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Abstract

We propose a new rationalizability concept for dynamic games with imperfect information, forward
and backward rationalizability, that combines elements from forward and backward induction reason-
ing. It proceeds by applying the forward induction concept of strong rationalizability (also known as
extensive-form rationalizability) in a backward inductive fashion. We argue that, compared to strong
rationalizability, the new concept provides a more compelling theory for how players react to surprises.
Moreover, we provide an epistemic characterization of the new concept, and show that (a) it always exists,
(b) in terms of outcomes it is equivalent to strong rationalizability, (c) in terms of strategies it is a re-
finement of the pure backward induction concepts of backward dominance and backwards rationalizability,
and (d) it satisfies expansion monotonicity : if a player learns that the game was actually preceded by
some moves he was initially unaware of, then this new information will only refine, but never completely
overthrow, his reasoning. Strong rationalizability violates this principle.
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1 Introduction

The main feature that distinguishes dynamic games from static games is the issue of belief revision. That
is, how does a player revise his belief upon observing a surprising move by an opponent? Suppose you
play a dynamic game, and you find yourself called to play at an information set that you initially believed
not ever to be crossed, since rationality of each player and common certainty of rationality would prevent
this set from being reached. Should you now rather believe that the choices of the other player are a true
reflection of her reasoning (and hence this player is either not rational or believes that you are not rational)
or should you believe that as far as reasoning and planning of strategies are concerned this other player is
fully rational, but made a mistake when she implemented her strategies? Forward induction is in line with
the first mode of reasoning, while backward induction is in line with the second.
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Figure 1: Strong rationalizability may lead to counterintuitive behavior

The older idea is backward induction, which dates at least back to von Neumann and Morgenstern
(1953)1, and has also been incorporated in concepts like backwards rationalizability (Penta (2015), Perea
(2014), Catonini and Penta (2022)), backward dominance (Perea (2014)), subgame perfect equilibrium (Sel-
ten (1965)), extensive-form perfect equilibrium (Selten (1975)), sequential equilibrium (Kreps and Wilson
(1982)) and quasi-perfect equilibrium (van Damme (1984)). According to these concepts, upon reaching
an unexpected information set a player is free to believe that this is due to mistakes by his opponents in
executing their planned strategies. Hence, a player is not required to try to learn from the past, even if
doing so could refine his beliefs about the opponents’unobserved past, present and future moves.

In a sense, the forward induction concept of strong rationalizability (Pearce (1984), Battigalli (1997)), also
known as extensive-form rationalizability, takes the other extreme by excluding, whenever possible, mistakes
in the execution of planned strategies. However, to make this possible, a player may need to ascribe beliefs
to the opponents that assume only a limited degree of rationality of their respective opponents. The example
in Figure 1, which is a variant of Figure 3 in Reny (1992), will illustrate this.

Upon reaching h2, player 2 is forced to believe that player 1 chooses strategy (b, f), as this is the only
way for player 1 to get at least 5 —a payoff he could guarantee by choosing a. At the same time, player 2
must believe that player 1 ascribes a high probability to player 2 behaving irrationally at h4. The unique
best reply for player 2 is to choose strategy (d, g). However, if player 1 in fact believes that player 2 will
choose rationally at h4, and chooses rationally himself in the remainder of the game, then player 1 would
choose e at h3, yielding an extremely low payoff for player 2. Also this type of reasoning is therefore not
free of problems.

Overall, we thus see some shortcomings with both backward and forward induction reasoning as dis-
cussed above. In response, we propose a rationalizability concept for dynamic games —different from both
strong rationalizability and pure backward induction reasoning —which we call forward and backward ratio-
nalizability. In this new concept, we require players to learn from the past, but only as much as is consistent

1 It is often claimed that backward induction first appeared in Zermelo (1913) in the proof of his famous theorem on chess.
However, Zermelo did not assume a stopping rule for chess, and hence the game he considered did not have a finite horizon.
Therefore, he could not use backward induction.
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with “fully rational behavior”in the future.
More formally, the concept proceeds by applying the forward induction concept of strong rationalizability

in a backward inductive fashion: We start by applying strong rationalizability to the last period in the game,
which results in restrictions on strategies and beliefs there. Taking these restrictions as given, we then apply
the strong rationalizability procedure to the parts of the game that start at the penultimate period, and so
on, until we reach the beginning of the game.

We then ask: What does the new concept of forward and backward rationalizability entail in terms of
reasoning? The epistemic characterization of strong rationalizability as given by Battigalli and Siniscalchi
(2002) relies on strong belief in rationality, which means that a player, whenever possible, should believe
that his opponents are choosing rationally in the whole game. On top of this, they require that a player
must also believe, whenever possible, that his opponents choose rationally in the whole game while strongly
believing in the other players’rationality. Iterating this argument leads to rationality and common strong
belief in rationality —a set of epistemic conditions that characterizes extensive-form rationalizability.

In comparison, it is shown in Theorem 4.1 that our concept can be characterized epistemically by (a)
first imposing common strong belief in rationality from the last period onwards, (b) then imposing common
strong belief in rationality from the penultimate period onwards, keeping the restrictions from (a), and so
on, until we reach the beginning of the game.

Intuitively, the reasoning process of a player choosing forward and backward rationalizable strategies can
thus be described as follows: “Yesterday I believed that my opponents are rational from then (yesterday)
on, believed that everybody else believed that everybody (else) is rational from then on, and so forth. If this
is not falsified by today’s observations, I should continue to believe not only that everybody else is rational
from today on, and so forth, but also that everybody else was rational from yesterday on, and so forth. The
same applies to the day before yesterday, the day before that, and so on.”

We next investigate how the new concept relates to existing concepts, such as strong rationalizability
and backwards rationalizability. In the example of Figure 1, for instance, the new concept coincides with
backward induction. However, there are other games where the concept is different, in terms of strategies,
from both pure backward induction reasoning and strong rationalizability. Consider, for instance, the game
in Figure 2.

Strong rationalizability would reason as follows: At h2 player 2 must believe that player 1 chooses
strategy (a, e), as this is the only strategy reaching h2 that would yield player 1 at least 2 —a payoff he could
guarantee by choosing b at the beginning. But then, player 2 would choose d, and player 1, anticipating
this, would choose b.

Our concept of forward and backward rationalizability proceeds differently: In the last subgame, at h3, it
imposes no restrictions. Now consider the subgame starting at h2, which is the classical Battle of the Sexes
game with an outside option for player 2. Our concept uniquely selects the forward induction strategies
(c, h) and f in this subgame. Finally, we turn to the whole game. Given the earlier restrictions, player 1
must believe that player 2 will choose (c, h), and therefore will choose b himself. In particular, it predicts
that player 2 will choose (c, h) and not d, as strong rationalizability predicts.

Our new concept thus yields a different strategy for player 2 than strong rationalizability, but it induces
the same outcome —player 1 choosing b at the beginning. In Theorem 6.3 we show that this is no coincidence:
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Figure 2: Battle of the sexes with double outside option

The two concepts will always yield the same outcomes, but may differ in terms of strategies.
When compared to the pure backward induction concept of backwards rationalizability, our concept

always yields a refinement of the latter —not only in terms of outcomes but also in terms of strategies. See
Theorem 5.1. In the game of Figure 2, for instance, backwards rationalizability yields the same strategies for
player 1 as our concept, which is only strategy b, but allows for strategies (c, h) and d for player 2 whereas our
concept only allows for (c, h). In fact, the new concept can be viewed as a backward looking strengthening
of the purely forward looking concept of backwards rationalizability: On top of always believing that the
opponent will choose rationally in the future, which is what backwards rationalizability entails, we require
a player to also explain (some of) the opponent’s past choices whenever possible.

Although our concept is equivalent to strong rationalizability in terms of outcomes, we believe that
strategies matter. Surprises and mistakes do happen regularly in reality, and therefore we find it important
to critically analyze how players react to surprises. Indeed, a satisfactory theory of rational behavior should
also describe how rational players act and reason upon observing surprising, or even irrational, behavior
by their opponents. Different from strong rationalizability, under forward and backward rationalizability a
player, upon observing a surprising move by his opponent, will never believe that an opponent will choose
irrationally in the future.

An important immediate consequence of the two results mentioned above is that in every dynamic
game with imperfect information, every strongly rationalizable outcome is also induced by some profile
of backwards rationalizable strategies. Catonini (2020) and Perea (2017) have already proven this result
for dynamic games with observed past choices, but we show that this property even holds for games with
imperfectly observed past choices. This may be viewed as a generalization of Battigalli’s theorem, which
states that in every dynamic game with perfect information and without relevant ties, the unique strongly
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rationalizable outcome is the backward induction outcome.
The paper finally investigates how players reason if they learn that the game was actually preceded

by some earlier moves they were initially unaware of. Traditionally, we analyze a game by assuming that
all players know that this is the game being played, and we may be interested in the players’behavior at
“surprising” subgames, which were initially not expected to be reached. But instead of assuming that a
player finds himself in a “surprising”subgame, it may also happen that a player initially views this subgame
as the “whole game”, and then learns that this game was actually preceded by some past moves.2 If this
happens, this could be a reason for the player to refine his reasoning, but, so we argue, it should never be a
reason to completely overthrow the reasoning he did before. After all, the player reasoned himself towards
a set of possible beliefs and strategies based on the accurate description of the game from now on, and the
fact that the game actually started earlier does not change the accuracy of this description. If the game was
in fact preceded by some past moves, this additional information should only lead to sharper predictions,
but not to new beliefs and strategies which were considered irrational before receiving this new piece of
information. Indeed, it is always possible that the moves preceding the game were chosen by mistake. This
principle, that new information about past moves should only lead players to refine their reasoning, but not
to overthrow their reasoning, is called expansion monotonicity.

Compare, for instance, Nash equilibrium and subgame perfect equilibrium in dynamic games. Nash
equilibria in dynamic games that are not subgame perfect involve non-credible threats that are inconsistent
with Nash equilibria in unreached subgames. Hence, Nash equilibrium violates expansion monotonicity,
while subgame perfect equilibrium satisfies it.

As is easily seen, the game of Figure 1 shows that strong rationalizability violates expansion monotonic-
ity. If the game were to start at h2, then strong rationalizability would uniquely select the strategy c for
player 2. However, if player 2 learns that the game in fact started at h1, then strong rationalizability would
uniquely select strategy (d, g) for player 2, and therefore the previous reasoning of player 2 would be com-
pletely overthrown by this new information. In contrast, the pure backward induction concept of backwards
rationalizability does satisfy expansion monotonicity.

We show in Theorem 8.1 that also the new concept of forward and backward rationalizability always
satisfies expansion monotonicity. Consider, for instance, the game from Figure 2. If the game were to start
at h3, our concept selects both e and f for player 1. However, if player 1 learns that the game started at
h2, this additional information will refine the set of possible choices for player 1 to only f.

The paper is organized as follows: In Section 2 we lay out the basic definitions and notation for dynamic
games. In Section 3 we formally define the strong rationalizability procedure, the backwards rationalizability
procedure and the new forward and backward rationalizability procedure, and prove the existence of the
latter concept. In Section 4 we epistemically characterize forward and backward rationalizability. In Section
5 we show that the new concept constitutes a refinement, in terms of strategies, of backwards rationalizability,
whereas we prove in Section 6 that in terms of outcomes it is equivalent to strong rationalizabity. In
Section 7 we show how these results imply a generalization of Battigalli’s theorem, by proving that in every

2This would be a special instance of an extensive-form game with unawareness. See, for example, Heifetz, Meier and Schipper
(2013).
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dynamic game with possibly imperfect information, all strongly rationalizable outcomes are also backwards
rationalizable. In Section 8 we discuss the principle of expansion monotonicity. In Section 9 we provide
some concluding discussions. The appendix contains all the proofs.

2 Preliminaries

In this section we introduce our model of dynamic games and define derived objects like strategies, condi-
tional belief vectors, strong belief, and optimal choice at information sets.

2.1 Dynamic Games

In this paper we consider finite dynamic games that allow for simultaneous moves and imperfect information,
and where every action and history can be indexed by time. We assume that every player, at each of his
information sets, knows the time. Formally, a dynamic game is a tuple Γ = (I, P, Ia, (Ai, Hi)i∈I , Z, (ui)i∈I),
where

(a) I is the finite set of players;
(b) P is the finite set of past action profiles, or histories;
(c) the mapping Ia assigns to every history p ∈ P the (possibly empty) set of active players Ia(p) ⊆ I

who must choose after history p. If Ia(p) contains more than one player, there are simultaneous moves after
p. We say that p is a terminal history, or an outcome, if Ia(p) = ∅, and p is called a non-terminal history
otherwise. By Pi we denote the set of histories p ∈ P with i ∈ Ia(p);

(d) for every player i, the mapping Ai assigns to every history p ∈ Pi the finite set of actions Ai(p) from
which player i can choose after history p. By m0 ∈ Z we denote the first period of the game3, whereas
p0 denotes the unique period m0 history, marking the beginning of the game. For every m ≥ m0 + 1, the
period m histories can then inductively be defined as the pairs p′ = (p, (ai)i∈Ia(p)) where p is a non-terminal
period (m−1) history, and such that for every i ∈ Ia(p) we have that ai ∈ Ai(p). By m+ we denote the last
period that contains a non-terminal history. We assume that the objects P, Ia and (Ai)i∈I are such that the
histories in P are precisely those that are period m histories for some m. We say that a history p precedes
a history p′ (or p′ follows p) if p′ results by adding some action profiles after p;

(e) for every player i there is a partition Hi of the set of histories Pi where i is active. Every partition
element hi ∈ Hi is called an information set for player i. In case hi contains more than one history, the
interpretation is that player i does not know at hi which history in hi has been realized. For every hi ∈ Hi

there is a period m such that all histories in hi are period m histories. In that case, hi is called a period m
information set. By Hm

i we denote the collection of period m information sets for player i. The objects Ai
and Hi must be such that for every information set hi ∈ Hi and every two histories p, p′ in hi, we have that
Ai(p) = Ai(p

′). We can thus write Ai(hi) for the unique set of available actions at hi. Moreover, it must be
that Ai(hi) ∩ Ai(h′i) = ∅ for every two distinct information sets hi, h′i ∈ Hi. By H := ∪i∈IHi we denote the
collection of all information sets, whereas Hm := ∪i∈IHm

i is the collection of all period m information sets;

3The reason we do not require m0 = 0 is that in Section 8 we consider embedding Γ into a larger game that starts before Γ.
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(f) Z ⊆ P is the collection of terminal histories or outcomes;
(g) for every player i there is a utility function ui : Z → R.

The dynamic game satisfies perfect recall (Kuhn (1953)) if every player always remembers which actions
he chose in the past, and which information he had about the opponents’past actions. Formally, for every
player i, information set hi ∈ Hi, and histories p, p′ ∈ hi, the sequence of player i actions in p and p′ must
be the same (and consequently, the collection of player i information sets that precede p and p′ must be
the same). In the sequel we will always assume that the dynamic game under consideration satisfies perfect
recall.

For every two information sets h, h′ ∈ H, we say that h precedes h′ (or h′ follows h) if there is a history
p ∈ h and a history p′ ∈ h′ such that p precedes p′.

2.2 Strategies

A complete strategy s̃i for player i assigns to every information set hi ∈ Hi an available action s̃i(h) ∈ Ai(h).
Let S̃i be the set of complete strategies for player i, and S̃−i := ×j 6=iS̃j the set of opponents’ complete
strategy combinations. Every combination of complete strategies (s̃i)i∈I induces an outcome z((s̃i)i∈I) ∈ Z.
By

Hi(s̃i) := {hi ∈ Hi | there is s̃−i ∈ S̃−i such that z(s̃i, s̃−i) follows a history in hi}

we denote the collection of player i information sets that can be reached by s̃i. By ri(s̃i) we denote the
restriction of s̃i to information sets in Hi(s̃i), and it is called the reduced strategy induced by s̃i. By Si :=
ri(S̃i) we denote the set of reduced strategies for player i. In the sequel, when we say strategy we always
mean a reduced strategy. Every combination of strategies (si)i∈I reaches an outcome z((si)i∈I) ∈ Z.

For a given player i and information set h ∈ H, we define the sets

S(h) : = {s ∈ ×i∈ISi | z(s) follows a history in h},
Si(h) : = {si ∈ Si | there is some s−i ∈ S−i such that (si, s−i) ∈ S(h)}, and
S−i(h) : = {s−i ∈ S−i | there is some si ∈ Si such that (si, s−i) ∈ S(h)}.

Intuively, Si(h) is the set of strategies for player i that allow for information set h to be reached, whereas
S−i(h) is the set of opponents’strategy combinations that allow for h to be reached. By perfect recall it
holds, for every player i and every information set h ∈ Hi, that S(h) = Si(h)× S−i(h). For a given strategy
si ∈ Si we define Hi(si) := {h ∈ Hi | si ∈ Si(h)}.

2.3 Conditional Belief Vectors and Strong Belief

For a finite set X, let ∆(X) be the set of probability measures on X. A conditional belief vector for player
i is a mapping bi that assigns to every information set h ∈ Hi a probabilistic belief bi(h) ∈ ∆(S−i(h)).
Moreover, a conditional belief vector bi is required to satisfy forward consistency4 (often called Bayesian

4We adopt this terminology from Battigalli, Catonini and Manili (2023).
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updating). That is, for every h, h′ ∈ Hi where h precedes h′ and bi(h)(S−i(h′)) > 0 we have that

bi(h
′)(s−i) =

bi(h)(s−i)

bi(h)(S−i(h′))

for every s−i ∈ S−i(h′).5 Let Bi be the set of all forward consistent conditional belief vectors for player i.
For a given player i, consider a set of opponents’strategy combinations D−i ⊆ S−i. Say that a conditional

belief vector bi ∈ Bi strongly believes D−i if for every information set h ∈ Hi with S−i(h)∩D−i 6= ∅ we have
that bi(h)(D−i) = 1.

2.4 Optimal Choice at Information Sets

Recall that every strategy combination s = (si)i∈I induces a terminal history z(s). For a strategy si, an
information set h ∈ Hi(si) and a conditional belief vector bi, let

ui(si, bi(h)) :=
∑

s−i∈S−i(h)

bi(h)(s−i) · ui(z(si, s−i))

be the expected utility induced by strategy si at information h under the conditional belief vector bi. A
strategy si is optimal for bi at h ∈ Hi(si) if

ui(si, bi(h)) ≥ ui(s′i, bi(h)) for all s′i ∈ Si(h).

For a given period m, strategy si is said to be optimal for bi from period m onwards if for every period
τ ≥ m and every information set h ∈ Hi(si) ∩Hτ

i , strategy si is optimal for bi at h.
Note that if a strategy si does not allow any information set in Hτ with τ ≥ m to be reached then,

by definition, si is (vacuously) optimal from period m onwards for every bi ∈ Bi. It can be shown that the
following is true:

Remark 2.1 For every conditional belief vector bi ∈ Bi, every period m and every information set h ∈ Hm,
there is a strategy si ∈ Si(h) that is optimal for bi from period m onwards.

3 Definition of the Concepts

In this section we recall the concepts of strong rationalizability and backwards rationalizability, and introduce
the new concept of forward and backward rationalizability.

5By abuse of notation, we write bi(h)(s−i) instead of bi(h)({s−i}).
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3.1 Strong Rationalizability

The strong rationalizability procedure (Pearce (1984), Battigalli (1997)) is a forward induction procedure
that recursively eliminates strategies and conditional belief vectors for every player. The main idea is that
a player, whenever possible, must believe that his opponents are implementing strategies that are optimal
from the beginning (that is, from period m0 onwards).

Definition 3.1 (Strong rationalizability) Round 0: For every player i, set B0
i := Bi and S0

i := Si.

Round k ≥ 1: For every player i, set

Bk
i := {bi ∈ Bk−1

i | bi strongly believes Sk−1
−i }

and
Ski := {si ∈ Sk−1

i | si is optimal for some bi ∈ Bk
i from period m0 onwards}.

Strategy si ∈ Si is strongly rationalizable if si ∈ Ski for all k ≥ 0. Conditional belief vector bi is strongly
rationalizable if bi ∈ Bk

i for all k ≥ 0.

3.2 Backwards Rationalizability

The concept of backwards rationalizability (Perea (2014), Penta (2015), Catonini and Penta (2022)) is purely
forward looking, and can thus be viewed as a genuine backward induction concept. This can also be seen
from the fact that the resulting strategies can be characterized by common belief in future rationality (Perea
(2014)), stating that a player always believes that his opponents will choose rationally now and in the future,
always believes that his opponents always believe that the other players will choose rationally now and in
the future, and so on. In the definition below, recall that m+ is the last period that contains a non-terminal
history.

Definition 3.2 (Backwards rationalizability) Period m+, round 0. Set Sm+.0
i := Si and B

m+.0
i := Bi

for all players i.

Period m+, round k ≥ 1. For every player i, set

B
m+.k
i := {bi ∈ Bm+.k−1

i | bi(h)(S
m+.k−1
−i ) = 1 for all h ∈ Hm+

i },

and
S
m+.k
i := {si ∈ Sm+.k−1

i | si is optimal for some bi ∈ Bm+.k
i from period m+ onwards}.

Continue until Bm+.K
i = B

m+.K+1
i and Sm+.K

i = S
m+.K+1
i for some round K and all players i, and set

B
m+

i := B
m+.K
i and Sm+

i := S
m+.K
i .6

6Note that such a round K can always be found. Indeed, the set of strategies is finite, and there will thus be some K with
S
m+.K+1

i = S
m+.K

i for all players i. But then, by construction, B
m+.K+2

i = B
m+K+1

i and S
m+.K+2

i = S
m+.K+1

i for all players
i.
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Period m ≤ m+ − 1, round 0. Set Sm.0i := Sm+1
i and Bm.0

i := Bm+1
i for all players i.

Period m ≤ m+ − 1, round k ≥ 1. For every player i, let

Bm.k
i := {bi ∈ Bm.k−1

i | bi(h)(Sm.k−1
−i ) = 1 for all h ∈ Hm

i },

and
Sm.ki := {si ∈ Sm.k−1

i | si is optimal for some bi ∈ Bm.k
i from period m onwards}.

Continue untilBm.K
i = Bm.K+1

i and Sm.Ki = Sm.K+1
i for some roundK and all players i, and setBm

i := Bm.K
i

and Smi := Sm.Ki .

A strategy si is backwards rationalizable if si ∈ Sm0
i , and a conditional belief vector bi is backwards

rationalizable if bi ∈ Bm0
i .

The definition we have provided here uses the backwards order of elimination. That is, we start by
eliminating at the ultimate period, subsequently we do the eliminations at the penultimate period, and so
on, until we reach the beginning of the game. Perea (2014)’s definition is different, as in every round it
(potentially) performs eliminations at each of the information sets in each of the periods. However, it is
argued in Section 6.3 of Perea (2014) that the definition we provide here is equivalent, in terms of strategies
and conditional belief vectors selected, to the definition in Perea (2014).

3.3 Forward and Backward Rationalizability

The new concept of forward and backward rationalizability combines elements from the strong rationalizabil-
ity procedure and the backwards rationalizability procedure. Like the backwards rationalizability procedure,
it proceeds in a backward inductive fashion by first performing eliminations at the ultimate period, and then
proceeding backwards until we reach the beginning of the game. However, when we reach a certain period m
in this way then, in line with strong rationalizability, we also require players at later periods to reason about
the opponents’past moves at period m. This is fundamentally different from backwards rationalizability,
where players at a given period are only required to reason about the opponents’moves at this period and
future periods.

Definition 3.3 (Forward and backward rationalizability) Period m+, round 0. Set Sm+.0
i := Si

and Bm+.0
i := Bi for all players i.

Period m+, round k ≥ 1. For every player i, set

B
m+.k
i := {bi ∈ Bm+.k−1

i | bi strongly believes Sm+.k−1
−i },

and
S
m+.k
i := {si ∈ Sm+.k−1

i | si is optimal for some bi ∈ Bm+.k
i from period m+ onwards}.

Continue until Bm+.K
i = B

m+.K+1
i and S

m+.K
i = S

m+.K+1
i for some round Kand all players i, and set

B
m+

i := B
m+.K
i and Sm+

i := S
m+.K
i .
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Period m ≤ m+ − 1, round 0. Set Sm.0i := Sm+1
i and Bm.0

i := Bm+1
i for all players i.

Period m ≤ m+ − 1, round k ≥ 1. For every player i, let

Bm.k
i := {bi ∈ Bm.k−1

i | bi strongly believes Sm.k−1
−i },

and
Sm.ki := {si ∈ Sm.k−1

i | si is optimal for some bi ∈ Bm.k
i from period m onwards}.

Continue until Bm.K
i = Bm.K+1

i and Sm.Ki = Sm.K+1
i for some round K and all players i, and set Bm

i :=
Bm.K
i and Smi := Sm.Ki .

A strategy si is forward and backward rationalizable if si ∈ Sm0
i , and a conditional belief vector bi is

forward and backward rationalizable if bi ∈ Bm0
i .

For a given player i and information set h in period m, let τ ≤ m be the earliest period such that
Sτ .ki ∩Si(h) 6= ∅ for some round k ≥ 0. For this period τ , let l be the highest such round with Sτ .li ∩Si(h) 6= ∅.7
Then, we denote by Sfbri (h) := Sτ .li ∩ Si(h) the set of strategies that is predicted conditional on reaching
information set h.

Note that according to our concept, a player j 6= i with h ∈ Hj may believe at information set h that
player i chooses a strategy which is not in Sfbri (h) in case there are more than two players. Indeed, it may
be that Sfbri (h) = Sτ .li ∩ Si(h), whereas for a third player n 6= i, j we have that Sfbrn (h) = Sτ

′.l′
n ∩ Sn(h),

where either τ ′ > τ or (τ ′ = τ and l′ < l). In that case, a conditional belief vector bj that is forward and
backward rationalizable may at h assign positive probability to opponents’strategy combinations containing
some si ∈ Sτ

′.l′
i \Sτ .li .

By construction, our procedure will refine the conditional beliefs of player i at some information set
h ∈ Hm

i until we reach a period τ < m where Sτ .k−i ∩ S−i(h) becomes empty for some k ≥ 1. In that case,
player i’s eventual conditional beliefs at h will thus be given by period τ and round k − 1 of the procedure.
This implies that at h, player i believes that his opponents were “level (k − 1)-rational” from period τ
onwards, and “fully rational”from period τ + 1 onwards.

Nothing essential would change in the procedure if we would allow for randomized (that is, mixed or
behavioral) strategies. In that case, the randomized strategies surviving the new procedure would exactly
be the randomizations over pure strategies that survive our original procedure.

It is not diffi cult to prove that the concept of forward and backward rationalizability always yields at
least one strategy and conditional belief vector for every player.

Theorem 3.1 (Existence) For every player there are always at least one strategy and one conditional
belief vector that are forward and backward rationalizable.

Thus, it can never happen that all remaining strategies or conditional belief vectors for a given player
are eliminated at a particular round.

7 If m > m0 then τ < m, since h is always reachable by a strategy in Sm−1.0
i = Smi .
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3.4 Examples

Example 1. Consider the example from Figure 2 in the introduction. We set m0 = 1 and hence m+ = 3.
We will now run the forward and backward rationalizability procedure, starting at period 3.

Period 3. We have that B3.0
1 = B3.1

1 = B1 and B3.0
2 = B3.1

2 = B2. For player 1, both strategies (a, e) and
(a, f) are optimal from period 3 onwards for some conditional belief vector in B3.1

1 , and similarly for player
2’s strategies (c, g) and (c, h). Note that the strategies b and d are vacuously optimal from period 3 onwards
for some conditional belief vector in B3.1

1 and B3.1
2 , respectively. Thus,

S3.1
1 = S1 = {b, (a, e), (a, f)} and S3.1

2 = S2 = {d, (c, g), (c, h)},
and this is where the procedure at Period 3 terminates.

Period 2. Round 1. We have that B2.1
1 = B1 and B2.1

2 = B2. For player 2, strategy (c, g) is not optimal
from period 2 onwards for any conditional belief vector in B2.1

2 . In turn, strategies (c, h) and d are optimal
from period 2 onwards for some conditional belief vector in B2.1

2 . Thus,

S2.1
2 = {d, (c, h)}.

Round 2. We then have

B2.2
1 = {b1 ∈ B1 | b1(h1)({d, (c, h)}) = 1 and b1(h3)((c, h)) = 1}.

Since for player 1 only strategies b and (a, f) are optimal from period 2 onwards for some conditional belief
vector in B2.2

1 , it follows that
S2.2

1 = {b, (a, f)}.
Round 3. This implies that

B2.3
2 = {b2 ∈ B2 | b2(h2)((a, f)) = 1 and b2(h3)((a, f)) = 1}.

For player 2, only strategy (c, h) is optimal from period 2 onwards for some conditional belief vector in B2.3
2 ,

and we thus conclude that
S2.3

2 = {(c, h)}.
Round 4. We then have that

B2.4
1 = {b1 ∈ B1 | b1(h1)((c, h)) = 1 and b1(h3)((c, h)) = 1},

after which no further eliminations are possible in period 2.

Period 1. We start with the restrictions on the strategies and conditional belief vectors inherited from
period 2. That is,

S1.0
1 = {b, (a, f)}, B1.0

1 = {b1 ∈ B1 | b1(h1)((c, h)) = 1 and b1(h3)((c, h)) = 1},
S1.0

2 = {(c, h)} and B1.0
2 = {b2 ∈ B2 | b2(h2)((a, f)) = 1 and b2(h3)((a, f)) = 1}.

12



For player 1, the only strategy that is optimal from period 1 onwards for some conditional belief vector
in B1.0

1 is b. We therefore have
S1.1

1 = {b}.

Afterwards, no further eliminations are possible. We thus conclude that the strategies selected by the
forward and backward rationalizability procedure are b for player 1 and (c, h) for player 2.

On the other hand, as we have seen in the introduction, strong rationalizability selects the strategies
b for player 1 and d for player 2. The intuition for this difference is the following: According to forward
and backward rationalizability, player 2 asks at h2: What is the earliest period m such that player 1’s past
behavior —that is, player 1 choosing a —can be explained by “full rationality”from period m onwards? This
must be period 2. Indeed, from period 2 onwards, player 1 expects player 2 to choose (c, h), which makes it
optimal for player 1, from period 2 onwards, to choose (a, f). In turn, if player 2 expects player 1 to choose
(a, f), then it is optimal for player 2 to choose (c, h). This is a plausible theory for the reasoning and play
from period 2 onwards.

However, if player 1 anticipates player 2 choosing (c, h), then it can never be optimal for player 1 to
choose a at h1. As such, player 1 choosing a cannot be explained by “full rationality”from period 1 onwards.

According to strong rationalizability, player 2 asks at h2: Is there a strategy for player 1 involving his
observed past move a that is optimal for some belief, even if this belief attributes irrational future strategies
to player 2? This reasoning leads player 2 to believe that player 1 chooses (a, e), as this is the only strategy
involving a that can possibly yield him at least 2. As a consequence, player 2 will choose d. Note, however,
that stratey (a, e) can only yield player 1 at least 2 if he believes that player 2 irrationally chooses the
strategy (c, g) in the future. As such, believing that player 1 chooses (a, e) cannot be part of a “fully
rational”theory from period 1 onwards. Therefore, our concept discards this type of reasoning by player 2.

Example 2. We now consider a larger example, with more information sets. Consider the dynamic game
from Figure 3. Note that the information sets h2, h3 and h5 are non-trivial. We set m0 = 1, and hence
m+ = 5. Table 1 presents the sets of strategies that remain, for every period m and round k, in the forward
and backward rationalizability procedure. We will now explain the elimination steps in the procedure.

In period 5, round 1, player 3’s strategy (i, o) is suboptimal at h7. In period 4, round 1, player 2 must
at h6 assign probability 1 to player 3’s strategy (i, n), and hence player 2’s strategies (d, j, l) and (d, k, l)
become suboptimal at h6. In period 3, round 1, player 3 must believe at h4 that player 2 will either choose
(d, j,m) or (d, k,m), and hence player 3’s strategy g becomes suboptimal at h4. In period 2 no eliminations
can be made. In period 1, round 1, player 1’s strategy b is always better than (a, e) at h1, and hence player
1’s strategy (a, e) is suboptimal at h1. At period 1, round 2, player 2 must as h5 assign probability zero to
player 1 choosing (a, e) and probability zero to player 3 choosing g. But then, player 2 can at h5 only assign
positive probability to the second and fourth history, which makes player 2’s strategy (d, j,m) suboptimal
at h5. At period 1, round 3, player 1 must believe at h1 that player 2 chooses either c or (d, k,m), and hence
player 1 expects 15 or 20 by choosing (a, f) at h1. As b given player 1 the amount of 10 for sure, player 1’s
strategy b becomes suboptimal at h1. At the same time, player 3 must believe at h4 that player 2 chooses
(d, k,m), which makes player 3’s strategy (i, n) suboptimal at h4. Finally, at period 1, round 4, player 2
must believe at h2 that player 1 chooses (a, f), which makes player 2’s strategy c suboptimal at h2. The
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Figure 3: A dynamic game with non-trivial information sets

Period m Round k Sm.k1 Sm.k2 Sm.k3

5 1 S1 S2 {g, h, (i, n)}

4 1 S1 {(c, (d, j,m), (d, k,m)} {g, h, (i, n)}

3 1 S1 {(c, (d, j,m), (d, k,m)} {h, (i, n)}

2 1 S1 {(c, (d, j,m), (d, k,m)} {h, (i, n)}

1 1 {(a, f), b} {(c, (d, j,m), (d, k,m)} {h, (i, n)}
1 2 {(a, f), b} {(c, (d, k,m)} {h, (i, n)}
1 3 {(a, f)} {(c, (d, k,m)} {h}
1 4 {(a, f)} {(d, k,m)} {h}

Table 1: Forward and backward rationalizability procedure in the game of Figure 3
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unique forward and backward rationalizable strategies are thus (a, f) for player 1, (d, k,m) for player 2 and
h for player 3.

4 Epistemic Characterization

In this section we investigate what the concept of forward and backward rationalizability entails in terms
of reasoning. To this purpose, we offer epistemic conditions on the players’ belief hierarchies such that
the optimal strategies under these belief hierarchies are precisely the forward and backward rationalizable
strategies. Before doing so, we first recall the definition of a (universal) type space for dynamic games, and
subsequently formalize the notion of strong belief and optimal choice for types in a type space.

4.1 Type Space

The epistemic conditions we introduce will impose restrictions on the belief hierarchies that the players
may have. Such belief hierarchies may conveniently be encoded by means of types in a type space. To
formalize a type space, we need the following definition and pieces of notation. A topological space (X,O)
is called Polish if it is separable and completely metrizable. By Σ(X) we denote the Borel σ-algebra on X,
that is, the smallest σ-algebra that contains all open sets, whereas ∆(X) denotes the set of all probability
measures on (X,Σ(X)). We endow ∆(X) with the smallest topology O∆(X) such that each of the sets
{µ ∈ ∆(X)|

∫
X fdµ ∈ O} is open in ∆(X), where f runs over all bounded continuous functions f : X → R

and O runs over all open subsets of the reals. By Kechris (1995), Theorem 17.23, (∆(X),O∆(X)) is again
a Polish space. We then consider ∆(X) as a measurable space that is endowed with the Borel σ-algebra
(generated by O∆(X)). It is a well-known fact that a continuous map between two topological spaces is
measurable if both of these spaces are endowed with their respective Borel σ-algebras.

Definition 4.1 (Type space) A type space T = ((Ti,Oi), βi)i∈I specifies, for every player i,

(a) a Polish type space (Ti,Oi), and

(b) a continuous belief mapping βi, which assigns to every type ti ∈ Ti and information set h ∈ Hi a
probabilistic belief βi(ti, h) ∈ ∆(S−i(h)× T−i).

Moreover, the types must satisfy forward consistency, that is, for every player i, every type ti ∈ Ti, and
every two information sets h, h′ ∈ Hi where h′ follows h and βi(ti, h)(S−i(h′)× T−i) > 0, we have that

βi(ti, h
′)({s−i} × E−i) =

βi(ti, h)({s−i} × E−i)
βi(ti, h)(S−i(h′)× T−i)

for every s−i ∈ S−i(h′) and every E−i ∈ Σ(T−i).

For our epistemic characterization we need to work with a universal type space. To explain what it is,
we must first introduce the notion of a type morphism.
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Definition 4.2 (Type morphism) Consider two type spaces T = ((Ti, Oi), βi)i∈I and
T ′ = ((T ′i , O

′
i), β

′
i)i∈I . A type morphism from T to T ′ is a tuple (fi)i∈I of continuous functions fi : Ti → T ′i

such that, for every player i, every type ti ∈ Ti, and every information set h ∈ Hi we have that

β′i(fi(ti), h)(×j 6=i({sj} × E′j)) = βi(ti, h)(×j 6=i({sj} × f−1
j (E′j))

for every opponents’strategy combination (sj)j 6=i ∈ S−i(h) and every measurable set ×j 6=iE′j ⊆ ×j 6=iT ′j of
opponents’type combinations.

A type space is then called universal if every other type space can be uniquely embedded into it by
means of a type morphism.

Definition 4.3 (Universal type space) A type space T is universal8 if for every other type space T ′
there is a unique type morphism from T ′ to T .

It turns out that every two universal type spaces are isomorphic. As such, we can speak about the
universal type space. Battigalli and Siniscalchi (1999), Guarino (2024) and Fukuda (2024) have shown that
we can always construct a universal type space in our setting.

4.2 Strong Belief

Consider a type space T = ((Ti,Oi), βi)i∈I , a type ti ∈ Ti and an event E−i ∈ Σ(S−i × T−i). The type ti is
said to strongly believe the event E−i if it assigns probability 1 to the event whenever possible. That is,

βi(ti, h)(E−i) = 1 at all h ∈ Hi where E−i ∩ (S−i(h)× T−i) 6= ∅.

4.3 Optimal Choice

Consider a type ti ∈ Ti, a strategy si ∈ Si and an information set h ∈ Hi(si). Then, we denote by

ui(si, ti, h) :=
∑

s−i∈S−i(h)

βi(ti, h)({s−i} × T−i) · ui(z(si, s−i))

the expected utility induced by si at h for the type ti. The strategy si is optimal for the type ti at information
set h if ui(si, ti, h) ≥ ui(s

′
i, ti, h) for all s′i ∈ Si(h). For a given period m, we say that strategy si is optimal

for the type ti from period m onwards if for every period τ ≥ m, and every information set h ∈ Hi(si)∩Hτ ,
the strategy si is optimal for type ti at h.9 For a given set of types T̂i ∈ Σ(Ti), we denote by

(Si × T̂i)rat,≥m := {(si, ti) ∈ Si × T̂i | si optimal for ti from period m onwards}

the event that player i chooses rationally from period m onwards and that i’s type belongs to T̂i.
The following result states that the event of choosing rationally from a certain period onwards is always

a “well-behaved”set.
8 In the literature, such type spaces are sometimes called terminal.
9Note that if Hi(si)∩Hτ = ∅ for all τ ≥ m, then si is (vacuously) optimal for every type of player i from period m onwards.
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Lemma 4.1 (Rationality is a measurable event) Suppose that T̂i is a closed (measurable) subset of
Ti. Then, the set (Si × T̂i)rat,≥m is a closed (measurable) subset of Si × Ti.

This result will be important for guaranteeing that the epistemic conditions below are all well-defined.
It will also play a key role in the proof of our epistemic characterization.

4.4 Epistemic Characterization

The epistemic conditions we impose on the players’types are as follows: First, we focus on the last period
m+ where players have to move. A player must (m+.1) strongly believe in the event that every opponent
chooses rationally from periodm+ onwards, (m+.2) strongly believe in the event that every opponent chooses
rationally from period m+ onwards and that every opponent satisfies (m+.1), and so on. These conditions
together yield common backward strong belief in rationality from period m+ onwards. We refer to this event
as (m+).

We then move to period m+ − 1. A player must (m+ − 1.1) strongly believe in the event that every
opponent chooses rationally from period m+−1 onwards and that every opponent satisfies (m+). Moreover,
a player must (m+ − 1.2) strongly believe in the event that every opponent chooses rationally from period
m+ − 1 onwards and that every opponent satisfies (m+ − 1.1), and so on. These conditions together yield
common backward strong belief in rationality from period m+ − 1 onwards.

We then continue in this fashion until we reach the beginning of the game. We thus give the highest
epistemic priority to reasoning about the last period, the second-to-highest epistemic priority to reasoning
about the last two periods, and so on.10 The final restrictions on the types are called common backward
strong belief in rationality.

Definition 4.4 (Common backward strong belief in rationality) For every period m, number k ∈
{0, 1, ...} and player i, we define the sets of types SBR≥m.ki that express k-fold backward strong belief in
rationality from period m onwards. These sets SBR≥m.ki are inductively defined as follows.

Period m+. Set SBR
≥m+.0
i := Ti for every player i. For every k ≥ 1, inductively define

SBR
≥m+.k
i := {ti ∈ SBR≥m+.k−1

i | ti strongly believes ×j 6=i (Sj × SBR≥m+.k−1
j )rat,≥m+}.

Set SBR≥m+

i := ∩k≥0SBR
≥m+.k
i for every player i.

Period m ≤ m+ − 1. Set SBR≥m.0i := SBR≥m+1
i for every player i. For every k ≥ 1, inductively define

SBR≥m.ki := {ti ∈ SBR≥m.k−1
i | ti strongly believes ×j 6=i (Sj × SBR≥m.k−1

j )rat,≥m}.

Set SBR≥mi := ∩k≥0SBR
≥m.k
i for every player i.

For a given periodm and round k, a type ti is said to express up to k-fold backward strong belief in rationality

10For a detailed discussion of epistemic priority in rationalizability concepts, see Catonini (2019).
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from period m onwards if ti ∈ SBR≥m.ki . The type is said to express common backward strong belief in
rationality from period m onwards if ti ∈ SBR≥mi .The type ti is said to express common backward
strong belief in rationality if ti ∈ SBR≥m0

i , where m0 is the first period in the game.

The following result guarantees that the epistemic conditions imposed above lead to “well-behaved”sets.

Lemma 4.2 (Epistemic conditions lead to closed sets) Each of the sets SBR≥m.ki and SBR≥mi above
is a closed subset of Ti.

Let us now have a closer look at the epistemic conditions above. The conditions imply that at every
information set where a player has to move, he looks for the earliest period m and the highest degree k such
that it is possible to believe that (i) every player chooses rationally from period m onwards and expresses
common backward strong belief in rationality from periodm onwards, and (ii) every player chooses rationally
from period m − 1 onwards and expresses up to k-fold backward strong belief in rationality from period
m − 1 onwards. Moreover, he will then believe (i) and (ii). This may be viewed as a best rationalization
principle for the epistemic concept above.

From this best rationalization principle it is clear that epistemic priority is given to backward induction
reasoning: If a player is at an information set, he first looks for the earliest period m such that it is possible
to believe that every player chooses rationally from period m onwards and expresses common backward
strong belief in rationality from period m onwards. In that case, the player will express common backward
strong belief in rationality from period m onwards, and hence will believe, in particular, that every opponent
will choose rationally from period m onwards. Only afterwards will he think about period m− 1, and look
for the highest degree k such that it is possible to believe that, in addition, every player chooses rationally
from period m − 1 onwards and expresses up to k-fold backward strong belief in rationality from period
m− 1 onwards.

The following result shows that the epistemic conditions in common backward strong belief in rationality
single out precisely those strategies that are forward and backward rationalizable.

Theorem 4.1 (Epistemic characterization) Consider the universal type space T = ((Ti,Oi), βi)i∈I .
Then, for every player i and strategy si ∈ Si, the following holds:

(a) strategy si is forward and backward rationalizable, if and only if, si is optimal from the first period
onwards for a type ti ∈ Ti that expresses common backward strong belief in rationality,

(b) if m ≤ m+ − 1 then si ∈ Sm.0i , if and only if, si is optimal from period m + 1 onwards for a type
ti ∈ SBR≥m+1

i that expresses common backward strong belief in rationality from period m + 1 onwards,
and

(c) if k ≥ 0 then si ∈ Sm.k+1
i , if and only if, si is optimal from period m onwards for a type ti ∈ SBR≥m.ki

that expresses up to k-fold backward strong belief in rationality from period m onwards.
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In particular, since we know from Theorem 3.1 that forward and backward rationalizable strategies always
exist, it follows that there is always a type that expresses common backward strong belief in rationality.
That is, the system of epistemic conditions we offer never leads to logical contradictions.

A major difference with strong rationalizability is that forward and backward rationalizability requires
players to do forward induction reasoning from a certain period onwards, in a backward inductive fashion.
Strong rationalizability, in contrast, always requires players to do the forward induction reasoning in the
whole game, that is, from the first period onwards.

As such, we can also consider a bounded rationality version of forward and backward rationalizability
in which players only do the forward induction reasoning from period m+ onwards, from period m+ − 1
onwards, until we reach period m. Players would thus not actively reason about choices that are made
before period m. Parts (b) and (c) in Theorem 4.1 reveal what has to be imposed, in terms of reasoning, to
establish such a bounded rationality variant.

5 Relation with Backwards Rationalizability

In this section we start by showing that our concept is a refinement of backwards rationalizability in terms
of strategies, and link this to the epistemic conditions of common belief in future rationality (Perea (2014)).

5.1 Refinement of Backwards Rationalizability

In the game of Figure 2 we saw that forward and backward rationalizability selects a different strategy for
player 2 than strong rationalizability. The reason was that according to the former concept, player 2, at a
given information set h, only interprets player 1’s past move as a rational move if this is compatible with
the completed reasoning from h onwards. This shows that forward and backward rationalizability is, above
all, a forward looking concept, and thus gives priority to backward induction reasoning. This intuition is
confirmed by the following result.

Theorem 5.1 (Relation with backwards rationalizability) Every strategy and conditional belief vec-
tor that is forward and backward rationalizable, is also backwards rationalizable.

Hence, one can argue that the new concept gives epistemic priority to backward induction reasoning
compared to forward induction reasoning. At the same time, as the game in Figure 2 shows, our concept
may be more restrictive than backwards rationalizability since it additionally imposes some forward induction
reasoning.

5.2 Belief in Future Rationality

In Perea (2014) it is shown that backwards rationalizability can be epistemically characterized by the
conditions of common belief in future rationality, stating that a player always believes that his opponents
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Figure 4: Double outside option game with a bet for the third player

will choose rationally now and in the future, that a player always believes that his opponents always believe
that the other players will chooses rationally now and in the future, and so on. Hence, even if a player is
suprised by an opponent’s past move, which may possibly lead him to conclude that his opponent has chosen
irrationally in the past, he will still believe that the same opponent will “recover” and choose rationally
from now on.

As, by Theorem 5.1, forward and backward rationalizability refines the reasoning of backwards ratio-
nalizability, it follows that the former concept always reasons within the bounds set by common belief in
future rationality. In particular, a player will only interpret an opponent’s past move as a signal for the
opponent’s future behavior —a typical forward inductive inference —if this is in accordance with common
belief in future rationality.

In this sense, our concept is fundamentally different from strong rationalizability. To further illustrate
this, consider the game in Figure 4. This is a three-player double outside option game, where the third
player has to “bet”on the behavior of the first two players after they have both foregone the outside option.
In that case, player 1 must choose between e and f, player 2 must choose between g and h, whereas player
3 must choose between l and r (left matrix or right matrix). Note that r will only be optimal for player 3 if
he believes, with suffi ciently high probability, that players 1 and 2 miscoordinate on e and h at information
set h3.

According to strong rationalizability, player 3 will conclude at h3 that players 1 and 2 will go for e and
h, respectively, and therefore player 3 will choose r. To see this, note that a for player 1 can only be optimal
at h1 if he chooses e at h3, and that c for player 2 can only be optimal at h2 if he chooses h at h3.

But assume now that player 1 would choose optimally at h3 given his beliefs there. According to strong
rationalizability, player 1 will believe at h3 that player 2 chooses h, for the same reasons as outlined above.
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If player 1 chooses optimally at h3, then he would go for f and not e, rendering r suboptimal for player 3.
In that sense, the choice r selected by strong rationalizability is a risky choice for player 3, as this bet is
based on the assumption that player 1 will not choose optimally given his belief at h3.

The concept of forward and backward rationalizability prescribes a completely different line of reasoning
for player 3 here. If player 3 finds himself at h3, then he first asks whether there is a plausible theory from
information set h2 onwards that could explain the event of reaching h3. Such a theory can indeed be found:
For player 2 it is only optimal to choose c at h2 if he would choose h at h3. Therefore, player 3 will believe
at h3 that player 2 will choose h, and will believe that player 1 also believes at h3 that player 2 chooses h.
Assuming that player 1 chooses optimally at h3, player 3 then believes that player 1 chooses f at h3.

Clearly, this belief about the strategies of players 1 and 2 cannot be refined any further by subsequently
analyzing the game from h1 onwards, and therefore forward and backward rationalizability leads player 3
to believe that players 1 and 2 will choose f and h at h3, and player 3 will thus choose l. Note that player
1’s choice f is optimal at h3 if he believes that player 2 chooses h there, and vice versa. As such, player 3’s
reasoning about the behavior of players 1 and 2 is in line with common belief in future rationality, contrary
to player 3’s reasoning prescribed by strong rationalizability.

6 Relation with Strong Rationalizability

In this section we show that the forward and backward rationalizability procedure is equivalent, in terms of
outcomes, to the strong rationalizability procedure. To prove this result we use the strong belief reduction
operator from Perea (2018), and rely on results and proof techniques from Perea (2018), observing that
these can be extended to games with unobserved past choices.

6.1 Strong Belief Reduction Operator

A product of strategy sets is a set D = ×i∈IDi where Di ⊆ Si for every player i. A reduction operator r
assigns to every product of strategy sets D a subset r(D) ⊆ D, where r(D) is again a product of strategy
sets. In the sequel, we always assume that we are talking about products of strategy sets. A set E with
r(D) ⊆ E ⊆ D is a partial reduction of D. For a given k ∈ N, let rk(D) be the k-fold application of the
operator r to D.

For a given product of strategy sets D, let H(D) be the collection of information sets that are reached
by some strategy profile in D.

Definition 6.1 (Strong belief reduction operator) The strong belief reduction operator sb as-
signs to every product of strategy sets D = ×i∈IDi the set sb(D) = ×i∈Isbi(D), where

sbi(D) := {si ∈ Di | there is some bi ∈ Bi that strongly believes D−i
such that si is optimal for bi at every h ∈ H(D) ∩Hi(si)}.
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Recall that Hi(si) is the collection of information sets for player i that can be reached by si. In Perea
(2018), Theorem 2.1, it is shown that for dynamic games with observed past choices, the strongly ratio-
nalizable strategies are obtained by iteratedly applying the strong belief reduction operator to the full set
of strategies. As the proof does not rely on the property of observed past choices, this result holds for all
games in our setting as well.

Theorem 6.1 (Characterization of strong rationalizability) For every k ∈ N and every player i, let
Ssr,ki be the set of strategies for player i that survive round k of the strong rationalizability procedure. Let
Ssr,k = ×i∈ISsr,ki and S = ×i∈ISi. Then, Ssr,k = sbk(S) for every k ∈ N.

6.2 Order Independence with Respect to Outcomes

Consider a reduction operator r. An elimination order for r is a finite sequence (D0, D1, ..., DK) of products
of strategy sets such that (a) D0 = S, (b) r(Dk) ⊆ Dk+1 ⊆ Dk for every k ∈ {0, ...,K − 1}, and (c)
r(DK) = DK .

For a product of strategy sets D, let Z(D) be the collection of terminal histories reached by strategy
profiles in D.

Definition 6.2 (Order independence with respect to outcomes) A reduction operator r is order
independent with respect to outcomes if for every two elimination orders (D0, D1, ..., DK) and
(E0, E1, ..., EL) we have that Z(DK) = Z(EL).

Corollary 3.1 in Perea (2018) states that for all dynamic games with observed past choices, the strong
belief reduction operator is order independent with respect to outcomes. As it turns out, the proof in Perea
(2018) does not rely on the property of observed past choices, and holds for our class of dynamic games as
well.

Theorem 6.2 (Order independence with respect to outcomes) The strong belief reduction opera-
tor sb is order independent with respect to outcomes.

6.3 Outcome Equivalence with Strong Rationalizability

The following result states that the reduction steps in the forward and backward rationalizability procedure
correspond to a specific elimination order of the strong belief reduction operator.

Lemma 6.1 (Procedure as elimination order) Let (D0, D1, ..., DK) be the products of strategy sets
generated by the forward and backward rationalizability procedure in every round.11 Then, (D0, D1, ..., DK)
is an elimination order of the strong belief reduction operator.

11Here, the rounds 0, 1, ...,K actually correspond to the rounds m.k in the definition of the forward and backward rational-
izability procedure.
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By combining Theorem 6.1, Lemma 6.1 and Theorem 6.2, we conclude that strong rationalizability leads to
the same set of outcomes as forward and backward rationalizability.12

Theorem 6.3 (Outcome equivalence with strong rationalizability) Let Ssr and Sfbr be the prod-
ucts of strategy sets induced by the strong rationalizability procedure, and the forward and backward
rationalizability procedure, respectively. Then, Z(Ssr) = Z(Sfbr).

That is, if one would be only interested in the induced outcomes, it makes no difference whether strong
rationalizability is used, or forward and backward rationalizability. However, as we have argued before,
we believe that the latter concept provides a more compelling theory for how players react to surprises at
information sets to which the players initially assign probability zero.

7 Generalization of Battigalli’s Theorem

Battigalli (1997) has shown that in every dynamic game with perfect information but without relevant ties,
strong rationalizability leads to the unique backward induction outcome. Alternative proofs can be found
in Catonini (2020), Chen and Micali (2013), Heifetz and Perea (2015) and Perea (2018).

Catonini (2020) and Perea (2017) provide generalizations of this result, by showing that in every dynamic
game with observable past choices (but allowing for simultaneous moves), strong rationalizability refines, in
terms of outcomes, the concepts of backwards rationalizability and backward dominance, respectively.

However, one of the most attractive properties of strong rationalizability is that in games with imperfect
information (that is, where some past choices are unobservable), it allows an active player at an information
set to exclude some of the histories at this information set from consideration. This is so, since reaching
those histories would imply a lower degree of rationality for some players that moved in the past than the
remaining “more rational”histories. Therefore, it is of importance to understand the relationship between
forward and backward induction especially for games with imperfect information. As is well-known, there
are games that allow for more backwards rationalizable outcomes than strongly rationalizable outcomes.13

To the best of our knowledge, it was —up to now —unknown whether for games with imperfect information
strongly rationalizable outcomes are always backwards rationalizable outcomes.

It turns out that in every dynamic game considered in our setup, that is, also in games with imperfect
information, every strongly rationalizable outcome is indeed backwards rationalizable. This follows im-
mediately from our Theorems 5.1 and 6.3: Take an outcome induced by strong rationalizability. Then, by

12This result could also be established by using tools from Chen and Micali (2013): It can be shown that forward and backward
rationalizability corresponds to a particular elimination order of the iterated conditional dominance procedure by Shimoji and
Watson (1998). Since Shimoji and Watson (1998) prove that the latter procedure is equivalent to strong rationalizability, and
Chen and Micali (2013) show that this procedure is order independent with respect to outcomes, the statement from Theorem
6.3 follows. Perea (2024) shows the outcome equivalence result for the version of forward and backward rationalizability that
does not insist on forward consistency of the conditional belief vectors.
13See, for instance, the classical Battle-of-the-Sexes game with an outside option, which is the game that starts at h2 in

Figure 2. In that game, strong rationalizability uniquely yields the forward induction outcome (c, (f, h)), whereas backwards
rationalizability also allows for the outcomes (c, (e, h)) and d.
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Theorem 6.3, this outcome will also be induced by forward and backward rationalizability. As, by Theo-
rem 5.1, forward and backward rationalizability refines backwards rationalizability in terms of strategies,
it follows that this outcome is also induced by backwards rationalizability. We thus obtain the following
result.14

Corollary 7.1 (Generalization of Battigalli’s theorem) Let Ssr and Sbr denote the products of strat-
egy sets induced by the strong rationalizability procedure and the backwards rationalizability procedure,
respectively. Then, Z(Ssr) ⊆ Z(Sbr).

This result, in turn, implies Battigalli’s theorem, as in every dynamic game with perfect information
but without relevant ties, the concept of backwards rationalizability leads to the unique backward induction
strategies, and thus, in particular, to the unique backward induction outcome. The existence of strongly
rationalizable outcomes now implies that this must also be the unique strongly rationalizable outcome.

8 Expansion Monotonicity

In this section we introduce the principle of expansion monotonicity and show that the concepts of forward
and backward rationalizability and backwards rationalizability satisfy the principle.

Consider two dynamic games Γ and Γ̂. Then, Γ is a subgame of Γ̂ if Γ is the restriction of Γ̂ to those
histories in Γ̂ that weakly follow the initial history in Γ, and such that every information set in Γ is either
contained in, or disjoint from, Γ̂. Whenever Γ is a subgame of Γ̂, we say that Γ̂ is an expansion of Γ.

Intuitively, expansion monotonicity states that if a player learns that the game Γ was actually preceded
by some earlier moves, resulting in an expansion Γ̂, then this new information should only refine, but never
overthrow, his previous reasoning. But what do we mean by the reasoning of a player in the games Γ and
Γ̂?

Formally, we model the output of the players’reasoning processes by conditional belief vectors, which
specify at every information set where this player is active the belief that he holds about the other players’
strategies. In general, a solution concept ϕ specifies for every game Γ and every player i in Γ a set Bϕ

i (Γ)
of conditional belief vectors, representing the possible beliefs that player i can end up with if he reasons
according to the standards of ϕ.

Now suppose that the players in Γ learn that the game was actually preceded by earlier moves, resulting
in the expansion Γ̂. Then, the reasoning of the players in the new, larger game Γ̂ is represented by the new
sets of conditional belief vectors Bϕ

i (Γ̂). How do we connect this to the reasoning and strategy choices in
the smaller game Γ?

Let us denote by SΓ̂
i and S

Γ
i the sets of strategies for player i in the games Γ̂ and Γ, respectively. Similarly,

we denote by H Γ̂
i and H

Γ
i the collections of information sets in Γ̂ and Γ, respectively, where player i is active.

14Corollary 7.1 could also be established by using tools from Chen and Micali (2013). Indeed, it can be shown that the
backwards rationalizability procedure corresponds to a particular non-finished elimination order of the iterated conditional
dominance procedure. We thank Pierpaolo Battigalli and Emiliano Catonini for pointing this out to us.
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Consider a strategy si ∈ SΓ
i (h) in the subgame and an opponents’strategy combination ŝ−i ∈ SΓ̂

−i(h) in the
expansion. Then, ŝ−i induces an opponents’strategy combination in Γ, by restricting ŝ−i to the information
sets in Γ. Consequently, (si, ŝ−i) induces a terminal history z(si, ŝ−i) in Γ.

Consider a conditional belief vector b̂i ∈ Bϕ
i (Γ̂) in the new game Γ̂, an information set h ∈ HΓ

i in the
subgame, and a strategy si ∈ SΓ

i (h) for player i in the subgame. Then, the expected utility at h, given si
and b̂i(h), is then given by

ui(si, b̂i(h)) :=
∑

ŝ−i∈SΓ̂
−i(h)

b̂i(h)(ŝ−i) · ui(z(si, ŝ−i)).

We say that the strategy si is optimal for b̂i at h if

ui(si, b̂i(h)) ≥ ui(s′i, b̂i(h)) for all s′i ∈ SΓ
i (h).

Then, we denote by

Sϕi (Γ | Γ̂) := {si ∈ SΓ
i | si is optimal for some b̂i ∈ B

ϕ
i (Γ̂) at all information sets h ∈ HΓ

i (si)}

the set of strategies for player i that are optimal in the subgame Γ if the players learn that the actual game
is Γ̂. We call Sϕi (Γ | Γ̂) the set of strategies that is predicted for the subgame Γ if the solution concept ϕ
is applied to the expansion Γ̂. In particular, Sϕi (Γ | Γ) contains those strategies that the solution concept
induces for player i in the game Γ if the players do not learn any new information there.

Expansion monotonicity then states that every strategy in Sϕi (Γ | Γ̂), which is allowed by the new
reasoning after learning that the actual game is Γ̂, must also be allowed by the original reasoning which
took place before receiving this new information —that is, it must be in Sϕi (Γ | Γ).

Definition 8.1 (Expansion monotonicity) A solution concept ϕ satisfies expansion monotonicity if
for every dynamic game Γ, every expansion Γ̂, and every player i, it holds that Sϕi (Γ | Γ̂) ⊆ Sϕi (Γ | Γ).

This property corresponds to requirement BI1 in Kohlberg and Mertens (1986), which states that a
solution of a game should always induce a solution in each of its subgames. Note that we use set inclusion
—and not set equality —here. The reason is that, upon learning that the actual game is Γ̂, the player may
receive new information that helps him to refine his reasoning in Γ.

It can be shown that the new concept proposed in this paper, as well as the backwards rationalizability
concept, satisfy expansion monotonicity.

Theorem 8.1 (Expansion monotonicity) The concept of forward and backward rationalizability and
the concept of backwards rationalizability satisfy expansion monotonicity.

In the introduction we have seen that strong rationalizability violates the principle of expansion monotonic-
ity.
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9 Discussion

Role of surprises. On a conceptual level, an important difference between forward and backward rational-
izability and strong rationalizability lies in the role of surprises. In strong rationalizability, a player never
believes his opponents to make mistakes in the execution of their strategies, only in the planning of their
strategies. Indeed, when a player is surprised by another player’s move, he believes the other player con-
sciously made this move because he attributed a lower level of iterated strong belief in rationality to his
opponents. Forward and backward rationalizability is agnostic about how players explain surprising oppo-
nents’moves: a player may, but need not, explain surprising opponents’moves by believing that these are
due to past mistakes in the execution of strategies. However, a player will always believe that these same
opponents will reason and behave in accordance with forward and backward rationalizability directly after
the occurence of the surprise, and from then onwards. This is in line with Catonini and Penta (2022), in
which it is argued that backwards rationalizability remains agnostic about how players explain surprising
past moves. In this light, it would be interesting to embed the concepts of strong rationalizability and for-
ward and backward rationalizability within the framework of Battigalli and de Vito (2021), which explicitly
distinguishes between plans and actual behavior.

Computational tractability. In comparison with strong rationalizability the procedure of forward and back-
ward rationalizability is often easier to implement. By applying strong rationalizability at the last informa-
tion sets and then working its way backwards, the latter procedure typically keeps the decision problems at
these information sets rather small.

Expansion monotonicity. We have shown that forward and backward rationalizability satisfies expansion
monotonicity, unlike strong rationalizability. The intuitive reason is that the former concept applies strong
rationalizability to every subgame, in a backward inductive fashion. In that sense, the relation between these
two concepts is analogous to the relation between Nash equilibrium and subgame perfect equilibrium.

10 Appendix

10.1 Proof of Theorem 3.1

To prove Theorem 3.1 we need the following result.

Lemma 10.1 (Strong belief of nested sets) For a given player i let

∅ 6= Dk ⊆ Dk−1 ⊆ ... ⊆ D0 = S−i

be a sequence of nested subsets of opponents’ strategy combinations. Then, there is a conditional belief
vector bi ∈ Bi that strongly believes each of the sets Dk, Dk−1, . . . , D0.

Proof. Take some arbitrary probability distribution pi ∈ ∆(S−i) such that pi(s−i) > 0 for all s−i ∈ S−i. For
a given information set h ∈ Hi let m(h) be the highest number in {0, ..., k} such that S−i(h) ∩Dm(h) 6= ∅.
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Define the conditional belief bi(h) by

bi(h)(s−i) :=


pi(s−i)

pi(S−i(h) ∩Dm(h))
, if s−i ∈ S−i(h) ∩Dm(h)

0, otherwise.
.

Then, it may be verified that the conditional belief vector bi = (bi(h))h∈Hi so constructed satisfies forward
consistency, and strongly believes each of the sets Dk, Dk−1, . . . , D0. �

Proof of Theorem 3.1. Recall that Bm.k
i and Sm.ki are the sets of conditional belief vectors and strategies,

respectively, that survive round k at period m of the forward and backward rationalizability procedure. We
show, by induction on m.k, that Bm.k

i and Sm.ki are always non-empty, starting with m+.0.
By definition, Bm+.0

i = Bi and S
m+.0
i = Si. Applying Lemma 10.1 to the case Dk = D0 = S−i shows

that Bi is non-empty.
Now, suppose that m and k are such that (m.k) 6= (m+.0). We distinguish two cases: (1) k ≥ 1, and (2)

k = 0.

Case 1. Suppose that k ≥ 1. Then, by definition, Bm.k
i = {bi ∈ Bm.k−1

i | bi strongly believes Sm.k−1
−i }. By

construction,
Sm.k−1
−i ⊆ Sm.k−2

−i ⊆ ... ⊆ Sm+.0
−i ,

and Bm.k
i consists of all those conditional belief vectors that strongly believe each of these nested sets. As,

by the induction assumption, each of these nested sets is non-empty, it follows by Lemma 10.1 that Bm.k
i is

non-empty as well.
Now, take some bi ∈ Bm.k

i . Then, bi is forward consistent. It follows from Lemma 8.13.2 in Perea (2012)
that there is a strategy si that is optimal for bi at all h ∈ Hi(si). In particular, si is optimal for bi from
period m onwards, and hence si is in S

m,k
i . Thus, Sm.ki is non-empty.

Case 2. Suppose that k = 0. Then, by construction, Bm.0
i = Bm+1.K

i and Sm.0i = Sm+1.K
i , where K is the

round at which the procedure at period m + 1 terminates.15 By the induction assumption, Bm+1.K
i and

Sm+1.K
i are non-empty, and thus Bm.0

i and Sm.0i are non-empty as well.

It thus follows, by induction on m and k, that Sm.ki and Bm.k
i are non-empty for every m and k, and for

every player i. As the procedure terminates after finitely many rounds, we conclude that every player i has
at least one strategy and one conditional belief vector that are forward and backward rationalizable. �

10.2 Proofs of Section 4

Proof of Lemma 4.1. Consider some information set h ∈ Hi of player i and let si ∈ Si(h). We first show
that the set of types Ti(si, h) of player i for whom playing si is optimal at h is a closed set of types. To this

15The fact that such a round K exists follows from arguments similar to those outlined in Footnote 5.
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purpose, we consider for any alternative strategy ri ∈ Si(h), any opponents’strategy combination s−i and
any opponents’type combination t−i the utility difference

ui(si, s−i, t−i)− ui(ri, s−i, t−i) := ui(z(si, s−i))− ui(z(ri, s−i)).

By fixing si, ri, and h, and varying s−i and t−i, we obtain a bounded continuous function

ui(si, ·, ·)− ui(ri, ·, ·) : S−i(h)× T−i → R.

This is indeed the case, since we endow S−i(h) with the discrete topology and ui(si, s−i, t−i)−ui(ri, s−i, t−i)
only depends on the S−i-dimension of S−i × T−i. Hence, the set of measures µi ∈ ∆(S−i(h) × T−i) such
that integrating over this function with respect to µi is non-negative is a closed set of measures, which we
call ∆(S−i(h) × T−i)si≥ri . The set of measures µi ∈ ∆(S−i(h) × T−i) such that si is optimal at h is the
intersection

∆(S−i(h)× T−i)si,h :=
⋂

ri∈Si(h)

∆(S−i(h)× T−i)si≥ri ,

which is closed as well. Note that, by construction,

Ti(si, h) = {ti ∈ Ti | βi(ti, h) ∈ ∆(S−i(h)× T−i)si,h}.

Since the mapping βi(·, h) : Ti → ∆(S−i(h)×T−i) is continuous, we conclude that the set Ti(si, h) is closed.
Recall that the set of types ti such that si is optimal at h is precisely Ti(si, h). For a given period m,

let H≥m := Hm ∪Hm+1 ∪ . . . ∪Hm+ be the collection of information sets from period m onwards. Then,
the set of types for which si is optimal from period m onwards is

T≥mi (si) :=
⋂

h∈Hi(si)∩H≥m
Ti(si, h),

which is closed in Ti. Note that if si does not reach any information set in H≥m, then si is automatically
optimal from period m onwards for all types in Ti. For each of the finitely many strategies si ∈ Si of player
i, the set {si} × T≥mi (si) is closed in the product topology of Si × Ti, since it is the product of two closed
sets. The set

(Si × Ti)rat,≥m =
⋃
si∈Si

({si} × T≥mi (si))

is closed in Si × Ti since it is the union of finitely many closed sets. If T̂i is a measurable subset of Ti
then (Si × T̂i)rat,≥m = (Si × Ti)rat,≥m ∩ (Si × T̂i) is measurable since it is an intersection of a closed and a
measurable set. If T̂i is closed, then Si×T̂i is closed and hence (Si×T̂i)rat,≥m is closed, being the intersection
of two closed sets. �

Proof of Lemma 4.2. We start by proving the following result.
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Claim. Let E be a closed subset of S−i×T−i. Then, the set { ti | ti strongly believes E } is a closed subset
of Ti.

Proof of claim. Let h ∈ Hi be such that (S−i(h) × T−i) ∩ E 6= ∅. We show that the set of measures in
∆(S−i(h) × T−i) that assign probability 1 to E is closed set. To this end, let (µn)n∈N → µ be a sequence
of probability measures in ∆(S−i(h)× T−i) converging to µ ∈ ∆(S−i(h)× T−i) such that µn(E) = 1 for all
n ∈ N. We have to show that µ(E) = 1. But this follows immediately from the Portemanteau Theorem
(Kechris (1995), Theorem 17.20). By continuity, the set {ti ∈ Ti | βi(ti, h)(E) = 1} is a closed set of types.
The set of types ti that strongly believe E is the finite intersection of such sets of types over all h ∈ Hi such
that (S−i(h)× T−i) ∩ E 6= ∅. Hence, this is a closed set of types. ♦

The lemma now follows immediately by iteratively applying the claim and Lemma 4.1. �

Proof of Theorem 4.1. Recall that, for every player i, period m, and round k, the sets Bm.k
i and Sm.ki are

the collections of conditional belief vectors and strategies, respectively, selected by the forward and backward
rationalizability procedure at round k of period m. Moreover, Bm0

i and Sm0
i are the sets of conditional belief

hierarchies and strategies, respectively, that survive all rounds at all periods.
For every player i and strategy si ∈ Sm0

i choose a conditional belief vector bi[si] ∈ Bm0
i such that si is

optimal for bi[si] from the first period onwards. For all other strategies si there is a period m ∈ {m0, ...,m+}
and a round k such that si ∈ Sm.ki \Sm.k+1

i . For such a strategy si ∈ Sm.ki \Sm.k+1
i we can then choose a

conditional belief vector bi[si] ∈ Bm.k
i such that si is optimal for bi[si] from period m onwards if k ≥ 1, and

si is optimal from period m + 1 onwards if k = 0. If m.k = m+.0, then optimality from period m+ + 1
onwards means that si need not be optimal for bi[si] at all.

Based on these conditional belief vectors bi[si] we will now construct a finite type space T̂ = ((Ti,Oi), βi)
where the sets of types are given by Ti = {tbi[si]i | si ∈ Si}, and the belief mappings βi are such that

βi(t
bi[si]
i , h)((sj , tj)j 6=i) =

{
bi[si](h)((sj)j 6=i), if tj = t

bj [sj ]
j for all j 6= i

0, otherwise
(10.1)

for all players i, all strategies si, all information sets h ∈ Hi, and all opponents’ strategy-type combina-
tions (sj , tj)j 6=i ∈ S−i × T−i. Hence, every type tbi[si]i has the belief bi[si](h) about the opponents’strategy
combinations at every information set h ∈ Hi, and matches, in its belief, every opponent’s strategy sj with

the associated type tbj [sj ]j . It is easy to see that every type in this model is forward consistent. Note that

bi[si] = bi[ŝi] implies that t
bi[si]
i = t

bi[ŝi]
i , and hence the type space T̂ is non-redundant by construction.

For every player i and conditional belief vector bi ∈ Bi\{bi[si] | si ∈ Si} not present in T̂ , we add a new
type tbii to T̂ whose conditional beliefs are given by

βi(t
bi
i , h)((sj , tj)j 6=i) =

{
bi(h)((sj)j 6=i), if tj = t

bj [sj ]
j for all j 6= i

0, otherwise
(10.2)

The new type space obtained after adding the type tbii to T̂ is denoted by T̂ ∪ {t
bi
i }.
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Let T be a universal type space. Then, by definition, each of the finite type spaces T̂ and T̂ ∪ {tbii }
maps in a unique way to the universal type space T by a type morphism. Note that for every type tbi[si]i in
T̂ the induced conditional belief hierarchy is the same, no matter whether it is regarded as a type in T̂ or a
type in T̂ ∪ {tbii }. Since a type morphism always preserves the induced conditional belief hierarchy, the type

t
bi[si]
i will be mapped to the same type in the universal type space T , no matter whether it is regarded as a
type in T̂ or a type in T̂ ∪ {tbii }. As each of the type spaces T̂ and T̂ ∪ {t

bi
i } is non-redundant, every type

in these type spaces may be uniquely identified with a type in the universal type space T .
For every player i, period m and number k ∈ {0, 1, ...}, we denote by SBR≥m.ki the set of types for

player i in the universal type space T that express k-fold backward strong belief in rationality from period
m onwards. Define

B̂m.k
i := {bi ∈ Bi | there is some ti ∈ SBR≥m.ki that induces the conditional belief vector bi}

and
Ŝm.ki := {si ∈ Si | there is some ti ∈ SBR≥m.ki with (si, ti) ∈ (Si × SBR≥m.ki )rat,≥m}.

Here, when we say that “ti induces the conditional belief vector bi”, we mean that margS−i(h)βi(ti, h) =
bi(h) for every h ∈ Hi. We prove the following result.

Claim. For every period m and number k ∈ {0, 1, ...} it holds that (i) B̂m.k
i ⊆ Bm.k+1

i , (ii) Bm.k+1
i ⊆ B̂m.k

i

and for every bi ∈ Bm.k+1
i we have that tbii ∈ SBR

≥m.k
i , (iii) Ŝm.ki ⊆ Sm.k+1

i and (iv) Sm.k+1
i ⊆ Ŝm.ki .

Proof of claim. We show the four statements by induction on m.k.
We start with m+.0. Then, B̂

m+.0
i is, by definition, the set of conditional belief vectors induced by

the types in SBR≥m+.0
i . As SBR≥m+.0

i = Ti, this is the set of all conditional belief vectors, and hence
B̂
m+.0
i = Bi. As, by construction, B

m+.1
i = Bi as well, it follows that B̂

m+.0
i = B

m+.1
i . Moreover, as

SBR
≥m+.0
i = Ti, for every bi ∈ Bm+.1

i we have that tbii ∈ SBR
≥m+.0
i . This establishes (i) and (ii).

Moreover, Ŝm+.0
i contains precisely those strategies that are optimal from period m+ onwards for some

ti ∈ SBR
≥m+.0
i . As SBR≥m+.0

i = Ti, these are precisely the strategies that are optimal from period m+

onwards for some conditional belief vector bi ∈ Bi. By definition, these are precisely the strategies in Sm+.1
i .

Hence, we conclude that Ŝm+.0
i = S

m+.1
i . This establishes (iii) and (iv).

Next, take some m.k 6= m+.0, and assume that the claim holds for m.k − 1 if k ≥ 1, and that the claim
holds for any m+ 1.k′ if k = 0. We distinguish two cases: (1) k = 0, and (2) k ≥ 1.

Case 1. Suppose that k = 0. Then, by definition, there is some round K such that B̂m.0
i = B̂m+1.K

i and
Bm.1
i = Bm+1.K+1

i . As, by the induction assumption, B̂m+1.K
i = Bm+1.K+1

i , we conclude that B̂m.0
i = Bm.1

i .

Moreover, by construction, Ŝm.0i is the set of strategies that are optimal, from period m onwards, for some
bi ∈ B̂m.0

i , whereas Sm.1i is the set of strategies that are optimal, from period m onwards, for some bi ∈ Bm.1
i .

Since B̂m.0
i = Bm.1

i , it follows that Ŝm.0i = Sm.1i .

Case 2. Suppose that k ≥ 1.
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(i) We show that B̂m.k
i ⊆ Bm.k+1

i . Take some bi ∈ B̂m.k
i . Then, there is some ti ∈ SBR≥m.ki that induces

bi. By definition, SBR
≥m.k
i ⊆ SBR≥m.k−1

i , and hence bi ∈ B̂m.k−1
i . By the induction assumption on (i)

it follows that bi ∈ Bm.k
i . Hence, we only need to show that bi strongly believes Sm.k−i . Let h ∈ Hi be

such that Sm.k−i ∩ S−i(h) 6= ∅. We must show that bi(h)(Sm.k−i ) = 1. By the induction assumption applied
to (iii) and (iv) we know that Sm.k−i = Ŝm.k−1

−i . Hence, by the definition of Ŝm.k−1
j for every j 6= i, we

know that ×j 6=i(Sj × SBR≥m.k−1
j )rat,≥m ∩ (S−i(h)× T−i) 6= ∅. Therefore, since ti ∈ SBR≥m.ki , we conclude

that βi(ti, h)(×j 6=i(Sj × SBR≥m.k−1
j )rat,≥m) = 1. This, in turn, implies that bi(h)(Ŝm.k−1

−i ) = 1. As, by the

induction assumption on (iii) and (iv), Sm.k−i = Ŝm.k−1
−i , we conclude that bi(h)(Sm.k−i ) = 1. Hence, bi strongly

believes Sm.k−i . Since bi ∈ Bm.k
i , it follows that bi ∈ Bm.k+1

i . As such, B̂m.k
i ⊆ Bm.k+1

i .

(ii) We show that Bm.k+1
i ⊆ B̂m.k

i and for every bi ∈ Bm.k+1
i we have that tbii ∈ SBR≥m.ki . Take some

bi ∈ Bm.k+1
i . Then, in particular, bi ∈ Bm.k

i and hence we know, by the induction assumption on (ii), that
tbii ∈ SBR

≥m.k−1
i . Thus, to prove that tbii ∈ SBR

≥m.k
i it only remains to show that tbii strongly believes ×j 6=i

(Sj × SBR≥m.k−1
j )rat.≥m. To this end, let h ∈ Hi be such that (×j 6=i(Sj × SBR≥m.k−1

j )rat,≥m) ∩ (S−i(h)×
T−i) 6= ∅. We must show that βi(tbii , h)(×j 6=i(Sj × SBR≥m.k−1

j )rat,≥m) = 1.

By definition, Ŝm.k−1
−i = projS−i(×j 6=i(Sj × SBR

≥m.k−1
j )rat,≥m). Note that by the induction assumption

of (iii) and (iv) we have that Ŝm.k−1
−i = Sm.k−i . Therefore, we have S−i(h) ∩ Sm.k−i 6= ∅. Since bi ∈ Bm.k+1

i

it follows that bi(h)(Sm.k−i ) = 1, and hence bi(h)(Ŝm.k−1
−i ) = 1. By the definition of tbii in (10.2) we have

βi(t
bi
i , h)((Ŝm.k−1

−i ∩S−i(h))×T−i) = 1, and that βi(t
bi
i , h) assigns probability 1 to {(sj , t

bj [sj ]
j )j 6=i | sj ∈ Ŝm.k−1

j

for all j 6= i}. As Ŝm.k−1
−i = Sm.k−i we conclude that βi(t

bi
i , h) assigns probability 1 to {(sj , t

bj [sj ]
j )j 6=i | sj ∈ Sm.kj

for all j 6= i}.
Consider a type tbj [sj ]j where sj ∈ Sm.kj . Then, we know by the definition of type tbj [sj ]j in (10.1) that

t
bj [sj ]
j induces the conditional belief vector bj [sj ] ∈ Bm.k

j , and that sj is optimal for bj [sj ] from period

m onwards. Hence, sj is optimal for t
bj [sj ]
j from period m onwards. As bj [sj ] ∈ Bm.k

j we conclude by

the induction assumption of (ii) that tbj [sj ]j ∈ SBR≥m.k−1
j . As sj is optimal for type t

bj [sj ]
j from period m

onwards, it follows that (sj , t
bj [sj ]
j ) ∈ (Sj ×SBR≥m.k−1

j )rat,≥m. Recall that βi(t
bi
i , h) assigns probability 1 to

{(sj , t
bj [sj ]
j )j 6=i | sj ∈ Sm.kj for all j 6= i}. Hence, it follows that βi(tbii , h)(×j 6=i(Sj × SBR≥m.k−1

j )rat,≥m) = 1.

As such, we conclude that tbii strongly believes ×j 6=i(Sj × SBR
≥m.k−1
j )rat.≥m.

Since tbii ∈ SBR
≥m.k−1
i it follows that tbii ∈ SBR≥m.ki . We thus conclude that for every bi ∈ Bm.k+1

i

we have that tbii ∈ SBR
≥m.k
i . Since, by (10.2), tbii induces the conditional belief vector bi, it follows that

bi ∈ B̂m.k
i . Hence, Bm.k+1

i ⊆ B̂m.k
i .

(iii) We show that Ŝm.ki ⊆ Sm.k+1
i . Let si ∈ Ŝm.ki . Then, in particular, si ∈ Ŝm.k−1

i . By the induction
assumption of (iii) it follows that si ∈ Sm.ki . Since si ∈ Ŝm.ki , there is a ti ∈ SBR≥m.ki such that si is optimal
for ti from period m onwards. Let bi be the conditional belief vector induced by ti. As the expected utility
depends only on first-order beliefs, si is optimal for bi from period m onwards. Since ti ∈ SBR≥m.ki it
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follows, by definition, that bi ∈ B̂m.k
i . By (i) it then follows that bi ∈ Bm.k+1

i . Hence, si is optimal for some
bi ∈ Bm.k+1

i from period m onwards. As we have seen above that si ∈ Sm.ki , we conclude that si ∈ Sm.k+1
i .

Hence, Ŝm.ki ⊆ Sm.k+1
i .

(iv) We finally show that Sm.k+1
i ⊆ Ŝm.ki . Let si ∈ Sm.k+1

i . Then, by construction, bi[si] ∈ Bm.k+1
i and si is

optimal for bi[si] from period m onwards. By (ii) we know that tbi[si]i ∈ SBR≥m.ki . Moreover, tbi[si]i induces
the conditional belief vector bi[si]. Since the expected utility depends only on first-order beliefs, we conclude
that si is optimal for t

bi[si]
i from period m onwards. This implies that (si, t

bi[si]
i ) ∈ (Si × SBR≥m.ki )rat.≥m,

and hence si ∈ Ŝm.ki . Thus, Sm.k+1
i ⊆ Ŝm.ki . This completes the proof of the claim. ♦

We are now able to prove the theorem.

(a) Take first a strategy si that is forward and backward rationalizable. Then, there is a conditional belief
vector bi ∈ Bm0

i such that si is optimal for bi from the first period onwards. Note that bi ∈ Bm0.k+1
i for all

k and hence, by part (ii) of the claim, tbii ∈ SBR
≥m0.k
i for all k. Therefore, tbii ∈ SBR

≥m0
i , and hence tbii

expresses common backward strong belief in rationality. As tbii induces the conditional belief vector bi, and
si is optimal for bi from the first period onwards, it follows that si is optimal for t

bi
i from the first period

onwards. As such, si is optimal, from the first period onwards, for a type that expresses common backward
strong belief in rationality.

Conversely, suppose that si is optimal, from the the first period onwards, for a type ti that expresses
common backward strong belief in rationality. Hence, ti ∈ SBR≥m0

i . Suppose that ti induces the conditional
belief vector bi. Then, si is optimal, from the first period onwards, for bi. Since ti ∈ SBR≥m0.k

i for all k,
and ti induces the conditional belief vector bi, it follows that bi ∈ B̂m0.k

i for all k. By part (i) of the claim it
follows that bi ∈ Bm0.k+1

i for all k, and hence bi is forward and backward rationalizable. Since si is optimal
for bi from the first period onwards, we conclude that si is forward and backward rationalizable.

(b) Take first a strategy si ∈ Sm.0i . Then, si ∈ Sm+1
i . Hence, there is a conditional belief vector bi ∈ Bm+1

i

such that si is optimal for bi from period m + 1 onwards. Note that bi ∈ Bm+1.k+1
i for all k and hence,

by part (ii) of the claim, tbii ∈ SBR
≥m+1.k
i for all k. Therefore, tbii ∈ SBR

≥m+1
i , and hence tbii expresses

common backward strong belief in rationality from period m + 1 onwards. As tbii induces the conditional
belief vector bi, and si is optimal for bi from period m+ 1 onwards, it follows that si is optimal for t

bi
i from

period m+ 1 onwards. As such, si is optimal, from period m+ 1 onwards, for a type that expresses common
backward strong belief in rationality from period m+ 1 onwards.

Conversely, suppose that si is optimal, from period m+ 1 onwards, for a type ti that expresses common
backward strong belief in rationality from period m + 1 onwards. Hence, ti ∈ SBR≥m+1

i . Suppose that
ti induces the conditional belief vector bi. Then, si is optimal, from period m + 1 onwards, for bi. Since
ti ∈ SBR≥m+1.k

i for all k, and ti induces the conditional belief vector bi, it follows that bi ∈ B̂m+1.k
i for all

k. By part (i) of the claim it follows that bi ∈ Bm+1.k+1
i for all k, and hence bi ∈ Bm.0

i . Since si is optimal
for bi from period m+ 1 onwards, we conclude that si ∈ Sm.0i .

(c) Take first a strategy si ∈ Sm.k+1
i . Hence, there is a conditional belief vector bi ∈ Bm.k+1

i such that si
is optimal for bi from period m onwards. By part (ii) of the claim we conclude that tbii ∈ SBR

≥m.k
i . As
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tbii induces the conditional belief vector bi, and si is optimal for bi from period m onwards, it follows that
si is optimal for t

bi
i from period m onwards. As such, si is optimal, from period m onwards, for a type in

SBR≥m.ki that expresses k-fold backward strong belief in rationality from period m onwards.
Conversely, suppose that si is optimal, from period m onwards, for a type ti ∈ SBR≥m.ki that expresses

k-fold backward strong belief in rationality from period m onwards. Suppose that ti induces the conditional
belief vector bi. Then, si is optimal, from period m onwards, for bi. Since ti ∈ SBR≥m.ki and ti induces the
conditional belief vector bi, it follows that bi ∈ B̂m.k

i . By part (i) of the claim it follows that bi ∈ Bm.k+1
i .

Since si is optimal for bi from period m onwards, we conclude that si ∈ Sm.k+1
i . This completes the proof.

�

10.3 Proof of Theorem 5.1

Let Sfbr,m.ki and Bfbr,m.k
i be the sets of strategies and conditional belief vectors for player i that result from

period m, round k, of the forward and backward rationalizability procedure. Similarly, we define the sets
Sbr,m.ki and Bbr,m.k

i for the backwards rationalizability procedure. For every period m, let Km be the first
round where both procedures terminate at period m. We show, by induction on m.k, that for all players i,

Bfbr,m.k
i ⊆ Bbr,m.k

i and Sfbr,m.ki ⊆ Sbr,m.ki . (10.3)

For m.k = m+.0 this is true, since B
fbr,m+.0
i = B

br,m+.0
i = Bi and S

fbr,m+.0
i = S

br,m+.0
i = Si.

Now, take somem.k 6= m+.0, and assume that (10.3) holds form+1.Km+1 if k = 0 or form.k−1 if k ≥ 1.

If k = 0 then, by definition, Bfbr,m.0
i = B

fbr,m+1.Km+1

i , Bbr,m.0
i = B

br,m+1.Km+1

i , Sfbr,m.0i = S
fbr,m+1.Km+1

i

and Sbr,m.0i = S
br,m+1.Km+1

i . Thus, (10.3) would hold by the induction assumption.
Suppose now that k ≥ 1 and that (10.3) holds for m.k − 1. We first show that Bfbr,m.k

i ⊆ Bbr,m.k
i .

Take some bi ∈ Bfbr,m.k
i . Then, in particular, bi ∈ Bfbr,m.k−1

i . By the induction assumption it follows that
bi ∈ Bbr,m.k−1

i . As bi ∈ Bfbr,m.k
i we know that bi strongly believes S

fbr,m.k−1
−i . Take some h ∈ Hm

i . Since so far
no restrictions have been imposed on the optimality of strategies at information sets preceding h, strongly
believing Sfbr,m.k−1

−i implies that bi(h)(Sfbr,m.k−1
−i ) = 1. As, by the induction assumption, Sfbr,m.k−1

−i ⊆
Sbr,m.k−1
−i , it follows that bi(h)(Sbr,m.k−1

−i ) = 1. As bi ∈ Bbr,m.k−1
i , we conclude that bi ∈ Bbr,m.k

i . Hence,

Bfbr,m.k
i ⊆ Bbr,m.k

i .

We next show that Sfbr,m.ki ⊆ Sbr,m.ki . Take some si ∈ Sfbr,m.ki . Then, si is optimal, from period m
onwards, for some bi ∈ Bfbr,m.k

i . As we have seen above that Bfbr,m.k
i ⊆ Bbr,m.k

i , we conclude that si is
optimal, from period m onwards, for some bi ∈ Bbr,m.k

i . Hence, si ∈ Sbr,m.ki . We have thus shown that
Sfbr,m.ki ⊆ Sbr,m.ki .

By induction, it follows that B
fbr,m0.Km0
i ⊆ B

br,m0.Km0
i and S

fbr,m0.Km0
i ⊆ S

br,m0.Km0
i , which completes

the proof. �
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10.4 Proof of Lemma 6.1

Without loss of generality, suppose that the first time period is 1. For every period m ∈ {1, ...,m+} and
k ∈ {0, 1, 2, ...,Km}, let m.k be the elimination step in period m, round k, of the forward and backward
rationalizability procedure. Here, Km denotes the last round of the procedure at period m. This leads to
the sequence

(Dm+.0, Dm+.1, ..., Dm+.Km+ , Dm+−1.0, Dm+−1.1, ..., Dm+−1.Km+−1 , ... , D1.0, D1.1, ..., D1,K1)

of products of strategy sets.
We show that this sequence is an elimination order for sb. By definition, Dm+.0 = ×i∈ISi and sb(D1.K1) =

D1.K1 . It remains to show condition (b) in the definition of an elimination order.
Consider first a step m.k with k ≤ Km − 1. Then, by definition, Dm.k+1 = ×i∈IDm.k+1

i , where

Dm.k+1
i = {si ∈ Dm.k

i | there is some bi ∈ Bi that strongly believes Dm+.0
−i , D

m+.1
−i , ..., Dm.k

−i

such that si is optimal for bi from period m onwards} (10.4)

for every player i. Define, for every player i, the set

Em.k+1
i = {si ∈ Dm.k

i | there is some bi ∈ Bi that strongly believes Dm.k
−i

such that si is optimal for bi at every h ∈ H(Dm.k) ∩Hi(si)

that belongs to Hτ for some τ ≥ m}. (10.5)

Claim. Em.k+1
i = Dm.k+1

i .

Proof of claim. Clearly, Dm.k+1
i ⊆ Em.k+1

i . To prove that Em.k+1
i ⊆ Dm.k+1

i , take some si ∈ Em.k+1
i . We

will show that si ∈ Dm.k+1
i . As si ∈ Em.k+1

i , there is some bm.ki ∈ Bi that strongly believes Dm.k
−i such that

si is optimal for bm.ki at every h ∈ H(Dm.k) ∩ Hi(si) that belongs to Hτ for some τ ≥ m. To show that
si ∈ Dm.k+1

i we distinguish two cases: (1) k ≥ 1 and (2) k = 0.

Case 1. Suppose that k ≥ 1. As si ∈ Em.k+1
i we know, by definition, that si ∈ Dm.k

i . Hence, there is some
b′i ∈ Bi that strongly believes D

m+.0
−i , ..., Dm.k−1

−i such that si is optimal for b′i from period m onwards. Define
the conditional belief vector bi where

bi(h) :=

{
bm.ki (h), if Dm.k

−i ∩ S−i(h) 6= ∅
b′i(h), otherwise

for every h ∈ Hi.
Then, by construction, bi strongly believes D

m+.0
−i , D

m+.1
−i , ..., Dm.k

−i . To show that si is optimal for bi
from period m onwards, take some h ∈ Hi(si) ∩Hτ for some τ ≥ m. We distinguish two cases.
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If Dm.k
−i ∩ S−i(h) 6= ∅, then h ∈ H(Dm.k) ∩ Hi(si) since si ∈ Dm.k

i . Moreover, bi(h) = bm.ki (h). As, by
construction, si is optimal for bm.ki at h, it follows that si is optimal for bi at h.

If Dm.k
−i ∩ S−i(h) = ∅ then, by construction, bi(h) = b′i(h). As si is optimal for b′i at h, it follows that si

is optimal for bi at h. Hence, si is optimal for bi from period m onwards.
We finally show that bi is in Bi, by proving that it is forward consistent. Consider some information sets

h, h′ ∈ Hi, where h precedes h′. We distinguish three cases:
(i) If Dm.k

−i ∩S−i(h) 6= ∅ and Dm.k
−i ∩S−i(h′) 6= ∅, then bi coincides with bm.ki ∈ Bi at h and h′. Since bm.ki

is forward consistent, it follows that bi is forward consistent if the game moves from h to h′.
(ii) If Dm.k

−i ∩ S−i(h) = ∅ and Dm.k
−i ∩ S−i(h′) = ∅, then bi coincides with b′i ∈ Bi at h and h′. Since b′i is

forward consistent, it follows that bi is forward consistent if the game moves from h to h′.
(iii) Suppose, finally, that Dm.k

−i ∩ S−i(h) 6= ∅ and Dm.k
−i ∩ S−i(h′) = ∅. Then, bi(h) = bm.ki (h) and

bi(h
′) = b′i(h

′). As Dm.k
−i ∩ S−i(h′) = ∅ and bm.ki strongly believes Dm.k

−i , we have that b
m.k
i (h)(Dm.k

−i ) = 1.
Since Dm.k

−i ∩ S−i(h′) = ∅, it thus follows that bm.ki (h)(S−i(h′)) = 0. Thus, bi is trivially forward consistent
if the game moves from h to h′.

By combining the cases (i), (ii) and (iii), we see that bi is forward consistent.
Hence, for the strategy si ∈ Em.k+1

i there is some bi ∈ Bi that strongly believes Dm+.0
−i , D

m+.1
−i , ..., Dm.k

−i
such that si is optimal for bi from period m onwards. That is, si ∈ Dm.k+1

i , which completes Case 1.

Case 2. Suppose that k = 0. If m = m+, then Dm.k = Dm+.0 = ×j∈ISj . In that case, it would follow
immediately that si ∈ Dm.k+1

i = D
m+.1
i .

Suppose now that k = 0 and m ≤ m+ − 1. Then, Dm.k = Dm.0 = Dm+1.Km+1 . Since si ∈ Dm.0
i =

Dm+1.Km+1 , there is some b′i ∈ Bi that strongly believes D
m+.0
−i , ..., D

m+1.Km+1−1
−i such that si is optimal for

b′i from period m+ 1 onwards. Define the conditional belief vector bi where

bi(h) :=

{
bm.0i (h), if Dm.0

−i ∩ S−i(h) 6= ∅
b′i(h), otherwise

for every h ∈ Hi.
To show that si ∈ Dm.k+1

i = Dm.1
i , we show that bi ∈ Bi, that bi strongly believes

D
m+.0
−i , ..., D

m+1.Km+1−1
−i , Dm.0

−i , and that si is optimal for bi from period m onwards.

Note that, by construction, bi strongly believes D
m+.0
−i , ..., D

m+1.Km+1−1
−i and strongly believes Dm.0

−i . In
the same way as for Case 1, it can be shown that bi is forward consistent, and hence bi ∈ Bi.

We finally show that si is optimal for bi from period m onwards. Take some information set h ∈
Hi(si) ∩Hτ , for some τ ≥ m.

If Dm.0
−i ∩ S−i(h) 6= ∅, then h ∈ H(Dm.0) ∩Hi(si) since si ∈ Dm.0

i . Thus, by construction, si is optimal
for bm.0i at h. Since bm.0i (h) = bi(h), we know that si is optimal for bi at h.

If Dm.0
−i ∩ S−i(h) = ∅, then, by definition, bi(h) = b′i(h). Since Dm.0

−i ∩ S−i(h) = ∅, it must necessarily be
that h ∈ Hτ with τ ≥ m + 1. Indeed, since Dm.0

−i only imposes restrictions on actions at period m + 1 and
later, it follows that Dm.0

−i ∩ S−i(h) 6= ∅ for every h ∈ Hi ∩Hm. As si is optimal for b′i from period m + 1
onwards, we conclude that si is optimal for b′i(h) at h, and thus also for bi(h) at h.
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Hence, si is optimal for bi from period m onwards. Altogether, we see that bi ∈ Bi, that bi strongly
believes Dm+.0

−i , ..., D
m+1.Km+1−1
−i , Dm.0

−i , and that si is optimal for bi from period m onwards. Hence, si ∈
Dm.1
i = Dm.k+1

i , which completes Case 2.
By Cases 1 and 2 we thus conclude that Em.k+1

i ⊆ Dm.k+1
i , and hence Em.k+1

i = Dm.k+1
i . This completes

the proof of the claim. ♦
Since, by construction, sb(Dm.k) ⊆ Em.k+1, it follows by the claim that

sb(Dm.k) ⊆ Em.k+1 = Dm.k+1 ⊆ Dm.k. (10.6)

Consider now the case where k = Km. Then the next step is m − 1.0 where, by definition, Dm−1.0 =
Dm.Km . Hence, we trivially have that

sb(Dm.Km) ⊆ Dm−1.0 ⊆ Dm.Km . (10.7)

By (10.6) and (10.7) we conclude that (Dm+.0, ..., D1.K1) is an elimination order for sb. This completes the
proof. �

10.5 Proof of Theorem 8.1

(a) We first prove the statement concerning forward and backward rationalizability. Let h∗ be the singleton
information set containing only the initial history of Γ. Then, every strategy ŝi ∈ SΓ̂

i (h∗) in the expansion
that allows for h∗ to be reached naturally induces a strategy fi(ŝi) ∈ SΓ

i in the subgame, such that ŝi and
fi(ŝi) prescribe the same actions at all information sets in H Γ̂

i (ŝi) ∩HΓ
i . Note that the mapping fi is onto.

Now, consider a conditional belief vector b̂i for player i in the expansion Γ̂. Then, b̂i naturally induces
the conditional belief vector gi(b̂i) in the subgame Γ, where for every information set h ∈ HΓ

i and every
opponents’strategy combination (sj)j 6=i ∈ S−i(h),

(gi(b̂i))(h)((sj)j 6=i) :=
∑

(ŝj)j 6=i∈SΓ̂
−i(h):fj(ŝj)=sj for all j 6=i

b̂i(h)((ŝj)j 6=i). (10.8)

It may easily be verified that gi(b̂i) is forward consistent and that the mapping gi : BΓ̂
i → BΓ

i is onto.
Suppose, without loss of generality, that the expansion Γ̂ starts at period 1, that the subgame Γ starts

at the singleton information set h∗ in period m0 ≥ 1, and that the last period in which players are active
is m+ in both Γ̂ and Γ. It is of course possible that some terminal histories in Γ̂ are longer than in Γ, but
every terminal history in Γ̂ that passes through information sets in Γ will be in Γ as well. This will therefore
not affect Z(Sfbr(Γ | Γ̂)).

For every player i, period m ∈ {1, ...,m+} and round k, let B̂m.k
i and Ŝm.ki be the set of conditional

belief vectors and the set of strategies for player i that survive round k at period m in the forward and
backward rationalizability procedure for Γ̂. Similarly, we denote by Bm.k

i and Sm.ki the set of conditional
belief vectors and the set of strategies for player i that survive round k at period m in the forward and
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backward rationalizability procedure for Γ. For every period m ∈ {m0, ...,m+}, let Km be the earliest round
in this period at which both procedures terminate.

Claim. For every player i, period m ∈ {m0, ...,m+} and round k ∈ {1, ...,Km}, we have that

gi(B̂
m.k
i ) = Bm.k

i and fi(Ŝm.ki ) = Sm.ki .

Proof of claim. By induction on m.k. We start by with m.k = m+.0. Then, B̂
m+.0
i = BΓ̂

i , B
m+.0
i = BΓ

i ,

Ŝ
m+.0
i = SΓ̂

i and S
m+.0
i = SΓ

i , which implies that

gi(B̂
m+.0
i ) = gi(B

Γ̂
i ) = BΓ

i = B
m+.0
i and fi(Ŝ

m+.0
i ) = fi(S

Γ̂
i ) = SΓ

i = S
m+.0
i ,

since both gi and fi are onto.
Now, take some m.k 6= m+.0, and assume that the claim holds for m+ 1.Km+1 if k = 0 or for m.k − 1

if k ≥ 1. If k = 0 then, by definition, B̂m.0
i = B̂

m+1.Km+1

i , Bm.0
i = B

m+1.Km+1

i , Ŝm.0i = Ŝ
m+1.Km+1

i and
Sm.0i = S

m+1.Km+1

i . Thus, the claim would hold by the induction assumption.
Assume now that k ≥ 1 and that the claim holds for m.k− 1. To show that gi(B̂m.k

i ) ⊆ Bm.k
i , take some

bi ∈ gi(B̂m.k
i ). Then, by definition, there is some b̂i ∈ B̂m.k

i such that bi = gi(b̂i). By definition of B̂m.k
i , it

must be that b̂i strongly believes Ŝm.k−1
−i . In particular, for every h ∈ HΓ

i it must be that

b̂i(h)(Ŝm.k−1
−i ) = 1 whenever Ŝm.k−1

−i ∩ SΓ̂
−i(h) 6= ∅. (10.9)

Take such h ∈ HΓ
i . We will show that

(gi(b̂i))(h)(Sm.k−1
−i ) = 1 whenever Sm.k−1

−i ∩ SΓ
−i(h) 6= ∅. (10.10)

Suppose that Sm.k−1
−i ∩ SΓ

−i(h) 6= ∅. By the induction assumption we know that Sm.k−1
−i = f−i(Ŝ

m.k−1
−i ),

where f−i(Ŝm.k−1
−i ) := ×j 6=ifj(Ŝm.k−1

j ). Moreover, by construction, the sets Ŝm.k−1
−i and f−i(Ŝm.k−1

−i ) induce

the same actions in Γ. Since m ≥ m0, it follows that Ŝm.k−1
−i ∩ SΓ̂

−i(h) 6= ∅. By (10.9) we then conclude that
b̂i(h)(Ŝm.k−1

−i ) = 1. It then follows by (10.8) that

(gi(b̂i))(h)(f−i(Ŝ
m.k−1
−i )) = 1.

Since, by the induction assumption, Sm.k−1
−i = f−i(Ŝ

m.k−1
−i ), we conclude that

(gi(b̂i))(h)(Sm.k−1
−i ) = 1,

which establishes (10.10).
As this holds for every h ∈ HΓ

i with S
m.k−1
−i ∩ SΓ

−i(h) 6= ∅, it follows that gi(b̂i) strongly believes Sm.k−1
−i .

Moreover, as b̂i ∈ B̂m.k−1
i and, by the induction assumption, gi(B̂m.k−1

i ) = Bm.k−1
i , we conclude that
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gi(b̂i) ∈ Bm.k−1
i . Hence, by definition, bi = gi(b̂i) ∈ Bm.k

i . Since this applies to every bi ∈ gi(B̂m.k
i ), it follows

that gi(B̂m.k
i ) ⊆ Bm.k

i .
To show that Bm.k

i ⊆ gi(B̂
m.k
i ), take some bi ∈ Bm.k

i . Then, in particular, bi ∈ Bm.k−1
i . As, by the

induction assumption, Bm.k−1
i = gi(B̂

m.k−1
i ), there is some b̂i ∈ B̂m.k−1

i such that bi = gi(b̂i).
Moreover, as bi ∈ Bm.k

i we know, by definition, that bi strongly believes Sm.k−1
−i . Hence, for every h ∈ HΓ

i

we have that
bi(h)(Sm.k−1

−i ) = 1 whenever Sm.k−1
−i ∩ SΓ

−i(h) 6= ∅.

As, by the induction assumption, Sm.k−1
−i = f−i(Ŝ

m.k−1
−i ), it follows that

bi(h)(f−i(Ŝ
m.k−1
−i )) = 1 whenever f−i(Ŝm.k−1

−i ) ∩ SΓ
−i(h) 6= ∅. (10.11)

By construction, f−i(Ŝm.k−1
−i ) prescribes the same actions in the subgame Γ as Ŝm.k−1

−i .Moreover, as m ≥ m0

and the first history of Γ is in period m0, the set Ŝm.k−1
−i imposes no restrictions on actions before Γ starts.

We therefore have that

f−i(Ŝ
m.k−1
−i ) ∩ SΓ

−i(h) 6= ∅ if and only if Ŝm.k−1
−i ∩ SΓ

−i(h) 6= ∅. (10.12)

By combining (10.11) and (10.12), we see that for every h ∈ HΓ
i ,

bi(h)(f−i(Ŝ
m.k−1
−i )) = 1 whenever Ŝm.k−1

−i ∩ SΓ
−i(h) 6= ∅. (10.13)

Since bi = gi(b̂i) for some b̂i ∈ B̂m.k−1
i , it follows by (10.13) and (10.8) that we can choose b̂i ∈ B̂m.k−1

i such
that

for every h ∈ H Γ̂
i , we have b̂i(h)(Ŝm.k−1

−i ) = 1 whenever Ŝm.k−1
−i ∩ SΓ

−i(h) 6= ∅.

This means that b̂i strongly believes Ŝm.k−1
−i . As b̂i ∈ B̂m.k−1

i , it follows that b̂i ∈ B̂m.k
i . Since gi(b̂i) = bi we

conclude that bi ∈ gi(B̂m.k
i ). As this holds for every bi ∈ Bm.k

i we conclude that Bm.k
i ⊆ gi(B̂m.k

i ). Together
with our insight above that gi(B̂m.k

i ) ⊆ Bm.k
i , it follows that gi(B̂m.k

i ) = Bm.k
i .

We next show that fi(Ŝm.ki ) = Sm.ki for every player i. To prove that fi(Ŝm.ki ) ⊆ Sm.ki , take some
si ∈ fi(Ŝ

m.k
i ). Then, there is some ŝi ∈ Ŝm.ki such that si = fi(ŝi). By definition of Ŝm.ki , there is some

b̂i ∈ B̂m.k
i such that ŝi is optimal for b̂i at every h ∈ H Γ̂

i (ŝi) from period m onwards.
Take some h ∈ HΓ

i (si) from period m onwards.We will show that si is optimal for (gi(b̂i))(h) at h. Recall
that, for every ŝ′i ∈ Ŝi, the transformed strategy fi(ŝ′i) induces the same actions as ŝi at information sets in
Γ. This insight, together with (10.8), leads to the conclusion that

ui(ŝ
′
i, b̂i(h)) = ui(fi(ŝ

′
i), (gi(b̂i))(h) for all ŝ′i ∈ SΓ̂

i (h). (10.14)

As ŝi is optimal for b̂i at h, we know that

ui(ŝi, b̂i(h)) ≥ ui(ŝ′i, b̂i(h)) for all ŝ′i ∈ SΓ̂
i (h).
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Together with (10.14), this yields

ui(fi(ŝi), (gi(b̂i))(h) ≥ ui(fi(ŝ′i), (gi(b̂i))(h) for all ŝ′i ∈ SΓ̂
i (h).

As si = fi(ŝi) and fi(SΓ̂
i (h)) = SΓ

i (h), it follows that

ui(si, (gi(b̂i))(h) ≥ ui(s′i, (gi(b̂i))(h) for all s′i ∈ SΓ
i (h).

Since this holds for every h ∈ HΓ
i (si) from period m onwards, we conclude that si is optimal for gi(b̂i) at

all h ∈ HΓ
i (si) from period m onwards.

As b̂i ∈ B̂m.k
i , we know from above that gi(b̂i) ∈ Bm.k

i . Since si is optimal for gi(b̂i) at all h ∈ HΓ
i (si) from

period m onwards, it follows, by definition, that si = fi(ŝi) ∈ Sm.ki . As this holds for every si ∈ fi(Ŝm.ki ),
we conclude that fi(Ŝm.ki ) ⊆ Sm.ki .

We next prove that Sm.ki ⊆ fi(Ŝm.ki ). Take some si ∈ Sm.ki . Then, by definition, there is some bi ∈ Bm.k
i

such that si is optimal for bi at every h ∈ HΓ
i (si) from period m onwards.

From above we know that Bm.k
i = gi(B̂

m.k
i ), and hence there is some b̂i ∈ B̂m.k

i with bi = gi(b̂i). Choose
some strategy ŝi ∈ SΓ̂

i such that (i) fi(ŝi) = si, and (ii) ŝi is optimal for b̂i at every h ∈ H Γ̂
i (ŝi)\HΓ

i from
period m onwards.

Now, take some h ∈ HΓ
i (si) from period m onwards. As si is optimal for bi at h, we have that

ui(si, bi(h)) ≥ ui(s′i, bi(h)) for all s′i ∈ SΓ
i (h).

Since si = fi(ŝi) and bi = gi(b̂i), we know that

ui(fi(ŝi), (gi(b̂i))(h)) ≥ ui(fi(ŝ′i), (gi(b̂i))(h)) for all ŝ′i ∈ SΓ̂
i (h).

Together with (10.14) we then conclude that

ui(ŝi, b̂i(h)) ≥ ui(ŝ′i, b̂i(h)) for all ŝ′i ∈ SΓ̂
i (h),

which means that ŝi is optimal for b̂i at h. As this holds for every h ∈ HΓ
i (ŝi) from period m onwards, and

since we know from above that ŝi is optimal for b̂i at every h ∈ H Γ̂
i (ŝi)\HΓ

i from period m onwards, we
conclude that ŝi is optimal for b̂i at every h ∈ H Γ̂

i (ŝi) from period m onwards. This, together with the fact
that b̂i ∈ B̂m.k

i , implies that ŝi ∈ Ŝm.ki .
As si = fi(ŝi), we conclude that si ∈ fi(Ŝm.ki ). Since this holds for every si ∈ Sm.ki , we conclude that

Sm.ki ⊆ fi(Ŝm.ki ). Together with the insight above that fi(Ŝm.ki ) ⊆ Sm.ki , it follows that fi(Ŝm.ki ) = Sm.ki .
By induction on m.k, the proof of the claim is complete. ♦
To prove expansion monotonicity, take some si ∈ Sfbri (Γ | Γ̂). Then, there is some conditional belief

vector b̂i ∈ B̂1.K1
i that survives the forward and backward rationalizability procedure in Γ̂ such that si is

optimal for b̂i at all h ∈ HΓ
i (si). In particular, we then know that b̂i ∈ B̂

m0.Km0
i , wherem0 is the period where

the subgame Γ starts. By the claim it follows that gi(b̂i) ∈ B
m0.Km0
i , which means that gi(b̂i) ∈ Bfbr

i (Γ).
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Since si is optimal for b̂i at all h ∈ HΓ
i (si) it follows by (10.14) that si is optimal for gi(b̂i) at all

h ∈ HΓ
i (si). Since gi(b̂i) ∈ Bfbr

i (Γ) we conclude that si ∈ Sfbri (Γ | Γ). As this holds for every si ∈ Sfbri (Γ

| Γ̂), we conclude that Sfbri (Γ | Γ̂) ⊆ Sfbri (Γ | Γ), and hence expansion monotonicity holds for the forward
and backward rationalizability procedure.

(b) The proof for backwards rationalizability is very similar, since both backwards rationalizability and
forward and backward rationalizability proceed in a backward inductive fashion. The proof is therefore left
to the reader. �
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