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a b s t r a c t

Psychological games enable us to study diverse motivations like anger, guilt, and intention-based
reciprocity using models of rational strategic choice based on common belief in rationality (aka
correlated rationalizability). This is achieved by letting utility depend not only on outcomes and beliefs
about others’ behavior but also on higher-order beliefs. It is an open question whether such belief-
dependent utilities can be made consistent with common belief in rationality in all empirically relevant
cases. In this paper, we use a novel existence condition to show that common belief in rationality is
possible for any empirically relevant case of belief-dependent utility. In addition, we present a recursive
elimination procedure that characterizes common belief in rationality under minimal assumptions on
belief-dependent utility functions.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Traditional game theory assumes that decision-makers exclu-
ively care about the outcomes that materialize as a result of
heir choices and opponents’ choices. However, in many real-life
nteractions, we see ourselves caring not only about outcomes,
ut also about beliefs, expectations, and emotional reactions.
utcome-based utility as used in traditional game theory gives
s a hard time trying to capture this aspect of human behavior.
sychological game theory (Geanakoplos et al., 1989; Battigalli
nd Dufwenberg, 2009) addresses this issue by allowing players’
tilities to directly depend not only on their choices and beliefs
bout others’ choices, but also on arbitrary levels of higher-order
eliefs. Since their introduction, psychological games have found
any applications in behavioral and experimental economics.
hey have been used to study a diverse set of belief-dependent
otivations such as intention-based reciprocity (Rabin, 1993;
ufwenberg and Kirchsteiger, 2004; Sebald, 2010), guilt and sur-
rise (Dufwenberg, 2002; Charness and Dufwenberg, 2006; Bat-
igalli and Dufwenberg, 2007; Khalmetski et al., 2015; Attanasi
t al., 2016, 2019), social norms and conformity (Huck and Kübler,
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2000; Li, 2008), anxiety (Caplin and Leahy, 2004), lying behavior
(Dufwenberg and Dufwenberg, 2018), and anger (Battigalli et al.,
2019).

A key distinction of psychological game theory relative to
other accounts of emotions and related phenomena is that it
subjects belief-dependent motivations to the logic of rational
strategic choice. Just as in traditional game theory, we can an-
alyze strategic reasoning under belief-dependent utilities using
standard game-theoretic solution concepts based on common
belief in rationality (Spohn, 1982; Brandenburger and Dekel,
1987; Tan and da Costa Werlang, 1988, characterizing corre-
lated rationalizability). Battigalli and Dufwenberg (2009) were
the first to present such an epistemic framework for strate-
gic reasoning expressing common strong belief in rationality
(Battigalli and Siniscalchi, 2002, characterizing extensive-form
rationalizability, Pearce, 1984) in dynamic psychological games
where utility may depend on the full system of conditional belief
hierarchies.

Despite the broad scope of psychological games in existing
theory and applications, an open foundational question remains:
What assumptions about belief-dependent utility are necessary
to apply models of strategic rationality in the first place? Most
existing investigations of psychological games restrict to games
with finite choice- and player-sets, and they assume continuity
of utility functions in higher-order beliefs to ensure that common
belief in rationality (or a suitable extension) is possible. Psycho-

logical games that lie beyond these assumptions have not been
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s thoroughly investigated. In particular, it is unknown whether
here are empirically relevant cases of psychological games where
elief-dependent utility causes models of strategic rationality and
elated solution concepts to fail.

In this paper, we get to the root of this question by provid-
ng an in-depth analysis of how belief-dependent utility affects
ommon belief in rationality — the basic building block in all
odels of strategic reasoning in games. For maximum clarity, we
o not attempt to explicitly cover all extensions of psychological
ames that have been studied in previous theory and applications.
nstead, we go back to the simplest setup in which the interaction
f belief-dependent motivation and strategic reasoning can be
tudied: static psychological games as defined in Geanakoplos
t al. (1989).1 Within this restricted class of games, we relax
he aforementioned conventional assumptions on psychological
tility functions and choice- and player-sets as much as possible.2
Our investigation consists of two parts, each of which zooms in

n a basic issue where strategic reasoning in psychological games
ranscends strategic reasoning in traditional games.

The first of these issues is the possibility of common belief in
ationality. We present an elementary example of non-existence,
ccompanied by a novel sufficient condition for possibility of
ommon belief in rationality in psychological games. Our condi-
ion, preservation of rationality at infinity, is considerably weaker
han the previously known conditions (Geanakoplos et al., 1989;
attigalli and Dufwenberg, 2009; Bjorndahl et al., 2013).3 In light
f the new sufficient condition, we can see that our example
ncapsulates the typical configuration where belief-dependent
tility causes inconsistencies with common belief in rationality.
ot only that, it is now easy to understand that impossibility of
ommon belief in rationality cannot occur in empirically plausible
pplications of psychological games.
The second issue we consider is the procedural characteriza-

ion of common belief in rationality. We present an elimination
rocedure for psychological games that generalizes iterated elim-
nation of strictly dominated choices from traditional game the-
ry in intuitive ways: If player’s utilities depend on n+1th-order
eliefs, we find that iterative elimination of choices and nth-order
eliefs characterizes common belief in rationality. This nests the
ase of traditional static games where players’ utilities depend
n first-order beliefs and iterated elimination of choices charac-
erizes common belief in rationality. Extending upon previously
esults (Battigalli et al., 2020),3 we use transfinite elimination of
hoices and nth-order beliefs4 to achieve a characterization for
tatic psychological games under minimal assumptions on utility
unctions. In particular, we do not require any form of continuity.

Our characterization theorem is accompanied by a simple ex-
mple that gives a clear intuition for why characterizing common
elief in rationality requires elimination of choices and beliefs.
n particular, we illustrate how the procedural characterization
s intimately related to interactions between players’ preferences
ver choices and rationality constraints of their opponents that
an arise in psychological games but not in traditional ones.

1 Dynamic psychological games differ from static psychological games as
onsidered here in two ways: Firstly, players are allowed to move sequentially.
econdly, preferences may depend on updated beliefs that arise during the play
f the dynamic game. In Section 6.3, we discuss how our results extend to
ynamic psychological games.
2 Specifically, our most permissive set of assumptions (see Section 6.2) will

onsist of minimal assumptions that guarantee the existence of a universal type
pace (Heifetz and Samet, 1998, 1999) and the measurability of rationality as
n event within this universal type space.
3 See Section 7 for a literature review.
4 The need for transfinite eliminations reveals an interesting connection to

orrelated rationalizability in infinite traditional games, see Comment 3 on
heorem 5.5 and Section 6.2 for details.
2

While iterated elimination of strictly dominated choices for tra-
itional games is both implementable as a linear program and
onverges in finitely many steps, neither of these nice properties
s inherited by our procedure iterated elimination of choices and
th-order beliefs. Following our main investigation, we survey and
iscuss the principle ways in which elimination of choices and
th-order beliefs differs from elimination of strictly dominated
trategies.
Notably, it is straightforward to extend the results presented

n this paper to psychological games with infinite choice and/or
layer sets — a class of games that has rarely, if ever, been
onsidered in previous literature. Following our main analysis, we
iscuss these extensions as well as how to extend our results to
ynamic games and games under asymmetric information.
The remainder of this paper proceeds as follows: Section 2

ntroduces static psychological games. Section 3 defines common
elief in rationality. Section 4 provides sufficient conditions for
ommon belief in rationality to be possible in a given psycholog-
cal game. Section 5 presents the procedure iterated elimination of
hoices and nth-order beliefs. Section 6 discusses extensions to our
esults. Section 7 discusses related literature. Section 8 concludes.
ll proofs are in Appendix A at the end of the paper.

. Psychological games

In traditional games, utilities ui of players i ∈ I depend on their
hoices Ci and on first-order beliefs about opponents’ choices
1
i = ∆(C−i). Moreover, utilities depend linearly on first-order
eliefs. By contrast, utilities in psychological games might depend
on-linearly on the full belief hierarchy of players. Each belief
ierarchy bi is a sequence of probability distributions (b1i , b

2
i , . . . )

hat capture i’s belief about his opponents’ choices (b1i ), i’s beliefs
bout opponents’ choices and their beliefs about their opponents’
hoices (b2i ), and so on.
Throughout the analysis, we only consider belief hierarchies

atisfying coherency and common belief in coherency.5 Branden-
urger and Dekel (1993) prove that every such belief hierarchy
i ∈ Bi is homeomorphic to a probability distribution over
pponents’ choices and belief hierarchies δ(bi) ∈ ∆(C−i × B−i).6
s a corollary, looking at nth-order beliefs Bn

i = projC−i×Bn−1
−i

Bi,
e find that every bni ∈ Bn

i is homeomorphic to a probability
istribution over opponents’ choices and n − 1th-order beliefs

˜(bni ) ∈ ∆(C−i × Bn−1
−i ). We identify bi with δ(bi) and bni with δ̃(bni )

henever that is useful.
Drawing on these preliminaries, we now give a formal defini-

ion of static psychological games7:

5 Our construction of these belief hierarchies essentially follows the standard
rocedure from Brandenburger and Dekel (1993). Coherency requires that every
elief hierarchy (b1i , b

2
i , . . . ) satisfy bni = margC−i×Bn−1

−i
bn+1
i , n ≥ 1, where Bn−1

−i

denotes the set of opponents’ n − 1th-order beliefs. Intuitively, within a fixed
belief hierarchy, we can consistently reduce higher-order beliefs to lower order-
beliefs through marginalization. Moreover, this is commonly believed. That is,
b3i assigns full probability to opponents’ coherent second-order beliefs b2j , j ̸= i,
b4i assigns full probability to opponents’ coherent third-order beliefs b3j , j ̸= i
such that, for every opponent j ̸= i, every b3j assigns full probability to coherent
opponents’ second-order beliefs b2k , k ̸= j, and so on. Battigalli et al. (2020)
proceed in a slightly different way in their construction, see Footnote 38.
6 Here and in the following, for any measurable set S, ∆(S) will denote the

set of σ -additive probability measures on the Borel σ -algebra over S.
7 Static versus dynamic psychological games are not clearly delineated in

the literature. In line with Geanakoplos et al. (1989), we choose to call a
psychological game static iff

1. the game involves a single stage of simultaneous moves by all players,
2. players’ utilities exclusively depend on their choices and on first- and

higher-order beliefs regarding players’ choices at the time of choosing.
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efinition 2.1 (Static Psychological Game). A static psychological
ame is a tuple Γ = (Ci, Bi, ui)i∈I with I a finite set of players, Ci
he finite set of choices available to player i, Bi the set of belief
ierarchies for player i expressing coherency and common belief
n coherency, and ui a measurable and bounded utility function
f the form

i : Ci × Bi → R.

Our Definition 2.1 for static psychological games is slightly
ifferent from previous ones. In our online appendix, we compare
t to the best-known alternative from Battigalli and Dufwenberg
2009). As we demonstrate, our definition is entirely equivalent
o theirs.

. Rationality and common belief in rationality

In this section we extend the traditional definition of com-
on belief in rationality to static psychological games. As in the

raditional case, we start with defining rational choice:

efinition 3.1 (Rational Choice). Choice ci ∈ Ci is rational for
layer i given belief hierarchy bi ∈ Bi if ui(ci, bi) ≥ ui(c ′

i , bi), ∀c ′

i ∈

Ci.

Building on Definition 3.1, we define up to k-fold belief ra-
tionality for any finite k and common belief in rationality: Belief
hierarchies express 1-fold belief in rationality if they assign full
probability to opponents’ choice-belief combinations such that
the choice is rational for the opponent’s belief. They express
up to 2-fold belief in rationality if they express 1-fold belief
in rationality and assign full probability to opponents’ beliefs
expressing 1-fold belief in rationality. And so on.

Definition 3.2 (Up to k-Fold and Common Belief in Rationality).
Recursively define

Ri(1) = {(ci, bi) ∈ Ci × Bi| ui(ci, bi) ≥ ui(c ′

i , bi), ∀c
′

i ∈ Ci}

Ri(2) = {(ci, bi) ∈ Ri(1)| bi ∈ ∆(×
j̸=i

Rj(1))}

Ri(k) = {(ci, bi) ∈ Ri(k − 1)| bi ∈ ∆(×
j̸=i

Rj(k − 1))}, k > 1

Ri(ω) =

⋂
k∈{1,2,... }

Ri(k).

A belief hierarchy bi expresses up to k-fold belief in rationality if
bi ∈ ∆(×j̸=i

Rj(k)). It expresses common belief in rationality if

bi ∈ ∆(×j̸=i
Rj(ω)).

A choice ci is rational under up to k-fold belief in rationality if
there exists a belief hierarchy bi satisfying (ci, bi) ∈ Ri(k + 1). A
choice-nth-order-belief tuple (ci, bni ) is consistent with up to k-fold
belief in rationality if there exists a belief hierarchy bi inducing bni
and satisfying (ci, bi) ∈ Ri(k+1). Rationality under common belief
in rationality and consistency with common belief in rationality
are defined analogously.

Definition 3.2 proceeds in a very similar fashion as in tradi-
tional games. The main difference is the more general definition

An alternative definition of static psychological games would require only
condition (1) above. That definition would include games in which players
move simultaneously in a single stage but where utilities potentially depend
on post-play first- and higher-order beliefs regarding the choices of players. To
odel such psychological games, we might only need a static game form, but
e also need the epistemic apparatus used to analyze dynamic games (i.e. a
ystem of conditional belief hierarchies). For this reason, we find it more fruitful
o draw the line between static psychological games and dynamic ones using
equirements (1) and (2).
3

of rationality and the resulting need to track belief hierarchies as
we iteratively refine belief in rationality.

Like in traditional games, two questions around common be-
lief in rationality arise. The first one is whether for every psycho-
logical game Γ and every player i in it, there is a belief hierarchy
i that expresses common belief in rationality. The second one
s whether there is a procedure that identifies all choices that
re rational under common belief in rationality for a player i. We
nvestigate the first question in Section 4 and the second question
n Section 5.

. When common belief in rationality is possible

In this section we explore the conditions under which common
elief in rationality is possible in psychological games. To start, we
resent a concrete example of a game in which common belief in
ationality fails due to a peculiar discontinuity in players’ utilities.
ur example inspires a novel existence condition for belief hier-
rchies expressing common belief in rationality: preservation of
ationality at infinity. Since all application-relevant psychological
ames do preserve rationality at infinity, our analysis shows that
he possibility of common belief in rationality is not an issue in
ractice. This is different from the conventional existence con-
ition belief continuity which imposes rather strict assumptions
n players’ utilities. To clarify this point, we present an example
hat shows how well-known departures from linear probability
eighting like the certainty effect naturally lead to games that are
ot belief continuous but that do preserve rationality at infinity.

.1. Impossibility of common belief in rationality

In traditional games, finiteness of player- and strategy-sets
uarantees that common belief in rationality is possible. This
s not true for psychological games, as the following example
hows.8 ,9

xample 4.1 (Common Belief in Rationality May not Be Possible).
odified Bravery Game: Player 1 chooses to act timidly or boldly,
layer 2 is a passive observer. Player 1 is a timid guy, preferring
o act timidly in almost all situations. But things change when
layer 1 thinks that Player 2 considers his timidity a commonly
nown fact, not only believing that Player 1 chooses timid, but
lso believing that Player 1 believes that Player 2 believes that he
hooses timid, and so on. Then Player 1 is angry and wants to act
oldly to prove Player 2 wrong.
Let btimid

1 be the belief hierarchy for Player 1 where he believes
hat Player 2 believes it to be common knowledge that Player 1
s going to choose timid. So he believes that Player 2 believes that
layer 1 chooses timid, believes that Player 2 believes that Player
believes that Player 2 believes that Player 1 chooses timid, and
o on. Here, ‘‘believes’’ means ‘‘assigns probability 1 to’’.
Now let the Player 1’s utility be such that u1(timid, btimid

1 ) =

and u1(bold, btimid
1 ) = 1, whereas u1(timid, b1) = 1 and

1(bold, b1) = 0 for every other belief hierarchy b1 ̸= btimid
1 .

ence, choice bold is rational for Player 1 iff his belief hierarchy
s btimid

1 and timid is uniquely rational otherwise. The game is
ummarized in Table 1.
We now prove that there is no belief hierarchy for Player 1

hat expresses common belief in rationality. We first show that
he belief hierarchy btimid

1 does not express common belief in
ationality. By definition, btimid

1 is such that Player 1 believes that

8 The game is inspired by Geanakoplos et al.’s (1989) Bravery Game.
9 For language-based games with the language LB(ΦΓ ), a game that is similar

to the one in Example 4.1 was independently developed by Bjorndahl et al.
(2013). See Section 7 for details.
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Table 1
Modified bravery game.

b1 = btimid
1 b1 ̸= btimid

1

timid 0 1
bold 1 0

Player 2 believes that Player 1 chooses timid and has belief hier-
rchy btimid

1 . But timid is not rational for the belief hierarchy btimid
1 ,

nd hence under btimid
1 , Player 1 believes that Player 2 believes

hat Player 1 chooses irrationally. So btimid
1 does not express up to

2-fold belief in rationality and hence also not common belief in
rationality.

Suppose, contrary to what we want to prove, that there exists
a belief hierarchy b1 for Player 1 that expresses common belief
in rationality. Then, b1 is such that Player 1 believes that Player
2 only assigns positive probability to belief hierarchies b′

1 for
Player 1 that express common belief in rationality. Since we have
seen that btimid

1 does not express common belief in rationality, we
conclude that b1 must entail that Player 1 believes that Player 2
only assigns positive probability to belief hierarchies b′

1 different
from btimid

1 . Recall that only choice timid is rational for every such
belief hierarchy b′

1. As under b1, Player 1 must believe that Player
2 believes in Player 1’s rationality, b1 must imply that Player 1
believes that Player 2 believes that Player 1 chooses timid.

Moreover, b1 must be such that Player 1 believes that Player 2
believes that Player 1 believes that Player 2 only assigns positive
probability to belief hierarchies b′

1 for Player 1 that express com-
mon belief in rationality. Hence, under b1, Player 1 must believe
that Player 2 believes that Player 1 believes that Player 2 only
assigns positive probability to belief hierarchies b′

1 different from
btimid
1 . As choice timid is uniquely rational for every such belief

hierarchy b′

1, and b1 is such that Player 1 believes that Player 2
believes that Player 1 believes that Player 2 believes in Player 1’s
rationality, it follows that, under b1, Player 1 believes that Player
2 believes that Player 1 believes that Player 2 believes that Player
1 chooses timid.

Continuing in this fashion, we conclude that b1 must be the
belief hierarchy btimid

1 — a contradiction since we have seen that
btimid
1 does not express common belief in rationality. Hence, there

is no belief hierarchy for Player 1 that expresses common belief
in rationality in this game.

In Example 4.1, common belief in rationality fails due to a pe-
culiar discontinuity of Player 1’s utility function. Player 1 strongly
cares whether it is commonly believed that he will choose timidly:
He strictly prefers bold iff he thinks it is commonly believed that
he will act timidly and strictly prefers timid otherwise. An impli-
cation is that choice timid is not rational for the belief hierarchy
btimid
1 , yet for every n there is a belief hierarchy b̂1 with b̂n1 =

(btimid
1 )n such that timid is rational for b̂1. As it turns out, this

configuration is typical for games where common belief in ra-
tionality fails. If no player in a psychological game exhibits this
discontinuous sensitivity to particular belief hierarchies, we say
that the game preserves rationality at infinity. We now formally
define this condition and prove that it is sufficient for common
belief in rationality to be possible.

4.2. Preservation of rationality at infinity

The condition of preservation of rationality at infinity states
that if a choice ci is rational for every belief hierarchy in a
sequence bi(1), bi(2), . . . where each bi(n − 1) and bi(n) agree up
to the n − 1th-order belief, then ci must also be rational for the

corresponding limiting belief hierarchy.

4

Definition 4.2 (Preservation of Rationality at Infinity). A psycho-
logical game Γ preserves rationality at infinity if the following is
true for every player i ∈ I , every choice ci ∈ Ci, and every belief
hierarchy bi ∈ Bi: Suppose that for every n ≥ 1 there is some
b̂i ∈ Bi with b̂ni = bni such that ci is rational for b̂i. Then choice ci
is also rational for bi.

Equivalently, whenever a choice ci is not rational for a belief
hierarchy bi, then there must be some n ≥ 1 such that ci is not
rational for any belief hierarchy b̂i with b̂ni = bni .

We now prove that preservation of rationality at infinity en-
sures that common belief in rationality is possible. In the proof,
we show how to construct a belief hierarchy expressing common
belief in rationality under preservation of rationality at infinity.
By contrast, all previous existence proofs (Geanakoplos et al.,
1989; Battigalli and Dufwenberg, 2009; Bjorndahl et al., 2013,
etc.) proceed non-constructively.

Theorem 4.3 (Possibility of Common Belief in Rationality). Consider
a psychological game Γ that preserves rationality at infinity. Then,
for every player i, there exists a belief hierarchy bi ∈ Bi that expresses
common belief in rationality.

Comments on Theorem 4.3:

1. Our construction in the proof of Theorem 4.3 shows that,
for any fixed k ≥ 1, we can always find a belief hierarchy
bi for each player i that expresses up to k-fold belief in
rationality, even in static psychological games that do not
preserve rationality at infinity.10 So belief in rationality can
only ever fail when we try to extend a belief hierarchy
expressing finitely many layers of up to k-fold belief in
rationality to one that does so for all k ∈ N.

2. In conjunction, Example 4.1 and Theorem 4.3 show that
common belief in rationality only ever fails in psychological
games where utility discontinuously depends on the full
belief hierarchy. Hence, it is all but impossible to encounter
this problem in any real-life application of psychological
games. This fact could not have been inferred from previ-
ous existence results as in Geanakoplos et al. (1989), Bat-
tigalli and Dufwenberg (2009), etc. All previous results in
the psychological games literature restrict to continuity of
utility functions in the weak topology on Bi, an assumption
that is easily violated already where utility depends only on
finitely many levels of higher-order beliefs.11 This explains
why no concrete example of a game where common belief
in rationality fails had been given in the psychological
games literature prior to our Example 4.1.9

3. There also is a tight connection between the proof of Theo-
rem 4.3 and Example 4.1: In the proof, we filter probability-
one belief hierarchies, requiring ever higher levels of belief
in rationality. Under preservation in rationality, we then
find that the limit of the induced sequence of probability-
one belief hierarchies must inherit all imposed rationality

10 This continues to be true in games with infinite choice- and player-sets,
provided that rational choices exist for any belief hierarchy bi . See Footnote 33
for details.
11 See Section 4.3 for examples. The existence condition for language-based
games from Bjorndahl et al. (2013) is a notable exception among previously
known results. Their condition is similar in flavor to ours in that a language-
based utility function will pass the condition if, roughly speaking, rational and
irrational states of mind can be distinguished based on finitely many logical
formulae. However, as we argue in Section 7, Bjorndahl et al.’s (2013) result
only applies for a subset of the games we consider here. And, moreover, it is
not straightforward to check whether a given psychological game falls into the
class of LB(ΦΓ )-games they consider. And neither is it easy to verify for a given
game within that class, whether utility functions satisfy Bjorndahl et al.’s (2013)
sufficient condition for common belief in rationality or not.
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requirements. Conversely, in Example 4.1 we put a similar
filter on all belief hierarchies. Common belief in rationality
is then seen to fail because increasing levels of belief in
rationality single out a unique belief hierarchy that does
not inherit all the imposed rationality requirements.

4. Preservation of rationality of infinity amounts to upper
hemicontinuity of the best-response correspondence
BRi(bi) =

{
ci ∈ Ci| ui(ci, bi) ≥ ui(c ′

i , bi), ∀c ′

i ∈ Ci
}

in the
product of discrete topologies on Bi. Based on this, we
could also give a non-constructive proof of Theorem 4.3,
applying Cantor’s intersection theorem on the space of
probability-one belief hierarchies.12 Compared to this al-
ternative, our constructive proof has the virtue of being
completely elementary. Moreover, it nicely exposes the
relationship between preservation of rationality at infinity
and our Example 4.1 as described in comments (2) and (3)
above.

4.3. Belief continuity

Based on Example 4.1 and Theorem 4.3, we now know that
the impossibility of common belief in rationality is not a problem
of empirical interest. A follow-up question is whether there are
interesting psychological games that fail the existence conditions
in previous papers but not ours. Here, we give a simple exam-
ple of a psychological game where common belief in rationality
is possible even though continuity as assumed in the previous
literature fails to hold.

To start, we formally define the conventional continuity as-
sumption, which we will call belief continuity. Geanakoplos et al.
1989) were the first to show that common belief in rational-
ty is possible under this assumption.13 In the following defini-
ion, d(bni , b̂

n
i ) denotes the Lévy–Prokhorov distance between the

robability distributions induced by nth-order beliefs bni , b̂
n
i ∈

n
i .

efinition 4.4 (Belief Continuity).14 A psychological game Γ is
elief-continuous if, for every player i ∈ I , every choice ci ∈ Ci,
very belief hierarchy bi ∈ Bi, and every ε > 0, there is n ∈ N and

δ > 0 such that for any belief hierarchy b̂i ∈ Bi with d(bmi , b̂mi ) < δ

for all m ≤ n we have that |ui(ci, bi) − ui(ci, b̂i)| < ε.

12 The non-constructive proof is analogous to Theorem 5.5, Part 3. Specifically,
e can use preservation of rationality at infinity to show, for all choices ci ∈ Ci
nd all k ≥ 1, that the set of probability-one belief hierarchies that rationalize ci

under up to k-fold belief in rationality is closed in the space of probability-one
belief hierarchies endowed with the product of discrete topologies. Now note
that this space is compact by Tychonoff’s theorem, and that up to k-fold belief in
rationality can be satisfied for arbitrary finite k in any psychological game with
finite choice sets Ci . It follows that there is a choice ci ∈ Ci such that the sets
f probability-one belief hierarchies rationalizing ci under up to k-fold belief in
ationality define a sequence of nested non-empty compact sets. Using Cantor’s
ntersection theorem, it follows that there exists a belief hierarchy that expresses
ommon belief in rationality. One way to understand the filter on probability-
ne belief hierarchies that we apply in the constructive proof is as an explicit
mplementation of Cantor’s intersection theorem. This explicit implementation
eavily relies on the finiteness of choice sets Ci .
13 More precisely, they prove that any belief-continuous static psychologi-
al game admits a psychological Nash equilibrium. Since psychological Nash
quilibria are special instances of belief hierarchies expressing common belief
n rationality, this implies that common belief in rationality is possible in all
elief-continuous static psychological games. Battigalli and Dufwenberg (2009)
rove that belief continuity makes common (strong) belief in rationality possible,
ot only in static psychological games as considered here but also in dynamic
sychological games.
14 This definition is slightly different from the one in Geanakoplos et al. (1989)
n that we use Lévy–Prokhorov distances between nth-order beliefs whereas they
se the composite metric that these Lévy–Prokhorov distances induce on Bi . It
s easy to check that both definitions are equivalent (see Jagau and Perea, 2017
or a proof).
5

Table 2
Modified bravery Game II.

b1 ∈ B1(⋆, timid) b1 /∈ B1(⋆, timid)

timid 0 1
bold 1 0

Definitions 4.2 and 4.4 show that belief continuity is more
restrictive than preservation of rationality at infinity: Preservation
of rationality at infinity only asks that infinitely many levels of
beliefs should never matter for the rationality of a choice-belief
combination (ci, bi). Beyond that, belief continuity asks that utility
functions vary continuously with trembles to the nth-order belief
bni for any n ≥ 1. No restrictions of this second type are imposed
under preservation of rationality at infinity. It is then easily
seen that belief continuity implies preservation of rationality at
infinity.15

Observation 4.5 (Belief Continuity and Preservation of Rationality
at Infinity). Every belief-continuous game preserves rationality at
infinity.

More interestingly, it is easy to find games in which belief
continuity fails but preservation of rationality at infinity does not.
As the following example suggests, belief discontinuities naturally
arise if we extend psychological game theory to account for non-
linear probability weighting.16 A similar example, the indignant
altruism game, has been developed independently in Bjorndahl
et al. (2013).

Example 4.6 (Common Belief in Rationality without Belief Continu-
ity). Modified Bravery Game II: Consider the following variation
of Example 4.1: Player 1 now already gets angry if he believes
that Player 2 is sure that Player 1 will act timidly. In that case,
Player 1 wants to act boldly to prove Player 2 wrong.

Let B1(∗, timid) be the set of Player 1’s belief hierarchies where
he believes that Player 2 believes that he chooses timid. Here,
‘‘believes’’ means ‘‘assigns probability 1 to’’. Player 1’s utility
function is given by u1(timid, b1) = 1, u1(bold, b1) = 0 for
b1 /∈ B1(∗, timid) and u1(timid, b1) = 0, u1(bold, b1) = 1 for
b1 ∈ B1(∗, timid). So Player 1 strictly prefers bold iff he believes
that Player 2 believes him to choose timid and strictly prefers
timid otherwise. Table 2 summarizes the game.

It is easy to see that this game preserves rationality at infin-
ity: Since utilities depend on at most second-order beliefs, ci is
necessarily rational for bi whenever ci is rational for some b̂i with
b̂2i = b2i . However, the game is not belief-continuous since slightly
perturbing second-order beliefs for any b1 ∈ B1(∗, timid) leads to
discontinuous changes in u1(bold, b1). So while belief-continuity
does not allow us to ascertain the possibility of common belief
in rationality, preservation of rationality at infinity does. In fact,
it is straightforward to find belief hierarchies that rationalize
either choice for player 1 while expressing common belief in
rationality.17

15 For a simple proof, note that belief continuity amounts to continuity
of utilities in the product of weak topologies on Bi . By contrast, preservation
f rationality at infinity merely requires that each player i’s best-response
orrespondence BRi(bi) := {ci ∈ Ci|ui(ci, bi) ≥ ui(c ′

i , bi), ∀c ′

i ∈ Ci} be upper
hemicontinuous in the stronger product of discrete topologies on Bi .
16 While Example 4.6 is a belief-discontinuous psychological game, we could
also produce violations of belief continuity in traditional settings. Take, for
example, a Prisoner’s dilemma game with the twist that one of the players
strictly prefers to cooperate iff he is sure that his opponent will defect. That game
will behave analogous to the game presented below, already without utilities
that depend on higher-order beliefs.
17 A helpful tool to find such belief hierarchies is the construction we used
to filter belief hierarchies in the proof of Theorem 4.3. The reader may verify
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The game from Example 4.6 might appear artificial, but it en-
apsulates a phenomenon that is well-known from other strands
f the decision- and game-theory literature: In many experimen-
al and real-life risky decisions, people are prone to the certainty
ffect (Tversky and Kahneman, 1981). Moving from almost cer-
ainty to certainty of an event can discontinuously change the
valuation of alternatives and thereby dramatically change be-
avior. Given the prevalence of the certainty effect in individual-
ecision settings, it is plausible that similar discontinuities can
lso play a role when agents reason about others’ intentions and
eliefs.
Clearly, whenever we want to model games in a way that

llows for discontinuities in the processing of probabilities, we
ill automatically venture outside the class of belief-continuous
ames.18 At the same time, already the fact that people in real-
ife decision problems plausibly care about at most finite levels of
igher-order beliefs puts us squarely within the realm of games
hat preserve rationality at infinity.

. Common belief in rationality characterized

In this section, we present a recursive elimination procedure
hat identifies the choices that can rationally be made under
ommon belief in rationality in psychological games, similar to
hat iterated elimination of strictly dominated choices achieves

n traditional games. Based on Definition 3.2 and Example 4.1
ne might already expect that elimination among choices and
eliefs will be needed to arrive at such a characterization. What
s less apparent at this point is exactly which beliefs a potential
limination procedure must incorporate to work for a given game
nd a given set of belief-dependent utility functions. Our main
esult in this section, Theorem 5.5, gives a precise answer to this
uestion: Whenever players’ utilities depend on at most n+ 1th-

order beliefs, elimination of choices and nth-order beliefs will
be necessary and sufficient for a characterization. Leading up to
Theorem 5.5, Section 5.1 presents a simple example to illustrate
the precise role that belief elimination plays in our procedural
characterization.

5.1. An introductory example

In the following, we present a simple psychological game in-
volving guilt aversion. In the example, utilities depend on second-
order beliefs, and it turns out that joint elimination of choices
and first-order beliefs selects the choices that are consistent
with common belief in rationality. As shown in Theorem 5.5,
the example is representative of a more general pattern, leading
to a characterization of common belief in rationality through
elimination of choices and nth-order beliefs.

Example 5.1 (Elimination of Choices and Beliefs in a Psychological
Game). A Date in the Pangs of Guilt: You and Alice decided to
have a date at a nice bar in town. Now it is the night of nights

that b̂i = bi[(bold, ∗), (bold, ∗), (timid, ∗), (timid, ∗), (bold, ∗), (bold, ∗), . . . ] is an
example of a belief hierarchy that expresses common belief in rationality for
both players i. Also, it can be shown that the game admits no psychological
Nash equilibrium.
18 And even if we do not believe in such discontinuities in the processing
of subjective probabilities, they might still be a useful approximation to a
smoother underlying reality. As argued by Wakker (2010), stepwise-continuous
probability-weighting functions in Neo-Additive Rank-Dependent Utility often
strike an attractive balance between parsimony and fit when representing
(inherently finite) experimental choice data in the decision-under-risk literature.
Similar stepwise-continuous functions could be just as useful for modeling devi-
ations from linear weighting of probabilities in experiments on belief-dependent
motivations.
 p

6

and you wonder whether to go to the date or to stay at home. At
the other end of town, Alice is asking herself the same question.

Whether or not on a date, you enjoy going to bars. If it was not
for the date, you would surely prefer not to stay home. However,
you like Alice more as a friend than as a date. It is mostly the guilt
you would feel from rejecting Alice that has made you agree to
the date in the first place. Given this, you would actually prefer
it if Alice just stayed home. Alternatively, you could stay home.
Then however, you are in the pangs of guilt. Specifically, the more
you believe that Alice goes to the date and expects you to come
too, the worse you feel about staying home.

Different from a traditional game, your utility function there-
fore depends on both first- and second-order beliefs. Let it be
defined as follows19:

uy(date, by) = 1− b1y(date), uy(stay, by) = −

∫
{date}×Ba

b1a(date) dby

ere
∫

{date}×Ba
b1a(date) dby represents the expected probability you

assign to the event that Alice goes to the date and believes that
you will come to the date too.20

Meanwhile, Alice prefers to go to the date if she thinks you will
likely come, and otherwise she prefers to stay home. No different
from a traditional game, Alice’s utility function then only depends
on first-order beliefs:

ua(date, ba) = b1a(date), ua(stay, ba) = 1 − b1a(date)

Already for this simple game, we can show that iterated elim-
ination of strictly dominated choices will not suffice to character-
ize common belief in rationality. To see this, first note that every
choice can be rationalized by at least one belief hierarchy for the
respective player:

• For Alice, choosing date is rational whenever she believes
that you choose date with probability greater than 1

2 and
stay is rational otherwise.

• For you, choosing stay is rational whenever you believe, with
probability 1, that Alice chooses date and believes, again
with probability 1, that you choose stay. Your choice date,
on the other hand, is rational for any of your second-order
beliefs.

Since every choice is rationalized by at least one belief for the
respective player, it follows that iterated elimination of choices
does not eliminate any choices for any player in this game.

However, we can easily show that both you and Alice can only
choose date under common belief in rationality. To see this, it is
sufficient to keep track of choices and 1st-order beliefs:

Step 1: You can only rationally choose stay if you put proba-
bility one on Alice’s choice-1st-order-belief combination
(date, b1a) where b1a(date) = 0.
Alice can rationally choose date for any b1a(date) ≥

1
2 and

stay for any b1a(date) ≤
1
2 .

Step 2: If you believe in Alice’s rationality, then you believe that
she chooses stay if b1a(date) ≤

1
2 and date if b1a(date) ≥

1
2 .

But then, you cannot believe that Alice goes to the date
for sure and believes b1a(date) = 0. Hence your choice
stay cannot be rationalized for you under belief in Alice’s
rationality.

19 Your utility function captures a similar psychological mechanism as guilt
aversion in Battigalli and Dufwenberg (2007). Different from that model, we
consider a static game where utility depends on initial beliefs only. Such a
variation of guilt aversion is not new, see Khalmetski et al. (2015).
20 A full fledged analysis of these higher-order expectations and linear
sychological games is in Jagau and Perea (2021).
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Step 3: If Alice entertains up to 2-fold belief in rationality, she
must believe that you do not choose stay. Hence, stay
cannot be rationalized for her under up to 2-fold belief
in rationality.

t follows that only date is rational under common belief in
ationality for both you and Alice.

Different from what we can observe in traditional games, there
re no irrational choices for any player in Example 5.1, but there
s a choice (your choice stay) that is not rational if you believe
n Alice’s rationality. By contrast, in a traditional game, there can
e choices that are not rational under belief in the opponents’
ationality only if there are irrational choices as well.

In Example 5.1, this happens because of an interaction be-
ween your preferences and Alice’s rationality constraints21:
ince you care not only about Alice’s behavior but also about
er (first-order) beliefs, knowing that Alice chooses rationally
an directly matter for your preferences over actions. This is
recisely the reason why iterated elimination of choices fails to
haracterize common belief in rationality in Example 5.1. In a
raditional game, such interactions between preferences of play-
rs and rationality constraints of their opponents are excluded
y construction. Players in traditional games only care about
heir opponents’ behavior, so opponents’ rationality constraints
nly have an indirect impact on preferences through excluding
pponents’ behaviors that turn out to be irrational at increasing
evels of belief in rationality.

In Example 5.1, we still have an easy time figuring out the
redictions under common belief in rationality, provided that we
race not only players’ choices but also their first-order beliefs.
t turns out that this intuition generalizes as follows: Whenever
tility depends on at most n + 1th-order beliefs, common belief in
ationality is characterized by iterative elimination of choices and
th-order beliefs. We prove and discuss this result in the following
ection.

.2. Iterated elimination of choices and nth-order beliefs

In traditional games, iterated elimination of strictly dominated
hoices selects exactly the choices that are consistent with com-
on belief in rationality while only keeping track of players’
hoices. In this section, we generalize the result for traditional
ames by providing a procedure called iterated elimination of
hoices and nth-order beliefs that characterizes common belief in
ationality in belief-finite psychological games while only keeping
rack of choices and finite levels of higher-order beliefs. We start
y giving a definition of belief-finite games.

efinition 5.2 (Belief-Finite Games). A psychological game Γ is
elief-finite (of order n) if there is n ≥ 1 such that for every player
, every choice ci ∈ Ci, and every two belief hierarchies bi, b̂i ∈ Bi
ith bni = b̂ni we have ui(ci, bi) = ui(ci, b̂i).

It is not hard to see that every belief-finite game preserves
ationality at infinity.

bservation 5.3 (Belief Finiteness and Preservation of Rationality at
nfinity). Every belief-finite game preserves rationality at infinity.

Hence, by Theorem 4.3, common belief in rationality is possi-
le in every belief-finite game.

21 We can make the idea of such interactions precise using causality diagrams
o model belief-dependent preferences. Mourmans (2019) uses this technique
o characterize the classes of psychological games where iterated elimination of
hoices does suffice to characterize common belief in rationality.
7

Henceforth, we consider a belief-finite game of order n+1, so
that we can write

ui : Ci × Bn+1
i → R.

We now show that iterated elimination of choices and nth-order
beliefs exactly selects the choices consistent with common belief
in rationality in belief-finite games of order n + 1. To start, we
define the procedure:

Procedure 5.4 (Iterated Elimination of Choices and nth-Order Be-
liefs).

Step 1: For every player i ∈ I , define

Rn
i (1) ={(ci, bni ) ∈ Ci × Bn

i |∃b
n+1
i ∈ Bn+1

i

with margC−i×Bn−1
−i

bn+1
i = bni

such that ui(ci, bn+1
i ) ≥ ui(c ′

i , b
n+1
i ), ∀c ′

i ∈ Ci}.

Step k ≥ 2: Assume Rn
i (k−1) is defined for every player i. Then, for

every player i,

Rn
i (k) ={(ci, bni ) ∈ Rn

i (k − 1)|∃bn+1
i ∈ ∆(Rn

−i(k − 1))

with margC−i×Bn−1
−i

bn+1
i = bni

such that ui(ci, bn+1
i ) ≥ ui(c ′

i , b
n+1
i ), ∀c ′

i ∈ Ci}.

We finally define: Rn
i (ω) =

⋂
k∈{1,2,... }

Rn
i (k), R

n
i =

⋂
k∈Ord

Rn
i (k).

Here Ord denotes the ordinals.22 Transfinite elimination of
(ci, bni ) tuples will be necessary for similar reasons as transfinite
elimination of non-best replies in Lipman (1994). See the third
comment on Theorem 5.5 for details. We now prove:

Theorem 5.5 (The Procedure Works). Take a psychological game Γ
that is belief-finite of order n + 1.

1. For all k ≥ 0, the choice-belief combinations (ci, bni ) ∈ Ci ×Bn
i

that are consistent with up to k-fold belief in rationality are
exactly the choice-belief combinations in Rn

i (k + 1).
2. The choice-belief combinations (ci, bni ) that are consistent

with common belief in rationality are exactly the choice-belief
combinations in R

n
i .

3. In a belief-continuous game, the choice-belief combinations
(ci, bni ) that are consistent with common belief in rationality
are exactly the choice-belief combinations in Rn

i (ω).

Comments on Theorem 5.5:

1. Elimination of choices and nth-order beliefs naturally gen-
eralizes the characterization of common belief in rational-
ity in traditional games: Whenever utility depends on at
most n + 1th-order beliefs, we need to eliminate amongst
choices and nth-order beliefs. So, in particular, if utility
depends only on first-order beliefs (n = 0) our proce-
dure turns into the familiar iterated elimination of non-best
replies which is used to characterize correlated rationaliz-
ability in traditional games (Pearce, 1984; Tan and da Costa
Werlang, 1988).23

22 While any transfinite induction must terminate at some ordinal, the set of
all ordinals is a paradoxical notion in Zermelo–Fraenkel set theory. So k ∈ Ord
should be interpreted as iterating as needed where the number of transfinite
iterations of k cannot be further constrained other than that it is an ordinal.
(That the output of transfinite iterations converges at some ordinal is guaranteed
by the well-ordering theorem in conjunction with the fact that projCi×Bni

Ri(ω)
is a best-response set for any n ≥ 0.) See Jagau (2021) for a more detailed
investigation of transfinite eliminations of non-best replies.
23 In Example 5.1, we actually do not need to track first-order beliefs for you
since Alice’s utility depended only on your choices. This suggests that we need
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2. We can interpret Theorem 5.5 as an informational require-
ment for empirical investigations of psychological games.
Since players’ rationality in psychological games has to be
judged in light of behavior and beliefs, psychological-games
models cannot be studied relying only on behavioral data.
Instead, we must combine information on subjects’ behav-
ior and beliefs to test the predictions of psychological game
theory. This mirrors common practice in experiments on
psychological games, where it is standard to elicit summary
statistics of players’ second-order beliefs.24 Theorem 5.5
exposes the theoretical basis for these practices: If n+1th-
order beliefs enter utility functions in our model, it is only
ever identified based on data about subjects’ choices and
nth-order beliefs.

3. In belief-finite games of order n+ 1, the procedure always
selects exactly the combinations of choices and nth-order
beliefs that are consistent with up k-fold-belief in rationality
for any finite k. However, if a game is not belief-continuous,
it can happen that a tuple (ci, bni ) is supported by a set
of choices and belief hierarchies that shrinks towards the
empty set as we iterate over up to k-fold belief in ratio-
nality. Such a (ci, bni ) then survives ω steps of elimination
of choices and nth-order beliefs without being consistent
with common belief in rationality. This phenomenon is rem-
iniscent of examples using traditional games with infi-
nite choice sets (see (e.g.) Lipman, 1994; Dufwenberg and
Stegeman, 2002; Bach and Cabessa, 2012), and it is easy to
construct psychological-games counterparts of such exam-
ples. Different from traditional games, we do not need to
assume infinite choice sets to generate such examples in
belief-finite games of order n > 1. Since players’ utility-
relevant beliefs are distributions over C−i × Bn

−i, we can
let the set of belief hierarchies bi that rationalize some ci
shrink towards ∅ even if C−i is finite. A concrete example
is given in Appendix B.
Similar to techniques used in infinite traditional games,
we use transfinite iterations of our elimination procedure
to deal with belief-discontinuous utility functions.25 This
shows an intriguing conceptual connection between belief-
discontinuous psychological games and infinite traditional
games that was not previously known.26

6. Extensions

6.1. Elimination of choices and nth-order beliefs and applications

Even though Theorem 5.5 considerably simplifies character-
izing common belief in rationality relative to Definition 3.2, our
procedure iterated elimination of choices and nth-order beliefs still
fails to inherit many of the properties that have made iterated

only track beliefs for a player up to the level that they enter some opponent’s
tility. Indeed, asymmetric situations of this sort can be covered by extending
heorem 5.5 as follows: Let Γ be a belief-finite, belief-continuous game where
1 ≥ n2 ≥ · · · ≥ n|I| ≥ 1 are the highest utility-relevant levels of higher-order
eliefs for players 1, . . . , |I|. Then common belief in rationality is characterized by
terated elimination of choices and n1 − 1th-order beliefs for players 2, . . . , |I| and
of choices and n2 − 1th-order beliefs for player 1.
24 In Jagau and Perea (2021), we show that such summary statistics are not
only convenient for empirical investigations, but that we can construct a whole
simplified version of psychological game theory where belief hierarchies are
replaced by suitably defined summary statistics as the new epistemic primitive.
25 This should not be understood as a refinement of common belief in
rationality. Rather, all steps k ≥ ω of transfinite elimination of choices and
th-order beliefs can be equated to step ω in Definition 3.2. See Jagau (2021)
or details.
26 The connection to infinite traditional games is further discussed in
ection 6.2.
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elimination of strictly dominated choices an attractive solution
concept in traditional games. Clearly, this gap between psycho-
logical and traditional games could be closed under additional as-
sumptions, and this would make the analysis of belief-dependent
motivations in games significantly more manageable. Here, we
sketch three particularly promising ways in which one could hope
to simplify psychological games:27

• Linearity: In traditional games, dependence of utilities on
first-order beliefs and the expected-utility assumption turn
iterated elimination of non-best replies into a sequence of
linear programs. By contrast, we face two sources of non-
linearity in psychological games: Firstly, ui may depend
non-linearly on bi. Secondly, bi itself is a highly non-linear
object. To restore linearity, we would need to extend the
expected-utility assumption to psychological games.28

• Finiteness: In traditional games, iterated elimination of non-
best replies has converged as soon as we are not able to
eliminate any choices for any player for the first time since
the start of the procedure. Also, at any given step k > 1, we
will be able to eliminate choices for a player i iff choices
for some of i’s opponents were eliminated at step k − 1.
This immediately implies that

∑
i∈I |Ci| − 1 is an upper

bound on the length of the procedure in traditional games.
By contrast, in psychological games it is typically the case
that no upper bound on elimination of choices and nth-
order beliefs can be given, and we can construct examples
of simple psychological games where infinitely many elimi-
nations of choices and nth-order beliefs occur.29 Intuitively,
the reason is that multilaterally belief-dependent prefer-
ences can lead to a feedback loop of overlapping restrictions,
where rationality constraints of different players interact to
restrict admissible beliefs further and further ad infinitum.
This cannot happen in (finite) traditional games, where op-
ponents’ rationality constraints exhaust their influence on
a given player i’s choice problem through excluding certain
behaviors of i’s opponents.30 Different from the previously
discussed non-linearity of psychological utility, these feed-
back loops should be considered a feature rather than a bug
in most interesting applications.

• Pearce’s Lemma: In traditional games, Pearce’s Lemma
(Pearce, 1984) allows us to replace iterated elimination of
non-best replies with iterated elimination of strictly dominated
choices. This greatly reduces the dimensionality of the un-
derlying utility maximization problem, allowing us to limit
comparisons of state-dependent utility among choices ci ∈

Ci to all states in C−i rather than having to consider every
probabilistic state in ∆(C−i). Pearce’s Lemma fails in psycho-
logical games for much the same reasons as the linearity of
elimination of non-best replies. We may expect to restore it
under qualitatively similar (if stronger) assumptions.

27 See Jagau and Perea (2021) for an in-depth investigation of finite and linear
procedures and applications of Pearce’s Lemma in psychological games.
28 In Jagau and Perea (2021), we show that psychological utility functions
can be fully linearized by iterating expected-utility-type assumptions across all
levels of higher-order beliefs. Your utility function in Example 5.1 is an instance
of such a linear psychological (expected) utility function.
29 The example in Appendix B involves a simple game between you and Alice
in which utilities only depend on second-order beliefs, and where we require
ω-fold elimination of choices and first-order beliefs to select the tuples of choices
and first-order beliefs that are consistent with common belief in rationality.
30 For infinite traditional games, a similar mechanism turns out to cause
transfinite iterations of eliminations of non-best replies. See Jagau (2021) for
details.
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.2. Infinite choice- and player-sets

Theorem 4.3, Example 4.1, and Theorem 5.5 show a striking
imilarity between strategic reasoning in psychological games and
trategic reasoning in traditional games with infinite choice and/or
layer sets: Firstly, in both classes of games, it is not guaranteed
hat common belief in rationality can be satisfied, even if arbitrary
inite orders of belief in rationality are satisfiable (see Dufwen-
erg and Stegeman, 2002, Example 2). Secondly, selecting the
hoices consistent with common belief in rationality might ne-
essitate an elimination procedure of arbitrary transfinite length,
ather than a countably infinite one (see Lipman, 1994).

Mathematically, the reason for this similarity lies in the rich-
ess of the utility-relevant state space: In infinite traditional
ames, this richness is immediate in the infinite size of the set of
pponents and/or the sets of opponents’ choices. In psychological
ames we get the same richness for any (non-singleton) size of
layer- and choice-sets, since, for any n > 1, player i’s nth-
rder belief bni is a probability distribution on the uncountably
nfinite set C−i×Bn−1

−i . Here as there, rich state spaces start to be a
roblem whenever utility is discontinuous on the respective state
pace. And, as Theorem 5.5, Part 3 shows, restoring this continuity
n psychological games has the same effects as in infinite tradi-
ional games (i.e. a non-empty maximal reduction exists and can
e characterized through standard induction; Dufwenberg and
tegeman, 2002, Theorem 1).
A notable implication of these remarks is that the gap between

inite psychological games as in Definition 2.1 and psychological
ames with infinite choice- and player-sets becomes very small:

bservation 6.1 (Common Belief in Rationality in Infinite Psycho-
ogical Games). Consider a static psychological game Γ = (Ci, Bi,

i)i∈I with I a countable set of players, Ci a separable set of choices
or player i, Bi the set of belief hierarchies for player i expressing
oherency and common belief in coherency,31 and ui : Ci × Bi → R
measurable and bounded utility function.
ossibility:

1. For every player i ∈ I , let ui be such that, for every bi ∈ Bi,
some ci ∈ Ci is rational given bi.32 Then, for every player i
and k ≥ 1, there exists a choice-belief hierarchy combination
(ci, bi) expressing up to k-fold belief in rationality.33

31 Whenever Ci is not Polish, we need to refine Brandenburger and
Dekel’s (1993) construction of Bi . Specifically, if choice sets are assumed to
be general measurable spaces, it is not necessarily the case that a hierarchy
of coherent beliefs b1i , b

2
i , . . . induces a probability distribution on opponents’

hoices and belief hierarchies (see Heifetz and Samet, 1999). Instead, b1i , b
2
i , . . .

might distribute on a decreasing sequence of sets Xn
i ⊂ C−i × Bn−1

−i such that
ultimately no σ -additive measure on the space of belief hierarchies can be
induced by the sequence of finite-order beliefs. The obvious solution is to
require the existence of such a σ -additive measure in our definition of coherent
belief hierarchies. Heifetz and Samet’s (1998,1999) results imply that adding this
requirement to Brandenburger and Dekel’s (1993) construction indeed defines
a space of belief hierarchies Bi such that each bi ∈ Bi satisfies coherency and
common belief in coherency and can be identified with a unique probability
measure δ(bi) ∈ ∆(C−i × B−i).
32 For infinite traditional games, Theorem 1 in Dufwenberg and Stegeman
(2002) instead requires ui(ci, b1i ) to be upper semi-continuous on Ci for each
b1i ∈ B1

i . Clearly, rational choices will exist for any belief hierarchy if ui is upper
semi-continuous in this sense, whereas the reverse implication is not true.
33 Whenever rational choices can fail to exist for some beliefs bi of some
player i, rationality not only eliminates irrational choices but also beliefs for
which no rational choice exists. At any level k ≥ 0 of rationality and up
to k-fold belief in rationality, it might now happen that all surviving beliefs
for some player i admit no rational choice. In that case, rationality and up
to k-fold belief in rationality fails for i, and rationality and up to k + m-fold
belief in rationality fails for all m ≥ 1 and all players j ∈ I . Elimination
procedures and definitions continue to work regardless as long as they account
for the new belief-elimination part of the rationality constraint throughout.
9

2. If, in addition, Ci is compact Hausdorff for each player i ∈ I
and Γ is belief-continuous, then there exists a choice-belief
hierarchy tuple (ci, bi) expressing rationality and common
belief in rationality for every player i.

rocedural Characterization:

1. If Γ is belief-finite of order n + 1, then a choice-belief tuple
(ci, bni ) is consistent with common belief in rationality iff
it survives transfinite elimination of choices and nth-order
beliefs.

2. If, in addition, Ci is compact Hausdorff for each player i ∈ I
and Γ is belief-continuous, then a choice-belief tuple (ci, bni )
is consistent with common belief in rationality iff it survives
ω-fold elimination of choices and nth-order beliefs.

Observation 6.1 and the previous remarks show that modeling
hallenges around infinite psychological games are essentially
dentical to what we encounter in infinite traditional games. Also,
t is worth noting that the weakest set of assumptions we have
onsidered here (measurability of ui and separability of Ci for all
layers i ∈ I) exactly coincides with minimal assumptions that
re needed to construct a universal type space for any given game
Heifetz and Samet, 1998, 1999) and to ensure that rationality
s a well-defined event within that type space. As such, these
ssumptions can be regarded as a prerequisite for any form of
sychologically game-theoretic analysis.

.3. Dynamic psychological games and asymmetric information

Our results in this paper are restricted to static psychological
ames as originally defined in Geanakoplos et al. (1989) (see
efinition 2.1). Other applied and theoretical literature covers
he richer class of dynamic psychological games in which players
ove sequentially and utility is allowed to depend on updated
eliefs (see Battigalli and Dufwenberg, 2009), as well as psy-
hological games under incomplete information (see Attanasi
t al., 2016, Battigalli et al., 2020) and psychological games under
nawareness (see Sebald, 2010).
For brevity, we do not explicitly extend our analysis to these

roader classes of games in the present paper. However, there are
trong grounds to expect our results would extend to sequential
nteraction and asymmetric information very smoothly.

Common belief in rationality in static games has a direct
ynamic counterpart in common belief in initial rationality (Ben-
orath, 1997). Extended in this fashion, common belief in ratio-
ality does not restrict how players update beliefs as a dynamic
ame unfolds — different from stronger reasoning concepts such
s sequential rationalizability and common belief in future ratio-
ality (Dekel et al., 1999, 2002; Asheim and Perea, 2005; Perea,
014) and extensive form rationalizability and common strong
elief in rationality (Pearce, 1984; Battigalli, 1997; Battigalli and
iniscalchi, 2002). In dynamic psychological games, many novel
nd interesting phenomena arise precisely because of how con-
istency restrictions across initial and updated conditional be-
ief hierarchies cause players to revise their understanding of
pponents’ states of mind in light of the history of play. As
emonstrated in Battigalli et al. (2020), this leads to additional
hallenges when we extend reasoning concepts involving restric-
ions on belief revision (like common strong belief in rationality
r common belief in future rationality) from dynamic traditional
ames to dynamic psychological games. However, like in the case
f static psychological games, allowing belief-dependent utility

Our Definition 3.2 and Procedure 5.4 achieve this by reimposing the original
rationality constraint on every elimination step. This approach is not new,
see Bernheim (1984), Milgrom and Roberts (1990), and Chen et al. (2007).
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nto dynamic such games in the first place must also bring in the
more basic complications for strategic reasoning that we have
explored here. These issues are logically prior to considerations
around belief revision and consistency of strategic rationality and
belief-dependent utility across time. Hence, it is all but inevitable
that our results constrain any analysis of dynamic psychologi-
cal games in essentially the same fashion as they constrain the
analysis of static psychological games.34

Essentially the same reasoning applies relating to richer mod-
els of uncertainty and subjective perceptions of the game en-
vironment (as under incomplete information and unawareness).
Surely, this introduces novel challenges for players to interpret
opponents’ moves in light of their belief-dependent preferences,
and these will be borne out by constraints on suitable extensions
of common belief in rationality. However, also here the problem
of reconciling belief-dependent utility with strategic reasoning in
general must logically precede any additional phenomena that
might arise.

Obviously, this does not mean that studying the interaction
of belief-dependent motivations with a time structure (as in
dynamic psychological games), exogenous sources of uncertainty
(as incomplete-information games), and differing subjective mod-
els of the interaction (as in games with unawareness) is not
interesting and important in its own right. Clearly, our remarks
here cannot stand in for a full-fledged extension of Theorems 4.3
and 5.5 and Observation 6.1 to models of strategic rationality in
dynamic and/or asymmetric-information psychological games.35

e believe that such an extension would require extensive foun-
ational work,36 and – as such – it would make for an interesting
ollow-up to the analysis presented here.

. Related literature

.1. Psychological game theory

In this paper we have focused on common belief in rationality
n static psychological games.

Our first concern was to determine sufficient conditions for
ommon belief in rationality to be possible. Previously Kolpin
1992), Battigalli and Dufwenberg (2009), Sebald (2010), and Bat-
igalli et al. (2020) have provided existence proofs for rationaliz-
bility and equilibrium in various settings.37 Different from our
heorem 4.3, all of these results essentially rely on the same
ontinuity condition as Geanakoplos et al. (1989) use in their
riginal paper. Furthermore, none of the mentioned contributions
rovides an explicit example of a psychological game in which
ationalizable strategies fail to exist. We present such a game in
ur Example 4.1.
Our second goal was to develop a procedural characterization

or common belief in rationality in psychological games. Battigalli
t al. (2020) provide a characterization of common strong belief

34 Maybe the clearest sign of this strong interdependence is Battigalli and
ufwenberg’s (2009) and Battigalli et al.’s (2020) reliance on generalized ver-
ions of Geanakoplos et al.’s (1989) belief continuity as fundamental assumptions
n their respective analyses.
35 A sketch of how definitions and results translate to dynamic games and
symmetric information is available from the authors upon request.
36 This would concern, in particular, the results presented in Section 6.2. For
hat part of our analysis, we rely on methods to construct a universal type space
hat have not been extended to the case of dynamic games. See Footnote 31 for
etails.
37 Early models in Geanakoplos et al. (1989) and Kolpin (1992) restrict
o equilibrium analysis in static and sequential psychological games where
tility functions are assumed to depend on initial beliefs only. Battigalli and
ufwenberg (2009) also continue this project by studying sequential equilibrium
Kreps and Wilson, 1982) in their setup.
 f
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in rationality in incomplete-information dynamic psychological
games, relying on measure-theoretic techniques and continuity
assumptions analogous to Battigalli and Dufwenberg (2009).38
We present an alternative characterization that relies on Bran-
denburger and Dekel’s (1993) construction of belief hierarchies
expressing coherency and common belief in coherency. In virtue
of this, our approach more readily connects to standard epistemic
game theory. In addition, our characterization generalizes to the
case of discontinuous utility functions and infinite choice sets
— an extension that had not previously been explored either
in Battigalli et al. (2020) or elsewhere in the psychological-games
literature.

7.2. Language-based games

Bjorndahl et al. (2013) introduce language-based games in
which, given a static game form G = (Ci)i∈I , a probabilistic Kripke
frame describing players’ beliefs over a space of states of the game
Ω , and a language L collecting logical propositions about the state
of the game, utility functions of players are defined on so-called
L-situations S(L) — maximal satisfiable sets of formulae within the
anguage L.

Their leading example of a ‘‘non-standard’’ language, denoted
B(ΦΓ ), allows a player i to express propositions not only about
pponents’ choices C−i, but also about which choices C−j an oppo-
ent j deems possible for their opponents, which choices C−k an
pponent j deems possible that their opponent k deems possible
or their opponents, and so on. As such, LB(ΦΓ )-games look very
imilar to static psychological games as in our Definition 2.1 and
n the Observation 6.1-generalization. In fact, a closer inspection
uggests that LB(ΦΓ )-games correspond to a subset of the psycho-
ogical games we consider. To see this, note that, while the Kripke
rame modeling players’ differential information regarding states
f the game Ω is probabilistic, the language LB(ΦΓ ) only allows
layers to care about whether a vector of opponents’ choices c−i
s deemed possible at some state ω ∈ Ω , about whether it is
ossible at ω that an opponent j deems possible a vector of oppo-
ents’ choices c−j, and so on. Continuing in this way, is then not
ard to see that the LB(ΦΓ )-situations that players may care about
n Bjorndahl et al. (2013) closely correspond to sets of probability-
ne belief hierarchies in our paper. By contrast, players in our
aper are allowed to care in arbitrary ways about probabilistic
eliefs bki of arbitrary order k ≥ 1, up to and including the full
robabilistic belief hierarchy bi.39 In fact, it is not hard to find
sychological games that fall under our Definition 2.1 but cannot
e modeled as an LB(ΦΓ )-game. The game in Appendix B is one
uch example.40

38 Battigalli et al. (2020) start out with general (coherent and incoherent)
belief hierarchies and then proceed to iteratively impose coherency, rationality
and belief in coherency and rationality at increasing levels. That alternative way
of proceeding leads to the same results as ours as far as belief-continuous games
are concerned.
39 Furthermore, Bjorndahl et al. (2013) assume that players use expected
utility given their subjective belief at each state ω ∈ Ω to weigh utilities derived
from deterministic situations. Jagau and Perea (2021) study a class of linear
psychological games. The characteristic assumption on utilities in these games,
linearity in level-k uncertainty for all k ≥ 1, is similar to (albeit slightly more
restrictive than) the linearity- and invariance-assumptions characterizing utility
in LB(ΦΓ )-games.
40 To see this, consider Bob’s utility, given by Table 4. Bob’s utility ub assigns
0 to choosing CBR whenever Supp(b2b,a) contains some B, ba1 with ba1(B) < 1

√
3

nd 1 to choosing CBR given any b2b,a that does not have this property. Clearly,
there is no assignment of CBR-utility values to finite formulas about choices
and probability-one first-order beliefs of Alice (i.e. all sets comprised of (B, B),
(B, F ), (F , B), (F , F ), and the projections of these tuples onto either of their
coordinates) that could capture this discontinuity of ub on B2

b,a . Hence the game
rom Appendix B cannot be modeled as an L (Φ )-game.
B Γ
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Within the narrower class of LB(ΦΓ )-games, Bjorndahl et al.
2013) present the ‘‘deeply surprising proposal game’’ to demon-
trate that rationalizable choices may not exist without further
estrictions. This example is similar to the modified bravery game
see Example 4.1), which we use to show that common belief in
ationality might be impossible in general psychological games.

Their non-existence example leads (Bjorndahl et al., 2013) to
ntroduce the condition CR, which states that, whenever a player
hooses irrationally at an LB(ΦΓ )-situation, it should be possible
o conclude this fact already on the basis of finitely many formulae.
his may be viewed as a logical compactness requirement on the
et of LB(ΦΓ )-statements regarding a given game. Accordingly, CR
llows (Bjorndahl et al., 2013) to show that the set of LB(ΦΓ )-
ituations where all players choose rationally is closed within
(LB(ΦΓ )), from whence the existence of rationalizable choices
hen follows using standard topological arguments.

In this paper, we also introduce a sufficient condition for the
ossibility of common belief in rationality (or, equivalently, for
he existence of rationalizable choices). Our condition, preser-
ation of rationality at infinity (see Definition 4.2), states that,
henever a choice is not optimal for a belief hierarchy bi, there
ust be some level n such that the choice is not optimal for any
elief hierarchy that coincides with bi at the first n layers. In
ther words, knowing finitely many layers of belief is sufficient
or concluding that a choice is sub-optimal for a given belief
ierarchy. In that sense, preservation of rationality at infinity is
imilar in spirit to Bjorndahl et al.’s (2013) CR.
Different from CR, our preservation of rationality at infinity is
non-topological condition, which is directly verifiable for any
iven tuple of a choice and a belief hierarchy. And importantly,
lso our proof of Theorem 4.3 is completely elementary and
onstructive: In the proof, we show how a belief hierarchy that
xpresses common belief in rationality can be constructed for
very player under our structural assumptions. By contrast, Bjorn-
ahl et al. (2013) present a non-constructive proof, relying on
version of Cantor’s intersection theorem. Hence, in particular,

heir proof does not provide a method to explicitly construct
B(ΦΓ )-situations that express common belief in rationality in a
iven game.
Furthermore, while a non-constructive proof for Theorem 4.3

ould be given as well (see the comments following the the-
rem), that proof uses more structure on the space of choice-
elief hierarchy tuples Ci × Bi than what is furnished by Bjorn-
ahl et al.’s (2013) assumptions, were we to directly translate
hem to our setting. Specifically, results from Heifetz and Mongin
2001) and Meier (2012) imply that an infinitary language L
ould generally be needed to model psychological games as in
efinition 2.1 using the language-based approach.

. Conclusion

Since its introduction by Geanakoplos et al. (1989), psycholog-
cal game theory has become a popular tool to formally capture
umerous belief-dependent motivations and their role in strate-
ic interaction. Nevertheless, our theoretical understanding of
sychological games still falls short of what we are used to from

This example also helps illustrate why an infinitary language L would really
e needed to capture the full scope of belief-dependent utility that our Def-
nition 2.1 allows for. In particular, adding one intermediate degree of belief
o LB(ΦΓ ) (analogous to Example 3.2 in Bjorndahl et al., 2013) would allow us
o capture games as the one in Appendix B with a fixed cutoff k such that
Alice’s choice-belief tuples with ca = B are consistent with common belief in
ationality iff b1(B) ≥ k. However, our Definition 2.1 implies a language that
llows us to distinguish Appendix B-type games as we continuously vary k over
by perturbing the utilities for you and Alice given in Table 3. Clearly, there

s no finitary generalization of LB(ΦΓ ) that can distinguish between all of those
ames at the same time.
11
Table 3
Two-tiered battle of the sexes.

b1y
You B F

B 2 0

F 0 1

+

e2y
You (·, B) (·, F )

B 2 0

F 0 1

b1a
Alice B F

B 1 0
F 0 2

+

e2a
Alice (·, B) (·, F )

B 1 0
F 0 2

Table 4
Outside wager.

Bob b2b,a ∈ ∆(R
1
a) b2b,a /∈ ∆(R

1
a)

CBR 1 0
¬CBR 0 1

traditional games. In this paper we have provided an in-depth
analysis of how belief-dependent utility interacts with common
belief in rationality, the basic building block in all models of
strategic rationality. Our analysis zooms in on the elemental
setting of static psychological games, and it focuses on two basic
questions:

1. What minimal assumptions make common belief in ratio-
nality possible?

2. How can we characterize common belief in rationality us-
ing a recursive elimination procedure?

Regarding question (1), we introduce a new existence condi-
tion, preservation of rationality at infinity. This allows us to show
that common belief in rationality is possible in any empirically-
relevant psychological game. This was far from obvious based
on previous existence results (Geanakoplos et al., 1989, Battigalli
and Dufwenberg, 2009, etc.) that rely on significantly stronger
assumptions.

Regarding question (2), we prove that (possibly transfinite)
iterated elimination of choices and nth-order beliefs characterizes
common belief in rationality in all situations where players’ util-
ities depend on at most n + 1th-order beliefs. Our characteriza-
tion extends previously known ones in that it relies on minimal
assumptions regarding the functional form of belief-dependent
utilities.

Building on our main analysis, we also extend our results to
psychological games with infinite choice- and player-sets, a class
of games which has rarely, if ever, been investigated before.

Our results regarding the possibility and characterization of
common belief in rationality in psychological games dramati-
cally relax a set of long-standing assumptions that have been
shared by all previous models in psychological game theory up
to and including Geanakoplos et al.’s (1989) seminal paper. More-
over, they uncover interesting and previously unknown parallels
between models of strategic reasoning in psychological games
and (infinite) traditional games. As such, they are best suited to
demonstrate a resting need to return to simple cases of psycho-
logical games in order to sharpen our intuitions concerning the
mechanics of belief-dependent utility. An extension of the present
analysis to richer models of psychological games involving se-
quential interaction and asymmetric information is an interesting
avenue for future research.
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Appendix A. Proofs

Proof of Theorem 4.3. For the proof we need a new piece of
notation. Consider, for every n ≥ 1, a choice profile cn = (cni )i∈I
in×i∈I

Ci. Then, we denote by bi[c1, c2, . . .] the belief hierarchy
or player i that (1) for every j ̸= i, assigns probability 1 to choice
1
j , (2) for every j ̸= i and every k ̸= j, assigns probability 1 to
he event that j assigns probability 1 to choice c2k , and so on. As
n abbreviation, we denote the nth order belief of bi[c1, c2, . . .]
y (c1, . . . , cn), and thus write bni [c

1, c2, . . .] = (c1, . . . , cn).
We will now generate, for all players i, an infinite set of belief

ierarchies

ˆ i = {bi(0), bi(1), bi(2), . . .}

s follows. Select, for every n ≥ 1, an arbitrary choice profile
n

= (cni )i∈I in ×i∈ICi and set

i(0) := bi[c1, c2, . . .]

or every player i. Moreover, for every player i let di(1) be a choice
hat is rational for bi(0), and set d(1) := (di(1))i∈I . Then, for all
layers i, define a new belief hierarchy

i(1) := bi[d(1), c1, c2, . . .]

nd let di(2) be a choice that is rational for bi(1). Set d(2) :=

di(2))i∈I . Subsequently, for all players i, define the new belief
ierarchy

i(2) := bi[d(2), d(1), c1, c2, . . .],

nd so on. By construction, the belief hierarchy bi(n) ∈ B̂i ex-
resses up to n-fold belief in rationality, for every player i and
very n ≥ 1.
We now construct, for a given player i, a belief hierarchy b̂i,

s follows. Since there are only finitely many choices, there is a
hoice profile e1 = (e1j )j∈I in×j∈I

Cj such that there are infinitely

any belief hierarchies bi ∈ B̂i with b1i = e1. Let

ˆ i[e1] := {bi ∈ B̂i|b1i = e1},

hich is an infinite set, by construction. But then, there must be a
hoice profile e2 = (e2j )j∈I in×j∈I

Cj such that there are infinitely

any belief hierarchies bi ∈ B̂i[e1] with b2i = (e1, e2). Let

B̂i[e1, e2] := {bi ∈ B̂i|b2i = (e1, e2)},

hich again is an infinite set, by construction. Hence, there must
e a choice profile e3 = (e3j )j∈I in×j∈I

Cj such that b3i =

e1, e2, e3) for infinitely many belief hierarchies bi ∈ B̂i[e1, e2]. Let

B̂ [e1, e2, e3] := {b ∈ B̂ |b3 = (e1, e2, e3)},
i i i i
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which again is an infinite set, by construction. By continuing in
this fashion, we obtain an infinite sequence of choice profiles
e1, e2, . . ., and we set

b̂i := bi[e1, e2, . . .].

We now show that b̂i expresses common belief in rationality.
That is, we must show, for every n ≥ 1 and every player j, that
choice enj is rational for the belief hierarchy bj[en+1, en+2, . . .]. Fix
such an n and a player j.

Since the game preserves rationality at infinity, it suffices to
show that for every m ≥ 1 there is some bj ∈ Bj with bmj =

bmj [en+1, en+2, . . .] such that enj is rational for bj. Let m ≥ 1 be
fixed. Since B̂i[e1, . . . , en+m

] is an infinite subset of B̂i, there is
k ≥ n such that bi(k) ∈ B̂i[e1, . . . , en+m

]. Let

bi(k) = bi[e1, . . . , en+m, gn+m+1, gn+m+2, . . .],

where gn+m+1, gn+m+2, . . . are choice profiles in×i∈I
Ci.

Define the belief hierarchy

bj := bj[en+1, . . . , en+m, gn+m+1, gn+m+2, . . .].

Then, by construction, bmj = (en+1, . . . , en+m) = bmj [en+1, en+2,

. . .]. Moreover, since bi(k) expresses up to k-fold belief in ra-
tionality, and k ≥ n, we conclude that bi(k) expresses up to
n-fold belief in rationality. Since bi(k) = bi[e1, . . . , en+m, gn+m+1,

gn+m+2, . . .], it follows that enj is rational for bj[en+1, . . . , en+m,

gn+m+1, gn+m+2, . . .] = bj. Hence, for every m ≥ 1 we can con-
struct in this fashion some bj ∈ Bj with bmj = bmj [en+1, en+2, . . .]

such that enj is rational for bj. As the game preserves rationality
at infinity, we conclude that enj is rational for the belief hier-
archy bj[en+1, en+2, . . .]. Since this holds for every n ≥ 1 and
every player j, the belief hierarchy b̂i := bi[e1, e2, . . .] expresses
common belief in rationality.

Therefore, in this fashion we can construct for every player i
a belief hierarchy b̂i that expresses common belief in rationality.
This completes the proof. □

Proof of Theorem 5.5.
Part 1:

⇒ We start by showing that any (ci, bni ) that is consistent with
up to k-fold belief in rationality is in Rn

i (k + 1). We proceed
by induction over k ≥ 0.
Induction Start: Let (ci, bni ) be consistent with 0-fold belief in
rationality. Then ci is rational for a belief hierarchy bi that
induces bni . So, in particular, the n + 1th-order belief bn+1

i
induced by bi must satisfy ui(ci, bn+1

i ) ≥ ui(c ′

i , b
n+1
i ), ∀c ′

i ∈

Ci. It follows that (ci, bni ) ∈ Rn
i (1).

Induction Step: Assume that, for all players i, (ci, bni ) ∈ Rn
i (k+

1) whenever (ci, bni ) is consistent with up to k-fold belief in
rationality. Now let (ci, bni ) be consistent with up to k + 1-
fold belief in rationality. We need to show that (ci, bni ) ∈

Rn
i (k + 2).

Since (ci, bni ) is consistent with up to k + 1-fold belief in
rationality, there is a bi ∈ Bi that expresses up to k + 1-fold
belief in rationality such that bi rationalizes ci and induces
bni .
Hence, we know that

1. ui(ci, bn+1
i ) ≥ ui(c ′

i , b
n+1
i ), ∀c ′

i ∈ Ci where bn+1
i is

induced by bi.
2. bi also expresses up to k-fold belief in rationality. So,

by the induction assumption, (ci, bni ) ∈ Rn
i (k+1) where

bni is induced by bi.
3. bi assigns probability 1 to the set of opponents’ cho-

ice-belief-hierarchy combinations (c , b ), where, for
−i −i
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I

b

b

B

every j ̸= i, bj rationalizes cj and expresses up to k-
fold belief in rationality. So, by the induction assump-
tion, for every such (cj, bj), we have that (cj, bnj ) ∈

Rn
j (k + 1), j ̸= i where bnj is induced by bj and

therefore bn+1
i ∈ ∆(Rn

−i(k + 1)).
4. bni = margC−i×Bn−1

−i
bn+1
i .

Combining (1)-(4), it follows that (ci, bni ) ∈ Rn
i (k + 2),

establishing the first direction.
⇐ For this direction, we show that, for any (ci, bni ) ∈ Rn

i (k+ 1),
there is a belief hierarchy bi exhibiting up to k-fold belief
in rationality that induces bni and rationalizes ci. Again, we
proceed by induction over k ≥ 0.
Induction Start: Let (ci, bni ) ∈ Rn

i (1). Then there is a bn+1
i that

induces bni and rationalizes ci. So take any bi such that bi
induces bn+1

i . Then bi rationalizes ci.
Induction Step: Assume that, for every player i and any
(ci, bni ) ∈ Rn

i (k + 1), there is a belief hierarchy bi inducing
bni , rationalizing ci and exhibiting up to k-fold belief in
rationality. We have to show that if (ci, bni ) ∈ Rn

i (k+ 2) then
there is a belief hierarchy bi that exhibits up to k + 1-fold
belief in rationality, induces bni and rationalizes ci.
So let (ci, bni ) ∈ Rn

i (k + 2). Then there is an n + 1th-order
belief bn+1

i ∈ ∆(Rn
−i(k + 1)) that rationalizes ci and induces

bni . For every player j ̸= i, let Θn
j ⊆ Rn

j (k + 1) be the set of
combinations of choices and nth-order beliefs in the support
of bn+1

i . By the induction assumption, for any (cj, bnj ) ∈ Θn
j ,

we can pick a belief hierarchy b̂j(cj, bnj ) that expresses up
to k-fold belief in rationality, induces bnj and rationalizes
cj. Let θj(cj, bnj ) = (cj, b̂j(cj, bnj )) be the resulting choice-
belief-hierarchy combination. Given the mapping θj, for any
measurable En

j ⊆ Θn
j , let θj(En

j ) = {θj(cj, bnj )|(cj, b
n
j ) ∈ Θn

j }.
Now let bi be the belief hierarchy given by bn+1

i (×j̸=i
En
j ) =

bi(×j̸=i
θj(En

j )) for every measurable×j̸=i
En
j ⊆ ×j̸=i

Θn
j .

Since projCj×Bnj
θj(En

j ) = En
j for all En

j ⊆ Θn
j , this construction

implies that bi induces bn+1
i . Moreover, bi assigns probability

1 to combinations of choices and belief hierarchies θj(cj, bnj )
such that θj(cj, bnj ) expresses rationality and up to k-fold
belief in rationality, and hence bi expresses up to k+ 1-fold
belief in rationality. And, lastly, as bi induces bn+1

i and bn+1
i

rationalizes ci, bi rationalizes ci as well. This establishes the
second direction.

Part 2:
To start, we show R

n
i ⊇ projCi×Bni

Ri(ω). In words, every (ci, bni )
that is consistent with common belief in rationality survives
transfinite elimination of choices and nth-order beliefs.

To see that this must be true, first note that any (ci, bni ) that
is consistent with common belief in rationality is, by definition,
consistent with up to k-fold belief in rationality for any k ≥ 0.
Hence, by part 1 of the theorem (ci, bni ) ∈

⋂
k∈1,2,... R

n
i (k) = Rn

i (ω).
Second, note that consistency of (ci, bni ) with common belief

in rationality implies that there is a choice-belief hierarchy com-
bination (ci, bi) that expresses rationality and common belief in
rationality and induces (ci, bni ). Hence, in particular, the n + 1th-
order belief bn+1

i that is induced by bi assigns full probability
to opponents’ choice-nth-order-belief combinations (cj, bnj ) that
are consistent with common belief in rationality. Invoking the
argument from the previous paragraph, this implies that (cj, bnj ) ∈

Rj(ω) for all (cj, bnj ) in the support of bn+1
i and hence (ci, bni ) ∈

Rn
i (ω + 1).
Clearly, we can repeat this argument for all (cj, bnj ) in the

support of bn+1
i . The same goes for all (ck, bnk), k ̸= j in the

support of bn+1 for each bn+1 such that (c , bn+1) is in the support
j j j j T

13
of the n + 2th-order belief bn+2
i induced by bi. Continuing in this

fashion and taking limits as needed, it now follows that R
n
i ⊇

projCi×Bni
Ri(ω).

For the reverse direction, note that, by definition of R
n
i , we

have iteratively eliminated choice-nth-order-belief combinations
until the resulting reductions have converged.22 Hence, we can
write

R
n
i =

{
(ci, bni ) ∈ R

n
i |∃b

n+1
i ∈ ∆(R

n
−i)

with margC−i×Bn−1
−i

bn+1
i = bni s.t. ui(ci, bn+1

i )

≥ ui(c ′

i , b
n+1
i ), ∀c ′

i ∈ Ci

}
.

n words, R
n
i is a best-response set: For any (ci, bni ) ∈ R

n
i , we can

find bn+1
i ∈ ∆(R

n
−i) such that bn+1

i induces bni and rationalizes ci.
Moreover, since bn+1

i ∈ ∆(R
n
−i), for every (cj, bnj ) in the support

of bn+1
i , we can also find a bn+1

j ∈ ∆(R
n
−j) such that bn+1

j induces
n
j and rationalizes cj.
Continuing in this fashion, we construct an infinite sequence

n+1
i , bn+2

i , . . . of n + kth-order beliefs where bn+1
i ∈ ∆(R

n
−i)

induces bni and rationalizes ci, bn+2
i induces bn+1

i , rationalizes ci,
and assigns full probability to (c ′

j , b
n+1
j ), j ̸= i such that c ′

j is
rational given bn+1

j and bn+1
j ∈ ∆(R

n
−j), and so on.

Taking bn+1
i , bn+2

i , . . . and adding ci as well as the marginal
distributions b1i , . . . , b

n
i induced by bn+1

i , we arrive at a choice-
belief-hierarchy tuple (ci, bi) that expresses common belief in
rationality and induces (ci, bni ). Since (ci, bni ) was arbitrary, it
follows that projCi×Bni

Ri(ω) ⊇ R
n
i .

Part 3:
Rn
i (ω) ⊇ projCi×Bni

Ri(ω) was already proved in part 2.
To show that the reverse direction also applies in belief-

continuous games, assume that (ci, bni ) ∈ Rn
i (ω). Then (ci, bni ) is

consistent with up to k-fold belief in rationality for any k ≥ 0
(where k = 0 means rational choice). Let Bi[bni ] be the set of belief
hierarchies that induce bni . Note that, since Bi[bni ] is closed and Bi

is a compact Hausdorff space,41 Bi[bni ] is compact.
Next, for any k ≥ 0, let Bi[k, ci] be the set of belief hierarchies

that rationalize ci and express up to k-fold belief in rationality.
To prove the lemma, we show that Bi[k, ci] is a compact set

for every k ≥ 0. Since the sequence Bi[0, ci] ∩ Bi[bni ], Bi[1, ci] ∩

Bi[bni ], . . . of belief hierarchies that rationalize ci under up to
k-fold belief in rationality and induce bni is then a decreasing se-
quence of nested non-empty compact sets, Cantor’s intersection
theorem implies that

⋂
k∈{0,1,2,... }

(
Bi[k, ci] ∩ Bi[bni ]

)
is non-empty

such that (ci, bni ) is indeed consistent with common belief in
rationality.

We now show, by induction over k ≥ 0, that every Bj[k, cj] is
compact and metrizable for every player j, every cj ∈ Cj and every
k ≥ 0:

Induction Start: Take bj ∈ Bj\Bj[0, cj]. Then cj is not rational
given bj. Hence, by belief continuity, there is an open set B̂j ⊆

Bj\Bj[0, cj] such that cj is not consistent with rationality given
any b̂j ∈ B̂j. It follows that Bj\Bj[0, cj] is open and, conse-
quently, Bj[0, cj] is closed. Since Bj is compact Hausdorff, Bj[0, cj]
is compact and metrizable.

Induction Step: Assume that Bj[k, cj] is compact and metrizable
for any player j, any cj ∈ Cj, and for some k ≥ 0. We can write

j[k + 1, cj] = Bj[k, cj] ∩ ∆

⎛⎝×
ℓ̸=j

{
(cℓ, bℓ)

⏐⏐⏐⏐bℓ ∈ Bℓ[k, cℓ]
}⎞⎠

41 Compact Hausdorffness follows from the finiteness of all Ci, i ∈ I and
ychonoff’s theorem.
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3

y the induction assumption,×ℓ̸=j
{(cℓ, bℓ)|bℓ ∈ Bℓ[k, cℓ]} is com-

act and metrizable. Since the set of probability measures over a
ompact and metrizable set is itself compact and metrizable, the
ame is true for ∆(×ℓ̸=j

{(cℓ, bℓ)|bℓ ∈ Bℓ[k, cℓ]}). It follows that
j[k + 1, cj] is compact and metrizable, completing the induction
nd hence the proof. □

roof of Observation 6.1(Sketch).
ossibility: If rational choices exist for every belief hierarchy bi,
se the methods from the constructive proof of Theorem 4.3 to
onstruct probability-one belief hierarchies expressing up to k-
old belief in rationality for any finite k ≥ 1. This yields Part
. Next, assuming that all choice sets Ci are compact Hausdorff,
nd that all ui are belief-continuous, Part 2 follows as a corollary
f Part 1 and (Part 2 of) the procedural characterization proven
elow.
rocedural Characterization: For Part 1, first note that bounded
nd measurable utilities ui and separable choice sets Ci for all
∈ I are enough to guarantee that Ri(k), k ≥ 1 and (hence)
i(ω) are measurable subsets of Si × Bi. The arguments from
heorem 5.5, Part 1 and Part 2 will then essentially go through.
he main complication is that, given a purely measurable space
f choices and belief hierarchies as in Heifetz and Samet (1998),
rder-n+1 belief-finiteness of all ui does not guarantee that Rn

i (k)
s measurable for every k ≥ 1, which necessitates a more involved
efinition of elimination of choices and nth-order beliefs. See Jagau
2021) for details and proofs.

Given Part 1, assuming that all choice sets Ci are compact
ausdorff and that Γ is belief-continuous, Theorem 5.5, Part 3
traightforwardly generalizes,42 thus establishing Part 2. □

ppendix B. Transfinite elimination of choices and nth-order
eliefs

Here we present an example of a three-player belief-
iscontinuous psychological game that is belief-finite of order
wo. As we will show, elimination of choices and first-order
eliefs (Procedure 5.4) takes ω + 1 steps to determine the tuples
f choices and first-order beliefs that are consistent with common
elief in rationality here. The structure of our example is similar
o Example 2 in Dufwenberg and Stegeman (2002), which uses a
raditional game with uncountably many choices for two of out
f three players. By contrast, the game in our example has just
wo choices for each of the three players.

xample B.1 (Transfinite Elimination of Choices and First-Order
eliefs). Two-Tiered Battle of the Sexes with an Outside Wager:
We consider a 2 × 2 × 2-psychological game between you,

lice, and Bob. Formally, let I = {y, a, b}, and let the choice sets
e Cy = {B, F}, Ca = {B, F}, Cb = {CBR, ¬CBR}. Your utility
unction is given by

y(B, by) = 2(b1y(B) + e2y(B, B) + e2y(F , B)) and

y(F , by) = (b1y(F ) + e2y(B, F ) + e2y(F , F ))

here we define e2y(ca, cy) :=
∫

{ca}×Ba
b1a(cy) dby for every (cy, ca) ∈

Cy × Ca. This expression captures the expected probability which
you believe Alice assigns to your choice cy conditional on choos-
ing ca herself. This amounts to a summary statistic of your
second-order belief b2y which we may call the second-order
expectation.20 Analogously, Alice’s utility function is given by

ua(B, ba) = (b1a(B) + e2a(B, B) + e2a(F , B)) and ua(F , ba)

42 That all Bi and, a fortiori, all spaces of probability-one belief hierarchies are
compact Hausdorff is a straightforward implication of compact Hausdorffness of
C for every player i and Tychonoff’s Theorem.
i

14
= 2(b1a(F ) + e2a(B, F ) + e2a(F , F )).

Since the utility functions for you and Alice are additively sepa-
rable in first-order beliefs and second-order expectations, we can
represent each of them as a sum of two payoff matrices:

The total utilities for you and Alice are the sum of the two
utility components. For instance, your utility from choosing B if
our first-order belief b1y is B and your second-order expectation
2
y is 1

2 (B, B) +
1
2 (B, F ) is equal to 2 +

1
2 (2 + 0) = 3.

One way to think about the game between you and Alice is as
two-tiered version of the Battle of the Sexes. That is, both you
nd Alice want to coordinate on the same choice and, indepen-
ently, you both want to live up to your co-player’s expectations
egarding your behavior (=̂ second-order expectations). In addi-
ion, conditional on behavioral or expectational coordination, you
ave a preference for choice B whereas Alice has an analogous
reference for choice F .
Now besides you and Alice there is a third player – Bob – that

bserves the game between you and Alice.43 To concisely write
own Bob’s utility function, let b2b,a = margCa×B1a

b2b . In words,
2
b,a is Bob’s second-order belief regarding only Alice’s choice and
irst-order belief. Also, define the set R

1
a := ({F}×B1

a)∪({B}×{b1a ∈

B1
a|b

1
a(B) ≥

1
√
3
}). Bob’s utility function is then described by the

following matrix:
As will become clear below and as suggested by our naming of

Bob’s choices, Bob can be thought of as taking a bet on whether
Alice’s second-order belief is consistent with common belief in
rationality.

Note that Bob’s utility function is not belief-continuous. For
example, perturbing Bob’s second-order beliefs about Alice’s
choice and first-order belief slightly around a degenerate belief
that assigns full probability to (ca, b1a) = (B, 1

√
3
B +

√
3−1
√
3

F ) can
make ub(CBR, b2b) jump discontinuously from 1 to 0.

We will now show that iterated elimination of choices and
irst-order beliefs eliminates Bob’s choice ¬CBR, but only at the
+ 1th step of elimination.
To this end, we first argue that the sets R1

a(k) of Alice’s choice-
irst-order-belief tuples consistent with rationality and up to
-fold belief in rationality continuously shrink towards the set R

1
a

while iterating over all finite k. Start by considering Alice’s utility
maximization problem. Alice prefers her choice B whenever

a(B, b2a) − ua(F , b2a) = b1a(B) − 2(1 − b1a(B)) + (e2a(B, B)

+ e2a(F , B)) − 2(e2a(B, F ) + e2a(F , F )) (1)

= 3(b1a(B) + e2a(B, B) + e2a(F , B)) − 4 ≥ 0,

here we used b1a(F ) = 1 − b1a(B), e
2
a(B, F ) = b1a(B) − e2a(B, B),

nd e2a(F , F ) = (1 − b1a(B)) − e2a(B, F ). Now if Alice’s second-order
xpectation is such that e2a(B, B) + e2a(F , B) = 0, the inequality
educes to 3b1a(B)− 4 ≥ 0, which is impossible given that b1a(B) ∈

0, 1]. This shows that the tuple (F , b1a) can be rationalized for any
f Alice’s first-order beliefs ba1 ∈ Ba

1.
On the other hand, for any fixed first-order belief b1a ∈ B1

a , we
an observe that the difference ua(B, b2a) − ua(F , b2a) is maximal
or e2a(B, B) + e2a(F , B) = 1.

Hence, the lowest probability that Alice can ever assign to your
hoice B while rationally choosing B follows from

b1a(B) − 1 ≥ 0 ⇔ b1a(B) ≥
1
3
.

43 For ease of notation, we will refrain from modeling beliefs that you and
Alice might have regarding Bob’s behavior and beliefs, beliefs that you, Alice,
and Bob might have regarding these beliefs, and so on. Since Bob is merely a
bystander with respect to the game between you and Alice, this simplification
does not affect our results.
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umming up, we have R1
a(1) = ({F}×B1

a)∪ ({B}×{b1a ∈ B1
a|b

1
a(B) ≥

1
3 }), and, with the symmetry of the game between you and Alice,
we find R1

y(1) = ({B} × B1
y) ∪ ({F} × {b1y ∈ B1

y |b
1
y(F ) ≥

1
3 }).

Next, if Alice believes in your rationality, we must have b2a ∈

(R1
y(1)). Concretely, this means that Alice cannot believe you to

hoose F while assigning probability less than 1
3 to Alice choosing

as well. In terms of Alice’s second-order expectation and first-
rder belief this leads to the constraint e2a(F , F ) ≥

1
3b

1
a(F ) ⇔

2
3b

1
a(F ) ≥ e2a(F , B). Going back to Alice’s utility maximization

problem from Eq. (1), we see that the constraint is irrelevant
for rationalizing Alice’s choice F (which is most attractive for
e2a(B, F ) = 0). On the other hand, for any first-order belief b1a for
Alice, the maximal utility difference in favor of choice B is now
ttained precisely where
e2a = (b1a(B)(B, B)+

2b1a (F )
3 (F , B)+ b1a (F )

3 (F , F )). Hence, the lowest
probability that Alice can ever assign to your choice B while
rationally choosing B under belief in rationality follows from

3
(
2b1a(B) +

2
3
(1 − b1a(B))

)
− 4 = 4b1a(B) − 2 ≥ 0 ⇔ b1a(B) ≥

1
2
.

ence, we have R1
a(2) = ({F}×B1

a)∪({B}×{b1a ∈ B1
a|b

1
a(B) ≥

1
2 }) and

again by symmetry) R1
y(1) = ({B} × B1

y)∪ ({F} × {b1y ∈ B1
y |b

1
y(F ) ≥

1
2 }). Continuing in this fashion, it is now clear that the sets of
first-order beliefs supporting Alice’s choice F and your choice B
ill be the same for all levels of up to k-fold belief in rationality,
hereas the sets of first-order beliefs supporting Alice’s choice
and your choice F will get smaller and smaller as we iterate k
ver the natural numbers.
To describe the law of motion of R1

a(k), k ∈ ω, for any
finite k ≥ 0, let b1y(F , k) denote the minimum probability you
must assign to Alice’s choice F while rationally choosing F under
up to k-fold belief in rationality, and analogously define b1a(B, k).
Starting from Eq. (1), for any first-order belief b1a for Alice, the
maximal utility difference in favor of choice B under up to k-fold
belief in rationality is attained precisely where e2a = (b1a(B)(B, B)+
(1−b1y(F , k−1))b1a(F )(F , B)+b1y(F , k−1)b1a(F )(F , F )), so that b1a(B, k)
follows from

3
(
2b1a(B) + (1 − b1y(F , k − 1))(1 − b1a(B))

)
− 4

= (1 + b1y(F , k − 1))b1a(B) − 3b1y(F , k − 1) − 1 ≥ 0 ⇔

b1a(B) ≥ 1 −
2

3(1 + b1y(F , k − 1))
= b1a(B, k)

Using again the symmetry of the game between you and Alice, we
can identify b1y(F , k − 1) = b1a(B, k − 1), leading to the first-order
difference equation

b1a(B, k) = 1 −
2

3(1 + b1a(B, k − 1))

with initial condition b1a(B, 0) = 0. It is straightforward to show
that b1a(B, k) increases in k at a decreasing rate, and that 0 <

upk∈ω b1a(B, k) < 1.
Letting b∗

:= supk∈ω b1a(B, k), it then follows that

b∗
= 1 −

2
3(1 + b∗)

⇔ b∗
=

1
√
3

Thus, the tuples of choices and first-order beliefs that are con-
sistent with common belief in rationality for Alice are given
by

R1
a(ω) =

⋂
k∈ω

R1
a(k) = ({F} × B1

a)∪

×

(
{B} ×

{
b1a ∈ B1

a

⏐⏐ b1a(B) ≥
1

√
3

})
= R

1
a.
15
It is now easy to see that Bob’s choice ¬CBR will be eliminated at
tep ω + 1 of elimination of choices and first-order beliefs: Since
1
a(k) ⊃ R

1
a for any finite k, there is a second-order belief for Bob

that makes his choice ¬CBR consistent with up to k-fold belief
n rationality for any finite k, and hence ¬CBR ∈ projCb (R

1
b(ω)).

owever, as soon as we require b2b,a ∈ ∆(R1
a(ω)) = ∆(R

1
a), choice

BR is strictly better than ¬CBR for Bob. So we must indeed have
rojCb (R

1
b(ω + 1)) = {CBR}, as claimed.

ppendix C. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.jmateco.2022.102635.
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