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• Two agents with almost identical priors can agree to completely disagree on their posterior beliefs.
• A slight perturbation of the common lexicographic prior can lead to common knowledge of completely opposed posterior beliefs.
• Agents can agree to disagree even if there is only a slight deviation from the common prior assumption.
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a b s t r a c t

The robustness of Aumann’s seminal agreement theorem with respect to the common prior assumption
is considered. More precisely, we show by means of an example that two Bayesian agents with almost
identical prior beliefs can agree to completely disagree on their posterior beliefs. Besides, a more detailed
agent model is introduced where posterior beliefs are formed on the basis of lexicographic prior beliefs.
We then generalize Aumann’s agreement theorem to lexicographic prior beliefs and show that only a
slight perturbation of the common lexicographic prior assumption at some – even arbitrarily deep – level
is already compatible with common knowledge of completely opposed posterior beliefs. Hence, agents
can actually agree to disagree even if there is only a slight deviation from the common prior assumption.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The impossibility of two agents to agree to disagree is estab-
lished by Aumann’s (1976) so-called agreement theorem. More
precisely, it is shown that two Bayesian agents entertaining a com-
monprior belief necessarily hold equal posterior beliefs in an event
upon receiving private information in the case of their posterior
beliefs being common knowledge. In other words, distinct posteri-
ors cannot be common knowledge among Bayesian agents with a
common prior. In this sense, agents cannot agree to disagree.

From an empirical as well as intuitive point of view the agree-
ment theorem seems quite startling, since people frequently dis-
agree on a variety of issues, while at the same time acknowledging
their divergent opinions. It is thus natural to analyze whether Au-
mann’s impossibility result still holds with weakened or slightly
modified assumptions. In this spirit, Geanakoplos and Polemar-
chakis (1982) show that without assuming common knowledge of
the posteriors, agents following a specific communication proce-
dure can nevertheless not agree to disagree. Furthermore, Mon-
derer and Samet (1989) replace common knowledge by theweaker
concept of common p-belief and establish an agreement theorem
with such an approximation of common knowledge. Indeed, they
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show that if the posteriors of Bayesian agents equipped with a
common prior are common p-belief for large enough p, then these
posteriors cannot differ significantly. Besides, a bounded rational-
ity approach is taken by Samet (1990) who drops the implicit neg-
ative introspection assumption – which states that agents know
what they do not know – and establishes that Aumann’s agree-
ment theorem remains valid with agents ignorant of their own ig-
norance. Yet a different generalization is provided by Bacharach
(1985) who shows that if two agents follow a common decision
procedure in line with the sure thing principle – which states that
for every event and every partition of it, if each cell of the partition
induces the same decision, then the event itself generates precisely
this decision – and their particular decisions are common knowl-
edge, then these decisions must coincide. In fact, Aumann’s agree-
ment theorem can be seen as a special case of Bacharach’s result,
since Bayesian updating from a common prior belief in some event
constitutes a specific decision procedure satisfying the sure thing
principle for determining a posterior belief in that event.Moreover,
Bonanno and Nehring (1997) as well as Ménager (2012) provide
rather comprehensive surveys on works on the agreement theo-
rem. More recently, Hellman (2013) analyzes Aumann’s impossi-
bility result in a particular context of almost common priors and
obtains a generalization of it. Besides, Bach and Cabessa (2012) de-
rive a possibility result for agreeing to disagree in a topologically
enriched epistemicmodel by replacing commonknowledge of pos-
teriors by limit knowledge – defined as the limit of iteratedmutual
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knowledge – of posteriors. Further, Heifetz et al. (2012) provide an
agreement theorem under unawareness.

The common prior assumption in economic theory in general
and in game theory in particular is controversial and has been crit-
icized, for example, by Morris (1995) and Gul (1998). With regard
to Aumann’s agreement theorem the question then arises to what
extent the impossibility of agents to agree to disagree depends on
their common prior.

Here, we first assume almost identical priors and show that
agents can entertain completely opposed posteriors while at the
same time satisfying common knowledge of these posteriors. In a
more general context we then introduce an enriched and arguably
more plausible model of lexicographically-minded agents, who
form their posterior beliefs on the basis of lexicographic prior be-
liefs. Indeed, the relevant beliefs, i.e. the posteriors, remain single
probability measures, yet agents can reason on the basis of a more
detailed initial perception of theworld. Note that lexicographic be-
liefs are typically used to model cautious reasoning and have also
recently quite frequently been adopted in epistemic game theory.
Here, we provide an agreement theorem for lexicographic beliefs.
For this theorem to obtain, a strengthened common prior assump-
tion is needed. More precisely, the agents’ prior beliefs do not only
have to be identical according to their primary perception of the
state space but on all lexicographic levels. However, only slightly
perturbing the common lexicographic prior assumption at some –
even arbitrarily deep – level is already compatible with common
knowledge of completely opposed posteriors. In this sense agents
can actually agree to disagree.

2. Aumann’s model

Before our possibility result on agreeing to disagree is for-
mally presented, we briefly recall the required ingredients of Au-
mann’s epistemic framework. A so-called Aumann structure A =

(Ω, (Ii)i∈I , p) consists of a finite set Ω of possible worlds, which
are complete descriptions of the way the world might be, a finite
set of agents I , a possibility partition Ii of Ω for each agent i ∈ I
representing his information, and a common prior belief function
p : Ω → [0, 1] such that


ω∈Ω p(ω) = 1. The cell of Ii containing

theworldω is denoted by Ii(ω) and contains all worlds considered
possible by i at world ω. In other words, agent i cannot distinguish
between any two worlds ω and ω′ that are in the same cell of his
partition Ii. Moreover, an event E ⊆ Ω is defined as a set of possi-
ble worlds. For instance, the event of it raining in London consists
of all worlds in which it does rain in London.

Note that the common prior belief function p can naturally be
extended to a common prior belief measure on the event space
p : P (Ω) → [0, 1] by setting p(E) =


ω∈E p(ω). In this context,

it is assumed that any information set has non-zero prior probabil-
ity, i.e. p(Ii(ω)) > 0 for all i ∈ I and ω ∈ Ω . Such a hypothesis
seems plausible since it ensures no piece of information to be ex-
cluded a priori. Moreover, all agents are assumed to be Bayesians
and to hence update the common prior belief given their private
information according to Bayes’s rule. More precisely, given some
event E and some world ω, the posterior belief of agent i in E at ω

is given by p(E | Ii(ω)) =
p(E∩Ii(ω))

p(Ii(ω))
.

In Aumann’s epistemic framework, knowledge is formalized in
terms of events. The event of agent i knowing E, denoted by Ki(E),
is defined as Ki(E) := {ω ∈ Ω : Ii(ω) ⊆ E}. If ω ∈ Ki(E), then
i is said to know E at world ω. Intuitively, i knows some event E
if in all worlds he considers possible E holds. Naturally, the event
K(E) =


i∈I Ki(E) then denotes mutual knowledge of E among

the set I of agents. Letting K 0(E) := E,m-order mutual knowledge
of the event E among the set I of agents is inductively defined by
Km(E) := K(Km−1(E)) for all m > 0. Accordingly, mutual knowl-
edge can also be denoted as 1-order mutual knowledge. Further-
more, an event is said to be common knowledge among a set I of
agents whenever all m-order mutual knowledge of it simulta-
neously hold. It is then standard to define the event that E is
common knowledge among the set I of agents as the infinite inter-
section of all higher-order mutual knowledge. Formally, the event
E is common knowledge among the agents at some world ω if ω ∈

m>0 K
m(E). Hence, the standard definition of common knowl-

edge of some event E can be stated as CK(E) :=


m>0 K
m(E).

An alternative – yet equivalent – definition of common
knowledge in terms of themeet of the agents’ possibility partitions
is proposed by Aumann (1976) and also used in his agreement
theorem. Before the meet definition of common knowledge can
be given some further set-theoretic notions have to be introduced.
Given two partitions P1 and P2 of a set S, partition P1 is called
finer than partition P2 or P2 coarser than P1, if each cell of P1 is
a subset of some cell of P2. Given n partitions P1, P2, . . . , Pn of
S, the finest partition that is coarser than P1, P2, . . . , Pn is called
the meet of P1, P2, . . . , Pn and is denoted by

n
i=1 Pi. Moreover,

given x ∈ S, the cell of the meet
n

i=1 Pi containing x is denoted
by

n
i=1(Pi)(x). Now, according to the meet definition of common

knowledge, an event E is said to be common knowledge at some
world ω among the set I of agents, if E includes the member of
the meet


i∈I Ii that contains ω. Formally, the meet definition

of common knowledge of some event E can thus be stated as
CK(E) := {ω ∈ Ω : (


i∈I Ii)(ω) ⊆ E}.

3. Motivating example

We now turn to the possibility of agents to agree to disagree.
The common prior assumption is slightly perturbed in the sense
of assuming arbitrarily close prior belief functions for the agents.
Indeed, the following example shows that two Bayesian agents
with almost identical prior beliefs can agree to completely disagree
on their posterior beliefs.

Example 1. Consider Ω = {ω1, ω2, ω3}, IAlice = IBob = {{ω1,
ω2}, {ω3}} and E = {ω1}. Moreover, let ϵ > 0 and pAlice : Ω

→ [0, 1] be Alice’s prior belief function such that pAlice({ω1}) =

ϵ, pAlice({ω2}) = 0, and pAlice({ω3}) = 1 − ϵ. Also, let pBob :

Ω → [0, 1] be Bob’s prior belief function such that pBob({ω1}) = 0,
pBob({ω2}) = ϵ, and pBob({ω3}) = 1−ϵ. Atω1 aswell as atω2,Alice’s
posterior belief in E is given by pAlice(E | IAlice(ω1)) =

ϵ
ϵ+0 = 1,

while Bob’s posterior belief in E is given by pBob(E | IBob(ω1)) =
0

0+ϵ
= 0. Supposeω1 to be the actualworld. Note that it is common

knowledge at ω1 that pAlice(E | IAlice(ω1)) = 1 and pBob(E |

IBob(ω1)) = 0. Hence, at worldω1 the two agents’ posterior beliefs
are common knowledge, yet completely different. �

Accordingly, two agents can entertain absolutely opposing poste-
rior beliefs, despite being equipped with arbitrarily close prior be-
liefs and their posterior beliefs being common knowledge.1 Hence,
agents can indeed agree to disagree. Moreover, the possible effects
of a slight perturbation of the common prior assumption in Au-
mann’s impossibility result show that the agreement theorem is
not robust.

Note that in Example 1 the agents agree to disagree on an event
that is considered unlikely to occur a priori. Yet, it would be falla-
cious to infer the irrelevance of an event from its improbability. For

1 Note that our example does not contradict Hellman’s (2013) result that when-
ever agents have almost common priors the extent of their disagreement is small
and bounded. In fact, Hellman assumes that the meet of the players’ partitions
equals the set of all possible worlds—a condition which is violated in our example.
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instance, in the context of dynamic games, precisely those events
that are initially believed not to occur can have a crucial influence
onwhat agents do later on in the game andwhether their behavior
conforms to particular reasoning patterns or solution concepts. In
general, events that are surprising or deemed improbable can thus
certainly be relevant and should as other, more probable, events be
handled with the same care.

4. Lexicographic prior beliefs

In Aumann’s original model the posterior beliefs are derived
from a common prior which is given by a single probability mea-
sure on the state space. In order to havewell-defined posteriors the
prior must assign non-zero probability to every information set of
every agent. However, this assumptionmay be quite restrictive. To
relax this assumption we model the prior belief of an agent not
by a single probability measure but by a sequence of probability
measures. That is, we employ lexicographic beliefs in the sense of
Blume et al. (1991) for the agents’ priors. To havewell-defined pos-
terior beliefs it is now sufficient to require that every information
set receives positive probability at some level – not necessarily the
first – of the lexicographic prior belief. Yet, an agent’s posterior is
given by a single probability measure and the lexicographic nature
of the prior is only used to generate this posterior. Hence, wemain-
tain the classical view that the agents’ relevant beliefs, i.e. the pos-
teriors, are given by a single probability measure, while admitting
agents to entertain a more fine-grained initial perception of the
world. This approach is also taken by Asheim (2002) and Asheim
and Perea (2005), in which the players’ conditional beliefs in a dy-
namic game are derived from a lexicographic prior belief. Also in
belief revision theory it is common to base conditional beliefs on
lexicographic prior beliefs. In general, an agent equipped with a
lexicographic prior belief can be interpreted as a cautious reasoner,
who deems nothing impossible, but may consider some events in-
finitely more likely than other events.

Formally, the standard common prior belief is now replaced by
subjective lexicographic prior beliefs for every agent in Aumann
structures. Indeed,we callAl = (Ω, (Ii)i∈I , (bi)i∈I) a lexicographic
Aumann structure, where bi is a lexicographic prior belief for all
agents i ∈ I . More precisely, bi = (b1i , b

2
i , . . . , b

K
i ) for some K ∈ N

is a finite sequence of prior belief functions bki : Ω → [0, 1] for all
k ∈ {1, 2, . . . , K} such that

1. Σω∈Ωbki (ω) = 1 for all k ∈ {1, 2, . . . , K},
2. for every S ∈ Ii there exists k∗

∈ {1, 2, . . . , K} such that
supp(bk

∗

i ) ∩ S ≠ ∅,
3. supp(bk

′

i ) ∩ supp(bk
′′

i ) = ∅ for all k′
≠ k′′.

Note that the first condition ensures that the agents’ prior be-
lief functions actually are probability distributions at every lexico-
graphic level. Moreover, the second requirement guarantees that
every possible information an agent may face receives positive
probability at some lexicographic level by stipulating its intersec-
tion with the support of the probability distribution at some level
to be non-empty. Further, according to the third condition any
distinct lexicographic levels never allot positive probability to an
identical world. This criterion seems natural as subsequent lexico-
graphic levels exhibit differences in order of likelihood and hence
a world being in the support of some lexicographic level should
not reappear at any deeper lexicographic level. Hence by exclud-
ing overlapping supports, the class of lexicographic prior beliefs
we consider corresponds to Blume et al. (1991)’s notion of lexi-
cographic conditional probability system. Besides, note that a lex-
icographic Aumann structure generalizes the notion of Aumann
structure, with the former being equivalent to the latter in the case
of K = 1. From an interpretative point of view, the probability
distributions at the various lexicographic levels can be considered
as successive theories or hypotheses about the world ordered lex-
icographically with decreasing plausibility from the first level on-
wards.

Similar to the case of standard beliefs, an agent’s lexicographic
prior belief can naturally be extended to a lexicographic prior belief
measure on the event space. Indeed, given an event E ⊆ Ω ,
agent i’s lexicographic prior belief in E is given by the sequence
bi(E) = (b1i (E), b2i (E), . . . , bKi (E)) = (Σω∈Eb1i (ω), Σω∈Eb2i (ω),

. . . , Σω∈EbKi (ω)). With lexicographic prior beliefs we define
Bayesian updating as follows: given an event E ⊆ Ω and a world

ω, the posterior belief bi(E|Ii(ω)) is given by bk
∗

i (E∩Ii(ω))

bk
∗

i (Ii(ω))
for the

smallest k∗
∈ {1, 2, . . . , K} such that supp(bk

∗

i ) ∩ Ii(ω) ≠ ∅.
Modeling Bayesian agents with lexicographic priors provides

a very complete as well as plausible agent model. Before any in-
formation is received no possible piece of information is excluded
while at the same time some worlds can be considered infinitely
more likely than others, and after information is received the
agents update the respectively relevant level of their lexicographic
prior to form a unique posterior representing their relevant belief
induced by subjective information. Note that a common lexico-
graphic prior assumption requires identical prior belief functions
at all lexicographic levels for the agents.

Moreover, the derivation of conditional beliefs from lexico-
graphic beliefs in our model is in line with belief revision theory.
Indeed, the way posterior beliefs are formed on the basis of lex-
icographic prior beliefs here can be seen as a probabilistic ana-
logue to Grove’s (1988) representation theorem, which connects
the AGM belief revision axioms of Alchourrón et al. (1985) to some
kindof plausibility orderings.More precisely,withinGrove’smodel
his system of spheres can be interpreted as a plausibility ordering
over possible worlds: conditional on an event E an agent’s condi-
tional beliefs concentrate on those worlds in E that are deemed
most plausible. In fact, within our model lexicographic beliefs in-
duce a plausibility ordering over possible worlds in the sense of a
possibleworldω being deemedmore plausible than anotherworld
ω′ whenever ω receives positive probability at an earlier lexico-
graphic level than ω′.

It is now shown that common knowledge of the agents’ pos-
terior beliefs together with a strengthened common lexicographic
prior assumption ensures the impossibility of agents to agree to
disagree.

Theorem 1. Let Al = (Ω, (Ii)i∈I , (bi)i∈I) be a lexicographic Au-
mann structure such that bi = b for all i ∈ I , let b̂i ∈ R for all i ∈ I ,
and let E ⊆ Ω be some event. If CK(


i∈I{ω

′
∈ Ω : b(E | Ii(ω

′)) =

b̂i}) ≠ ∅, then b̂i = b̂j for all i, j ∈ I .

Proof. Let ω ∈ Ω such that ω ∈ CK(


i′∈I{ω
′
∈ Ω : b(E | Ii′(ω

′))

= b̂i′}) and consider agent i ∈ I . First of all, since themeet is coarser
than i’s possibility partition, note that each cell of the meet can be
written as the union of the cells of i’s possibility partition that it in-
cludes. Hence, there exists a set Ai ⊆ Ω such that (


i′∈I Ii′)(ω) =

ω′′∈Ai
Ii(ω

′′) and for all ω1, ω2 ∈ Ai, if ω1 ≠ ω2, then Ii(ω1) ≠

Ii(ω2). Furthermore, by the definition of commonknowledge it fol-
lows that (


i′∈I Ii′)(ω) ⊆


i′∈I{ω

′
∈ Ω : b(E | Ii′(ω

′)) = b̂i′} and
thus b(E | Ii(ω

′′)) = b̂i for all ω′′
∈ (


i′∈I Ii′)(ω). Now, consider

some world ω∗
∈ Ai and let k ∈ {1, 2, . . . , K} denote the small-

est lexicographic level such that supp(bk) ∩ (


i′∈I Ii′)(ω
∗) ≠ ∅.

Then, either supp(bk) ∩ Ii(ω
∗) = ∅, consequently bk(Ii(ω

∗)) = 0
and hence b(E | Ii(ω

∗)) · bk(Ii(ω
∗)) = bk(E ∩ Ii(ω

∗)) is trivially
satisfied, or supp(bk) ∩ Ii(ω

∗) ≠ ∅ and thus by definition of lexi-
cographic Bayesian updating b(E | Ii(ω

∗)) · bk(Ii(ω
∗)) = bk(E ∩

Ii(ω
∗)). Hence, in both cases b(E | Ii(ω

∗)) · bk(Ii(ω
∗)) = bk(E ∩

Ii(ω
∗)) obtains. Since ω∗

∈ Ai ⊆ (


i′∈I Ii′)(ω), it holds that b(E |
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Ii(ω
∗)) = b̂i. It then follows that b̂i · bk(Ii(ω

∗)) = bk(E ∩ Ii(ω
∗)).

Summing over all worlds in Ai thus yields the following equation
of sums


ω′′∈Ai

bk(E ∩ Ii(ω
′′)) = b̂i ·


ω′′∈Ai

bk(Ii(ω
′′)). Observe

that due to countable additivity it follows that


ω′′∈Ai
bk(E ∩ Ii

(ω′′)) = bk(


ω′′∈Ai
(E ∩ Ii(ω

′′))) = bk(E ∩


ω′′∈Ai
Ii(ω

′′)) = bk

(E ∩ (


i′∈I Ii′)(ω)) and


ω′′∈Ai
bk(Ii(ω

′′)) = bk(


ω′′∈Ai
Ii(ω

′′))

= bk((


i′∈I Ii′)(ω)). Thus, the equation of sums can be written
as bk(E ∩ (


i′∈I Ii′)(ω)) = b̂i · bk((


i′∈I Ii′)(ω)), thence b̂i =

bk(E∩(


i′∈I Ii′ )(ω))

bk((


i′∈I Ii′ )(ω))
. Since agent i has been chosen arbitrarily, b̂1 =

b̂2 = · · · = b̂K =
bk(E∩(


i′∈I Ii′ )(ω))

bk((


i′∈I Ii′ )(ω))
obtains. �

From a lexicographic point of view Theorem 1 unveils a strong
common prior assumption for the impossibility of agents to
agree to disagree. Indeed, agents need to entertain absolutely
identical priors at all lexicographic levels. Intuitively, the same
complete perception of the state space has to be shared by all
agents including the way they assign probabilities to worlds
considered infinitely less likely than others. It seems demanding
and somewhat implausible to require agents not only to exhibit
an equal perception of the state space in line with their respective
primary prior hypotheses but also in line with any deeper prior
hypotheses they form.

Note that formally Theorem 1 follows as a corollary from
Bacharach’s (1985) generalization of Aumann’s agreement theo-
rem, since the way we define Bayesian updating of a lexicographic
prior belief can be viewed as a decision rule that satisfies the
sure-thing principle. However, our proof of Theorem 1, being self-
contained and direct, is still instructive and useful.

We turn towards relaxing the common lexicographic prior
assumption. In fact, it is now shown that assuming distinct priors
only at some lexicographic level already enables agents to agree to
disagree on their posteriors.

Theorem 2. Let Ω be a set of possible worlds, let I be a set of agents,
let bi′ be a lexicographic prior belief on Ω for each agent i′ ∈ I such
that bi ≠ bj for some agents i ≠ j. Then, there exist a possibility par-
tition Ii′ for all agents i′ ∈ I , some numbers b̂i′ ∈ R for all agents
i′ ∈ I with b̂i ≠ b̂j and some event E ⊆ Ω such that CK(


i∈I{ω

′
∈

Ω : bi(E | Ii(ω
′)) = b̂i}) ≠ ∅.

Proof. Let k ∈ {1, 2, . . . , K} be the smallest lexicographic level
such that bki ≠ bkj . Then, there exists a world ω ∈ Ω such that
bki (ω) ≠ bkj (ω). Hence, bki (ω) > 0 or bkj (ω) > 0. Without loss of
generality assume that bki (ω) > 0 and letIi′ = {{


k′<k supp(b

k′
i )},

Ω \ {


k′<k supp(b
k′
i )}} for all agents i′ ∈ I . Note that bki (Ω \

{


k′<k supp(b
k′
i )}) = 1, since supp(bki ) ⊆ Ω \ {


k′<k supp(b

k′
i )}.

As bk
′

j = bk
′

i for all k′ < k it also holds that bkj (Ω \ {


k′<k supp
(bk

′

i )}) = 1. Now consider event E = {ω}. It follows that bi(E |

Ii(ω)) =
bki (E∩Ii(ω))

bki (Ii(ω))
=

bki (ω)

bki (Ω\{


k′<k supp(b
k′
i )})

=
bki (ω)

1 ≠
bkj (ω)

1 =

bkj (ω)

bkj (Ω\{


k′<k supp(b
k′
i )})

=
bkj (E∩Ij(ω))

bkj (Ij(ω))
= bj(E | Ij(ω)). Let b̂i′ =

bi′(E | Ii′(ω)) for every agent i′ ∈ I . Note that then b̂i > 0 and
b̂i ≠ b̂j. Moreover, since an agent’s posterior belief in any event al-
ways remains constant throughout any of his possibility cells, and

i′∈I Ii′ = Ii for all agents i ∈ I , it follows that (


i′∈I Ii′)(ω) =

Ii′(ω) ⊆


i′∈I{ω
′

∈ Ω : bi′(E | Ii′(ω
′)) = b̂i′}. Therefore,

ω ∈ CK(


i′∈I{ω
′
∈ Ω : bi′(E | Ii′(ω

′)) = b̂i′}) ≠ ∅. �

Accordingly, it is already possible for agents to agree to disagree if
only at some – arbitrarily deep – lexicographic level they entertain
different prior beliefs, despite their perception of the state space
being completely identical at all respectively lower lexicographic
levels.

Note that Theorem 2 depends on the assumption that the in-
tersection of the supports of any distinct lexicographic levels is
empty. For example, consider Ω = {ω1, ω2}, I = {Alice, Bob},
bAlice = (b1Alice, b

2
Alice), and bBob = (b1Bob, b

2
Bob) such that b1Alice(ω1) =

1, b2Alice(ω1) =
1
2 , b

2
Alice(ω2) =

1
2 , b

1
Bob(ω1) = 1, and b2Bob(ω2) = 1.

Then, for every event E and for all possibility partitions IAlice and
IBob, there exists no world at which there is common knowledge
of the posterior beliefs in E being unique but different. The conclu-
sion of Theorem 2 thus no longer holds when admitting overlap-
ping supports for the agents’ lexicographic prior beliefs.

Finally, the robustness of agreeing to disagree with lexi-
cographic beliefs is analyzed. Indeed, a lexicographic Aumann
structure is constructed in which two agents entertain almost
identical lexicographic prior beliefs, yet their posterior beliefs are
completely opposed and at the same time common knowledge. To-
wards this purpose we now introduce the notion of ϵ-close priors,
using the notion of maximum norm. For every vector x = (x1, . . . ,
xn) ∈ Rn, the maximum norm is defined as ∥x∥∞ := maxk∈{1,2,...,n}
|xk| for some n ∈ N.

Definition 1. Let Al be a lexicographic Aumann structure. The
lexicographic prior beliefs bi and bj of two agents i, j ∈ I of
lexicographic depth K are called ϵ-close, if maxk∈{1,2,...,K} ∥bki −

bkj ∥∞ ≤ ϵ.

The non-robustness of the impossibility of lexicographic agree-
ing to disagree with regard to the strengthened common prior as-
sumption is formally stated as follows.

Theorem 3. For all ϵ > 0 and for all k∗ > 0, there exists a lexicog-
raphic Aumann structure Al = (Ω, (Ii)i∈{Alice,Bob}, (bi)i∈{Alice, Bob})

and some event E ⊆ Ω such that bkAlice = bkBob for all k < k∗, bAlice
and bBob are ϵ-close, CK(


i∈{Alice, Bob}{ω

′
∈ Ω : bi(E | Ii(ω

′)) =

b̂i}) ≠ ∅, b̂Alice = 1 but b̂Bob = 0.

Proof. Let Ω = {ω1, ω2, . . . , ωk∗ , ωk∗+1, ωk∗+2}, IAlice = IBob =

{{ω1, ω2, . . . , ωk∗−1}, {ωk∗ , ωk∗+1}, {ωk∗+2}}, as well as bAlice =

(b1Alice, b
2
Alice, . . . , b

k∗
Alice) and bBob = (b1Bob, b

2
Bob, . . . , b

k∗
Bob) that

coincide for every lexicographic level k < k∗ and only differ at the
last lexicographic level k∗. More precisely, let the agents’ common
lexicographic prior beliefs up to level k∗

−1 be given by bk such that
bk(ωk) = 1 for all k ≤ k∗

−1, and let the agents’ lexicographic prior
beliefs at level k∗ be given by bk

∗

Alice(ωk∗) = ϵ, bk
∗

Alice(ωk∗+1) = 0, and
bk

∗

Alice(ωk∗+2) = 1 − ϵ, as well as, bk
∗

Bob(ωk∗) = 0, bk
∗

Bob(ωk∗+1) = ϵ,
and bk

∗

Bob(ωk∗+2) = 1 − ϵ, respectively. Then, bAlice and bBob are ϵ-
close. Let E = {ωk∗} and note that bAlice(E | IAlice(ωk∗)) =

ϵ
ϵ+0 = 1,

whereas bBob(E | IBob(ωk∗)) =
0

0+ϵ
= 0.Moreover, since an agent’s

posterior belief in any event always remains constant throughout
any of his possibility cells and


i′∈{Alice, Bob} Ii′ = Ii for both

agents i ∈ {Alice, Bob}, it follows that (


i′∈{Alice, Bob} Ii′)(ωk∗) =

{ωk∗ , ωk∗+1} = {ω′
∈ Ω : bAlice(E | IAlice(ω

′)) = 1} ∩ {ω′
∈ Ω :

bBob(E | IBob(ω
′)) = 0}, and hence ωk∗ ∈ CK({ω′

∈ Ω : bAlice(E |

IAlice(ω
′)) = 1} ∩ {ω′

∈ Ω : bBob(E | IBob(ω
′)) = 0}) ≠ ∅. �

The preceding theorem illustrates that Aumann’s impossibility
result is also not robust with lexicographic prior beliefs. Indeed,
only a slight perturbation of a common lexicographic prior at
some – even arbitrarily deep – level can already yield completely
opposed posteriors. A strong reliance of the impossibility of agents
to agree to disagree on the common prior assumption is thus
unveiled.
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Note that Theorem 3 still holds when condition (2) of lexi-
cographic Aumann structures Al is strengthened to the follow-
ing requirement: (2′) for every ω ∈ Ω there exist k∗

∈ {1, 2,
. . . , K} such that ω ∈ supp(bk

∗

i ). Indeed, let Ω = {ω1, ω2, . . . ,
ωk∗ , ωk∗+1, ωk∗+2, ωk∗+3}, IAlice = IBob = {{ω1, ω2, . . . , ωk∗−1},
{ωk∗ , ωk∗+1}, {ωk∗+2}{ωk∗+3}}, as well as bAlice = (b1Alice, b

2
Alice, . . . ,

bk
∗

Alice) and bBob = (b1Bob, b
2
Bob, . . . , b

k∗
Bob) that coincide for every

lexicographic level k < k∗ and only differ at the last two lexico-
graphic levels k∗ and k∗

+ 1. More precisely, let the agents’ com-
mon lexicographic prior beliefs up to level k∗

− 1 be given by bk
such that bk(ωk) = 1 for all k ≤ k∗

− 1; let the agents’ ϵ-close
lexicographic prior beliefs at level k∗ be given by bk

∗

Alice(ωk∗) =

ϵ, bk
∗

Alice(ωk∗+1) = 0, bk
∗

Alice(ωk∗+2) = 1 − ϵ, as well as, bk
∗

Bob(ωk∗) =

0, bk
∗

Bob(ωk∗+1) = ϵ, and bk
∗

Bob(ωk∗+2) = 1 − ϵ, respectively; let
the agents’ ϵ-close lexicographic prior beliefs at level k∗

+ 1 be
given by bk

∗
+1

Alice (ωk∗+1) = ϵ, bk
∗
+1

Alice (ωk∗+3) = 1 − ϵ, as well as,
bk

∗
+1

Bob (ωk∗) = ϵ, and bk
∗
+1

Bob (ωk∗+3) = 1 − ϵ, respectively. Con-
sider E = {ωk∗} and observe that bAlice(E | IAlice(ωk∗)) =

ϵ
ϵ+0 = 1,

whereas bBob(E | IBob(ωk∗)) =
0

0+ϵ
= 0.Moreover, since an agent’s

posterior belief in any event always remains constant throughout
any of his possibility cells and


i′∈{Alice, Bob} Ii′ = Ii′ , it follows that

(


i′∈{Alice, Bob} Ii′)(ωk∗) = {ωk∗ , ωk∗+1} = {ω′
∈ Ω : bAlice(E |

IAlice(ω
′)) = 1} ∩ {ω′

∈ Ω : bBob(E | IBob(ω
′)) = 0}, and hence

ωk∗ ∈ CK({ω′
∈ Ω : bAlice(E | IAlice(ω

′)) = 1} ∩ {ω′
∈ Ω : bBob(E |

IBob(ω
′)) = 0}) ≠ ∅.

5. Conclusion

With regard to the controversial common prior assumption Au-
mann’s agreement theorem has been shown not to be robust. Al-
ready a slight perturbation of the common prior is compatiblewith
common knowledge of completely opposed posteriors. Moreover,
the agentmodel has been extended from standard to lexicographic
prior beliefs and a corresponding agreement theorem provided.
However, the impossibility of agents to agree to disagree is also
not robust in such an enriched lexicographic context. Indeed, only
a slight difference of the agents’ priors at some – even arbitrarily
deep – lexicographic level may already yield completely opposed
posteriors. These possibility results for slightly perturbed common
priors unveil a strong reliance of the impossibility of agents to
agree to disagree on the common prior assumption.

Further, note that we have assumed that agents hold lexico-
graphic prior yet standard posterior beliefs. Our model can be
modified such that agents also entertain lexicographic posteriors.
However, from a conceptual point of view the simpler model with
agents that are only lexicographically prior minded seems plau-
sible: accordingly agents entertain a rich perception of the state
space prior to receiving any information, while they subsequently
use their information to form a unique posterior that then repre-
sents their relevant perception of the state space. Besides, lexico-
graphic beliefs are used to generate conditional beliefs, which is in
line with belief revision theory.

The implications of Aumann’s impossibility theorem for spec-
ulative trade are studied by Milgrom and Stokey (1982). Re-
considering the consequences for speculation in the context of
lexicographic agreeing to disagree constitutes an interesting prob-
lem for further research. Moreover, it would also be intriguing for
future work to analyze the robustness of the converse of the agree-
ment theorem. Indeed, the question can be addressed whether
small disagreement can be compatible with large differences in
priors.
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