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1 Outline

The outline of this online appendix is as follows: In Section 2 we provide an additional example
that illustrates the forward and backward rationalizability procedure. The main difference with
the example provided in Section 3.4 of the paper is that the dynamic game is larger, and displays
unobserved past choices. In Section 3 we present an epistemic characterization of forward and
backward rationalizability, by means of common backward strong belief in rationality. In Section 4
we investigate two alternative combinations of forward and backward induction reasoning. In the
first concept we start by applying the strong rationalizability procedure, followed by the backwards
rationalizability procedure, whereas this order is reversed in the second concept. We compare both
concepts to forward and backward rationalizability. In Section 5 we provide the proofs of Section 3.

2 Example

We will now present a new example, with many information sets and unobserved past choices, to
illustrate the concept of forward and backward rationalizability. Consider the dynamic game from
Figure 1. Note that the information sets h2, h3 and h5 are non-trivial.
In the dynamic game there are six time periods: Period 1 with information set h1, period 2

with information set h2, period 3 with information sets h3 and h4, period 4 with information sets h5
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Figure 1: A dynamic game with non-trivial information sets

and h6, period 5 with information set h7, and period 6 with no information sets but only terminal
histories. To run the forward and backward rationalizability procedure, we thus start at period 5.

Period 5. At information set h7, player 3’s strategy (i, o) is never optimal for any conditional belief,
whereas the strategy (i, n) is. Thus, only player 3’s strategies g, h and (i, n) are optimal for some
conditional belief vector from period 5 onwards. As such,

S5.1
3 = {g, h, (i, n)}.

Moreover, we have that S5.1
1 = S1 and S5.1

2 = S2. Hence,

B5.2
1 = {b1 ∈ B1 | b1 strongly believes S2 × {g, h, (i, n)}}

= {b1 ∈ B1 | b1(h1)(S2 × {g, h, (i, n)}) = b1(h3)(S2 × {g, h, (i, n)}) = 1},

and

B5.2
2 = {b2 ∈ B2 | b2 strongly believes S1 × {g, h, (i, n)}}

= {b2 ∈ B2 | b2(h2)(S1 × {g, h, (i, n)}) =

b2(h5)(S1 × {g, h, (i, n)}) = b2(h6)({b} × {(i, n)}) = 1}.

Finally, B5.2
3 = B3. As no further restrictions can be derived after this step, the procedure from

Period 5 onwards is hereby complete.
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Period 4. At h5, both choices j and k of player 2 are optimal for some conditional belief vector in
B5.2

2 .
At h6, player 2’s conditional belief must be part of B5.2

2 above, and hence player 2 must at h6

assign probability 1 to player 3 choosing n at h7. But then, player 2’s choice l cannot be optimal at
h6 for any conditional belief vector in B5.2

2 , whereas the choice m can. Hence,

S4.1
2 = {(c, (d, j,m), (d, k,m)}.

Moreover, S4.1
1 = S1 and S4.1

3 = S5.1
3 = {g, h, (i, n)}. We then have that

B4.2
1 = {b1 ∈ B5.2

1 | b1 strongly believes {(c, (d, j,m), (d, k,m)} × {g, h, (i, n)}}
= {b1 ∈ B1 | b1(h1)({(c, (d, j,m), (d, k,m)} × {g, h, (i, n)})

= b1(h3)({(c, (d, j,m), (d, k,m)} × {g, h, (i, n)}) = 1}

and

B4.2
3 = {b3 ∈ B5.2

3 | b3 strongly believes S1 × {(c, (d, j,m), (d, k,m)}}
= {b3 ∈ B3 | b3(h4)({b} × {(d, j,m), (d, k,m)} = 1},

whereas B4.2
2 = B5.2

2 .
As no further restrictions can be derived after this step, the procedure from Period 4 onwards is

hereby complete.

Period 3. At h3, both of player 1’s strategies (a, e) and (a, f) can be optimal for some conditional
belief vector in B4.2

1 . Thus,
S3.1

1 = S1.

At h4, player 3’s conditional belief must be part of B4.2
3 , and hence player 3 must believe that

player 2 will choose m at h6. As such, player 3 expects the utility 10 by choosing i at h4, whereas g
gives him only 8. This renders the strategy g suboptimal for player 3 at h4. Hence,

S3.1
3 = {h, (i, n)}.

As player 2 is not active at any information in Period 3, we have that

S3.1
2 = S4.1

2 = {(c, (d, j,m), (d, k,m)}.

Thus,

B3.2
1 = {b1 ∈ B4.2

1 | b1 strongly believes {(c, (d, j,m), (d, k,m)} × {h, (i, n)}}
= {b1 ∈ B1 | b1(h1)({(c, (d, j,m), (d, k,m)} × {h, (i, n)})

= b1(h3)({(c, (d, j,m), (d, k,m)} × {h, (i, n)}) = 1},
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and

B3.2
2 = {b2 ∈ B4.2

2 | b2 strongly believes S1 × {h, (i, n)}
= {b2 ∈ B2 | b2(h2)(S1 × {h, (i, n)}) =

b2(h5)(({(a, e), (a, f)} × {h, (i, n)}) ∪ ({b} × {h}))
= b2(h6)({b} × {(i, n)}) = 1},

whereas

B3.2
3 = {b3 ∈ B4.2

3 | b3 strongly believes S1 × {(c, (d, j,m), (d, k,m)}}
= {b3 ∈ B3 | b3(h4)({b} × {(d, j,m), (d, k,m)} = 1}.

Since we can derive no further restrictions after this step, this concludes the procedure from
Period 3 onwards.

Period 2. At the information set h2, each of player 2’s strategies in S3.1
2 can be optimal for some

conditional belief vector in B3.2
2 . Hence, S2.1

2 = S3.1
2 . As a consequence, the strategy sets and the sets

of conditional belief vectors for each of the players remain the same as in Period 3.

Period 1. Round 1. At h1, player 1 can guarantee utility 10 by choosing b. Since the strategy (a, e)
yields him at most 5, we conclude that the strategy (a, e) is suboptimal for player 1 at h1. Therefore,

S1.1
1 = {(a, f), b}.

Moreover,
S1.1

2 = S3.1
2 = {(c, (d, j,m), (d, k,m)}

and
S1.1

3 = S3.1
3 = {h, (i, n)}.

Round 2. Thus, B1.2
1 = B3.2

1 , and

B1.2
2 = {b2 ∈ B3.2

2 | b2 strongly believes {(a, f), b} × {h, (i, n)}
= {b2 ∈ B2 | b2(h2)({(a, f), b} × {h, (i, n)}) =

b2(h5)(({(a, f)} × {h, (i, n)}) ∪ ({b} × {h}))
= b2(h6)({b} × {(i, n)}) = 1},

whereas

B1.2
3 = {b3 ∈ B3.2

3 | b3 strongly believes {(a, f), b} × {(c, (d, j,m), (d, k,m)}}
= {b3 ∈ B3 | b3(h4)({b} × {(d, j,m), (d, k,m)} = 1}.
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Note that at h5, player 2 can only assign positive probability to the opponents’strategy combina-
tions in ({(a, f)}×{h, (i, n)})∪ ({b}×{h}). Thus, at h5 player 2 can only assign positive probability
to the second and fourth history. But then, player 2 should definitely choose k at h5, and we thus
have that

S1.2
2 = {(c, (d, k,m)}.

Moreover, S1.2
1 = S1.1

1 and S1.2
3 = S1.1

3 .

Round 3. As such,

B1.3
1 = {b1 ∈ B1.2

1 | b1 strongly believes {(c, (d, k,m)} × {h, (i, n)}}
= {b1 ∈ B1 | b1(h1)({(c, (d, k,m)} × {h, (i, n)}) = b1(h3)({(c, (d, k,m)} × {h, (i, n)}) = 1}

and

B1.3
3 = {b3 ∈ B1.2

3 | b3 strongly believes {(a, f), b} × {(c, (d, k,m)}}
= {b3 ∈ B3 | b3(h4)({b} × {(d, k,m)} = 1},

whereas B1.3
2 = B1.2

2 .
Hence, at h1 player 1 believes that player 2 chooses either c or (d, k,m). But then, by choosing

(a, f) player 1 believes to obtain at least 15. Since by choosing (a, e) he believes to get at most 5,
and by choosing b he believes to get 10, the strategies (a, e) and b are suboptimal for player 1 at h1.
Thus,

S1.3
1 = {(a, f)}.

At h4, player 3 believes that player 2 will choose strategy (d, k,m). But then, the only optimal
strategy for player 3 at h4 is h, and hence

S1.3
3 = {h}.

Moreover, S1.3
2 = S1.2

2 .

Round 4. We have that

B1.4
1 = {b1 ∈ B1.3

1 | b1 strongly believes {(c, (d, k,m)} × {h}}
= {b1 ∈ B1 | b1(h1)({(c, (d, k,m)} × {h}) = b1(h3)({(c, (d, k,m)} × {h}) = 1}

B1.4
2 = {b2 ∈ B1.3

2 | b2 strongly believes {(a, f)} × {h}
= {b2 ∈ B2 | b2(h2)({(a, f)} × {h}) = b2(h5)({(a, f)× {h}) = 1},
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whereas
B1.4

3 = {b3 ∈ B1.3
3 | b3 strongly believes {(a, f)} × {(c, (d, k,m)}} = B1.3

3 .

Hence, at h2 player 2 must believe that player 1 chooses (a, f). But then, among the strategies
in S1.3

2 , the only optimal strategy for player 2 at h2 is (d, k,m). Hence,

S1.4
2 = {(d, k,m)}

whereas S1.4
1 = S1.3

1 = {(a, f)} and S1.4
3 = S1.3

3 = {h}.
Round 5. We finally have that

B1.5
1 = {b1 ∈ B1.4

1 | b1 strongly believes {(d, k,m)} × {h}}
= {b1 ∈ B1 | b1(h1)({(d, k,m)} × {h}) = b1(h3)({(d, k,m)} × {h}) = 1}

and

B1.5
2 = {b2 ∈ B1.4

2 | b2 strongly believes {(a, f)} × {h}
= {b2 ∈ B2 | b2(h2)({(a, f)} × {h}) = b2(h5)({(a, f)× {h}) = b2(h6)({b} × {(i, n)}) = 1},

whereas

B1.5
3 = {b3 ∈ B1.4

3 | b3 strongly believes {(a, f)} × {(d, k,m)}}
= {b3 ∈ B3 | b3(h4)({b} × {(d, k,m)} = 1}.

This is where the procedure terminates. In particular, we see that the unique forward and
backward rationalizable strategies for the players are (a, f), (d, k,m) and h, respectively.

3 Epistemic Characterization

In this section we investigate what the concept of forward and backward rationalizability entails in
terms of reasoning. To this purpose, we offer epistemic conditions on the players’belief hierarchies
such that the optimal strategies under these belief hierarchies are precisely the forward and backward
rationalizable strategies. Before doing so, we first recall the definition of a (universal) type space for
dynamic games, and subsequently formalize the notion of strong belief and optimal choice for types
in a type space.
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3.1 Type Space

The epistemic conditions we introduce will impose restrictions on the belief hierarchies that the
players may have. Such belief hierarchies may conveniently be encoded by means of types in a
type space. To formalize a type space, we need the following definition and pieces of notation. A
topological space (X,O) is called Polish if it is separable and completely metrizable. By Σ(X) we
denote the Borel σ-algebra on X, that is, the smallest σ-algebra that contains all open sets, whereas
∆(X) denotes the set of all probability measures on (X,Σ(X)). We endow ∆(X) with the smallest
topology O∆(X) such that each of the sets {µ ∈ ∆(X)|

∫
X
fdµ ∈ O} is open in ∆(X), where f runs

over all bounded continuous functions f : X → R and O runs over all open subsets of the reals. By
Kechris (1995), Theorem 17.23, (∆(X),O∆(X)) is again a Polish space. We then consider ∆(X) as a
measurable space that is endowed with the Borel σ-algebra (generated by O∆(X)). It is a well-known
fact that a continuous map between two topological spaces is measurable if both of these spaces are
endowed with their respective Borel σ-algebras.

Definition 3.1 (Type space) A type space T = ((Ti,Oi), βi)i∈I specifies, for every player i,
(a) a Polish type space (Ti,Oi), and
(b) a continuous belief mapping βi, which assigns to every type ti ∈ Ti and information set h ∈ Hi

a probabilistic belief βi(ti, h) ∈ ∆(S−i(h)× T−i).
Moreover, the types must satisfy Bayesian updating whenever possible, that is, for every player i,
every type ti ∈ Ti, and every two information sets h, h′ ∈ Hi where h′ follows h and βi(ti, h)(S−i(h

′)×
T−i) > 0, we have that

βi(ti, h
′)({s−i} × E−i) =

βi(ti, h)({s−i} × E−i)
βi(ti, h)(S−i(h′)× T−i)

for every s−i ∈ S−i(h′) and every E−i ∈ Σ(T−i).

For our epistemic characterization we need to work with a universal type space. To explain what
it is, we must first introduce the notion of a type morphism.

Definition 3.2 (Type morphism) Consider two type spaces T = ((Ti, Oi), βi)i∈I and
T ′ = ((T ′i , O

′
i), β

′
i)i∈I . A type morphism from T to T ′ is a tuple (fi)i∈I of continuous functions

fi : Ti → T ′i such that, for every player i, every type ti ∈ Ti, and every information set h ∈ Hi we
have that

β′i(fi(ti), h)(×j 6=i({sj} × E ′j)) = βi(ti, h)(×j 6=i({sj} × f−1
j (E ′j))

for every opponents’ strategy combination (sj)j 6=i ∈ S−i(h) and every measurable set ×j 6=iE ′j ⊆
×j 6=iT ′j of opponents’type combinations.
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A type space is then called universal if every other type space can be uniquely embedded into it
by means of a type morphism.

Definition 3.3 (Universal type space) A type space T is universal1 if for every other type space
T ′ there is a unique type morphism from T ′ to T .

It turns out that every two universal type spaces are isomorphic. As such, we can speak about
the universal type space. Battigalli and Siniscalchi (1999), Guarino (2022) and Fukuda (2023) have
shown that we can always construct a universal type space in our setting.

3.2 Strong Belief

Consider a type space T = ((Ti,Oi), βi)i∈I , a type ti ∈ Ti and an event E−i ∈ Σ(S−i × T−i).
Following Battigalli and Siniscalchi (2002), the type ti is said to strongly believe the event E−i if it
assigns probability 1 to the event whenever possible. That is,

βi(ti, h)(E−i) = 1 at all h ∈ Hi where E−i ∩ (S−i(h)× T−i) 6= ∅.

3.3 Optimal Choice

Consider a type ti ∈ Ti, a strategy si ∈ Si and an information set h ∈ Hi(si) that can possibly be
reached by si. Then, we denote by

ui(si, ti, h) :=
∑

s−i∈S−i(h)

βi(ti, h)({s−i} × T−i) · ui(z(si, s−i))

the expected utility induced by si at h for the type ti. The strategy si is optimal for the type ti at
information set h if ui(si, ti, h) ≥ ui(s

′
i, ti, h) for all other strategies s′i ∈ Si(h). For a given period m,

we say that strategy si is optimal for the type ti from period m onwards if for every period τ ≥ m,
and every information set h ∈ Hi(si) ∩Hτ , the strategy si is optimal for type ti at h.2 For a given
set of types T̂i ∈ Σ(Ti), we denote by

(Si × T̂i)rat,m := {(si, ti) ∈ Si × T̂i | si is optimal for ti from period m onwards}

the event that player i chooses rationally from period m onwards and that i’s type belongs to T̂i.
The following result states that the event of choosing rationally from a certain period onwards is

always a “well-behaved”set.

1In the literature, such type spaces are sometimes called terminal.
2Note that if h 6∈ Hi(si) ∩Hτ for all τ ≥ m, then si is (vacuously) optimal for every type of player i from period

m onwards.
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Lemma 3.1 (Rationality is a measurable event) Suppose that T̂i is a closed (measurable) sub-
set of Ti. Then, the set (Si × T̂i)rat,m is a closed (measurable) subset of Si × Ti.

This result will be important for guaranteeing that the epistemic conditions below are all well-
defined. It will also play a key role in the proof of our epistemic characterization.

3.4 Epistemic Characterization

The epistemic conditions we impose on the players’types are as follows: First, we focus on the last
period M where players have to move. A player must (M.1) strongly believe in the event that every
opponent chooses rationally from period M onwards, (M.2) strongly believe in the event that every
opponent chooses rationally from period M onwards and that every opponent satisfies (M.1), and
so on. These conditions together yield common backward strong belief in rationality from period M
onwards. We refer to this event as (M). In fact, since every player moves at most once at period M,
event (M) is equivalent to common belief in rationality at period M.
We then move to period M − 1. A player must (M − 1.1) strongly believe in the event that

every opponent chooses rationally from period M − 1 onwards and that every opponent satisfies
(M). Moreover, a player must (M − 1.2) strongly believe in the event that every opponent chooses
rationally from periodM − 1 onwards and that every opponent satisfies (M − 1.1), and so on. These
conditions together yield common backward strong belief in rationality from period M − 1 onwards.
We then continue in this fashion until we reach the beginning of the game. The final restrictions

on the types are called common backward strong belief in rationality.

Definition 3.4 (Common backward strong belief in rationality) For every period m, num-
ber k ∈ {0, 1, ...} and player i, we define the sets of types Tm.ki that express k-fold backward strong
belief in rationality from period m onwards. These sets Tm.ki are inductively defined as follows.

Period M. Set TM.0
i := Ti for every player i. For every k ≥ 1, inductively define

TM.k
i := {ti ∈ TM.k−1

i | ti strongly believes ×j 6=i (Sj × TM.k−1
j )rat,M}.

Set TMi := ∩k≥0T
M.k
i for every player i.

Period m ≤M − 1. Set Tm.0i := Tm+1
i for every player i. For every k ≥ 1, inductively define

Tm.ki := {ti ∈ Tm.k−1
i | ti strongly believes ×j 6=i (Sj × Tm.k−1

j )rat,m}.

Set Tmi := ∩k≥0T
m.k
i for every player i.

For a given period m and round k, a type ti is said to express up to k-fold backward strong belief
in rationality from period m onwards if ti ∈ Tm.ki . The type ti is said to express common backward
strong belief in rationality from period m onwards if ti ∈ Tmi . The type ti is said to express common
backward strong belief in rationality if ti ∈ TLi , where L is the first period in the game.
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The following result guarantees that the epistemic conditions imposed above lead to “well-
behaved”sets.

Lemma 3.2 (Epistemic conditions lead to closed sets) Each of the sets Tm.ki and Tmi above
is a closed subset of Ti.

Let us now have a closer look at the epistemic conditions above. The conditions imply that at
every information set where a player has to move, he looks for the earliest period m and the highest
degree k such that it is possible to believe that (i) every player chooses rationally from period m
onwards and expresses common backward strong belief in rationality from period m onwards, and
(ii) every player chooses rationally from period m− 1 onwards and expresses up to k-fold backward
strong belief in rationality from period m − 1 onwards. Moreover, he will then believe (i) and (ii).
This may be viewed as a best rationalization principle for the epistemic concept above.
From this best rationalization principle it is clear that epistemic priority is given to backward

induction reasoning: If a player is at an information set, he first looks for the earliest period m
such that it is possible to believe that every player chooses rationally from period m onwards and
expresses common backward strong belief in rationality from period m onwards. In that case, the
player will express common backward strong belief in rationality from period m onwards, and hence
will believe, in particular, that every opponent will choose rationally from period m onwards. Only
afterwards will he think about period m−1, and look for the highest degree k such that it is possible
to believe that, in addition, every player chooses rationally from period m−1 onwards and expresses
up to k-fold backward strong belief in rationality from period m− 1 onwards.
The following result shows that the epistemic conditions in common backward strong belief in

rationality single out precisely those strategies that are forward and backward rationalizable.

Theorem 3.1 (Epistemic characterization) Consider the universal type space T = ((Ti,Oi), βi)i∈I .
Then, for every player i and strategy si ∈ Si, the following holds:
(a) strategy si is forward and backward rationalizable, if and only if, si is optimal from the first
period onwards for a type ti ∈ Ti that expresses common backward strong belief in rationality,
(b) if m ≤ M − 1 then si ∈ Sm.0i , if and only if, si is optimal from period m+ 1 onwards for a type
ti ∈ Tm+1

i that expresses common backward strong belief in rationality from period m+ 1 onwards,
and

(c) if k ≥ 0 then si ∈ Sm.k+1
i , if and only if, si is optimal from period m onwards for a type ti ∈ Tm.ki

that expresses up to k-fold backward strong belief in rationality from period m onwards.

In particular, since we know from the paper that forward and backward rationalizable strategies
always exist, it follows that there is always a type that expresses common backward strong belief in
rationality. That is, the system of epistemic conditions we offer never leads to logical contradictions.
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A major difference with strong rationalizability is that forward and backward rationalizability
requires players to do forward induction reasoning from a certain period onwards, in a backward
inductive fashion. Strong rationalizability, in contrast, always requires players to do the forward
induction reasoning in the whole game, that is, from the first period onwards.
As such, we can also consider a bounded rationality version of forward and backward rationaliz-

ability in which players only do the forward induction reasoning from periodM onwards, from period
M − 1 onwards, until we reach period m. Players would thus not actively reason about choices that
are made before period m. Parts (b) and (c) in Theorem 3.1 reveal what has to be imposed, in terms
of reasoning, to establish such a bounded rationality variant.

4 Epistemic Priority

One could argue that in the concept of forward and backward rationalizability we give epistemic
priority to backward induction reasoning over forward induction reasoning. This may be seen, for
instance, from Theorem 3.1: We first impose common strong belief in rationality from the last period
onwards, and keep these restrictions when we move to restrictions on reasoning from the penultimate
period onwards. In turn, the restrictions on the reasoning from the penultimate period onwards are
maintained when restricting the reasoning from earlier periods onwards, and so on. As such, a player
will always believe, at every period, that his opponents will choose rationally in the periods that lie
ahead —a typical backward induction restriction.
But we could also change the epistemic priority, by first applying the strong rationalizability

procedure, and subsequently refining it by the backwards rationalizability procedure. In that alter-
native procedure we would thus give epistemic priority to forward induction reasoning over backward
induction reasoning.
This concept would be different from ours, at least in terms of strategies and beliefs. Consider,

for instance, the game from Figure 2, where our concept would yield the strategy c for player 2,
whereas the alternative procedure would uniquely select strategy (d, g) for player 2. To see this, note
that backwards rationalizability always leads to the unique backward induction strategies in perfect
information games without relevant ties, like the one in Figure 2. As player 2’s backward induction
strategy is c, and our concept is a refinement of backwards rationalizability in terms of strategies,
our concept will uniquely select c as well. On the other hand, we have seen in the introduction of the
paper that player 2’s unique strongly rationalizable strategy is (d, g). As the alternative procedure is
a refinement of strong rationalizability in terms of strategies, it will uniquely select (d, g) also.
We do not know at this point whether this alternative procedure always yields the same outcomes

as forward and backward rationalizability. The reason is that the alternative procedure does not
correspond to a specific elimination order of the strong belief reduction operator. Indeed, after
applying the strong rationalizability procedure, which corresponds to recursively applying the strong
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Figure 2: Strong rationalizability may lead to counterintuitive behavior

belief reduction operator at “full speed”, the strong belief reduction operator is not able to induce
any further eliminations.
For a concept that combines forward and backward induction reasoning, one could also proceed

alternatively, by first applying the backwards rationalizability procedure to the whole game, until we
can go no further, after which it is refined by the steps in the strong rationalizability procedure. This
would correspond to an instance of ∆-rationalizability (Battigalli (2003), Battigalli and Siniscalchi
(2003)) where ∆ consists of the restrictions on beliefs imposed by backwards rationalizability. Like
with our procedure, this would also correspond to a scenario where epistemic priority is given to
backward induction reasoning, but in a more extreme fashion than we do. Indeed, in the alternative
procedure we would first exhaust all the backward induction reasoning in the whole game, after which
we exclusively turn to forward induction reasoning in the whole game.
It turns out that this alternative concept may also differ from forward and backward rationaliz-

ability in terms of strategies. To see, consider the game from Figure 3. In the alternative procedure,
we would start by applying the backwards rationalizability procedure to the whole game. We proceed
in a backward inductive fashion here, by first considering the last information set h4, where nothing
can be eliminated. At h3, we eliminate (In, f) for player 2, after which we can eliminate (In, c) for
player 1 at h2. Finally, we eliminate (In, r) for player 3 at h1. The backwards rationalizable strategies
are thus Out, (In, a) and (In, b) for player 1, Out, (In, d) and (In, e) for player 2, and Out and (In, l)
for player 3.
If we take this as an input for the strong rationalizability procedure, then in round 1 of the strong

rationalizability procedure we can eliminate (In, b) for player 1 and (In, d) for player 2. Indeed, at h2

player 1 must believe that player 2 chooses Out, (In, d) or (In, e) and that player 3 chooses (In, l).
Hence, player 1 expects at most 1 by choosing (In, b) there. Also, player 2 must believe at h3 that
player 1 will choose (In, a) or (In, b) and that player 3 will choose (In, l). As such, player 2 expects
at most 1 by choosing (In, d) there.
In round 2 we can then eliminate, for similar reasons, (In, a) for player 1 and (In, e) for player
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Figure 3: Triple outside option game

2. In round 3 we can finally eliminate (In, l) for player 3. Indeed, player 3 must believe at h1 that
player 1 chooses Out, which yields Out as the only optimal strategy for player 3 at h1.
The alternative procedure, where we first apply the backwards rationalizability procedure and

then strong rationalizability, thus yields the strategy Out for player 1, Out for player 2, and Out for
player 3.
Let us now apply our procedure to this game. Applying the strong rationalizability procedure to

the subgame starting at h4 yields no eliminations. If we start at h3, then we can only eliminate the
strategy (In, f) for player 2. If we start at h2, then in round 1 we eliminate the strategy (In, c) for
player 1, as he expects to get at most 2 by choosing (In, c) at h2. In round 2 we would then eliminate
the strategy (In, d) for player 2 and the strategy (In, r) for player 3. Indeed, player 2 expects to get
at most 1 by playing (In, d), whereas for player 3 choosing l has become better than choosing r at
h4. In round 3, we would then eliminate (In, a) and (In, b) for player 1, since he expects to obtain no
more than 1 by choosing either of these two strategies. Finally, we would move to the game starting
at h1, where we can eliminate the strategy (In, l) for player 3. Our concept would thus yield the
strategy Out for player 1, the strategies Out and (In, e) for player 2, and the strategy Out for player
3. As the strategy (In, e) for player 2 was not selected by the alternative procedure, both concepts
differ in terms of strategies.
The reason for why our concept allows for player 2’s strategy (In, e) but the alternative procedure

does not, is the following: The alternative procedure starts by eliminating the strategies (In, f) for
player 2, (In, c) for player 1 and (In, r) for player 3. It would then proceed by applying strong
rationalizability to the whole game, so that player 2 will conclude at h3 that player 1 must be
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Figure 4: Battle of the sexes with double outside option

choosing (In, a). As a consequence player 2 must choose Out at h3 according to the alternative
procedure.
Our concept proceeds differently: It also starts by eliminating (In, f) for player 2 and (In, c)

for player 1. But then, by reasoning from h2 onwards, we would eliminate (In, d) for player 2 and
(In, r) for player 3. If player 1 believes at h2 that player 2 will no longer choose (In, d) and (In, f),
both (In, a) and (In, b) become suboptimal for player 1 at h1. As (In, c) was already eliminated for
player 1 at an earlier stage, player 2 is no longer forced to discriminate between (In, a) and (In, b),
and hence player 2 may still believe at h3 that player 1 chooses (In, b). Hence, player 2 may still
rationally choose (In, e) at h3 according to our concept.
In this example we thus see that the alternative concept is more restrictive, in terms of strategies,

than ours. The reverse may also be true, as the example from Figure 4 shows. We have already seen
in the introduction and Section 3.4 of the paper that our concept uniquely selects the strategies b
for player 1 and (c, h) for player 2.
Suppose now that we would run the alternative procedure. By applying backwards rationaliz-

ability first, we would start by eliminating strategy (c, g) for player 2 at h2, after which we would
eliminate (a, e) and (a, f) for player 1 at h1. Indeed, if player 1 believes at h1 that player 2 will not
choose (c, g), then choosing a can give him at most 1. Hence, the backwards rationalizable strategies
are b for player 1, and (c, h) and d for player 2. If we use this as the input for the strong rationaliz-
ability procedure, then at h2 player 2 can no longer discriminate between (a, e) and (a, f) for player
1, and hence player 2 may believe at h2 that player 1 chooses (a, e) or (a, f). As such, both d and
(c, h) can be optimal for player 2 at h2, which means that the alternative concept would select both
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d and (c, h) for player 2.
The reason for this difference is similar to above, but now with the roles of the two concepts

reversed: Under our concept, player 2 will certainly believe at h2 that player 1 chooses (a, f) and
not (a, e), and therefore only (c, h) is optimal for player 2. Under the alternative concept, player 2
is no longer forced to discriminate between (a, e) and (a, f), which leaves both d and (c, h) as valid
options for player 2.
It can be shown that this alternative procedure corresponds to a specific elimination order of the

strong belief reduction operator. But then, it follows in the same way as in the paper that also this
procedure is equivalent to strong rationalizability in terms of outcomes. As such, it is also equivalent
to forward and backward rationalizability in terms of outcomes.
This alternative procedure thus gives epistemic priority to backward induction reasoning over

forward induction reasoning. Similar approaches have been adopted in the equilibrium refinements
literature from the eighties and early nineties, where the backward induction concept of sequential
equilibrium has been refined by imposing forward induction restrictions. See, for instance, justifiable
sequential equilibrium (McLennan (1985)), forward induction equilibrium (Cho (1987)) and stable
sets of beliefs (Hillas (1994)).
The issue of epistemic priority is explored in depth by Catonini (2019), who proposes the concept

of selective rationalizability. It proceeds by first applying strong rationalizability, after which it
is refined by imposing (common strong belief in) some exogenously given restrictions on beliefs.3

However, it could happen that these exogenous restrictions are incompatible with the restrictions
imposed by strong rationalizability. This will typically be the case when the exogenous restrictions
are taken to be the restrictions imposed by backwards rationalizability, because in many dynamic
games these restrictions go against the restrictions of strong rationalizability.
The first alternative procedure described above, where we started with the strong rationalizability

procedure, and subsequently refined it with the backwards rationalizability procedure, is, strictly
speaking, not a selective rationalizability procedure in the sense of Catonini (2019): The restrictions
of backwards rationalizability are not being imposed as exogeneous restrictions after completing the
strong rationalizability procedure, but rather as “optional” restrictions meant to refine, whenever
possible, the reasoning of strong rationalizability.

5 Proofs

Proof of Lemma 3.1. Consider some information set h ∈ Hi of player i and let si ∈ Si(h) be a
strategy that allows h to be reached. We first show that the set of types Ti(si, h) of player i for whom

3Instead of starting with strong rationalizability one could also start with some other concept, and then impose
exogenous restrictions on the beliefs. Catonini (2019) uses strong rationalizability as the focal concept here, but his
analysis allows it to be replaced by any other rationalizability concept for dynamic games as well.
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playing si is optimal at h is a closed set of types. To this purpose, we consider for any alternative
strategy ri ∈ Si(h), any opponents’strategy combination s−i and any opponents’type combination
t−i the utility difference

ui(si, s−i, t−i)− ui(ri, s−i, t−i) := ui(z(si, s−i))− ui(z(ri, s−i)).

By fixing si, ri, and h, and varying s−i and t−i, we obtain a bounded continuous function

ui(si, ·, ·)− ui(ri, ·, ·) : S−i(h)× T−i → R.

This is indeed the case, since we endow S−i(h) with the discrete topology and ui(si, s−i, t−i) −
ui(ri, s−i, t−i) only depends on the S−i-dimension of S−i × T−i. Hence, the set of measures µi ∈
∆(S−i(h)×T−i) such that integrating over this function with respect to µi is non-negative is a closed
set of measures, which we call ∆(S−i(h)× T−i)si≥ri . The set of measures µi ∈ ∆(S−i(h)× T−i) such
that si is optimal at h is the intersection

∆(S−i(h)× T−i)si,h :=
⋂

ri∈Si(h)

∆(S−i(h)× T−i)si≥ri ,

which is closed as well. Note that, by construction,

Ti(si, h) = {ti ∈ Ti | βi(ti, h) ∈ ∆(S−i(h)× T−i)si,h}.

Since the mapping βi(·, h) : Ti → ∆(S−i(h)× T−i) is continuous, we conclude that the set Ti(si, h) is
closed.
Recall that the set of types ti such that si is optimal at h is precisely Ti(si, h). For a given period

m, let H≥m := Hm ∪Hm+1 ∪ . . .∪HM be the collection of information sets from period m onwards.
Then, the set of types for which si is optimal from period m onwards is

T≥mi (si) :=
⋂

h∈Hi(si)∩H≥m

Ti(si, h),

which is closed in Ti. Note that if si does not reach any information set in H≥m, then si is auto-
matically optimal from period m onwards for all types in Ti. For each of the finitely many strategies
si ∈ Si of player i, the set {si} × T≥mi (si) is closed in the product topology of Si × Ti, since it is the
product of two closed sets. The set

(Si × Ti)rat,m =
⋃
si∈Si

({si} × T≥mi (si))

is closed in Si × Ti since it is the union of finitely many closed sets. If T̂i is a measurable subset of
Ti then (Si × T̂i)rat,m = (Si × Ti)rat,m ∩ (Si × T̂i) is measurable since it is an intersection of a closed
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and a measurable set. If T̂i is closed, then Si × T̂i is closed and hence (Si × T̂i)rat,m is closed, being
the intersection of two closed sets. �

Proof of Lemma 3.2. We start by proving the following result.

Claim. Let E be a closed subset of S−i×T−i. Then, the set { ti | ti strongly believes E } is a closed
subset of Ti.

Proof of claim. Let h ∈ Hi be such that (S−i(h)× T−i) ∩E 6= ∅. We show that the set of measures
in ∆(S−i(h) × T−i) that assign probability 1 to E is closed set. To this end, let (µn)n∈N → µ be
a sequence of probability measures in ∆(S−i(h) × T−i) converging to µ ∈ ∆(S−i(h) × T−i) such
that µn(E) = 1 for all n ∈ N. We have to show that µ(E) = 1. But this follows immediately
from the Portemanteau Theorem (Kechris (1995), Theorem 17.20). By continuity, the set {ti ∈ Ti
| βi(ti, h)(E) = 1} is a closed set of types. The set of types ti that strongly believe E is the finite
intersection of such sets of types over all h ∈ Hi such that (S−i(h)× T−i) ∩ E 6= ∅. Hence, this is a
closed set of types. ♦
The lemma now follows immediately by iteratively applying the claim and Lemma 3.1. �

Proof of Theorem 3.1. As a first step we will use the forward and backward rationalizability
procedure to build a finite type space. Later we will use this model to prove the theorem. Moreover,
we will make sure that the type space is non-reduntant, that is, no two different types of a player
induce the same conditional belief hierarchy.
Recall that, for every player i, period m, and round k, the sets Bm.k

i and Sm.ki are the collec-
tions of conditional belief vectors and strategies, respectively, selected by the forward and backward
rationalizability procedure at round k of period m. In particular, BL.KL

i and SL.KL
i are the sets of

conditional belief hierarchies and strategies, respectively, that survive all rounds at all periods.
For every player i and strategy si ∈ SL.KL

i choose a conditional belief vector bi[si] ∈ BL.KL
i such

that si is optimal for bi[si] from the first period onwards.
For all other strategies si there is a period m ∈ {L, ...,M} and a round k such that si ∈

Sm.ki \Sm.k+1
i . For such a strategy si ∈ Sm.ki \Sm.k+1

i we can then choose a conditional belief vec-
tor bi[si] ∈ Bm.k

i such that si is optimal for bi[si] from period m onwards if k ≥ 1, and si is optimal
from period m + 1 onwards if k = 0. If m.k = M.0, then optimality from period M + 1 onwards
means that si need not be optimal for bi[si] at all.
Based on these conditional belief vectors bi[si] we will now construct a finite type space T̂ =

((Ti,Oi), βi) where the sets of types are given by Ti = {tbi[si]i | si ∈ Si}, and the belief mappings βi
are such that

βi(t
bi[si]
i , h)((sj, tj)j 6=i) =

{
bi[si](h)((sj)j 6=i), if tj = t

bj [sj ]
j for all j 6= i

0, otherwise
(5.1)
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for all players i, all strategies si, all information sets h ∈ Hi, and all opponents’strategy-type com-
binations (sj, tj)j 6=i ∈ S−i×T−i. Hence, every type tbi[si]i has the belief bi[si](h) about the opponents’
strategy combinations at every information set h ∈ Hi, and matches, in its belief, every opponent’s
strategy sj with the associated type t

bj [sj ]
j . It is easy to see that every type in this model satisfies

Bayesian updating. Note that bi[si] = bi[ŝi] implies that t
bi[si]
i = t

bi[ŝi]
i , and hence the type space T̂ is

non-redundant by construction.
For every player i and conditional belief vector bi ∈ Bi\{bi[si] | si ∈ Si} not present in T̂ , we add

a new type tbii to T̂ whose conditional beliefs are given by

βi(t
bi
i , h)((sj, tj)j 6=i) =

{
bi(h)((sj)j 6=i), if tj = t

bj [sj ]
j for all j 6= i

0, otherwise
(5.2)

The new type space obtained after adding the type tbii to T̂ is denoted by T̂ ∪ {tbii }.
Let T be a universal type space. Then, by definition, each of the finite type spaces T̂ and T̂ ∪{tbii }

maps in a unique way to the universal type space T by a type morphism. Note that for every type
t
bi[si]
i in T̂ the induced conditional belief hierarchy is the same, no matter whether it is regarded as
a type in T̂ or a type in T̂ ∪ {tbjj }. Since a type morphism always preserves the induced conditional

belief hierarchy, the type tbi[si]i will be mapped to the same type in the universal type space T , no
matter whether it is regarded as a type in T̂ or a type in T̂ ∪ {tbjj }. As each of the type spaces T̂
and T̂ ∪ {tbii } is non-redundant, every type in these type spaces may be uniquely identified with a
type in the universal type space T .
For every player i, period m and number k ∈ {0, 1, ...}, we denote by Tm.ki the set of types for

player i in the universal type space T that express k-fold backward strong belief in rationality from
period m onwards. Define

B̂m.k
i := {bi ∈ Bi | there is some ti ∈ Tm.ki that induces the conditional belief vector bi}

and
Ŝm.ki := {si ∈ Si | there is some ti ∈ Tm.ki with (si, ti) ∈ (Si × Tm.ki )rat,m}.

Here, when we say that “ti induces the conditional belief vector bi”, we mean that margS−i(h)βi(ti, h) =
bi(h) for every h ∈ Hi. We prove the following result.

Claim. For every period m and number k ∈ {0, 1, ...} it holds that (i) B̂m.k
i ⊆ Bm.k+1

i , (ii) Bm.k+1
i ⊆

B̂m.k
i and for every bi ∈ Bm.k+1

i we have that tbii ∈ Tm.ki , (iii) Ŝm.ki ⊆ Sm.k+1
i and (iv) Sm.k+1

i ⊆ Ŝm.ki .

Proof of claim. We show the four statements by induction on m.k.
We start with M.0. Then, B̂M.0

i is, by definition, the set of conditional belief vectors induced by
the types in TM.0

i . As TM.0
i = Ti, this is the set of all conditional belief vectors, and hence B̂M.0

i = Bi.
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As, by construction, BM.1
i = Bi as well, it follows that B̂M.0

i = BM.1
i . Moreover, as TM.0

i = Ti, for
every bi ∈ BM.1

i we have that tbii ∈ TM.0
i . This establishes (i) and (ii).

Moreover, ŜM.0
i contains precisely those strategies that are optimal from period M onwards for

some ti ∈ TM.0
i . As TM.0

i = Ti, these are precisely the strategies that are optimal from period M
onwards for some conditional belief vector bi ∈ Bi. By definition, these are precisely the strategies in
SM.1
i . Hence, we conclude that ŜM.0

i = SM.1
i . This establishes (iii) and (iv).

Next, take some m.k 6= M.0, and assume that the claim holds for m.k − 1 if k ≥ 1, and that the
claim holds for any m+ 1.k′ if k = 0. We distinguish two cases: (1) k = 0, and (2) k ≥ 1.

Case 1. Suppose that k = 0. Then, by definition, there is some round K such that B̂m.0
i = B̂m+1.K

i

and Bm.1
i = Bm+1.K+1

i . As, by the induction assumption, B̂m+1.K
i = Bm+1.K+1

i , we conclude that
B̂m.0
i = Bm.1

i . Moreover, by construction, Ŝm.0i is the set of strategies that are optimal, from period
m onwards, for some bi ∈ B̂m.0

i , whereas Sm.1i is the set of strategies that are optimal, from period
m onwards, for some bi ∈ Bm.1

i . Since B̂m.0
i = Bm.1

i , it follows that Ŝm.0i = Sm.1i .

Case 2. Suppose that k ≥ 1.

(i)We show that B̂m.k
i ⊆ Bm.k+1

i . Take some bi ∈ B̂m.k
i . Then, there is some ti ∈ Tm.ki that induces bi.

By definition, Tm.ki ⊆ Tm.k−1
i , and hence bi ∈ B̂m.k−1

i . By the induction assumption on (i) it follows
that bi ∈ Bm.k

i . Hence, we only need to show that bi strongly believes Sm.k−i . Let h ∈ Hi be such
that Sm.k−i ∩ S−i(h) 6= ∅. We must show that bi(h)(Sm.k−i ) = 1. By the induction assumption applied
to (iii) and (iv) we know that Sm.k−i = Ŝm.k−1

−i . Hence, by the definition of Ŝm.k−1
j for every j 6= i,

we know that ×j 6=i(Sj × Tm.k−1
j )rat,m ∩ (S−i(h) × T−i) 6= ∅. Therefore, since ti ∈ Tm.ki , we conclude

that βi(ti, h)(×j 6=i(Sj × Tm.k−1
j )rat,m) = 1. This, in turn, implies that bi(h)(Ŝm.k−1

−i ) = 1. As, by the
induction assumption on (iii) and (iv), Sm.k−i = Ŝm.k−1

−i , we conclude that bi(h)(Sm.k−i ) = 1. Hence, bi
strongly believes Sm.k−i . Since bi ∈ Bm.k

i , it follows that bi ∈ Bm.k+1
i . As such, B̂m.k

i ⊆ Bm.k+1
i .

(ii) We show that Bm.k+1
i ⊆ B̂m.k

i and for every bi ∈ Bm.k+1
i we have that tbii ∈ Tm.ki . Take some

bi ∈ Bm.k+1
i . Then, in particular, bi ∈ Bm.k

i and hence we know, by the induction assumption on (ii),
that tbii ∈ Tm.k−1

i . Thus, to prove that tbii ∈ Tm.ki it only remains to show that tbii strongly believes ×j 6=i
(Sj×Tm.k−1

j )rat.m. To this end, let h ∈ Hi be such that (S−i(h)×T−i)∩ (×j 6=i(Sj×Tm.k−1
j )rat,m) 6= ∅.

We must show that βi(t
bi
i , h)(×j 6=i(Sj × Tm.k−1

j )rat,m) = 1.
By definition, Ŝm.k−1

−i = projS−i(×j 6=i(Sj × Tm.k−1
j )rat,m). Note that by the induction assumption

of (iii) and (iv) we have that Ŝm.k−1
−i = Sm.k−i . Therefore, we have S−i(h)∩Sm.k−i 6= ∅. Since bi ∈ Bm.k+1

i

it follows that bi(h)(Sm.k−i ) = 1, and hence bi(h)(Ŝm.k−1
−i ) = 1. By the definition of tbii in (5.2) we have

βi(t
bi
i , h)((Ŝm.k−1

−i ∩S−i(h))×T−i) = 1, and that βi(ti, h) assigns probability 1 to the set of opponents’

strategy-type combinations {(sj, tbj [sj ]j )j 6=i | sj ∈ Ŝm.k−1
j for all j 6= i}. As Ŝm.k−1

−i = Sm.k−i we conclude

that βi(t
bi
i , h) assigns probability 1 to the set of opponents’strategy-type combinations {(sj, tbj [sj ]j )j 6=i
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| sj ∈ Sm.kj for all j 6= i}.
Consider a type tbj [sj ]j where sj ∈ Sm.kj . Then, we know by the definition of type tbj [sj ]j in (5.1) that

t
bj [sj ]
j induces the conditional belief vector bj[sj] ∈ Bm.k

j , and that sj is optimal for bj[sj] from period

m onwards. Hence, sj is optimal for t
bj [sj ]
j from period m onwards. As bj[sj] ∈ Bm.k

j we conclude by

the induction assumption of (ii) that tbj [sj ]j ∈ Tm.k−1
j . As sj is optimal for type t

bj [sj ]
j from period m

onwards, it follows that (sj, t
bj [sj ]
j ) ∈ (Sj × Tm.k−1

j )rat,m. Recall that βi(t
bi
i , h) assigns probability 1

to the set of opponents’strategy-type combinations {(sj, tbj [sj ]j )j 6=i | sj ∈ Sm.kj for all j 6= i}. Hence,
it follows that βi(t

bi
i , h)(×j 6=i(Sj × Tm.k−1

j )rat,m) = 1. As such, we conclude that tbii strongly believes
×j 6=i(Sj × Tm.k−1

j )rat.m.

Since tbii ∈ Tm.k−1
i it follows that tbii ∈ Tm.ki . We thus conclude that for every bi ∈ Bm.k+1

i we have
that tbii ∈ Tm.ki . Since, by (5.2), tbii induces the conditional belief vector bi, it follows that bi ∈ B̂m.k

i .
Hence, Bm.k+1

i ⊆ B̂m.k
i .

(iii) We show that Ŝm.ki ⊆ Sm.k+1
i . Let si ∈ Ŝm.ki . Then, in particular, si ∈ Ŝm.k−1

i . By the induction
assumption of (iii) it follows that si ∈ Sm.ki . Since si ∈ Ŝm.ki , there is a ti ∈ Tm.ki such that si is
optimal for ti from period m onwards. Let bi be the conditional belief vector induced by ti. As the
expected utility depends only on first-order beliefs, si is optimal for bi from period m onwards. Since
ti ∈ Tm.ki it follows, by definition, that bi ∈ B̂m.k

i . By (i) it then follows that bi ∈ Bm.k+1
i . Hence, si

is optimal for some bi ∈ Bm.k+1
i from period m onwards. As we have seen above that si ∈ Sm.ki , we

conclude that si ∈ Sm.k+1
i . Hence, Ŝm.ki ⊆ Sm.k+1

i .

(iv) We finally show that Sm.k+1
i ⊆ Ŝm.ki . Let si ∈ Sm.k+1

i . Then, by construction, bi[si] ∈ Bm.k+1
i

and si is optimal for bi[si] from period m onwards. By (ii) we know that tbi[si]i ∈ Tm.ki . Moreover,
t
bi[si]
i induces the conditional belief vector bi[si]. Since the expected utility depends only on first-
order beliefs, we conclude that si is optimal for t

bi[si]
i from period m onwards. This implies that

(si, t
bi[si]
i ) ∈ (Si × Tm.ki )rat.m, and hence si ∈ Ŝm.ki . Thus, Sm.k+1

i ⊆ Ŝm.ki . This completes the proof of
the claim. ♦
We are now able to prove the theorem.

(a) Take first a strategy si that is forward and backward rationalizable. Then, there is a conditional
belief vector bi ∈ BL.KL

i such that si is optimal for bi from the first period onwards. Note that
bi ∈ BL.k+1

i for all k and hence, by part (ii) of the claim, tbii ∈ TL.ki for all k. Therefore, tbii ∈ TLi ,
and hence tbii expresses common backward strong belief in rationality. As t

bi
i induces the conditional

belief vector bi, and si is optimal for bi from the first period onwards, it follows that si is optimal for
tbii from the first period onwards. As such, si is optimal, from the first period onwards, for a type
that expresses common backward strong belief in rationality.
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Conversely, suppose that si is optimal, from the the first period onwards, for a type ti that
expresses common backward strong belief in rationality. Hence, ti ∈ TLi . Suppose that ti induces the
conditional belief vector bi. Then, si is optimal, from the first period onwards, for bi. Since ti ∈ TL.ki

for all k, and ti induces the conditional belief vector bi, it follows that bi ∈ B̂L.k
i for all k. By part (i)

of the claim it follows that bi ∈ BL.k+1
i for all k, and hence bi is forward and backward rationalizable.

Since si is optimal for bi from the first period onwards, we conclude that si is forward and backward
rationalizable.

(b) Take first a strategy si ∈ Sm.0i . Then, si ∈ Sm+1.Km+1

i . Hence, there is a conditional belief vector
bi ∈ Bm+1.Km+1

i such that si is optimal for bi from period m+1 onwards. Note that bi ∈ Bm+1.k+1
i for

all k and hence, by part (ii) of the claim, tbii ∈ Tm+1.k
i for all k. Therefore, tbii ∈ Tm+1

i , and hence tbii
expresses common backward strong belief in rationality from period m + 1 onwards. As tbii induces
the conditional belief vector bi, and si is optimal for bi from period m+ 1 onwards, it follows that si
is optimal for tbii from period m+ 1 onwards. As such, si is optimal, from period m+ 1 onwards, for
a type that expresses common backward strong belief in rationality from period m+ 1 onwards.
Conversely, suppose that si is optimal, from period m + 1 onwards, for a type ti that expresses

common backward strong belief in rationality from periodm+1 onwards. Hence, ti ∈ Tm+1
i . Suppose

that ti induces the conditional belief vector bi. Then, si is optimal, from period m+1 onwards, for bi.
Since ti ∈ Tm+1.k

i for all k, and ti induces the conditional belief vector bi, it follows that bi ∈ B̂m+1.k
i

for all k. By part (i) of the claim it follows that bi ∈ Bm+1.k+1
i for all k, and hence bi ∈ Bm.0

i . Since
si is optimal for bi from period m+ 1 onwards, we conclude that si ∈ Sm.0i .

(c) Take first a strategy si ∈ Sm.k+1
i . Hence, there is a conditional belief vector bi ∈ Bm.k+1

i such that
si is optimal for bi from period m onwards. By part (ii) of the claim we conclude that tbii ∈ Tm.ki . As
tbii induces the conditional belief vector bi, and si is optimal for bi from period m onwards, it follows
that si is optimal for t

bi
i from period m onwards. As such, si is optimal, from period m onwards, for

a type in Tm.ki that expresses k-fold backward strong belief in rationality from period m onwards.
Conversely, suppose that si is optimal, from periodm onwards, for a type ti ∈ Tm.ki that expresses

k-fold backward strong belief in rationality from period m onwards. Suppose that ti induces the
conditional belief vector bi. Then, si is optimal, from period m onwards, for bi. Since ti ∈ Tm.ki and
ti induces the conditional belief vector bi, it follows that bi ∈ B̂m.k

i . By part (i) of the claim it follows
that bi ∈ Bm.k+1

i . Since si is optimal for bi from period m onwards, we conclude that si ∈ Sm.k+1
i .

This completes the proof. �
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