1 < 0, it follows that
w(s) ≥ 0 for all s. We thus conclude that w ∈ ∆(S). Hence, w ∈ 〈Pa∼b〉 ∩∆(S) is the linear combination of
k− 1 elements in Pa∼b. By our induction assumption, w ∈ Pa∼b. Therefore, p = λ1p1 + (1− λ1)w is in ∆(S)
with p1, w ∈ Pa∼b.

We will now show that p ∈ Pa∼b. If λ1 ∈ [0, 1] it follows by preservation of indifference. Suppose now that
either λ1 < 0 or λ1 > 1. Assume first that λ1 < 0. Then w = 1

1−λ1 (p − λ1p1), where 1
1−λ1 ,−

λ1
1−λ1 ∈ (0, 1).

Suppose, contrary to what we want to show, that p /∈ Pa∼b. Since p1 ∈ Pa∼b, it would follow by preservation
of strict preference that w /∈ Pa∼b, which is a contradiction. Hence, we conclude that p = λ1p1 +(1−λ1)w ∈
Pa∼b. If λ1 > 1, then p1 = 1

λ1
(p+ (λ1−1)w), where 1

λ1
, λ1−1

λ1
∈ (0, 1). As p1, w ∈ Pa∼b, it follows by the same

argument as above that p ∈ Pa∼b.
Hence, every belief p that can be written as the linear combination of k elements in Pa∼b is again in

Pa∼b. By induction on k we conclude that 〈Pa∼b〉 ∩∆(S) ⊆ Pa∼b.

(b) As % has preference reversals on {a, b}, the sets Sa�b and Sb�a must both be non-empty. Indeed,
suppose that Sa�b would be empty. Then, [s] ∈ Pb%a for all s ∈ S. But then it would follow by preservation
of indifference and preservation of strict preference that p ∈ Pb%a for all beliefs p ∈ ∆(S), which would be a
contradiction to our assumption that % has preference reversals on {a, b}.

Fix some states y ∈ Sa�b and z ∈ Sb�a. By continuity, there must be some λyz ∈ (0, 1) such that

pyz := (1− λyz)[y] + λyz[z] ∈ Pa∼b. (8.1)

Similarly, for every s ∈ Sb�a\{z} there is some λys ∈ (0, 1) such that

pys := (1− λys)[y] + λys[s] ∈ Pa∼b, (8.2)

and for every s ∈ Sa�b\{y}, there is some λzs ∈ (0, 1) such that

pzs := (1− λzs)[z] + λzs[s] ∈ Pa∼b. (8.3)

Consider the set

B := {[s] | s ∈ Sa∼b} ∪ {pyz} ∪ {pys | s ∈ Sb�a\{z}} ∪ {pzs | s ∈ Sa�b\{y}}, (8.4)

which contains |S| − 1 vectors in Pa∼b. We show that all vectors in B are linearly independent.
Take some numbers αs for s ∈ Sa∼b, some number αyz, some numbers αys for s ∈ Sb�a\{z} and some

numbers αzs for s ∈ Sa�b\{y} such that∑
s∈Sa∼b

αs[s] + αyzpyz +
∑

s∈Sb�a\{z}
αyspys +

∑
s∈Sa�b\{y}

αzspzs = 0.
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By (8.1), (8.2) and (8.3), this sum is equal to∑
s∈Sa∼b

αs[s] + αyz((1− λyz)[y] + λyz[z]) +
∑

s∈Sb�a\{z}
αys((1− λys)[y] + λys[s])

+
∑

s∈Sa�b\{y}
αzs((1− λzs)[z] + λzs[s])

=
∑

s∈Sa∼b

αs[s] +

αyz(1− λyz) +
∑

s∈Sb�a\{z}
αys(1− λys)

 [y]

+

αyzλyz +
∑

s∈Sa�b\{y}
αzs(1− λzs)

 [z] +
∑

s∈Sb�a\{z}
αysλys[s] +

∑
s∈Sa�b\{y}

αzsλzs[s] = 0.

As all vectors in {[s] | s ∈ S} are linearly independent, it follows that αs = 0 for all s ∈ Sa∼b, that αysλys = 0
for all s ∈ Sb�a\{z}, and that αzsλzs = 0 for all s ∈ Sa�b\{y}. Since λys ∈ (0, 1) for all s ∈ Sb�a\{z} and
λzs ∈ (0, 1) for all s ∈ Sa�b\{y}, it follows that αys = 0 for all s ∈ Sb�a\{z} and αzs = 0 for all s ∈ Sa�b\{y}.
The sum above thus reduces to

αyz(1− λyz)[y] + αyzλyz[z] = 0.

As λyz ∈ (0, 1), this implies that αyz = 0. We thus see that all coeffi cients in the linear combination above
must be 0, and hence the vectors in B are linearly independent. As such, Pa∼b contains |S| − 1 linearly
independent beliefs.

As Pa∼b 6= ∆(S), it follows that 〈Pa∼b〉 is a hyperplane in RS . Consider the set B in (8.4). Then, the
belief p := 1/(|S| − 1)

∑
q∈B q is a full support belief in Pa∼b, with p(s) > 0 for all s ∈ S.

(c) Let A = {p ∈ ∆(S) |
∑

s∈Sa∼b p(s) = 1}. To show that Pa∼b ⊆ A, take some p ∈ Pa∼b. Assume,
contrary to what we want to show, that p /∈ A. Then, p(s) > 0 for some s ∈ Sa�b. As p =

∑
s∈Sa∼b p(s) ·

[s] +
∑

s∈Sa�b p(s) · [s] it follows by preservation of indifference and preservation of strict preference that
p ∈ Pa�b. This is a contradiction to the assumption that p ∈ Pa∼b. We thus conclude that p ∈ A. The
inclusion A ⊆ Pa∼b follows directly by preservation of indifference. We thus see that Pa∼b = A.

(d) If % has preference reversals on {a, b} then we know from (b) that 〈Pa∼b〉 is a hyperplane. By choosing
H = 〈Pa∼b〉 we know by (a) that Pa∼b = H ∩ ∆(S). Suppose next that a weakly dominates b under % .
Then, we know by (c) that

Pa∼b = {p ∈ ∆(S) |
∑

s∈Sa∼b
p(s) = 1}. (8.5)

Let n ∈ RS be the vector with n(s) = 0 for all s ∈ Sa∼b and n(s) = 1 for all s ∈ S\Sa∼b. As a is not
equivalent to b under % we know that Sa∼b 6= S, and hence n 6= 0. Define H := {v ∈ RS | v · n = 0}, which
is a hyperplane. Then, it follows from (8.5) that Pa∼b = H ∩∆(S). �
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Proof of Lemma 5.1. (a) Consider an undirected connected component G of DG[%], with set of acts D.
Let D1, D2, ... be the sets of acts recursively defined by

D1 := {a ∈ D | a does not weakly dominate any b ∈ D},
Dk := {a ∈ D\(D1 ∪ ... ∪Dk−1) | a does not weakly dominate any b ∈ D\(D1 ∪ ... ∪Dk−1)}

for every k ≥ 2. Let K be the smallest number such that D1∪ ...∪DK = D. Then, (D1, ..., DK) is a partition
of D. By construction, no two acts in Dk weakly dominate each other, and hence, for every a, b ∈ Dk there
is an edge from a to b and an edge from b to a. We show the following three properties.

Property 1. For every k ∈ {1, ...,K − 1}, a ∈ D1 ∪ ...∪Dk and b ∈ Dk+1, act a does not weakly dominate b.
Proof of property 1. As a ∈ D1 ∪ ... ∪Dk, act a does not weakly dominate any act in D\(D1 ∪ ... ∪Dk−1).
In particular, a does not weakly dominate any act b ∈ Dk+1.

Property 2. For every k ∈ {1, ...,K − 1} and b ∈ Dk+1 ∪ ... ∪DK there is some a ∈ Dk such that b weakly
dominates a.
Proof of property 2. Take some b ∈ Dk+1 ∪ ... ∪ DK . As b /∈ Dk, act b weakly dominates some a1 ∈
D\(D1 ∪ ... ∪ Dk−1) = Dk ∪ ... ∪ DK . If a1 ∈ Dk then the proof is complete. If a1 /∈ Dk, then a1 weakly
dominates some a2 ∈ Dk ∪ ... ∪ DK . And so on. In this way we obtain a chain of acts (b, a1, a2, ...) in
Dk ∪ ... ∪DK where b weakly dominates a1, a1 weakly dominates a2, and so on, and where every am /∈ Dk

is followed by another act. But then, there must be an act am ∈ Dk in this chain. Indeed, if all acts were in
Dk+1∪...∪DK then the chain would be infinite, and hence there would be a cycle (am, am+1, ..., am+n = am).
By transitivity, this would imply that am would weakly dominate itself, which is impossible. Hence, we must
have a finite chain (b, a1, ..., am) where am ∈ Dk. Thus, by transitivity, b weakly dominates am ∈ Dk.

Property 3. For every k ∈ {1, ...,K − 1} there is some a ∈ D1 ∪ ... ∪Dk and b ∈ Dk+1 such that b does not
strictly dominate a.
Proof of property 3. Assume the statement is not true. Then, every act in Dk+1 would strictly dominate
every act in D1 ∪ ... ∪Dk. But then, by property 2, every act in Dk+1 ∪ ... ∪DK would strictly dominate
every act in D1 ∪ ... ∪ Dk. As such, there would be no edges between D1 ∪ ... ∪ Dk and Dk+1 ∪ ... ∪ DK .
This, however, would contradict the assumption that G is an undirected connected component.

In the light of properties 1 and 3, there is for every k ∈ {1, ...,K−1} some a ∈ D1∪ ...∪Dk and b ∈ Dk+1

such that there is an edge from a to b. Hence, there are acts r1, a1, r2, a2, ..., rK such that rk ∈ Dk for all
k ∈ {1, ...,K}, ak ∈ D1 ∪ ... ∪Dk for all k ∈ {1, ...,K − 1}, and there is an edge from ak to rk+1 for every
k ∈ {1, ...,K − 1}. Here, it is possible that rk = am for some k,m.We now construct the spanning tree T as
follows. We start by selecting the edges from r1 to every other act in D1. Then, we select the edge from a1

to r2. Subsequently, we select the edges from r2 to every other edge in D2, and the edge from a2 to r3, and
so on. Finally, we select the edges from rK to all other acts in DK . This way, we obtain a spanning tree for
the undirected connected component G.

(b) Consider two different undirected connected components G1 and G2 of DG[%]. Take some acts a in G1

and b in G2. As there is no edge between a and b, either a strictly dominates b, or b strictly dominates a.
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Assume, without loss of generality, that a strictly dominates b. Now take some arbitrary acts c in G1 and d
in G2. We show that c strictly dominates d.

To do so, we first show that c strictly dominates b. Suppose not. Since there is no edge between c and
b, it would follow that b strictly dominates c. Since a strictly dominates b and b strictly dominates c, it
would follow that a strictly dominates c, which is a contradiction since a and c are in the same undirected
connected component G1.

Now, suppose that c does not strictly dominate d. As there is no edge between c and d, it must be that
d strictly dominates c. As c strictly dominates b, it would follow that d strictly dominates b, which is a
contradiction since b and d are in the same undirected connected component G2. Hence, c strictly dominates
d, which completes the proof for (b).

(c) Take two acts a and b such that (a, b) is in DG[%], and consider a uniform preference increase %a for a.
Since (a, b) is in DG[%] we have that b does not strictly dominate a, and hence Pa∼b is non-empty. Moreover,
by part (b) in Definition 4.2, %a has preference reversals on {a, b}. By Lemma 8.1 (a) and (b), we then
know that Pa∼ab = 〈Pa∼ab〉 ∩∆(S), and that Pa∼ab has |S| − 1 linearly independent beliefs p2, ..., p|S|. Select
an arbitrary belief p1 ∈ Pa∼b. As Pa∼b ⊆ Pa�ab, it follows that p1 /∈ 〈Pa∼ab〉 . Since p2, ..., p|S| are linearly
independent beliefs in 〈Pa∼ab〉 , we conclude that p1, p2, ..., p|S| are linearly independent. This completes the
proof. �

8.1.2 Proof of Theorem 5.1

To prove Theorem 5.1 we need four preparatory results. The first states that, starting from a conditional
preference relation that is represented by a utility function, we can always generate a uniform preference
increase by lifting the utility of a given act by a small, constant amount.

Lemma 8.2 (Uniform preference increase from utility increase) Let u : A × S → R be a utility
function that represents the conditional preference relation %. For every α > 0, let the utility function uα

be given by uα(a, s) := u(a, s) + α for all s ∈ S, and uα(b, s) := u(b, s) for every b 6= a and every s ∈ S,
and let %α be the conditional preference relation induced by uα. Then, there is an ε > 0 such that for every
α ∈ (0, ε), the conditional preference relation %α uniformly increases the preference for a relative to % .

Proof. Take some b 6= a. It may be easily be verified that %α is regular, and that Pa%b ⊆ Pa�αb. To prove
condition (b) in Definition 4.2, suppose that (a, b) ∈ DG[%], that is, a does not weakly dominate b and b
does not strictly dominate a. Then, α can be chosen small enough such that %α has preference reversals on
{a, b}. We will now show that, by choosing α small enough, we can guarantee that for every p ∈ ∆(S) there
is a unique λ with p ∈ (1− λ)Pa∼b + λPa∼αb.

Observe that Pa∼b = H ∩∆(S) and Pa∼αb = Hα ∩∆(S), where H and Hα are the sets given by

H := {v ∈ RS | u(a, v) = u(b, v)} and Hα := {v ∈ RS | u(a, v) + α = u(b, v)}.
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Consider the vector n ∈ RS given by n(s) := u(a, s)− u(b, s) for all s ∈ S. Since % has preference reversals
on {a, b} we know that n 6= 0. Moreover, by construction, H = {v ∈ RS | v · n = 0} and Hα = {v ∈ RS |
v · n = −α}, which implies that H and Hα are parallel hyperplanes.

As %α has preference reversals on {a, b}, the set Sb�αa is non-empty. Hence, there is an ε > 0 such that

Sb�a ⊆ Sb�αa for every α ∈ (0, ε). (8.6)

Take some α ∈ (0, ε). We show that for every p ∈ ∆(S) there is a unique λ with p ∈ (1− λ)Pa∼b + λPa∼αb.
As % is regular, there is for every x ∈ Sa�b and y ∈ Sb�a a unique number λxy ∈ (0, 1) such that the

belief pxy = (1− λxy)[x] + λxy[y] is in Pa∼b. Then,

Pa∼b = conv({[s] | s ∈ Sa∼b} ∪ {pxy | x ∈ Sa�b, y ∈ Sb�a}), (8.7)

where conv denotes the convex hull. By (8.6) and the fact that Sa�b ⊆ Sa�αb, there is for every x ∈ Sa�b
and y ∈ Sb�a a unique number µxy ∈ (0, 1) such that the belief qxy = (1 − µxy)[x] + µxy[y] is in Pa∼αb.
Moreover, since Sa∼b ⊆ Sa�αb there is for every s ∈ Sa∼b and y ∈ Sb�a a unique number µsy ∈ (0, 1) such
that the belief qsy = (1− µsy)[s] + µsy[y] is in Pa∼αb. Thus,

Pa∼αb = conv({qsy | s ∈ Sa�b ∪ Sa∼b, y ∈ Sb�a}). (8.8)

Take some p ∈ ∆(S). We show that there is some λ ∈ R with p ∈ (1− λ)Pa∼b + λPa∼αb. We distinguish
three cases.

Case 1. Suppose that p · n ≥ 0, where n is the vector defined above such that H = {v ∈ RS | v · n = 0}
and Hα = {v ∈ RS | v · n = −α}. Take some q ∈ Pa∼αb. As Pa∼αb = Hα ∩∆(S), we have that n · q = −α.
Hence, there is some µ ∈ [0, 1) such that n·((1−µ)p+µq) = 0. As such, r := (1−µ)p+µq ∈ H∩∆(S) = Pa∼b,
and hence p = 1

1−µr −
µ

1−µq, with r ∈ Pa∼b and q ∈ Pa∼αb. Thus, p ∈ (1− λ)Pa∼b + λPa∼αb for λ = − µ
1−µ .

Case 2. Suppose that p·n ≤ −α. Take some q ∈ Pa∼b. As Pa∼b = H∩∆(S), we have that n·q = 0. Hence,
there is some µ ∈ [0, 1) such that n · ((1−µ)p+µq) = −α. As such, r := (1−µ)p+µq ∈ Hα∩∆(S) = Pa∼αb,
and hence p = 1

1−µr −
µ

1−µq, with r ∈ Pa∼αb and q ∈ Pa∼b. Thus, p ∈ (1− λ)Pa∼b + λPa∼αb for λ = 1
1−µ .

Case 3. Suppose that p · n ∈ (−α, 0). Then, there is some λ ∈ (0, 1) such that p · n = (1− λ)0 + λ(−α).
Hence, p ∈ Hλα = {v ∈ RS | v · n = −λα}. By (8.7) and (8.8) it follows that

Hλα ∩∆(S) = conv({(1− λ)[s] + λqsy | s ∈ Sa∼b, y ∈ Sb�a} ∪ {(1− λ)pxy + λqxy | x ∈ Sa�b, y ∈ Sb�a}).

As p ∈ Hλα∩∆(S), there is for every s ∈ Sa�b∪Sa∼b, y ∈ Sb�a a number µsy ≥ 0, with
∑

s∈Sa�b∪Sa∼b,y∈Sb�a µsy =
1, such that

p =
∑

s∈Sa∼b, y∈Sb�a

µsy · ((1− λ)[s] + λqsy) +
∑

x∈Sa�b, y∈Sb�a

µxy · ((1− λ)pxy + λqxy)

= (1− λ) · (
∑

s∈Sa∼b, y∈Sb�a

µsy · [s] +
∑

x∈Sa�b, y∈Sb�a

µxy · pxy)

+λ · (
∑

s∈Sa∼b, y∈Sb�a

µsy · qsy +
∑

x∈Sa�b, y∈Sb�a

µxy · qxy),
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which is in (1− λ)Pa∼b + λPa∼αb by (8.7) and (8.8).
By Cases 1, 2 and 3, we thus conclude that for every p ∈ ∆(S) there is some λ ∈ R with p ∈ (1−λ)Pa∼b+

λPa∼αb. It remains to show that λ is unique. Suppose that λ, µ are such that p ∈ (1− λ)Pa∼b + λPa∼αb and
p ∈ (1−µ)Pa∼b +µPa∼αb. Since Pa∼b = H ∩∆(S) and Pa∼αb = Hα ∩∆(S) it follows that u(b, p)−u(a, p) =
λα = µα, and hence λ = µ. Thus, λ is unique. This shows that condition (b) in Definition 4.2 is satisfied if
α is chosen small enough.

It remains to show condition (c) in Definition 4.2. Take some b, c 6= a. Then, %α coincides with %
on {b, c}. Suppose now that (a, b), (a, c) ∈ DG[%]. Then, we know from above that for every p ∈ ∆(S)
there are unique numbers intb�a(p), intc�a(p) such that p ∈ (1 − intb�a(p))Pa∼b + intb�a(p)Pa∼αb and
p ∈ (1 − intc�a(p))Pa∼c + intc�a(p)Pa∼αc. As Pa∼b = H ∩ ∆(S) and Pa∼αb = Hα ∩ ∆(S), it follows
that u(b, p) − u(a, p) = intb�a(p)α. Similarly, u(c, p) − u(a, p) = intc�a(p)α. As such, u(b, p) − u(c, p) =
(intb�a(p) − intc�a(p))α, and hence Pb∼c = {p ∈ ∆(S) | intb�a(p) = intc�a(p)}. Thus, condition (c) in
Definition 4.2 holds if α is chosen small enough. As a consequence, %α uniformly increases the preference
for a relative to % if α is chosen small enough, which completes the proof. �

For the second result, consider a conditional preference relation %′ that uniformly increases the preference
for a relative to % . Then, the preference intensity mapping intb�a, which assigns to every belief p the
coordinates 1− intb�a(p) and intb�a(p) with respect to the sets Pa∼b and Pa∼′b, is linear in the belief.

Lemma 8.3 (Preference intensity mapping is linear) Let % be a regular conditional preference rela-
tion, and %′ a conditional preference relation that uniformly increases the preference for a relative to % .
Consider an act b such that (a, b) ∈ DG[%]. For every p ∈ ∆(S), let intb�a(p) be the unique number such
that p ∈ (1 − intb�a(p)) · Pa∼b + intb�a(p) · Pa∼′b. Then, for every p, q ∈ ∆(S), and every µ ∈ R such that
(1− µ)p+ µq ∈ ∆(S), it holds that intb�a((1− µ)p+ µq) = (1− µ) · intb�a(p) + µ · intb�a(q).

Proof. Let p, q ∈ ∆(S), and µ ∈ R such that r := (1 − µ)p + µq ∈ ∆(S). As p ∈ (1 − intb�a(p)) · Pa∼b +
intb�a(p) · Pa∼′b and q ∈ (1− intb�a(q)) · Pa∼b + intb�a(q) · Pa∼′b, it follows that

r ∈ ((1− µ)(1− intb�a(p)) + µ(1− intb�a(q))) · Pa∼b + ((1− µ) · intb�a(p) + µ · intb�a(q)) · Pa∼′b,

which implies that intb�a(r) = (1− µ) · intb�a(p) + µ · intb�a(q). This completes the proof. �

The next result shows that, on the basis of a coherent system of uniform preference increases, we are
not only able to derive the indifference sets Pb∼c, but also the strict preference sets Pb�c.

Lemma 8.4 (Property of coherent uniform preference increases) Let % be a regular conditional
preference relation, and {%a | a ∈ A} a coherent system of uniform preference increases. For every belief
p ∈ ∆(S) and edge (d, e) in DG[%], let inte�d(p) be such that p ∈ (1− inte�d(p)) · Pd∼e + inte�d(p) · Pd∼de.
Then, for every three acts a, b, c, for every path Π1 in DG[%] from a to b, and every path Π2 in DG[%] from
a to c,

Pb�c = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) >
∑

(d,e)∈Π2

inte�d(p)}.
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Proof. We prove the statement by induction on the total number of edges in Π1 and Π2. If this total
number of edges is 0, then both Π1 and Π2 are the empty path, and hence b = c = a. Accordingly, Pb�c and
{p ∈ ∆(S) |

∑
(d,e)∈Π1

inte�d(p) >
∑

(d,e)∈Π2
inte�d(p)} are both the empty set, and the statement holds

trivially.
Suppose now that the total number of edges in Π1 and Π2 is k > 0, and assume that the statement holds

whenever the total number of edges is smaller than k. Since either Π1 or Π2 is not empty, we may assume
without loss of generality that Π1 is not the empty path. Let (f, b) be the last edge in Π1, and let Π′1 be
the path obtained from Π1 by deleting the last edge (f, b). As {%a | a ∈ A} is a coherent system of uniform
preference increases we know, by definition, that

Pb∼c = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) =
∑

(d,e)∈Π2

inte�d(p)}. (8.9)

We distinguish two cases: (1) Pf∼b * Pb∼c, and (2) Pf∼b ⊆ Pb∼c.
Case 1. Suppose that Pf∼b * Pb∼c. As (f, b) is an edge in DG[%] we know that Pf∼b is not empty,

and hence we can take some p∗ ∈ Pf∼b\Pb∼c. Assume, without loss of generality, that p∗ ∈ Pb�c. Then, by
transitivity, p∗ ∈ Pf�c. Note that Π′1 is a path from a to f, Π2 is a path from a to c, and that the total
number of edges in Π′1 and Π2 is k − 1. Since p∗ ∈ Pf�c we conclude by the induction assumption that∑

(d,e)∈Π′1

inte�d(p
∗) >

∑
(d,e)∈Π2

inte�d(p
∗). (8.10)

On the other hand, we know that p∗ ∈ Pf∼b and hence intb�f (p∗) = 0. Together with (8.10) we thus conclude
that ∑

(d,e)∈Π1

inte�d(p
∗) =

∑
(d,e)∈Π′1

inte�d(p
∗) + intb�f (p∗) >

∑
(d,e)∈Π2

inte�d(p
∗).

Hence,
p∗ ∈ Pb�c and

∑
(d,e)∈Π1

inte�d(p
∗) >

∑
(d,e)∈Π2

inte�d(p
∗).

Since % is regular, we know that

Pb�c = {p ∈ ∆(S) | (1− λ)p+ λp∗ /∈ Pb∼c for every λ ∈ [0, 1]}. (8.11)

Moreover, in view of (8.9) and Lemma 8.3 we can similarly conclude that

{p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) >
∑

(d,e)∈Π2

inte�d(p)} = {p ∈ ∆(S) | (1−λ)p+λp∗ /∈ Pb∼c for every λ ∈ [0, 1]}.

Together with (8.11) we conclude that

Pb�c = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) >
∑

(d,e)∈Π2

inte�d(p)}, (8.12)
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which completes Case 1.
Case 2. Suppose that Pf∼b ⊆ Pb∼c. Since Pf∼b is non-empty, we conclude that Pb∼c is non-empy, and

hence either (b, c) or (c, b) is in DG[%]. Assume, without loss of generality, that (b, c) is in DG[%]. Let Π′′1
be the path obtained by putting the edge (b, c) after Π1. Then, Π′′1 and Π2 are both paths from a to c. As
{%a | a ∈ A} is a coherent system of uniform preference increases, we know that

∆(S) = Pc∼c = {p ∈ ∆(S) |
∑

(d,e)∈Π′′1

inte�d(p) =
∑

(d,e)∈Π2

inte�d(p)}. (8.13)

Since b and c are not equivalent, there is some p∗ ∈ ∆(S)\Pb∼c. Suppose that p∗ ∈ Pb�c. Since, by definition
of a uniform preference increase, Pb%c ⊆ Pb�bc, it follows that Pb∼bc ⊆ Pc�b. As p∗ ∈ Pb�c and % is regular,
we conclude that intc�b(p∗) < 0. Since, by (8.13),∑

(d,e)∈Π1

inte�d(p
∗) + intc�b(p

∗) =
∑

(d,e)∈Π2

inte�d(p
∗)

it follows that ∑
(d,e)∈Π1

inte�d(p
∗) >

∑
(d,e)∈Π2

inte�d(p
∗).

We have thus found some p∗ ∈ Pb�c with
∑

(d,e)∈Π1
inte�d(p

∗) >
∑

(d,e)∈Π2
inte�d(p

∗). In the same way as
in Case 1, we can then prove (8.12).

If p∗ ∈ Pc�b we conclude, in a similar way as above, that intc�b(p∗) > 0, and

Pc�b = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) <
∑

(d,e)∈Π2

inte�d(p)}.

Together with (8.9) this implies (8.12). This completes Case 2. By induction, (8.12) thus holds in general.�

The last result states that the indifference sets of a uniform preference increase are always parallel to
the difference sets of the original conditional preference relation.

Lemma 8.5 (Geometry of uniform preference increases) Let % be a regular conditional preference
relation, and %′ a conditional preference relation that uniformly increases the preference for a relative to
% . Let b 6= a be such that (a, b) is in DG[%]. Then, for every pab ∈ Pa∼b and p′ab ∈ Pa∼′b,

Pa∼b = (〈Pa∼′b〉+ {pab − p′ab}) ∩∆(S).

Proof. Set A := (〈Pa∼′b〉 + {pab − p′ab}) ∩∆(S). We first show that Pa∼b ⊆ A. Take some qab ∈ Pa∼b. As
(a, b) ∈ DG[%], we know by the definition of a uniform preference increase that %′ has preference reversals
on {a, b}. Hence, by Lemma 8.1 (b), there is a full support belief p′′ab ∈ Pa∼′b with p′′ab(s) > 0 for all s ∈ S.
Let q := 1

2pab + 1
2p
′′
ab. Recall, by Lemma 8.1 (a) and (b), that Pa∼′b = 〈Pa∼′b〉 ∩ ∆(S) where 〈Pa∼′b〉 is a
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hyperplane. As p′′ab is a full support belief, there is some ε > 0 small enough and some λ ∈ R such that
q ∈ (1−λ){(1−ε)pab+εqab}+λPa∼′b. In particular, q ∈ (1−λ)Pa∼b+λPa∼′b. Recall that q ∈ 1

2Pa∼b+
1
2Pa∼′b.

Since, by definition of a uniform preference increase, there is a unique λ with q ∈ (1 − λ)Pa∼b + λPa∼′b, it
must be that λ = 1

2 , and hence q ∈
1
2{(1− ε)pab + εqab}+ 1

2Pa∼′b. That is, there is some q
′
ab ∈ Pa∼′b with

q = 1
2((1− ε)pab + εqab) + 1

2q
′
ab.

As q = 1
2pab + 1

2p
′′
ab, it follows that (1− ε)pab + εqab + q′ab = pab + p′′ab, and hence

qab = 1
ε (p′′ab − q′ab) + pab = 1

ε (p′′ab + εp′ab − q′ab) + pab − p′ab ∈ A.

Since this holds for every qab ∈ Pa∼b, it follows that Pa∼b ⊆ A.
We next show that A ⊆ Pa∼b. Take some p ∈ A. We know from above that there is some full support

belief p′′ab ∈ Pa∼′b. Let q := 1
2pab + 1

2p
′′
ab. Similarly as above, we can conclude that there is some ε > 0 small

enough and some λ ∈ R such that q ∈ (1 − λ){(1 − ε)pab + εp} + λPa∼′b. Hence, there is some q′ab ∈ Pa∼′b
such that

q = (1− λ)((1− ε)pab + εp) + λq′ab. (8.14)

Moreover, by choosing ε > 0 small enough, we can guarantee that q′ab is close to p
′′
ab, and hence will be a

full support belief as well. As p ∈ A, there is some v′ab ∈ 〈Pa∼′b〉 such that p = v′ab + pab − p′ab, and hence,
by (8.14),

q = (1− λ)(pab + ε(v′ab − p′ab)) + λq′ab.

Together with the fact that q = 1
2pab + 1

2p
′′
ab, this yields

1
2pab + 1

2p
′′
ab = (1− λ)(pab + ε(v′ab − p′ab)) + λq′ab,

and hence
(2λ− 1)pab = (2− 2λ)ε(v′ab − p′ab) + 2λq′ab − p′′ab. (8.15)

Note that the right-hand side of (8.15) is in 〈Pa∼′b〉 . If λ 6= 1
2 , then it would follow that pab ∈ 〈Pa∼′b〉∩∆(S).

Since, by Lemma 8.1 (a), 〈Pa∼′b〉 ∩∆(S) = Pa∼′b, this would mean that pab ∈ Pa∼′b. This, however, would
be a contradiction since pab ∈ Pa∼b ⊆ Pa�′b. We thus conclude that λ = 1

2 . By (8.14) we obtain that

q = 1
2((1− ε)pab + εp) + 1

2q
′
ab. (8.16)

As %′ is a uniform preference increase for a and (a, b) is in DG[%], there is some µ such that (1−ε)pab+εp ∈
(1−µ)Pa∼b +µPa∼′b. That is, there are rab ∈ Pa∼b and r′ab ∈ Pa∼′b with (1− ε)pab + εp = (1−µ)rab +µr′ab.
Together with (8.16) this yields

q = 1
2((1− µ)rab + µr′ab) + 1

2q
′
ab = 1

2(1− µ)rab + 1
2(1 + µ)(

1
2µ

1
2(1 + µ)

r′ab +
1
2

1
2(1 + µ)

q′ab). (8.17)
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Recall that q′ab is a full support belief. If we choose ε > 0 small enough, then |µ| will be small enough such
that w′ab :=

1
2
µ

1
2

(1+µ)
r′ab +

1
2

1
2

(1+µ)
q′ab is in ∆(S). As w′ab ∈ 〈Pa∼′b〉 , and Pa∼′b = 〈Pa∼′b〉 ∩∆(S) by Lemma 8.1

(a), it follows that w′ab ∈ Pa∼′b. Since rab ∈ Pa∼b, it follows from (8.17) that q ∈ 1
2(1−µ)Pa∼b+

1
2(1+µ)Pa∼′b.

Recall from above that q = 1
2pab + 1

2p
′′
ab, and hence q ∈ 1

2Pa∼b + 1
2Pa∼′b. Since %′ is a uniform preference

increase for a and (a, b) ∈ DG[%], there must be a unique number λ such that q ∈ (1−λ)Pa∼b+λPa∼′b, and
hence 1

2(1−µ) = 1
2 , which yields µ = 0. As such, (1−ε)pab+εp = rab, which implies that p ∈ 〈Pa∼b〉∩∆(S).

Since, by Lemma 8.1 (a), Pa∼b = 〈Pa∼b〉 ∩∆(S), we conclude that p ∈ Pa∼b. As this holds for every p ∈ A,
we conclude that A ⊆ Pa∼b.

Together with the insight above that Pa∼b ⊆ A we thus see that Pa∼b = A, which completes the proof.�

Proof of Theorem 5.1. (a) Suppose that % is represented by a utility function u. Then, it is easily
verified that % is regular. It remains to show that % satisfies the existence of coherent uniform preference
increases. Fix a number α > 0, and for every act a let ua be the utility function where ua(a, s) := u(a, s)+α
for all s ∈ S, and ua(b, s) := u(b, s) for all b 6= a and all s ∈ S. Let %a be the conditional preference relation
induced by ua.

We show that {%a | a ∈ A} is a coherent system of uniform preference increases relative to %, provided
α is chosen small enough. It is easily verified that every %a satisfies condition (a) in Definition 5.1. By
Lemma 8.2, we can choose α small enough such that %a satisfies condition (b) in Definition 5.1.

To prove condition (c) in Definition 5.1, observe first that for every three acts a, b, c, the conditional
preference relation %a coincides with % on {b, c}. Now, consider a path Π1 from a to b and a path Π2 from
a to c in the domination graph DG[%]. For every p ∈ ∆(S) and every edge (d, e) in Π1 and Π2, let inte�d(p)
be the unique number such that p ∈ (1 − inte�d(p)) · Pd∼e + inte�d(p) · Pd∼de. As u(d, q) = u(e, q) for all
q ∈ Pd∼e and u(d, q) + α = u(e, q) for all q ∈ Pd∼de, it follows that u(e, p)− u(d, p) = inte�d(p) · α. Hence,

u(b, p)− u(a, p) =
∑

(d,e)∈Π1

u(e, p)− u(d, p) = α
∑

(d,e)∈Π1

inte�d(p).

Similarly, u(c, p)− u(a, p) = α
∑

(d,e)∈Π2
inte�d(p), and hence

Pb∼c = {p ∈ ∆(S) | u(b, p)−u(a, p) = u(c, p)−u(a, p)} = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) =
∑

(d,e)∈Π2

inte�d(p)}.

This implies that {%a | a ∈ A} is a coherent system of uniform preference increases relative to %.
(b) Let % be a regular conditional preference relation that satisfies the existence of coherent uniform
preference increases. Select a coherent system {%a | a ∈ A} of uniform preference increases relative to %,
and choose an undirected connected component G, with set of acts D, in the domination graph DG[%].
Choose, moreover, a spanning tree T for G with root r, some utilities v(r, s) for s ∈ S, and some α > 0.
Let v be the corresponding utility function for the acts in D generated by the utility design procedure. We
show that v represents % on D.
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Take a pair of acts a, b in D, let Π1 be the path from r to a, and Π2 the path from r to b. Note that Π1

or Π2 may be the empty path if r = a or r = b. As the system {%c | c ∈ A} of uniform preference increases
is coherent, we know that

Pa∼b = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) =
∑

(d,e)∈Π2

inte�d(p)}. (8.18)

Moreover, by Lemma 8.4,

Pa�b = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) >
∑

(d,e)∈Π2

inte�d(p)}. (8.19)

Consider an edge (d, e) in Π1, and let p1 ∈ Pd∼e and p2, ..., p|S| ∈ Pd∼de be the beliefs selected by the utility
design procedure, such that p1, p2, ..., p|S| are linearly independent. Then, by definition, v(e, p1) = v(d, p1)
and v(e, pk) = v(d, pk) + α for all k ∈ {2, ..., |S|}. By Lemma 8.5 we know that

Pd∼e = (〈Pd∼de〉+ {p1 − p2}) ∩∆(S). (8.20)

Recall from Lemma 8.1 (a) that Pd∼de = 〈Pd∼de〉 ∩ ∆(S). Moreover, by Lemma 8.1 (b), {p2, ..., p|S|} is a
basis for 〈Pd∼de〉 . Hence, Pd∼de contains precisely those p ∈ ∆(S) that can be written as p =

∑|S|
k=2 λkpk,

with
∑|S|

k=2 λk = 1. Since, by the design of the utilities, v(e, pk) = v(d, pk) + α for all k ∈ {2, ..., |S|}, and
v(e, p1) = v(d, p1), it follows that

Pd∼de = {p ∈ ∆(S) | v(e, p) = v(d, p) + α}. (8.21)

Moreover, by (8.20), Pd∼e contains precisely those p ∈ ∆(S) that can be written as p =
∑|S|

k=2 λkpk+p1−p2,

with
∑|S|

k=2 λk = 1. Since, by design, v(e, pk) = v(d, pk) + α for all k ∈ {2, ..., |S|}, and v(e, p1) = v(d, p1), it
follows that

Pd∼e = {p ∈ ∆(S) | v(e, p) = v(d, p)}. (8.22)

From (8.21) and (8.22) we conclude that v(e, p)− v(d, p) = inte�d(p) · α for all p ∈ ∆(S), and hence

v(a, p)− v(r, p) =
∑

(d,e)∈Π1

(v(e, p)− v(d, p)) = α
∑

(d,e)∈Π1

inte�d(p) (8.23)

for all p ∈ ∆(S). Similarly,

v(b, p)− v(r, p) =
∑

(d,e)∈Π2

(v(e, p)− v(d, p)) = α
∑

(d,e)∈Π2

inte�d(p). (8.24)

Let Pv(a)=v(b) and Pv(a)>v(b) be the sets of beliefs p where v(a, p) = v(b, p) and v(a, p) > v(b, p), respectively.
Then, by (8.23) and (8.24),
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Pv(a)=v(b) = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) =
∑

(d,e)∈Π2

inte�d(p)} and (8.25)

Pv(a)>v(b) = {p ∈ ∆(S) |
∑

(d,e)∈Π1

inte�d(p) >
∑

(d,e)∈Π2

inte�d(p)}. (8.26)

If we compare (8.18), (8.19), (8.25) and (8.26) we see that Pv(a)=v(b) = Pa∼b and Pv(a)>v(b) = Pa�b, which
implies that v represents % on {a, b}. Hence, v represents % on every pair in D, and thus represents % on
D. As this holds for every undirected connected component in DG[%], it follows that the utility function u
produced by the utility design procedure represents % . This completes the proof. �

8.2 Appendix B: Proofs of Sections 3 and 4

In this section we prove Theorem 3.1, Theorem 4.1 and Theorem 4.2.

Proof of Theorem 3.1. (a) Suppose that % is represented by a utility function u. Then, by Theorem 5.1,
% is regular.
(b) Suppose that % is regular. We distinguish two cases: (1) a weakly dominates b, or vice versa, (2) there
are preference reversals between a and b.

Case 1. Suppose, without loss of generality, that a weakly dominates b. Then, by Lemma 8.1 (c),
Pa∼b = {p ∈ ∆(S) |

∑
s∈Sa∼b p(s) = 1}. Construct a utility function u with u(a, s) = u(b, s) for all s ∈ Sa∼b,

and u(a, s) > u(b, s) for all s ∈ Sa�b. Then, u represents % .
Case 2. Suppose there are preference reversals between a and b. Then, by Lemma 8.1 (b), 〈Pa∼b〉 is a

hyperplane, and there are |S| − 1 linearly independent beliefs p2, ..., p|S| ∈ Pa∼b. Choose some p1 ∈ Pa�b.
Similarly to the utility design procedure, we can find a utility function u with u(a, p1) > u(b, p1) and
u(a, pk) = u(b, pk) for all k ∈ {2, ..., |S|}. Then, in the same way as in the proof of Theorem 5.1, it can be
shown that u represents % . This completes the proof. �

Proof of Theorem 4.1. (a) Suppose that % is represented by a utility function u. Then, by Theorem 5.1,
% is regular and satisfies the existence of a uniform preference increase.

(b) Suppose that % is regular and satisfies the existence of a uniform preference increase. Hence, there is
an act a and a conditional preference relation %a that uniformly increases the preference for a relative to
% . As there are preference reversals on all pairs of acts, (a, b) ∈ DG[%] for every act b 6= a. Hence, DG[%]
only has one undirected connected component, and there is a spanning tree T for DG[%] that consists of
the edges (a, b) for every b 6= a. Note that %a is suffi cient to implement the utility design procedure with
respect to this spanning tree. Let u be a utility function generated by the utility design procedure, for a
specific choice of α > 0. Then, it follows from the proof of Theorem 5.1 that u represents % . �

To prove Theorem 4.2, we need the following result.
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Lemma 8.6 (Indifference sets in absence of weak dominance) Let % be a regular conditional pref-
erence relation where there are at least three acts, no acts are weakly dominated, and such that not all
indifference sets Pa∼b coincide. Then, for every act a there are acts b∗, c∗ 6= a such that (a) Pa∼b∗ 6= Pa∼c∗ ,
(b) for every d 6= a, b∗, c∗ either Pa∼d 6= Pb∗∼d or Pa∼d 6= Pc∗∼d, and (c) for every d, e 6= a, b∗, c∗ either
Pa∼d 6= Pa∼e, or Pb∗∼d 6= Pb∗∼e, or Pc∗∼d 6= Pc∗∼e.

Proof. We start with a general observation. Suppose that Pb∼c = Pb∼d. Then, by transitivity, Pb∼c ⊆ Pc∼d
and hence 〈Pb∼c〉 ⊆ 〈Pc∼d〉 . As, by Lemma 8.1 (b), 〈Pb∼c〉 and 〈Pc∼d〉 are hyperplanes, it must be that
〈Pb∼c〉 = 〈Pc∼d〉 and hence, by Lemma 8.1 (a), Pb∼c = Pc∼d. We thus conclude that

Pb∼c = Pb∼d implies Pb∼c = Pc∼d. (8.27)

(a) Suppose that (a) would not hold. Then, for a given act a∗, and every two acts b, c 6= a∗, we must have
that Pa∗∼b = Pa∗∼c. Hence, in view of (8.27), Pa∗∼b = Pa∗∼c = Pb∼c for every b, c 6= a∗. But then, it follows
that all indifference sets would coincide, which contradicts the assumption in the lemma. Hence, (a) holds.

(b) Take some d 6= a, b∗, c∗ and assume, contrary to what we want to show, that Pa∼d = Pb∗∼d and
Pa∼d = Pc∗∼d. Then, by (8.27), Pa∼b∗ = Pa∼d = Pa∼c∗ , which contradicts (a). Hence, (b) holds.

(c) Take some d, e 6= a, b∗, c∗ and assume, contrary to what we want to show, that Pa∼d = Pa∼e, Pb∗∼d =
Pb∗∼e and Pc∗∼d = Pc∗∼e. Then, by (8.27), Pa∼d = Pd∼e = Pb∗∼d and Pa∼d = Pd∼e = Pc∗∼d, which
contradicts (b) Hence, (c) holds, and the proof is complete. �

Proof of Theorem 4.2. Let u, v be two different utility representations for % . Select the acts a, b∗, c∗

as in Lemma 8.6. Since there are preference reversals on {a, b∗}, there is some p∗ ∈ Pa�b∗ . Define α :=
(u(a, p∗)− u(b∗, p∗))/(v(a, p∗)− v(b∗, p∗)). We show that

u(d, p)− u(e, p) = α · (v(d, p)− v(e, p)) for all p ∈ ∆(S) and all d, e ∈ A. (8.28)

To this purpose, consider a sequence of pairwise different acts (a1, a2, ..., a|A|) that covers the whole set
A, and such that a1 = a, a2 = b∗ and a3 = c∗. We show, by induction on m, that (8.28) holds for all
d, e ∈ {a1, ..., am}.

Ifm = 2 we have that {a1, a2} = {a, b∗}. As there are preference reversals on {a, b∗}, it follows by Lemma
8.1 (b) that there are |S| − 1 linearly independent beliefs p1, ..., p|S|−1 in Pa∼b∗ . Moreover, p∗ /∈ 〈Pa∼b∗〉 as
Pa∼b∗ = 〈Pa∼b∗〉∩∆(S) by Lemma 8.1 (a). Hence, {p1, ..., p|S|−1, p

∗} are linearly independent, and thus form
a basis forRS . As, by construction, u(a, pk)−u(b∗, pk) = α·(v(a, pk)−v(b∗, pk)) = 0 for all k ∈ {1, ..., |S|−1},
and u(a, p∗)− u(b∗, p∗) = α · (v(a, p∗)− v(b∗, p∗)), it follows that (8.28) holds for a, b∗ and every p ∈ ∆(S).

Let m ∈ {3, ..., |A|} and suppose that (8.28) holds for every d, e ∈ {a1, ..., am−1}. By Lemma 8.6 (a)
there are d, e ∈ {a1, ..., am−1} such that Pd∼am 6= Pe∼am . Hence, there is some q ∈ Pe∼am\Pd∼am . By the
induction assumption, we know that

u(d, q)− u(e, q) = α · (v(d, q)− v(e, q)). (8.29)
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Moreover, as q ∈ Pe∼am , it must be that

u(e, q)− u(am, q) = α · (v(e, q)− v(am, q)) = 0,

which, together with (8.29) implies that

u(d, q)− u(am, q) = α · (v(d, q)− v(am, q)). (8.30)

By Lemma 8.1 (b) there are |S| − 1 linearly independent beliefs p1, ..., p|S|−1 in Pd∼am . By construction,

u(d, pk)− u(am, pk) = α · (v(d, pk)− v(am, pk)) = 0 for all k ∈ {1, ..., |S| − 1}. (8.31)

Since q /∈ Pd∼am we can conclude, similarly as above, that {p1, ..., p|S|−1, q} is a basis for RS . Hence, by
(8.30) and (8.31) we conclude that (8.28) holds for d and am, and hence

u(d, p)− u(am, p) = α · (v(d, p)− v(am, p)) for all p ∈ ∆(S). (8.32)

Now, select an arbitrary f ∈ {a1, ..., am−1}, different from d. By the induction assumption, we know that
(8.28) holds for d and f,and hence

u(f, p)− u(d, p) = α · (v(f, p)− v(d, p)) for all p ∈ ∆(S). (8.33)

By (8.32) and (8.33) it follows that

u(f, p)− u(am, p) = α · (v(f, p)− v(am, p)) for all p ∈ ∆(S).

Hence, (8.28) holds for all pairs of acts in {a1, ..., am}. By induction on m, (8.28) holds for all d, e ∈ A. This
completes the proof. �

8.3 Appendix C: Proof of Section 6

To prove Theorem 6.1 we need the following preparatory result.

Lemma 8.7 (Implication of strong transitivity and the line property) Let % be a regular condi-
tional preference relation that satisfies strong transitivity and such that no act weakly dominates another
act. Moreover, assume that not all indifference sets Pa∼b coincide. Let L = {v+ λw | λ ∈ R} be a line that
intersects every set 〈Pa∼b〉 at a unique point vab = v + λabw, such that λab 6= λac whenever Pa∼b 6= Pa∼c,
and

(λab − λbd)(λac − λbc)(λad − λcd) = (λab − λbc)(λac − λcd)(λad − λbd)
for all a, b, c, d ∈ A. Fix an arbitrary act a. Then, for every b 6= a there is a vector v′ab = v + λ′abw on the
line L, different from vab, such that

(a) for every b, c 6= a there is some µ ∈ R with vbc = (1− µ)vab + µv′ab and vbc = (1− µ)vac + µv′ac,

(b) for every b 6= a the set Hab = 〈Pa∼b〉+ {v′ab − vab} has a non-empty intersection with ∆(S), and

(c) for every b, c 6= a and every pbc ∈ Pb∼c there is some µ ∈ R with

pbc ∈ (1− µ) 〈Pa∼b〉+ µHab and pbc ∈ (1− µ) 〈Pa∼c〉+ µHac.
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Proof. Fix an arbitrary act a. Select the acts b∗, c∗ 6= a as in Lemma 8.6. Let the line L have the properties
stated above. For every d, e 6= a with λae 6= λde, define the number

Dade :=
λad − λde
λae − λde

. (8.34)

As λae 6= λde, it follows by transitivity that λad, λae and λde are pairwise different, and hence Dade 6= 0. By
the line property we have that

Dadf = Dade ·Daef (8.35)

for all d, e, f 6= a with λaf 6= λdf , λae 6= λde and λaf 6= λef .
We will now define, for every act d 6= a, a number λ′ad as follows. Recall that we selected the acts a, b

∗, c∗

as in Lemma 8.6. Hence, in particular, Pa∼b∗ 6= Pa∼c∗ . As % has preference reversals on {a, b∗}, there is some
belief p′ab∗ ∈ Pb∗�a. Let pab∗ ∈ Pa∼b∗ , and define the set Hab∗ := 〈Pa∼b∗〉 + {p′ab∗ − pab∗}. Since, by Lemma
8.1 (b), 〈Pa∼b∗〉 is a hyperplane, it follows that Hab∗ is a hyperplane as well. As L intersects 〈Pa∼b∗〉 at a
single point, it will intersect Hab∗ at a single point as well, say at v′ab∗ = v + λ′ab∗w. Note that λ

′
ab∗ 6= λab∗ .

As Pa∼b∗ 6= Pa∼c∗ , we conclude that λab∗ 6= λac∗ by the way we have chosen the line L. By transitivity
it then follows that λab∗ , λac∗ and λb∗c∗ are pairwise different. Let λ′ac∗ be the unique number such that

λ′ab∗ − λab∗ = Dab∗c∗ · (λ′ac∗ − λac∗). (8.36)

Note that Dab∗c∗ is not equal to 0 as λab∗ , λac∗ and λb∗c∗ are pairwise different.
Next, take an act d 6= a, b∗, c∗. Then, by Lemma 8.6 (b), either λad 6= λab∗ or λad 6= λac∗ . Assume first

that λad 6= λab∗ . Then, λad, λab∗ and λdb∗ are pairwise different. Let λ′ad be the unique number such that

λ′ad − λad = Dadb∗ · (λ′ab∗ − λab∗). (8.37)

If λad = λab∗ then it must be λad 6= λac∗ , and hence λad, λac∗ and λdc∗ are pairwise different. Let λ′ad be the
unique number such that

λ′ad − λad = Dadc∗ · (λ′ac∗ − λac∗). (8.38)

The construction of the numbers λ′ad, for d 6= a, is hereby complete.
We now show that, for all d, e 6= a with λad 6= λae,

λ′ad − λad = Dade · (λ′ae − λae). (8.39)

In view of (8.36), (8.37) and (8.38) it only remains to show (8.39) for the case where e = c∗ and λad 6= λab∗ ,
and for the case where d, e 6= b∗, c∗.

Consider first the case where e = c∗ and λad 6= λab∗ . Then we have, by (8.36) and (8.37), that

λ′ad − λad = Dadb∗ · (λ′ab∗ − λab∗) and λ′ab∗ − λab∗ = Dab∗c∗ · (λ′ac∗ − λac∗),

which implies that λ′ad− λad = Dadb∗ ·Dab∗c∗ · (λ′ac∗ − λac∗). As, by (8.35), Dadb∗ ·Dab∗c∗ = Dadc∗ , we obtain
that λ′ad − λad = Dadc∗ · (λ′ac∗ − λac∗), which was to show.
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Suppose next that d, e 6= b∗, c∗. If λad 6= λab∗ and λae 6= λab∗ , then it follows from (8.37) that

λ′ad − λad = Dadb∗ · (λ′ab∗ − λab∗) and λ′ae − λae = Daeb∗ · (λ′ab∗ − λab∗)

and hence λ′ad − λad = (Dadb∗/Daeb∗) · (λ′ae − λae). As, by definition, Dab∗e = D−1
aeb∗ , it follows that

λ′ad − λad = Dadb∗ ·Dab∗e · (λ′ae − λae) = Dade · (λ′ae − λae)

since, by (8.35), Dadb∗ ·Dab∗e = Dade.
If λad 6= λab∗ and λae = λab∗ , then it follows from (8.37) and (8.38) that

λ′ad − λad = Dadb∗ · (λ′ab∗ − λab∗) and λ′ae − λae = Daec∗ · (λ′ac∗ − λac∗).

Combined with (8.36) we get

λ′ad − λad = Dadb∗ ·Dab∗c∗ · (λ′ac∗ − λac∗) and λ′ae − λae = Daec∗ · (λ′ac∗ − λac∗),

and hence λ′ad−λad = (Dadb∗Dab∗c∗/Daec∗)(λ
′
ae−λae).As, by (8.35),Dadb∗ ·Dab∗c∗ = Dadc∗ , andDadc∗/Daec∗ =

Dadc∗ ·Dac∗e = Dade, it follows that λ′ad − λad = Dade · (λ′ae − λae).
The case where λad = λab∗ and λae 6= λab∗ , and the case where λad = λab∗ and λae = λab∗ can be shown

in a similar fashion as above. We have thus established (8.39) for every d, e 6= a with λad 6= λae.
For every b 6= a, define the vector v′ab := v + λabw. We will prove properties (a), (b) and (c).

(a) We will show that for every b, c 6= a there is some µ with

vbc = (1− µ)vab + µv′ab and vbc = (1− µ)vac + µv′ac. (8.40)

To prove this, assume first that λab 6= λac. Let µ be such that vbc = (1 − µ)vab + µv′ab. Then, λbc =
(1 − µ)λab + µλ′ab, which implies that λab − λbc = µ(λab − λ′ab). Together with (8.34) and (8.39), it follows
that

Dabc(λac − λbc) = λab − λbc = µ(λab − λ′ab) = µDabc(λac − λ′ac).

As Dabc 6= 0, this implies that λac − λbc = µ(λac − λ′ac), which yields vbc = (1− µ)vac + µv′ac. Hence, (8.40)
is established.

If λab = λac then, by the properties of line L, we have that Pa∼b = Pa∼c, which implies that Pa∼b =
Pa∼c = Pb∼c. Hence, vab = vac = vbc, and thus (8.40) trivially holds for µ = 0. The proof for (a) is hereby
complete.

(b) Note that by choosing p′ab∗ closer to Pa∼b∗ , we move the vector v
′
ab closer to vab for every b 6= a. As, by

Lemma 8.1 (a) and (b), 〈Pa∼b〉 ∩∆(S) = Pa∼b and Pa∼b contains a full support belief, we can choose p′ab∗
close enough to Pa∼b∗ such that Hab = 〈Pa∼b〉+ {v′ab − vab} has a non-empty intersection with ∆(S) for all
b 6= a. This establishes (b).

(c) Since, by Lemma 8.1 (b), 〈Pa∼b〉 is a hyperplane, it follows thatHab = 〈Pa∼b〉+{v′ab−vab} is a hyperplane
as well. As the hyperplanes 〈Pa∼b〉 and Hab are parallel, there is for every v ∈ RS and for every b 6= a a
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unique number µab(v) such that v ∈ (1−µab(v)) 〈Pa∼b〉+µab(v)Hab. Moreover, similarly to Lemma 8.3, the
coordinate µab(v) is linear in v.

We show that for all b, c 6= a,

µab(p) = µac(p) for every p ∈ Pb∼c. (8.41)

Suppose first that λab = λac. By construction of the line L it must then be that Pa∼b = Pa∼c, and hence, by
transitivity, Pa∼b = Pa∼c = Pb∼c. Thus, µab(p) = µac(p) = 0 for every p ∈ Pb∼c and (8.41) follows.

Assume now that λab 6= λac. Then, by transitivity, λab, λac and λbc are pairwise different, and thus
Pa∼b, Pa∼c and Pb∼c are pairwise different. Moreover, vbc /∈ 〈Pa∼b〉 ∩ 〈Pa∼c〉 by the choice of the line L.

As Pa∼b and Pa∼c are different, it follows by Lemma 8.1 (a) that 〈Pa∼b〉 and 〈Pa∼c〉 are different.
As, by Lemma 8.1 (b), 〈Pa∼b〉 and 〈Pa∼c〉 both have dimension |S| − 1, the linear space 〈Pa∼b〉 ∩ 〈Pa∼c〉
has dimension |S| − 2. Hence, there is a basis {v1, ..., v|S|−2} for 〈Pa∼b〉 ∩ 〈Pa∼c〉 . By strong transitivity,
〈Pa∼b〉 ∩ 〈Pa∼c〉 ⊆ 〈Pb∼c〉 , and hence {v1, ..., v|S|−2} ⊆ 〈Pb∼c〉 . Since we have seen that vbc /∈ 〈Pa∼b〉 ∩ 〈Pa∼c〉
and vbc ∈ 〈Pb∼c〉 , it follows that {v1, ..., v|S|−2, vbc} is a basis for 〈Pb∼c〉 .

We will now show that µab(v) = µac(v) for every v in this basis. By (8.40) and the fact that vab ∈
〈Pa∼b〉 , v′ab ∈ Hab, vac ∈ 〈Pa∼c〉 , v′ac ∈ Hac, it follows that µab(vbc) = µac(vbc). Moreover, for every v ∈
{v1, ..., v|S|−2} ⊆ 〈Pa∼b〉 ∩ 〈Pa∼c〉 it holds that µab(v) = µac(v) = 0. Thus, µab(v) = µac(v) for every
v ∈ {v1, ..., v|S|−2, vbc}. As µab(v) is linear in v, and {v1, ..., v|S|−2, vbc} is a basis for 〈Pb∼c〉 , it follows that
µab(v) = µac(v) for every v ∈ 〈Pb∼c〉 . In particular, (8.41) follows. This completes the proof. �

Proof of Theorem 6.1. (a) Suppose there is a utility function u that represents % . To show strong
transitivity, consider three acts a, b and c. As % has preference reversals on every pair of acts, it follows from
Lemma 8.1 (a) and (b) that 〈Pa∼b〉 is a hyperplane and Pa∼b = 〈Pa∼b〉 ∩∆(S), and similarly for Pa∼c and
Pb∼c. Consequently,

〈Pa∼b〉 = {v ∈ RS | u(a, v) = u(b, v)}, 〈Pa∼c〉 = {v ∈ RS | u(a, v) = u(c, v)} and
〈Pb∼c〉 = {v ∈ RS | u(b, v) = u(c, v)},

which immediately implies that 〈Pa∼b〉 ∩ 〈Pa∼c〉 ⊆ 〈Pb∼c〉 .
To show the line property, note first that we can always find a line L = {v+λw | λ ∈ R} that intersects

each of the hyperplanes 〈Pe∼f 〉 at a single point vef = v + λefw, and such that λef 6= λeg whenever Pe∼f 6=
Pe∼g. To see this, select a vector w such that w /∈ 〈Pe∼f 〉 for every e, f ∈ A. That is, w is not parallel to
any of the hyperplanes 〈Pe∼f 〉 . Then, the line {λw | λ ∈ R} will intersect each of the hyperplanes 〈Pe∼f 〉
exactly once. We can then choose the vector v such that the line L = {v + λw | λ ∈ R} intersects each of
the hyperplanes 〈Pe∼f 〉 at a single point vef = v + λefw, and such that λef 6= λeg whenever Pe∼f 6= Pe∼g.

Hence, u(e, vef ) = u(f, vef ) for all e, f ∈ {a, b, c, d}. We will show that

(λab − λbd)(λac − λbc)(λad − λcd) = (λab − λbc)(λac − λcd)(λad − λbd). (8.42)

Assume first that λef = λeg for some e, f, g ∈ {a, b, c, d}. Then, by transitivity of %, we have that λef =
λeg = λfg, and (8.42) trivially holds.
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Suppose next that λef 6= λeg for all e, f, g ∈ {a, b, c, d}. Define the affi ne mappings δab, δac and δad from
R to R by

δab(λ) := u(a, v + λw)− u(b, v + λw), δac(λ) := u(a, v + λw)− u(c, v + λw) and (8.43)

δad(λ) := u(a, v + λw)− u(d, v + λw) for all λ ∈ R.

Moreover, these mappings are nonconstant as δab(λab) = 0 and δab(λ) 6= 0 for all λ 6= λab, and similarly for
δac and δad. As these mappings are affi ne and nonconstant, there are nonzero numbers Dab, Dac and Dad

such that

δab(λ)− δab(µ) = Dab · (λ− µ) (8.44)

δac(λ)− δac(µ) = Dac · (λ− µ) and (8.45)

δad(λ)− δad(µ) = Dad · (λ− µ) (8.46)

for all λ, µ ∈ R. We will now show that
Dab

Dac
=
λac − λbc
λab − λbc

. (8.47)

By taking λ = λab and µ = λbc, we obtain from (8.44) that

Dab =
δab(λab)− δab(λbc)

λab − λbc
= − δab(λbc)

λab − λbc
(8.48)

since δab(λab) = 0. Similarly, by taking λ = λac and µ = λbc, we obtain from (8.45) that

Dac =
δac(λac)− δac(λbc)

λac − λbc
= − δac(λbc)

λac − λbc
= − δab(λbc)

λac − λbc
(8.49)

since δac(λac) = 0 and δac(λbc) = δab(λbc). By combining (8.48) and (8.49) we obtain (8.47).
In a similar fashion it can be shown that

Dac

Dad
=
λad − λcd
λac − λcd

and
Dab

Dad
=
λad − λbd
λab − λbd

. (8.50)

As Dab/Dad = (Dab/Dac) · (Dac/Dad), equation (8.42) follows from (8.47) and (8.50). Hence, % satisfies
strong transitivity and the line property, which was to show.

(b) Assume now that % is regular, and satisfies strong transitivity and the line property. We construct
a utility function u, distinguishing two cases: (1) not all indifference sets Pa∼b are identical, and (2) all
indifference sets Pa∼b are identical.

Case 1. Suppose that not all indifference sets Pa∼b are identical. Since % satisfies the line property, there
is a line L = {v + λw | λ ∈ R} that intersects every set 〈Pa∼b〉 at a unique point vab = v + λabw, such that
λab 6= λac whenever Pa∼b 6= Pa∼c, and

(λab − λbd)(λac − λbc)(λad − λcd) = (λab − λbc)(λac − λcd)(λad − λbd)
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for all a, b, c, d ∈ A.
Fix an arbitrary act a. Then, by Lemma 8.7 there is for every b 6= a a vector v′ab = v + λ′abw on the

line L, different from vab, such that for every b 6= a the set Hab = 〈Pa∼b〉 + {v′ab − vab} has a non-empty
intersection with ∆(S), and such that for every b, c 6= a and every pbc ∈ Pb∼c there is some µ ∈ R with

pbc ∈ (1− µ) 〈Pa∼b〉+ µHab and pbc ∈ (1− µ) 〈Pa∼c〉+ µHac. (8.51)

We now define the utility function u as follows. Choose b∗, c∗ 6= a as in Lemma 8.6. Set α > 0 if
Hab∗ ∩∆(S) ⊆ Pb∗�a, and choose α < 0 if Hab∗ ∩∆(S) ⊆ Pa�b∗ . Define u(a, s) arbitrarily for all s ∈ S.

Consider now some d 6= a. By Lemma 8.1 (b) there is a basis {p1, ..., p|S|−1} for 〈Pa∼d〉 . As v′ad is on
the line L, the line L intersects 〈Pa∼d〉 only at vad, and v′ad 6= vad, it follows that v′ad /∈ 〈Pa∼d〉 . Hence,
{p1, ..., p|S|−1, v

′
ad} is a basis for RS . Choose the unique utilities (u(d, s))s∈S such that

u(d, pk) := u(a, pk) for all k ∈ {1, ..., |S| − 1}, and u(d, v′ad) := u(a, v′ad) + α. (8.52)

We will show that u represents % .
We assume, without loss of generality, that Hab∗ ∩∆(S) ⊆ Pb∗�a and hence α > 0. The case where α < 0

follows similarly, and is therefore omitted. To show that u represents %, we proceed in steps.
Step 1. Show that u represents % on {a, b∗}.
Proof. By (8.52) and the fact that Hab∗ = 〈Pa∼b∗〉+ {v′ab∗ − vab∗},

〈Pa∼b∗〉 = {v ∈ RS | u(b∗, v) = u(a, v)} and Hab∗ = {v ∈ RS | u(b∗, v) = u(a, v) + α},

and hence, in particular, Pa∼b∗ = Pu(a)=u(b∗). As α > 0, there is some p′ab∗ ∈ Hab∗ ∩∆(S) with p′ab∗ ∈ Pb∗�a.
Hence, there is some p′ab∗ ∈ Pb∗�a with u(b∗, p′ab∗) > u(a, p′ab∗). Similarly to the proof of Theorem 5.1 it then
follows that Pb∗�a = Pu(b∗)>u(a). Hence, u represents % on {a, b∗}.
Step 2. Show that u represents % on {a, c∗}.
Proof. Similarly to the proof of Step 1, we have that

〈Pa∼c∗〉 = {v ∈ RS | u(c∗, v) = u(a, v)} and Hac∗ = {v ∈ RS | u(c∗, v) = u(a, v) + α},

which implies that Pa∼c∗ = Pu(a)=u(c∗). Since Pa∼b∗ and Pa∼c∗ are different, it follows by transitivity that
Pb∗∼c∗ 6= Pa∼b∗ . Hence, there is some p ∈ Pb∗∼c∗\Pa∼b∗ . Assume, without loss of generality, that p ∈ Pb∗�a.
Then, by transitivity, p ∈ Pc∗�a.

By (8.51) there is some µ with p ∈ (1−µ) 〈Pa∼b∗〉+µHab∗ and p ∈ (1−µ) 〈Pa∼c∗〉+µHac∗ . As p ∈ Pb∗�a
and Hab∗ ∩∆(S) ⊆ Pb∗�a, it follows that µ > 0. Since p ∈ (1−µ) 〈Pa∼c∗〉+µHac∗ with µ > 0 and p ∈ Pc∗�a,
it must thus be that Hac∗ ∩ ∆(S) ⊆ Pc∗�a. Hence, there is some q ∈ Pc∗�a with q ∈ Hac∗ , and therefore
u(c∗, q) > u(a, q). Similarly to the proof of Theorem 5.1 it then follows that Pc∗�a = Pu(c∗)>u(a). Hence, u
represents % on {a, c∗}.
Step 3. Show that u represents % on {a, d} for every d 6= a, b∗, c∗.
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Proof. Take some d 6= a, b∗, c∗. Then, Pa∼d is either different from Pa∼b∗ or different from Pa∼c∗ . Assume,
without loss of generality, that Pa∼d 6= Pa∼b∗ . Then, it can be shown in the same way as for {a, c∗} that u
represents % on {a, d}, by exchanging the roles of d and c∗.
Step 4. Show that u represents % on {b∗, c∗}.
Proof. Take some p ∈ Pb∗∼c∗ . Then, by (8.51), there is some µ with p ∈ (1 − µ) 〈Pa∼b∗〉 + µHab∗ and
p ∈ (1 − µ) 〈Pa∼c∗〉 + µHac∗ . Hence, by (8.52), u(b∗, p) − u(a, p) = µα and u(c∗, p) − u(a, p) = µα, which
implies that u(b∗, p) = u(c∗, p). That is, Pb∗∼c∗ ⊆ Pu(b∗)=u(c∗).

We show, in fact, that Pb∗∼c∗ = Pu(b∗)=u(c∗). To this purpose, we first prove that Pu(b∗)=u(c∗) 6= ∆(S).
Since Pa∼b∗ 6= Pa∼c∗ we can find some p ∈ Pa∼b∗\Pa∼c∗ . As u represents % on {a, b∗} and {a, c∗} we must
have that u(a, p) = u(b∗, p) and u(a, p) 6= u(c∗, p), which implies that u(b∗, p) 6= u(c∗, p). Thus, Pu(b∗)=u(c∗) 6=
∆(S). As Pu(b∗)=u(c∗) =

〈
Pu(b∗)=u(c∗)

〉
∩∆(S), it follows that

〈
Pu(b∗)=u(c∗)

〉
6= RS . Hence,

〈
Pu(b∗)=u(c∗)

〉
has

dimension at most |S|−1. Since Pb∗∼c∗ ⊆ Pu(b∗)=u(c∗) and, by Lemma 8.1 (b), 〈Pb∗∼c∗〉 has dimension |S|−1,
it must be that 〈Pb∗∼c∗〉 =

〈
Pu(b∗)=u(c∗)

〉
. Since, by Lemma 8.1 (a), Pb∗∼c∗ = 〈Pb∗∼c∗〉 ∩∆(S) and we have

seen that Pu(b∗)=u(c∗) =
〈
Pu(b∗)=u(c∗)

〉
∩∆(S), we conclude that Pb∗∼c∗ = Pu(b∗)=u(c∗).

We have seen that there is some p ∈ Pa∼b∗\Pa∼c∗ . Assume, without loss of generality, that p ∈ Pc∗�a.
Then, by transitivity, p ∈ Pc∗�b∗ . Since u represents % on {a, b∗} and {a, c∗} it must be that u(a, p) = u(b∗, p)
and u(c∗, p) > u(a, p), which implies that u(c∗, p) > u(b∗, p). We thus have found some p ∈ Pc∗�b∗ with
u(c∗, p) > u(b∗, p). Similarly to the proof of Theorem 5.1 it then follows that Pc∗�b∗ = Pu(c∗)>u(b∗). Hence,
u represents % on {b∗, c∗}.
Step 5. Show that u represents % on {b∗, d} and {c∗, d} for every d 6= a, b∗, c∗.
Proof. Take some d 6= a, b∗, c∗. As Pa∼b∗ 6= Pa∼c∗ , we must have that either Pa∼d 6= Pa∼b∗ or Pa∼d 6= Pa∼c∗ .
Assume, without loss of generality, that Pa∼d 6= Pa∼b∗ . As, by Steps 1 and 3, u represents % on {a, b∗} and
{a, d}, we can show in the same way as in Step 4 that u represents % on {b∗, d}.

We now show that u also represents % on {c∗, d}. If Pa∼d 6= Pa∼c∗ , then it can be shown in the same
was as in Step 4 that u represents % on {c∗, d}. Assume now that Pa∼d = Pa∼c∗ . Then, Pc∗∼d = Pa∼d. Since
Pa∼d 6= Pa∼b∗ , it follows that Pb∗∼d 6= Pa∼d = Pc∗∼d. Hence, Pb∗∼c∗ 6= Pb∗∼d.

In the same way as in Step 4 it can be shown that Pc∗∼d ⊆ Pu(c∗)=u(d). To prove that Pu(c∗)=u(d) 6= ∆(S),
recall that Pb∗∼c∗ 6= Pb∗∼d, and hence there is some p ∈ Pb∗∼c∗\Pb∗∼d. As we have seen that u represents %
on {b∗, c∗} and {b∗, d}, it follows in the same way as in Step 4 that u(c∗, p) 6= u(d, p), and hence Pu(c∗)=u(d) 6=
∆(S). Analogously to Step 4, this implies that Pc∗∼d = Pu(c∗)=u(d). Moreover, in a similar way as in Step 4,
it can then be shown that Pc∗�d = Pu(c∗)>u(d), which implies that u represents % on {c∗, d}.
Step 6. Show that u represents % on {d, e} for every d, e 6= a, b∗, c∗.
Proof. Take some d, e 6= a, b∗, c∗. Then, by Lemma 8.6 (c), there are three possible cases: (i) Pa∼d 6= Pa∼e,
(ii) Pb∗∼d 6= Pb∗∼e, and (iii) Pc∗∼d 6= Pc∗∼e.

Case (i). Suppose that Pa∼d 6= Pa∼e. Then, it can be shown in a similar way as in Step 4 that u
represents % on {d, e}.

Case (ii). Suppose that Pb∗∼d 6= Pb∗∼e. As we have seen that u represents % on {b∗, d} and {b∗, e}, it
can be shown in a similar way as in Step 4 that u represents % on {d, e}.
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Case (iii). Suppose that Pc∗∼d 6= Pc∗∼e. As we have seen that u represents % on {c∗, d} and {c∗, e}, it
can be shown in a similar way as in Step 4 that u represents % on {d, e}.

By Steps 1—6, we conclude that u represents % on {d, e} for every d, e ∈ A, and hence u represents % .
This completes the proof of Case 1.

Case 2. Suppose that all indifference sets Pa∼b are equal. That is, there is some linear space H with
dimension |S| − 1 such that Pa∼b = H ∩∆(S) for every a, b ∈ A. Let {v1, ..., v|S|−1} be a basis for H. Take
some p∗ ∈ ∆(S)\H. Then, {v1, ..., v|S|−1, p

∗} is a basis for RS . As p∗ /∈ H, there must be a strict ordering of
the acts at p∗. Let c1, c2, ..., c|A| be a numbering of the acts such that

c1 �p∗ c2 �p∗ ... �p∗ c|A|. (8.53)

Construct a utility function u such that

u(a, vk) = u(b, vk) for all k ∈ {1, ..., |S| − 1}, and u(c1, p∗) > u(c2, p∗) > ... > u(c|A|, p∗). (8.54)

To show that u represents %, take two acts a, b and assume, without loss of generality, that p∗ ∈ Pa�b. Then,
by (8.54), Pu(a)=u(b) = H ∩∆(S) = Pa∼b. Moreover, p∗ ∈ Pu(a)>u(b). As p∗ ∈ Pa�b it then follows, similarly
to the proof of Theorem 5.1, that Pu(a)>u(b) = Pa�b. Thus, u represents % on {a, b}. As a, b were arbitrary,
we conclude that u represents % . This completes the proof. �
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