
Chapter 8

Common Belief in Rationality in Psychological
Games

In the previous chapters, the preference relation over your choices only depended on your belief about
the opponents’choices —that is, your first-order belief —but not on your higher-order beliefs. There
are real-life situations, however, where the preferences over your choices depend on your higher-order
beliefs, for instance, on what you believe that the opponent believes about your choice.

As an example, suppose that you wish to surprise the opponent by the choice you make. Then,
you wish to make a choice such that you believe that the opponent believes that you make a different
choice than the one you are considering. As a consequence, the utility you derive from a making a
choice depends on what you believe that the opponent believes about the choice you are going to
make, which is your second-order belief.

Or consider a scenario where you wish to meet the opponent’s expectations. Then, your objective
is to make a choice which is “at least as good”, from the opponent’s perspective, as the choice he
expects you to make. Also in this case, the utility you derive from making a certain choice depends
on what you believe that the opponent believes about the choice you are going to make.

Such situations, where the preferences over your own choices depend on second-order or even higher-
order beliefs, are called psychological games. We will see that these games can still be represented
by collections of one-person decision problems, but the states in these one-person decision problems
must contain more than just the opponents’choice-combinations. The reason is the following: Since
the preferences of a player may depend on second-order or even higher-order beliefs, the relevant
uncertainty not only concerns what the other players do, but also what the other players believe. If,
for instance, your utility depends on your second-order belief, then the relevant uncertainty for you
consists of the opponent’s choice, but also of the opponent’s belief about your choice. Therefore, the
opponent’s belief about your choice must be part of the states in your decision problem.

As will become clear, the idea of common belief in rationality in psychological games can be
formalized in almost the same way as for standard games in Chapter 3. In fact, the only difference lies
in the definition of an optimal choice for a type. Also belief hierarchies, beliefs diagrams and epistemic
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You blue green red
blue 0 3 3
green 2 0 2
red 1 1 0

Barbara blue green red
blue 0 2 2
green 1 0 1
red 3 3 0

Table 8.1.1 Baseline decision problems for “Surprising Barbara”

models look exactly the same as for standard games.
What will be fundamentally different from previous chapters is the recursive elimination procedure

that characterizes the choices that can rationally be made under common belief in rationality. Whereas
previous procedures recursively eliminated choices and states from the different decision problems, the
procedure from this chapter is more complicated: In every round it eliminates combinations of choices
and (possibly higher-order) beliefs.

In Chapter 8 of the online appendix we will discuss some economic applications of the theory in
this chapter.

8.1 Example

As announced above, we will focus on situations where the preferences over your own choices depend
on your second-order, or even higher-order, beliefs. We start with an example that represents such a
situation.

Example 8.1: Surprising Barbara.

Like in Example 3.1, “Going to a party”, you are invited to a party, and so is Barbara. The problem
is, again, which color to wear. Suppose that you and Barbara can choose between the colors blue,
green and red. You prefer blue to green, and green to red, whereas Barbara prefers red to blue, and
blue to green. However, similarly to Example 3.1, you both dislike it when the other person wears the
same color. Assume that your and Barbara’s conditional preference relation are represented by the
two decision problems in Table 8.1.1. Which colors would you rationally wear under common belief
in rationality?

Note that for you, the color red is strictly dominated by the randomized choice (0.4)· blue + (0.6)·
green, and hence we know from Theorem 2.6.1 that wearing red cannot be optimal for you for any
belief. Hence, if Barbara believes in your rationality, then she believes you will not choose red. But
then, Barbara would definitely choose red, as red is her favorite color. Summarizing, we thus see that
if you believe in Barbara’s rationality, and believe that Barbara believes in your rationality, then you
expect Barbara to choose red. As a consequence, you would choose blue. Hence, under common belief
in rationality, your only rational choice is to wear blue.

However, after a few parties you have the feeling that you have become very predictable, by always
wearing blue, and this annoys you. From now on, you do not only want to wear a different color than
Barbara, but you also wish to surprise Barbara by the color that you wear. We model this surprise
component as follows: If you consider wearing blue, and you believe, with probability 1, that Barbara
believes, with probability 1, that you will wear a different color than blue, then the surprise utility
from wearing blue would be 3, as specified in Table 8.1.2 in the first row for you. If, on the other
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Barbara believes
you choose

You blue green red
blue 0 3 3
green 2 0 2
red 1 1 0

you believe
Barbara chooses

Barbara blue green red
blue 0 2 2
green 1 0 1
red 3 3 0

Table 8.1.2 Surprise utilities for “Surprising Barbara”

You (b, b) (b, g) (b, r) (g, b) (g, g) (g, r) (r, b) (r, g) (r, r)

blue 0 3 3 3 6 6 3 6 6
green 4 2 4 2 0 2 4 2 4
red 2 2 1 2 2 1 1 1 0

Barbara (b, b) (b, g) (b, r) (g, b) (g, g) (g, r) (r, b) (r, g) (r, r)

blue 0 2 2 2 4 4 2 4 4
green 2 1 2 1 0 1 2 1 2
red 6 6 3 6 6 3 3 3 0

Table 8.1.3 Decision problems for “Surprising Barbara”

hand, you believe, with probability 1, that Barbara believes, with probability 1, that you will wear
blue, then the surprise utility by wearing blue would be 0, because you believe it to be no surprise
at all when you dress in blue. In a similar way we can derive the surprise utility for the other two
colors, which leads to the first matrix in Table 8.1.2. Note that the surprise utility depends on your
second-order belief, that is, what you believe that Barbara believes about your color choice.

Suppose now that your utility from wearing a certain color equals the sum of the baseline utility
from Table 8.1.1 and the surprise utility from Table 8.1.2. This reflects the fact that you care equally
much about wearing a different color than Barbara on the one hand, and surprising Barbara on the
other hand. Then, your utility of wearing a given color corresponds to the first matrix in Table 8.1.3.
Here, the state (b, g) represents the situation where Barbara chooses blue, and Barbara believes, with
probability 1, that you choose green. If you choose blue in that case, then your baseline utility would
be 0, because you are wearing the same color as Barbara, whereas your surprise utility is 3, since you
believe that Barbara believes that you will wear green and not blue. In the same way we can interpret
the other states, and derive the utilities at the other entries in the matrix. Note that a state consists
of a choice and a first-order belief of Barbara, since your preferences over your own colors depend both
on Barbara’s choice (because of the baseline utilities) and on Barbara’s first-order belief (because of
the surprise utilities).

We assume that Barbara’s conditional preference relation is similar to yours, in the sense that also
her utility is the sum of her baseline utility and her surprise utility. That is, also Barbara would like to
surprise you by the choice of her color. Naturally, Barbara’s surprise utilities are given by the second
matrix in Table 8.1.2. This, in turn, leads to Barbara’s decision problem given by the second matrix
in Table 8.1.3. Please verify this.

Let us have a closer look at your decision problem in Table 8.1.3. The numbers describe the
utilities you would obtain for every state (c2, c1), which represent situations where you believe, with
probability 1, that Barbara chooses the color c2, and you believe, with probability 1, that Barbara
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Figure 8.1.1 Probabilistic first- and second-order belief for “Surprising Barbara”

believes, with probability 1, that you choose the color c1. But what would your expected utilities be
if you hold probabilistic first- and second-order beliefs?

Let us consider an example first. Suppose you consider choosing green, and your first- and second-
order beliefs are given by the partial beliefs diagram in the upper half of Figure 8.1.1. That is, you
assign probability 0.2 to the event that Barbara wears blue and believes, with probability 1, that
you also wear blue, and you assign probability 0.8 to the event that Barbara wears red and assigns
probability 0.5 to you wearing green and red. What would your expected utility of wearing green be?

In expectation, your first- and second-order belief assign probability 0.2 to the event that Barbara
wears blue and believes that you wear blue. In that sense, it assigns probability 0.2 to the state (b, b).
Moreover, in expectation they assign probability (0.8) · (0.5) = 0.4 to the event that Barbara wears
red and believes that you wear green. That is, they assign probability 0.4 to the state (r, g). Finally,
the first- and second-order belief assign, in expectation, probability (0.8) · (0.5) = 0.4 to the event
that Barbara wears red and believes that you wear red. Hence, they assign probability 0.4 to the
state (r, r). Summarizing, we see that your first- and second-order belief in Figure 8.1.1 induce the
probability distribution

(0.2) · (b, b) + (0.4) · (r, g) + (0.4) · (r, r)

over the states. This probability distribution is called the second-order expectation induced by the
first- and second-order belief in Figure 8.1.1. Given this second-order expectation and the utilities
from Table 8.1.3, the expected utility from wearing green is thus

(0.2) · 4 + (0.4) · 2 + (0.4) · 4 = 3.2.

Question 8.1.1 Consider the probabilistic first- and second-order belief in the upper half of Figure
8.1.1. What are the expected utilities from choosing blue and red under this belief? What choice is
optimal for you under that belief?

Consider next the probabilistic first- and second-order belief from the lower half of Figure 8.1.1.
This belief is different from the one above, since now you assign probability 0.2 to the event that
Barbara wears blue and believes, with probability 1, that you also wear blue, you assign probability
0.4 to the event that Barbara wears red and believes, with probability 1, that you wear green, and you
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Figure 8.1.2 Beliefs for “Surprising Barbara” in Question 8.1.2

assign probability 0.4 to the event that Barbara wears red and believes, with probability 1, that you
also wear red. In particular, in this belief you only consider events where Barbara assigns probability
1 to one particular choice of yours. In other words, you are convinced that Barbara is certain about
your choice of color. This is not true for your belief in the upper half of Figure 8.1.1. Indeed, in that
belief you assign probability 0.8 to the event that Barbara assigns probability 0.5 to you wearing green
and red. That is, you believe, with probability 0.8, that Barbara is truly uncertain about your choice
of color.

Nevertheless, we will see that both beliefs induce the same second-order expectation, and hence
will yield the same expected utilities for each of your colors. To see this, consider the belief from the
lower half of Figure 8.1.1. As we have seen above, it assigns probability 0.2 to the event that Barbara
wears blue and believes, with probability 1, that you also wear blue, it assigns probability 0.4 to the
event that Barbara wears red and believes, with probability 1, that you wear green, and it assigns
probability 0.4 to the event that Barbara wears red and believes, with probability 1, that you also
wear red. As such, it assigns, in expectation, probability 0.2 to the state (b, b), probability 0.4 to the
state (r, g) and probability 0.4 to the state (r, r). Hence, the induced second-order expectation is

(0.2) · (b, b) + (0.4) · (r, g) + (0.4) · (r, r),

the same as for the belief in the upper half of Figure 8.1.1.
We thus see that the two beliefs, although different, induce the same second-order expectation,

and thereby the same expected utility for each of your choices. As a consequence, the preference
relation over your choices will be the same, no matter whether you hold the belief in the upper part
or the belief in the lower part of Figure 8.1.1. The reason is that your expected utility only depends
on the second-order expectation, which is a probability distribution over the states, and not on the
full specification of the first- and second-order belief.

Question 8.1.2 Consider the first- and second-order belief from the upper half of Figure 8.1.2. What
is the second-order expectation induced by this belief? Show that the belief in the lower part of the
figure is different, but induces the same second-order expectation. Find, for every choice of yours, the
expected utility it induces under either of these beliefs. What is your optimal choice?
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Figure 8.1.3 Beliefs diagram for “Surprising Barbara”

Now that we have represented the situation at hand by a collection of one-person decision problems
—one for you and one for Barbara —we ask: Which color(s) can you rationally choose under common
belief in rationality?

Note that in your decision problem in Table 8.1.3, your choice red is strictly dominated by the
randomized choice that assigns probability 0.4 to your choice blue and probability 0.6 to your choice
green. Please verify this. We thus conclude, on the basis of Theorem 2.6.1, that your choice red can
never be optimal for any belief. In particular, you cannot rationally choose red under common belief
in rationality.

We will now show, by means of a beliefs diagram, that you can rationally choose the other two
colors, blue and green, under common belief in rationality. Consider the beliefs diagram in Figure
8.1.3. Consider your belief hierarchy that starts at your choice blue, in which you believe that,
with probability 1, Barbara wears blue, and believe, with probability 1, that Barbara believes, with
probability 1, that you wear green. Clearly, these beliefs yield the second-order expectation that assigns
probability 1 to the state (b, g). From Table 8.1.3 it can be seen that your choice blue is optimal for
this second-order expectation. Or, in other words, your choice blue is optimal for the belief hierarchy
that starts at your choice blue.

In a similar fashion, it can be verified that your choice green is optimal for your belief hierarchy
that starts at your choice green, that Barbara’s choice blue is optimal for her belief hierarchy that
starts at her choice blue, and that Barbara’s choice red is optimal for her belief hierarchy that starts
at her choice red. Please check this.

Overall, we thus see that in the beliefs diagram, each of the listed choices is optimal for the belief
hierarchy that starts at that choice. But then, each of the belief hierarchies in the beliefs diagram
expresses common belief in rationality. To see this, consider, for instance, your belief hierarchy that
starts at your choice blue. In that belief hierarchy, you believe that “Barbara chooses blue, Barbara
believes that you choose green, and Barbara believes that you believe that Barbara chooses red”. If
Barbara indeed believes that you choose green, and believes that you believe that Barbara chooses
red, then it will be optimal for Barbara to choose blue. As such, you believe that Barbara chooses
rationally.

In the belief hierarchy that starts at your choice blue, you also believe that Barbara believes that
“you choose green, you believe that Barbara chooses red, and you believe that Barbara believes that
you choose blue”. If you indeed believe that Barbara chooses red and believe that Barbara believes
that you choose blue, then it will be optimal for you to choose green. Hence, you believe that Barbara
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believes that you choose rationally. In a similar way, we can verify that the belief hierarchy that starts
at your choice blue also expresses three-fold belief in rationality, four-fold belief in rationality, and so
on. That is, this belief hierarchy expresses common belief in rationality. In the same fashion, it can
be checked that also the other three belief hierarchies in the beliefs diagram express common belief in
rationality.

As your choice blue is optimal for the belief hierarchy that starts at your choice blue, your choice
green is optimal for the belief hierarchy that starts at your choice green, and both belief hierarchies
express common belief in rationality, we conclude that you can rationally wear blue and green under
common belief in rationality.

It should not be too surprising that under common belief in rationality, you can rationally wear
at least two different colors. For suppose that under common belief in rationality you could only
rationally wear a single color, say c. Then, under common belief in rationality, you must necessarily
believe that Barbara believes that you will indeed wear c. As such, it would not be possible to surprise
Barbara at all by wearing the color c, which would make the color c a rather unattractive color to
wear in the first place.

8.2 Psychological Games

In the previous section we have seen an example of a psychological game, where the preferences over
your own choices depended not only on your belief about Barbara’s choice, but also on the belief you
hold about Barbara’s belief about your own choice. That is, the preferences over your own choices
depended on your first- and second-order belief. In this section we will provide a general definition of
a psychological game, using the example from the previous section as an illustration.

In the example “Surprising Barbara”we have seen that every belief hierarchy of yours induces a
second-order expectation, which is a probability distribution over pairs (c2, c1), where c2 is a choice for
Barbara and c1 is a choice for you. In general, a second-order expectation can be defined as follows.

Definition 8.2.1 (Second-order expectation) Consider two players, i and j, with sets of choices
Ci and Cj . A second-order expectation for player i is a probability distribution ei that assigns to
every choice-pair (cj , ci), where cj ∈ Cj and ci ∈ Ci, a probability ei(cj , ci).

Intuitively, the probability ei(cj , ci) indicates the likelihood that player i assigns to the event that
“player j chooses cj and player j believes that player i chooses ci”.

When investigating the example “Surprising Barbara”, we have seen how we can derive a second-
order expectation from the first- and second-order belief of a belief hierarchy, by looking at a (full
or partial) beliefs diagram. Moreover, we showed how two different belief hierarchies could generate
the same second-order expectation. All this is true in general: From every belief hierarchy we can
derive a second-order expectation, and two different belief hierarchies may induce exactly the same
second-order expectation.

In the example “Surprising Barbara”we assumed that the preferences over your own choices only
depended on the second-order expectation of your belief hierarchy, not on the full specification of your
first- and second-order belief. This will be true in general for psychological games as we use them in
this book. That is, in a psychological game, player i’s preferences over his own choices depends on
the second-order expectation, which is a probability distribution over the choice-pairs (cj , ci) where
cj ∈ Cj and ci ∈ Ci.
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This is the same as saying that player i’s decision problem is given by (i) the set of choices Ci, (ii)
the set of states Si = Cj × Ci, consisting of choice-pairs (cj , ci) where cj ∈ Cj and ci ∈ Ci, and (iii) a
conditional preference relation %i that assigns to every belief (second-order expectation) ei ∈ ∆(Si)
some preference relation %i,ei over his own choices. If we assume, in addition, that the conditional
preference relation has an expected utility representation ui, then we arrive at the following general
definition of a psychological game with two players.

Definition 8.2.2 (Psychological game) A psychological game with two players specifies, for
both players i, a decision problem (Ci, Si, ui), where

(i) the set of choices is Ci,

(ii) the set of states Si = Cj × Ci consists of all choice-pairs (cj , ci) where cj ∈ Cj and ci ∈ Ci, and
(iii) player i’s conditional preference relation has an expected utility representation ui, assigning to
every choice ci ∈ Ci and every state (cj , c

′
i) ∈ Si some utility ui(ci, (cj , c′i)).

As an illustration, consider the example “Surprising Barbara”with the decision problems as rep-
resented in Table 8.1.3. If we identify you with player 1 and Barbara with player 2, then your decision
problem (C1, S1, u1) consists of the following ingredients: (i) Your set of choices is C1 = {blue, green,
red}, (ii) your set of states is

C2 × C1 = {(b, b), (b, g), (b, r), (g, b), (g, g), (g, r), (r, b), (r, g), (r, r)},

and your utility function u1 assigns to every choice c1 of yours, and every state (c2, c
′
1), where c2 ∈ C2

and c′1 ∈ C1, some utility u1(c1, (c2, c′1)). For instance, u1(blue, (green, blue)) = 3 and u1(green, (green,
red)) = 2. Similarly for Barbara.

For the remainder of this and the following chapter, we will assume that there are only two players
in a psychological game. As such, the definition of a psychological game above, which restricts to the
case of two players, will be suffi cient for our purposes.

8.3 Common Belief in Rationality

In this section we provide a formal definition of common belief in rationality for psychological games.
The idea is similar to the other chapters: You believe that your opponent chooses optimally given his
second-order expectation, you believe that your opponent believes that you choose optimally given
your second-order expectation, and so on. To formally express that you believe that your opponent
chooses optimally given his second-order expectation, we need (i) your belief about the opponent’s
choice (your first-order belief), and (ii) your belief about the opponent’s second-order expectation, for
which we need your belief about the opponent’s belief about your choice (your second-order belief)
and your belief about the opponent’s belief about your belief about the opponent’s choice (your third-
order belief). Similarly, to formally express that you believe that your opponent believes that you
choose optimally given your second-order expectation, we would need your second-order, third-order
and fourth-order belief, and so on. Hence, to formally express common belief in rationality we need
your full belief hierarchy.

Contrary to Chapter 5 about incomplete information and Chapter 7 about unawareness, the notion
of a belief hierarchy for psychological games is exactly the same as for standard games in Chapter 3.
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Indeed, in a psychological game, a belief hierarchy specifies your first-order belief about the opponent’s
choice, your second-order belief about what the opponent believes about your choice, and so on, exactly
like a belief hierarchy for standard games. Consequently, such belief hierarchies can be visualized by
means of a beliefs diagram and encoded by means of an epistemic model with types, exactly like we
did in Chapter 3 for standard games.

With respect to the epistemic models we use in this part, there is one small difference with Chapter
3: In this part we allow for infinitely many types, whereas in Chapter 3 (and in all of the other chapters
we have discussed so far) we always assumed a finite number of types. This leads to the following,
slightly more general, definition of an epistemic model.

Definition 8.3.1 (Epistemic model) An epistemic model M = (Ti, bi)i∈I for a psychological
game specifies

(a) for every player i a set of types Ti, which may contain infinitely many types, and

(b) for every player i and every type ti ∈ Ti, a probability distribution bi(ti) on the opponents’
choice-type combinations. We assume that bi(ti) assigns positive probability to only finitely many
opponents’choice-type combinations. This probability distribution bi(ti) represents ti’s belief about
the opponents’choices and types.

The reason we allow for infinitely many types will become clear in Section 8.4 when we discuss the
recursive procedure.

We will see that the definition of common belief in rationality is almost exactly the same as in
Chapter 3 for standard games. The only difference lies in the way we define an optimal choice for a
type in an epistemic model: For standard games, a choice was called optimal for a type if it is optimal
for the first-order belief this type has. In a psychological game, a choice is called optimal for a type if
it is optimal for the second-order expectation this type has. Apart from this, the definition of common
belief in rationality will be identical to the one from Chapter 3.

8.3.1 Optimal Choices for Types
Consider an epistemic model, and a type ti for player i within this epistemic model. In Chapter 3 we
have seen how we can derive a full belief hierarchy for such a type. In particular, type ti will then
induce a second-order expectation. We say that a choice is optimal for the type ti if it is optimal given
ti’s second-order expectation.

Definition 8.3.2 (Optimal choice for type) Consider a type ti for player i in an epistemic model,
and suppose that ti has the second-order expectation ei. Then, the choice ci is optimal for the type
ti if ∑

(cj ,c′i)∈Si

ei(cj , c
′
i) · ui(ci, (cj , c′i)) ≥

∑
(cj ,c′i)∈Si

ei(cj , c
′
i) · ui(c′′i , (cj , c′i))

for all c′′i ∈ Ci.

That is, choice ci yields the highest possible expected utility, given the second-order expectation
that type ti has. In the sequel, we will write

ui(ci, ti) :=
∑

(cj ,c′i)∈Si

ei(cj , c
′
i) · ui(ci, (cj , c′i))
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Types T1 = {tblue1 , tgreen1 }, T2 = {tblue2 , tred2 }

Beliefs for you b1(t
blue
1 ) = (0.8) · (blue, tblue2 ) + (0.2) · (red, tred2 )

b1(t
green
1 ) = (red , tred2 )

Beliefs for b2(t
blue
2 ) = (green, tgreen1 )

Barbara b2(t
red
2 ) = (0.9) · (blue, tblue1 ) + (0.1) · (green, tgreen1 )

Table 8.3.1 Epistemic model for “Surprising Barbara”

to denote the expected utility that player i will have when he chooses ci and holds the belief hierarchy
encoded by ti.

To illustrate the notion of an optimal choice for a type, consider the example “Surprising Barbara”
and the associated epistemic model in Table 8.3.1. Let us concentrate on your type tblue1 .We will show
that your choice blue is optimal for the type tblue1 .

To verify this, we first need to derive the second-order expectation that type tblue1 has. Note that
type tblue1 assigns probability 0.8 to the event that “Barbara chooses blue and has type tblue2 ” and
probability 0.2 to the event that “Barbara chooses red and has type tred2 ”. In turn, Barbara’s type
tblue2 assigns probability 1 to you choosing green, whereas Barbara’s type tred2 assigns probability 0.9
to you choosing blue and probability 0.1 to you choosing green. By putting this together, we see
that type tblue1 assigns probability 0.8 to the event that “Barbara chooses blue and assigns probability
1 to you choosing green ”, and probability 0.2 to the event that “Barbara chooses red and assigns
probabilities 0.9 and 0.1 to you choosing blue and green, respectively”.

As such, the second-order expectation e1 induced by type tblue1 is

e1 = (0.8) · 1 · (b, g) + (0.2) · (0.9) · (r, b) + (0.2) · (0.1) · (r, g)

= (0.8) · (b, g) + (0.18) · (r, b) + (0.02) · (r, g).

The expected utilities that you obtain by making your three choices are thus

u1(blue, t1) = (0.8) · 3 + (0.18) · 3 + (0.02) · 6 = 3.06,

u1(green, t1) = (0.8) · 2 + (0.18) · 4 + (0.02) · 2 = 2.36 and

u1(red, t1) = (0.8) · 2 + (0.18) · 1 + (0.02) · 1 = 1.8.

As blue yields the highest expected utility, your choice blue is optimal for the type tblue1 .

Question 8.3.1 Show, in a similar way, that the choice green is optimal for your type tgreen1 .

It may also be verified that the choice blue is optimal for Barbara’s type tblue2 , and that the choice
red is optimal for Barbara’s type tred2 . Please check this.

8.3.2 Definition of Common Belief in Rationality
Recall how we defined common belief in rationality in Chapter 3, for standard games. We started by
defining what it means for a type ti to believe in the opponent’s rationality. Formally, it meant that ti
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only assigns positive probability to opponents’choice-type pairs (cj , tj) where the choice cj is optimal
for the type tj . This definition can literally be translated to the context of psychological games.

Definition 8.3.3 (Belief in the opponent’s rationality) Type ti believes in the opponent’s
rationality if bi(ti) only assigns positive probability to choice-type pairs (cj , tj) where the choice cj
is optimal for the type tj .

However, as we have seen above, optimal choices for a type are defined differently than for standard
games.

In Chapter 3, we then recursively defined k-fold belief in rationality for all k ∈ {1, 2, 3, ...}, which
finally enabled us to define common belief in rationality. Also this definition can be translated without
any change to the class of psychological games.

Definition 8.3.4 (Common belief in rationality) A type ti expresses 1-fold belief in rationality
if ti believes in the opponent’s rationality.

A type ti expresses 2-fold belief in rationality if bi(ti) only assigns positive probability to opponent’s
types that express 1-fold belief in rationality.

A type expresses 3-fold belief in rationality if bi(ti) only assigns positive probability to opponent’s
types that express 2-fold belief in rationality.

And so on.

A type ti expresses common belief in rationality if it expresses 1-fold belief in rationality, 2-fold
belief in rationality, 3-fold belief in rationality, and so on, ad infinitum.

Finally, like in Chapter 3, we say that you can rationally make a choice ci under common belief in
rationality if there is a belief hierarchy that expresses common belief in rationality and supports the
choice ci.

Definition 8.3.5 (Rational choice under common belief in rationality) Player i can ratio-
nally make choice ci under common belief in rationality if there is some epistemic model
M = (Ti, bi)i∈I , and some type ti ∈ Ti for player i within that model, such that (a) type ti expresses
common belief in rationality, and (b) choice ci is optimal for the type ti.

As an illustration, consider the example “Surprising Barbara”, and the associated epistemic model
in Table 8.3.1. We have seen that your choice blue, your choice green, Barbara’s choice blue and
Barbara’s choice red are optimal for the types tblue1 , tgreen1 , tblue2 and tred2 , respectively. But then, it
may be verified that each of the types in the epistemic model believes in the opponent’s rationality.
Can you explain why?

Since every type in the model believes in the opponent’s rationality, we can conclude, in a similar
way as in earlier chapters, that every type in the model also expresses common belief in rationality.
As your choice blue is optimal for your type tblue1 and your choice green is optimal for your type tgreen1 ,
it follows that you can rationally wear blue and green under common belief in rationality. In fact, we
have already seen this in Section 8.1, where we argued in terms of beliefs diagrams instead of types.
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You (b, b) (b, g) (b, r) (g, b) (g, g) (g, r) (r, b) (r, g) (r, r)

blue 0 3 3 3 6 6 3 6 6
green 4 2 4 2 0 2 4 2 4

Barbara (b, b) (b, g) (b, r) (g, b) (g, g) (g, r) (r, b) (r, g) (r, r)

blue 0 2 2 2 4 4 2 4 4
red 6 6 3 6 6 3 3 3 0

Table 8.4.1 One-fold reduced decision problems for “Surprising Barbara”

8.4 Recursive Procedure

As a next step we will develop a recursive elimination procedure that yields exactly those choices
that the players can rationally make under common belief in rationality. We start by a procedure
that recursively eliminates choices and states at the players’ decision problems, like we did in the
earlier chapters. Although this procedure works for the example “Surprising Barbara”, we will show
by means of another example that the procedure may fail to eliminate certain choices that cannot be
rationally made under common belief in rationality. That is, elimination of choices and states may not
be enough to capture the choices that are possible under common belief in rationality. As a remedy
to this problem we develop a more sophisticated procedure that eliminates second-order expectations,
and show that this procedure does yield precisely those choices that are possible under common belief
in rationality.

8.4.1 Elimination of Choices and States
Let us go back to the example “Surprising Barbara”with the decision problems as depicted in Table
8.1.3. Can we capture the consequences of common belief in rationality by means of a recursive elimi-
nation procedure that removes choices and states? Recall that your choice red is strictly dominated by
the randomized choice (0.4)· blue + (0.6)· green, and that Barbara’s choice green is strictly dominated
by the randomized choice (0.6)· blue + (0.4)· red. By Theorem 2.6.1 we can thus conclude that your
choice red and Barbara’s choice green are never optimal for any belief about the states. In other words,
these choices are never optimal for any second-order expectation. As such, we can safely remove these
choices from the two decision problems, and obtain the one-fold reduced decision problems in Table
8.4.1.

Consider your one-fold reduced decision problem. If you express 1-fold belief in rationality —that is,
believe in Barbara’s rationality —then you must believe that Barbara will not choose green. Moreover,
if you express 2-fold belief in rationality, which means that you believe that Barbara believes in your
rationality, then you must believe that Barbara believes that you will not choose red. As such, you
can discard all states (c2, c1) that start with Barbara’s choice green or end with your choice red. We
may thus eliminate these states from your decision problem, as you will assign probability 0 to these
states if you express up to 2-fold belief in rationality. In the reduced decision problem so obtained,
none of your two remaining choices is strictly dominated.

By a similar argument, we can eliminate from Barbara’s decision problem all states (c1, c2) that
start with your choice red or end with Barbara’s choice green. We then obtain a reduced decision
problem where no remaining choice for Barbara is strictly dominated. We thus arrive at the two-fold
reduced decision problems in Table 8.4.2.
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You (b, b) (b, g) (r, b) (r, g)

blue 0 3 3 6
green 4 2 4 2

Barbara (b, b) (b, r) (g, b) (g, r)

blue 0 2 2 4
red 6 3 6 3

Table 8.4.2 Two-fold reduced decision problems for “Surprising Barbara”

You (b, b) (b, w) (w, b) (w,w)

black 0 0 0 1
white 1 1 1 1

Barbara (b, b) (b, w) (w, b) (w,w)

black 1 1 1 1
white 1 0 0 0

Table 8.4.3 Decision problems for “The black and white dinner”

Recall, from our discussion in Section 8.1, that under common belief in rationality you can ratio-
nally choose blue and green, whereas Barbara can rationally choose blue and red. Note that these are
precisely the choices that survived the procedure above.

However, as we will see next, we have been “lucky”here: In general, the procedure used above
may be too permissive, and fail to eliminate certain choices that cannot rationally be made under
common belief in rationality.

8.4.2 Why Elimination of Choices and States is Not Enough
As announced above, we will now introduce a new example where the procedure above fails to char-
acterize the choices that can rationally be made under common belief in rationality.

Example 8.2: The black and white dinner.

You and Barbara have been invited to Chris’house for a nice dinner. Strangely perhaps, Chris imposes
one condition: You must either come completely dressed in black or completely dressed in white, and
similarly for Barbara. The question is: Should you go in black or in white?

You have a clear preference for white, but there is one exception: If you believe, with probability 1,
that by wearing black you wear a different color than Barbara and happen to surprise Barbara by the
color you wear, then you would be indifferent between black and white. In all other cases, you prefer
white to black. Barbara’s conditional preference relation is similar, but she has a clear preference for
black instead of white. This story can be captured by the decision problems in Table 8.4.3. Here, the
state (b, w) in your decision problem represents the event where Barbara wears black and believes that
you wear white. Similarly for the other states.

We will first show that under common belief in rationality, you can only rationally wear white. To
see why, note that wearing black can only be optimal for you if in your second-order expectation you
assign probability 1 to the state (w,w). Indeed, in that case you would be indifferent between black
and white, but as soon as you assign some positive probability to a state different from (w,w) you
would prefer white to black.

In turn, your second-order expectation will only assign probability 1 to the state (w,w) if you
believe, with probability 1, that Barbara wears white, and believe, with probability 1, that Barbara
assigns probability 1 to you wearing white as well. However, if Barbara assigns probability 1 to you
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wearing white, then Barbara should only assign positive probability to the states (w, b) and (w,w).
But then, it can be seen from Barbara’s decision problem that she would prefer black to white. Hence,
if you believe in Barbara’s rationality, then you cannot assign probability 1 to the event that Barbara
wears white and that Barbara assigns probability 1 to you wearing white. But then, as we have seen
above, it cannot be optimal for you to wear black. In particular, under common belief in rationality
you cannot rationally wear black.

However, your choice black cannot be eliminated by the recursive procedure we outlined above.
Indeed, in your and Barbara’s decision problem, no choice is strictly dominated, and therefore we
cannot eliminate any choice in the first round. As a consequence, no states can be eliminated in the
next round either, and the procedure terminates immediately. As such, the procedure fails to eliminate
your choice black, which cannot rationally be made under common belief in rationality.

This raises the question: What is wrong with this procedure? The problem is that the elimination
of states is not suffi ciently fine-grained to capture all the consequences of common belief in rationality.
To see why, let us return to the example “The black and white dinner” above. Since no choice is
strictly dominated in the first round, we would eliminate no states in the second round. Indeed, we
would only eliminate a state (c2, c1) for you if either the choice c2 for Barbara, or your own choice c1,
was strictly dominated in the previous round. Similarly for Barbara.

However, consider the state (w,w) for you, where Barbara chooses white while believing that
you choose white as well. From Barbara’s decision problem we see that it can never be optimal for
Barbara to wear white if she believes, with some positive probability, that you wear white. Can you
explain this? But then, if you believe in Barbara’s rationality, your second-order expectation should
not assign a positive probability to the state (w,w), because otherwise you would assign a positive
probability to the event that “Barbara chooses white while assigning a positive probability to you
choosing white”. This means, in turn, that we should discard the state (w,w) from consideration in
your decision problem. But then, your choice black would no longer be optimal for any remaining
belief, and could thus be eliminated.

Hence, the procedure discussed above does not rule out the state (w,w) for you, whereas it should
be discarded on the basis of common belief in rationality. In that sense, the procedure was not
suffi ciently fine-grained.

8.4.3 Elimination of Second-Order Expectations
Let us return to the example “The black and white dinner”. We have seen that you cannot rationally
wear black under common belief in rationality. At the same time, a procedure that eliminates choices
and states based on strict dominance alone is not suffi ciently fine-grained to eliminate your choice
black. The problem is that such a procedure is not able to rule out the state (w,w) in your decision
problem. Indeed, since Barbara’s choice white is not strictly dominated in her decision problem, you
may believe that Barbara wears white, and hence such a procedure would allow for states that start
with w. On the other hand, your choice white is not strictly dominated in your decision problem, and
hence you may believe that Barbara believes that you wear white. Therefore, such a procedure would
allow for states that end with w. In particular, the procedure would allow for the state (w,w).

In a sense, the procedure views the two components in the state (c2, c1) as disconnected: We would
only remove the state (c2, c1) if either c2 is strictly dominated in Barbara’s decision problem, or c1
is strictly dominated in your decision problem, but we do not pay any attention to the connection
between c1 and c2. But the connection between the choices c1 and c2 in the state (c2, c1) is crucial
if we reason in accordance with common belief in rationality. Indeed, the state (c2, c1) describes the
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You (b, b) (b, w) (w, b) (w,w)

black 0 0 0 3
white 2 2 2 2

Barbara (b, b) (b, w) (w, b) (w,w)

black 2 2 2 2
white 3 0 0 0

Table 8.4.4 Decision problems for “The black and white dinner with a twist”

event where Barbara chooses c2 and believes that you choose c1. Since you believe Barbara to choose
optimally given her belief, her choice c2 must be justified by the belief she holds about you.

Suppose now that the choice c2 for Barbara is optimal for some belief, but not for any belief that
assigns a positive probability to you choosing c1. If you believe in Barbara’s rationality, then your
second-order expectation should assign probability zero to the state (c2, c1). For if you were to assign
a positive probability to the state (c2, c1), then you would assign a positive probability to the event
that “Barbara chooses c2 and assigns a positive probability to you choosing c1”. This, however, would
violate your belief in Barbara’s rationality.

In “The black and white dinner”, for instance, the choice white for Barbara is optimal for some
belief, but not for any belief that assigns a positive probability to you choosing white. For that
reason, your second-order expectation must assign probability zero to the state (w,w) in your decision
problem. But then, the only optimal choice for you is to wear white.

Hence, a procedure that captures the implications of common belief in rationality should rule out
the state (w,w) in your decision problem. Not because Barbara’s choice white is never optimal for
any belief, nor because your choice white is never optimal for any belief, but because Barbara cannot
rationally choose white if she assigns a positive probability to you choosing white. We should thus
take seriously the connection between Barbara’s choice white and Barbara’s belief that you choose
white in the state (w,w).

Ruling out the state (w,w) in your decision problem naturally restricts the second-order expecta-
tions that you may hold: From that moment on, we would only consider second-order expectations
of yours that assign probability zero to the ruled out state (w,w). However, there are other psycho-
logical games where common belief in rationality leads us to consider restricted sets of second-order
expectations, but where these restrictions cannot be translated into the elimination of states. The
following example will illustrate this.

Example 8.3: The black and white dinner with a twist.

It is a few weeks later, and Chris has again invited you and Barbara for a black and white dinner at
his house. You still have a strong preference for white compared to black, but if you believe, with
probability 1, that Barbara wears white, and believe, with probability 1, that Barbara believes, with
probability 1, that you wear white, then you slightly prefer wearing black to wearing white. Similarly
for Barbara, who has a strong preference for black compared to white. These new conditional preference
relations can be captured by the decision problems in Table 8.4.4.

Which color(s) can you rationally wear under common belief in rationality? To answer this question
in a systematic way, we first graphically depict your conditional preference relation in the left-hand
panel of Figure 8.4.1. Note that we have four states, and hence we can identify every second-order
expectation (which is a probability distribution over these four states) with the points in a pyramid, like
we did in Figure 2.4.4. The extreme points of the pyramid correspond to the four states. The vector
(1/3, 0, 0, 2/3), for instance, corresponds to the second-order expectation that assigns probabilities
1/3, 0, 0 and 2/3 to the states (w, b), (b, w), (b, b) and (w,w), respectively. Hence, we number the
states in the order (w, b), (b, w), (b, b) and (w,w).
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Figure 8.4.1 Graphical representation of conditional preference relations in “The black and white dinner
with a twist”

From your decision problem in Table 8.4.4 we see that your expected utility from wearing black is

u1(black) = 3 · e1(w,w),

where e1(w,w) is the probability that your second-order expectation e1 assigns to the state (w,w).
Moreover, the expected utility from wearing white is simply

u1(white) = 2.

Hence, you prefer black to white precisely when e1(w,w) > 2/3, that is, when the probability that
your second-order expectation assigns to the state (w,w) is more than 2/3. These are exactly the
second-order expectations above the grey triangle in the left-hand panel of Figure 8.4.1.

As such, you prefer white to black for all second-order expectations below the grey triangle, and
you are indifferent between the two choices for all second-order expectations on the grey triangle.

In a similar way, we can graphically depict Barbara’s conditional preference relation in the right-
hand panel of Figure 8.4.1. For this representation, we have ordered her states by (b, w), (w, b), (w,w)
and (b, b), so that the vector (1/3, 0, 0, 2/3) corresponds to the second-order expectation that assigns
probabilities 1/3, 0, 0 and 2/3 to the states (b, w), (w, b), (w,w) and (b, b), respectively.

From Barbara’s conditional preference relation we can conclude that she can only rationally choose
white if her second-order expectation assigns probability at least 2/3 to the state (b, b). In particular,
this means that she can only rationally choose white if she assigns probability at least 2/3 to you
choosing black. We say that her choice white is supported by the set of first-order beliefs that assign
probability at least 2/3 to you choosing black. Or, written down more formally,

B2(white) = {b2 ∈ ∆(C1) | b2(black) ≥ 2/3}, (8.4.1)

where B2(white) denotes the set of first-order beliefs for Barbara that supports her choice white, and
∆(C1) denotes the set of all first-order beliefs. Here, the subindex 2 refers to player 2 (Barbara).

On the other hand, Barbara’s choice black is supported by every first-order belief about your
choice. Indeed, it can be seen from the right-hand panel of Figure 8.4.1 that Barbara’s choice black
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is optimal for every second-order expectation that assigns positive probability to the states (b, w) and
(w, b) only. Since every first-order belief for Barbara is part of such a second-order expectation, we
conclude that Barbara’s choice black is supported by every first-order belief about your choice. Or,
more formally,

B2(black) = ∆(C1), (8.4.2)

where B2(black) denotes the set of first-order beliefs that support Barbara’s choice black, and ∆(C1)
denotes the set of all first-order beliefs.

Now suppose that you believe in Barbara’s rationality. Then, whenever you assign a positive
probability to Barbara choosing white, you must believe that Barbara assigns probability at least 2/3
to you choosing black. What does this mean for your second-order expectation e1?

Let us denote by

e1(w1 | w2) :=
e1(w2, w1)

e1(w2, w1) + e1(w2, b1)
(8.4.3)

the probability by which you believe that Barbara believes that you choose white, conditional on the
event that Barbara chooses white. Here, we write the subindex 1 at the choices w1 and b1 to indicate
that this is a choice for you (player 1), whereas we write the subindex 2 at the choice w2 to stress
that this choice is for Barbara (player 2). Note that e1(w2, w1)+e1(w2, b1) is the total probability you
assign to Barbara wearing white, and hence the fraction above indeed represents the probability by
which you believe that Barbara believes that you choose white, conditional on the event that Barbara
chooses white. Similarly,

e1(b1 | w2) :=
e1(w2, b1)

e1(w2, w1) + e1(w2, b1)
(8.4.4)

is the probability by which you believe that Barbara believes that you choose black, conditional on
Barbara choosing white. Note that the two probabilities e1(w1 | w2) and e1(b1 | w2) together constitute
a first-order belief for Barbara about your choices white and black. We denote this first-order belief
by e1(· | w2). It represents the first-order belief you believe Barbara to have, conditional on Barbara
wearing white.

Recall from above that, whenever you assign a positive probability to Barbara choosing white, you
must believe that Barbara assigns probability at least 2/3 to you choosing black. In view of (8.4.4),
this means that

e1(b1 | w2) ≥ 2/3

whenever you assign a positive probability to Barbara wearing white. Together with (8.4.1) we then
conclude that

e1(· | w2) must be in B2(white) (8.4.5)

whenever you assign a positive probability to Barbara choosing white. That is, if you assign a positive
probability to Barbara wearing white, then the first-order belief you believe Barbara to have conditional
on her wearing white must support her choice white.

By a similar argument, we conclude that

e1(· | b2) must be in B2(black) (8.4.6)

whenever you assign a positive probability to Barbara wearing black. However, since, by (8.4.2),
B2(black) contains all first-order beliefs for Barbara, this imposes no extra conditions on your second-
order expectations.

Summarizing, we see that if you believe in Barbara’s rationality, then your second-order expectation
e1 must satisfy the requirements (8.4.5) and (8.4.6). The second-order expectations that meet these
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Figure 8.4.2 Second-order expectations consistent with one-fold belief in rationality

conditions are depicted in the left-hand panel of Figure 8.4.2, below the dotted grey triangle. Hence,
these are exactly the second-order expectations for you that are consistent with one-fold belief in
rationality.

Note that the set of second-order expectations below the dotted grey triangle has as the extreme
points the second-order expectation (2/3, 0, 0, 1/3) and the states (w, b), (b, w) and (b, b).

Question 8.4.1 Show that each of these four extreme second-order expectations satisfies the condi-
tions (8.4.5) and (8.4.6).

Note that the states (w, b), (b, w) and (b, b) correspond to the second-order expectations (1, 0, 0, 0),
(0, 1, 0, 0) and (0, 0, 1, 0) respectively. Now, take an arbitrary second-order expectation e1 below the
dotted grey triangle. Then, e1 can be written as

e1 = λ1 · (2/3, 0, 0, 1/3) + λ2 · (1, 0, 0, 0) + λ3 · (0, 1, 0, 0) + λ4 · (0, 0, 1, 0),

where λ1, λ2, λ3, λ4 are some numbers that are greater than, or equal to, zero, and where λ1 + λ2 +
λ3 + λ4 = 1.

Question 8.4.2 Show that every such second-order expectation e1 satisfies the conditions (8.4.5) and
(8.4.6).

We thus conclude that all second-order expectations below the dotted grey triangle satisfy the
conditions (8.4.5) and (8.4.6), and are thus consistent with one-fold belief in rationality. Hence, the
second-order expectations that are consistent with one-fold belief in rationality are precisely those
that lie below the dotted grey triangle. Note that these second-order expectations are not obtained by
eliminating a state, which is what happened in the example “The black and white dinner”. Indeed,
every state in your decision problem may receive positive probability by a second-order expectation
that lies below the lower grey triangle, and thus no state can be completely discarded if you believe
in Barbara’s rationality.

Now focus on your second-order expectations that are consistent with one-fold belief in rationality.
As all of these second-order expectations lie below the upper grey triangle, it follows from your
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Figure 8.4.3 Beliefs diagram for “The black and white dinner with a twist”

conditional preference relation that under one-field belief in rationality you will always prefer white to
black. That is, if you believe in Barbara’s rationality, then your only optimal choice is wearing white.

We can can do a similar analysis for Barbara, and conclude that Barbara’s second-order expecta-
tions that are consistent with one-fold belief in rationality are exactly those that lie below the dotted
grey triangle in the right-hand panel of Figure 8.4.2. Please verify this. As all of these second-order
expectations lie below the upper grey triangle, we conclude from Barbara’s conditional preference
relation that she will always prefer black to white if she believes in your rationality. In particular,
under one-fold belief in rationally, Barbara can only rationally wear black.

We thus see that under common belief in rationality, the only colors that can possibly be chosen
rationally are white for you and black for Barbara. The beliefs diagram in Figure 8.4.3 shows that you
can indeed rationally wear white, and Barbara can indeed rationally wear black, under common belief
in rationality. Your belief hierarchy in that beliefs diagram states that you believe, with probability 1,
that Barbara wears black, that you believe, with probability 1, that Barbara believes, with probability
1, that you wear white, that you believe, with probability 1, that Barbara believes, with probability
1, that you believe, with probability 1, that Barbara wears black, and so on.

It is easily seen that this belief hierarchy believes in Barbara’s rationality. Indeed, you believe in
the event that “Barbara chooses black, Barbara believes that you choose white, and Barbara believes
that you believe that Barbara chooses black”. From Table 8.4.4 we know that wearing black is optimal
for Barbara if she believes that you wear white and believes that you believe that Barbara wears black.
As such, you believe in Barbara’s rationality. By similar arguments, it can be verified that your belief
hierarchy also expresses 2-fold belief in rationality, 3-fold belief in rationality, and so on, and hence
we conclude that your belief hierarchy expresses common belief in rationality. As you believe that
Barbara chooses black, and believe that Barbara believes that you choose white, your choice white is
optimal for you under this belief hierarchy. Hence, you can rationally wear white under common belief
in rationality.

In a similar fashion, it can be shown that Barbara’s belief hierarchy in this beliefs diagram also
expresses common belief in rationality. As wearing black is optimal for Barbara under this belief
hierarchy, we know that Barbara can rationally wear black under common belief in rationality.

8.4.4 One-Fold Belief in Rationality
Based on our insights from the example “The black and white dinner with a twist”we will now show
how to characterize, in general, those second-order expectations that are consistent with one-fold
belief in rationality, two-fold belief in rationality, and so on. And we will use this to develop a general
elimination procedure that characterizes those choices that can rationally be made under common
belief in rationality.

As usual, we start by characterizing those choices that are optimal for some belief, without im-
posing any restrictions yet on the belief. Consider the decision problem for player i, where the states
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are the choice-pairs (cj , ci) consisting of a choice cj for player j and a choice ci for player i. Moreover,
by the definition of a psychological game, player i’s preferences depend exclusively on i’s second-order
expectation, that is, his belief about the states in the decision problem. But then, we know by Theo-
rem 2.6.1 that a choice for player i is optimal for some second-order expectation precisely when this
choice is not strictly dominated in his decision problem. We thus may start, in round 1, by eliminating
those choices for the two players that are strictly dominated in their respective decision problems.

As a next step we characterize those choices that player i can rationally make if he expresses 1-fold
belief in rationality. Suppose that player i believes in opponent j’s rationality. Like we did in the
example “The black and white dinner with a twist”, we can identify for every choice cj of player j
that has not been eliminated in round 1 the set B2j (cj) of first-order beliefs that support the choice
cj . Formally, B2j (cj) contains those first-order beliefs bj for player j such that there is a second-order
expectation ej for which the choice cj is optimal and that induces the first-order belief bj .

If player i believes in j’s rationality then, whenever he assigns a positive probability to an oppo-
nent’s choice cj , he must believe that j holds a first-order belief in B2j (cj) that supports this choice.
As we have seen in the example “The black and white dinner with a twist”, this means that i’s second-
order expectation ei must satisfy the following condition for every choice cj that ei assigns positive
probability to:

ei(· | cj) must be in B2j (cj), (8.4.7)

where ei(· | cj) is the first-order belief that i believes j to have, conditional on j choosing cj . Formally,
ei(· | cj) is the first-order belief for player j where

ei(ci | cj) :=
ei(cj , ci)∑

c′i∈Ci
ei(cj , c′i)

for every choice ci ∈ Ci.

Let us denote by E2i the set of second-order expectations ei for player i that satisfy condition (8.4.7).
Then, by our argument above, E2i contains precisely those second-order expectations for player i that
are consistent with one-fold belief in rationality.

Hence, the choices that player i can rationally make under 1-fold belief in rationality are precisely
those choices that are optimal for some second-order expectation in E2i . We may thus eliminate all
choices for player i that are not optimal for any second-order expectation in E2i .

Summarizing, round 2 of the procedure would thus look as follows: In i’s decision problem, we
identify for every choice cj that was not eliminated for player j in round 1 the set B2j (cj) of first-order
beliefs that support the choice cj . On the basis of these sets, we then find the set E2i of second-order
expectations for player i that satisfy condition (8.4.7). We finally eliminate for player i those choices
that are not optimal for any second-order expectation in E2i . This concludes round 2. The choices for
player i that survive round 2 are precisely the choices that player i can rationally make under 1-fold
belief in rationality.

8.4.5 Two-Fold Belief in Rationality
We will now characterize the choices that player i can rationally make if he expresses 1-fold and 2-fold
belief in rationality. Suppose that player i expresses 1-fold and 2-fold belief in rationality. Then,
player i believes that player j chooses rationally and that player j expresses 1-fold belief in rationality.
We have seen above that player j must hold a second-order expectation in E2j if he expresses 1-fold
belief in rationality. As such, player i should only assign positive probability to an opponent’s choice
cj if cj is optimal for some second-order expectation in E2j .
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For every opponent’s choice cj , let B3j (cj) be the set of first-order beliefs bj ∈ ∆(Ci) for player j
such that there is a second-order expectation ej in E2j where (i) ej has the first-order belief bj , and (ii)
the choice cj is optimal for the second-order expectation ej . Hence, B3j (cj) are the first-order beliefs
for player j that support the choice cj and that are consistent with 1-fold belief in rationality.

Then, by our argument above we conclude that, whenever player i assigns a positive probability
to an opponent’s choice cj , he must believe that player j holds a first-order belief in B3j (cj) to support
that choice. Similarly to what we have seen above, this means that player i must hold a second-order
expectation ei where

ei(· | cj) must be in B3j (cj) (8.4.8)

for every choice cj that receives a positive probability by ei. Let us denote by E3i the set of second-order
expectations for player i that satisfy condition (8.4.8). Then, E3i contains precisely those second-order
expectations that are consistent with 1-fold and 2-fold belief in rationality.

If player i chooses rationally given his second-order expectation, then he must make a choice that
is optimal for some second-order expectation in E3i .We may thus eliminate all choices for player i that
are not optimal for any second-order expectation in E3i . This would conclude round 3. The choices
for player i that survive round 3 are precisely the choices he can rationally make if he expresses 1-fold
and 2-fold belief in rationality.

8.4.6 Common Belief in Rationality
Above we have outlined the first three rounds of an elimination procedure, and we have argued that
(i) the choices that survive round 2 are precisely the choices that can rationally be made under 1-
fold belief in rationality, and (ii) the choices that survive round 3 are precisely the choices that can
rationally be made under 1-fold and 2-fold belief in rationality. If we continue in round 4 and further
by the same steps, we arrive at the following recursive elimination procedure.

Definition 8.4.1 (Iterated elimination of choices and second-order expectations) At the be-
ginning, set up the decision problems for both players.

Round 1. Eliminate for both players the choices that are strictly dominated in their decision prob-
lem. This yields the one-fold reduced decision problems.

Round 2. Consider player i’s one-fold reduced decision problem. For every opponent’s choice cj , let
B2j (cj) be the set of first-order beliefs bj for player j such that there is a second-order expectation
ej ∈ Ej for player j that has the first-order belief bj and for which the choice cj is optimal. Let E2i be
the set of second-order expectations ei where

ei(· | cj) is in B2j (cj)

for all choices cj to which ei assigns positive probability, and where ei(· | cj) is the first-order belief
for player j given by

ei(ci | cj) :=
ei(cj , ci)∑

c′i∈Ci
ei(cj , c′i)

for every choice ci ∈ Ci.

Eliminate all choices for player i that are not optimal for any second-order expectation in E2i . Do the
same for player j. This yields the two-fold reduced decision problems.
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Round 3. Consider player i’s two-fold reduced decision problem. For every opponent’s choice cj , let
B3j (cj) be the set of first-order beliefs bj for player j such that there is a second-order expectation
ej ∈ E2j for player j that has the first-order belief bj and for which the choice cj is optimal. Let E3i
be the set of second-order expectations ei where

ei(· | cj) is in B3j (cj)

for all choices cj to which ei assigns positive probability. Eliminate all choices for player i that are
not optimal for any second-order expectation in E3i . Do the same for player j.

And so on.

The choices that survive all elimination rounds are said to survive the iterated elimination of
choices and second-order expectations.

Note that at a given round k, the set Bk
j (cj) may be empty for an opponent’s choice cj . This

happens precisely when the choice cj cannot be supported by any second-order expectation in Ek−1j ,
and hence this choice cj has been eliminated in the previous round. In that case, it follows by the
definition of the procedure that every second-order expectation ei ∈ Eki should assign probability zero
to this opponent’s choice cj . Indeed, suppose that ei would assign a positive probability to cj . Then,
by definition, ei(· | cj) should be in Bk

j (cj), which cannot be since Bk
j (cj) is empty. As such, at every

round, every second-order expectation that survives that round should assign probability zero to all
opponent’s choices that have been eliminated so far.

Recall that we argued above that round 2 of the procedure characterizes precisely those choices
that can rationally be made if the player expresses 1-fold belief in rationality, and that round 3 of
the procedure characterizes precisely those choices that can rationally be made if the player expresses
up to 2-fold belief in rationality. By extending these arguments above to round 4 and further we
conclude that, for every round k ≥ 2, the choices that survive round k of this procedure are precisely
the choices that can rationally be made if the player expresses up to (k − 1)-fold belief in rationality.
As a consequence, the choices that survive all rounds are exactly the choices that can rationally be
made under common belief in rationality. We thus obtain the following result.

Theorem 8.4.1 (Procedure for common belief in rationality) (a) For every k ∈ {1, 2, 3, ...},
the choices that player i can rationally make while expressing up to k-fold belief in rationality are
precisely the choices that survive the first k + 1 rounds of the iterated elimination of choices and
second-order expectations.

(b) The choices that player i can rationally make under common belief in rationality are exactly the
choices that survive all rounds of the iterated elimination of choices and second-order expectations.

In earlier chapters we have only seen elimination procedures that terminate within finitely many
rounds. That is, for all of these procedures there is some round k such that after this round no further
choices, states and beliefs could be eliminated. This, however, is not true for the iterated elimination
of choices and second-order expectations. In the next subsection we will see an example where in every
round we can reduce the set of second-order expectations for both players compared to the previous
round. In spite of this, it can still be shown that for every player there is at least one choice that
survives all rounds of the procedure.

Theorem 8.4.2 (At least one choice survives procedure) For every player there is at least one
choice that survives all rounds of the iterated elimination of choices and second-order expectations.
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You (b, b) (b, w) (w, b) (w,w)

black 0 0 0 5
white 2 2 2 2

Barbara (b, b) (b, w) (w, b) (w,w)

black 2 2 2 2
white 5 0 0 0

Table 8.4.5 Decision problems for “Dinner with a strong preference for surprise”

Thus, even if the set of second-order expectations may decrease with every further round, we can
always be sure that for every player at least one choice survives all of these rounds.

8.4.7 Examples
In this subsection we will illustrate the procedure by means of two examples. In the first, the procedure
will terminate after five rounds, whereas in the second the procedure will keep restricting the set of
second-order expectations forever, and will thus not terminate within finitely many rounds.

Example 8.4: Dinner with a strong preference for surprise.

A few weeks after “The black and white dinner with a twist”, Chris invites you and Barbara once again
for a black and white dinner. Your preferences have changed compared to last time: If you believe,
with probability 1, that Barbara wears white and believe, with probability 1, that Barbara believes,
with probability 1, that you wear white, then you strongly prefer wearing black to wearing white.
Recall that before, you only slightly preferred black to white under these circumstances. Similarly for
Barbara. These new conditional preferences can be modelled by the decision problems in Table 8.4.5.

Which color(s) can you rationally wear under common belief in rationality? To answer this question
we apply the iterated elimination of choices and second-order expectations.

Round 1. As no choice for you or Barbara is strictly dominated in the decision problems above, we
cannot eliminate any choice in round 1.

Round 2. We determine, for every choice c2 of Barbara, the set of first-order beliefs B22(c2) that
support the choice c2. To this purpose we first visualize the conditional preference relations for you
and Barbara in Figure 8.4.4. Note that you prefer black to white when the probability you assign to
the state (w,w) is at least 0.4, and you prefer white to black otherwise. Please verify this. This yields
the graphical representation of your conditional preference relation in the left-hand panel of Figure
8.4.4. Similarly for Barbara.

Hence, the second-order expectations that support Barbara’s choice white are those that lie above
the grey triangle in the right-hand panel. All of these second-order expectations induce a first-order
belief that assigns a probability of at least 0.4 to you choosing black. Hence, the set of first-order
beliefs that support Barbara’s choice white is

B22(white) = {b2 ∈ ∆(C1) | b2(black) ≥ 0.4}. (8.4.9)

On the other hand, the second-order expectations that support Barbara’s choice black lie below the
grey triangle in the right-hand panel of that figure. It may be verified that every first-order belief
for Barbara is induced by at least one such second-order expectation. As such, the set of first-order
beliefs that support Barbara’s choice black is

B22(black) = ∆(C1).
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Figure 8.4.4 Conditional preference relations for you and Barbara in “Dinner with a strong preference for
surprise”

The second-order expectations for you that are consistent with one-fold belief in rationality are
thus given by the set

E21 = {e1 ∈ E1 | e1(· | white2) ∈ B22(white) and e1(· | black2) ∈ B22(black)}, (8.4.10)

where the subindex 2 in white2 and black2 indicates that these choices belong to player 2 (Barbara).
Since B22(black) = ∆(C1), the condition e1(· | black2) ∈ B22(black) imposes no additional restriction
on the second-order expectation e1. By (8.4.9) and (8.4.10) we thus conclude that

E21 = {e1 ∈ E1 | e1(black1 | white2) ≥ 0.4}.

This set is visualized in the left-hand panel of Figure 8.4.5. The set E21 of second-order expectations for
you that are consistent with one-fold belief in rationality are the ones below the dotted grey triangle.
It can be seen that both choices for you are optimal for at least one second-order expectation in E21 ,
and hence we cannot eliminate any choice for you.

By symmetry, it can be verified that Barbara’s second-order expectations which are consistent
with one-fold belief in rationality are given by the set

E22 = {e2 ∈ E2 | e2(white2 | black1) ≥ 0.4}.

Please verify this. This set can be found in the right-hand panel of Figure 8.4.5, below the dotted
grey triangle. Also for Barbara, both choices are optimal for at least one second-order expectation in
E22 , and hence we cannot eliminate any choice for Barbara either.

Round 3. We determine, for every choice c2 of Barbara, the set B32(c2) of first-order beliefs for
Barbara that support the choice c2 and that are consistent with one-fold belief in rationality. From
the right-hand panel in Figure 8.4.5 it can be seen that the second-order expectations for Barbara in
E22 that support her choice white are the ones below the dotted grey triangle and above the solid grey
triangle. What first-order beliefs do these second-order expectations induce?

Let us denote these second-order expectations by E22(white) — the second-order expectations in
E22 that support Barbara’s choice white. From the figure, it can be seen that the extreme points of
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Figure 8.4.5 Second-order expectations consistent with one-fold belief in rationality in “Dinner with a
strong preference for surprise”

the set E22(white) are (0.6, 0, 0, 0.4), (0.4, 0, 0, 0.6), q1 and q2. Recall that the first, second, third and
fourth coordinate refer to the states (b, w), (w, b), (w,w) and (b, b), respectively. To compute q1, note
that q1 is on the line between (0, 1, 0, 0) and (0.4, 0, 0, 0.6) and that the fourth coordinate is 0.4. That
is, there is some λ ∈ [0, 1] with

q1 = (1− λ) · (0, 1, 0, 0) + λ · (0.4, 0, 0, 0.6).

As the fourth coordinate must be 0.4, we obtain that

λ · (0.6) = 0.4,

which yields λ = 2/3. Hence, we have that

q1 = 1/3 · (0, 1, 0, 0) + 2/3 · (0.4, 0, 0, 0.6) = (4/15, 5/15, 0, 6/15).

In a similar way, it can be verified that

q2 = (4/15, 0, 5/15, 6/15).

Note that the first and second extreme second-order expectation in E22(white), which are
(0.6, 0, 0, 0.4) and (0.4, 0, 0, 0.6), induce the first-order belief that assigns probability 1 to your choice
black, since the first and fourth coordinate refer to the states (b, w) and (b, b), respectively. Moreover,
the other two extreme second-order expectations in E22(white), which are q1 and q2., induce the first-
order belief that assigns probability 4/15 + 6/15 = 2/3 to the choice black. As such, all second-order
expectations in E22(white) induce first-order beliefs for which the probability assigned to your choice
black lies between 2/3 and 1.

By definition, B32(white) are those first-order beliefs for Barbara that are induced by some second-
order expectation in E22(white). By our insight above, we thus conclude that

B32(white) = {b2 ∈ ∆(C1) | b2(black1) ≥ 2/3}. (8.4.11)
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Figure 8.4.6 Second-order expectations consistent with one-fold and two-fold belief in rationality in
“Dinner with a strong preference for surprise”

To determine B32(black) we look at the right-hand panel of Figure 8.4.5. Note that for Barbara,
the set E22 of second-order expectations consistent with one-fold belief in rationality contains every
second-order expectation of the form (1−λ) · (b, w)+λ · (w, b), where λ ∈ [0, 1]. Since Barbara’s choice
black is optimal for every such second-order expectation, and every first-order belief for Barbara is
induced by one such second-order expectation, we conclude that

B32(black) = ∆(C1). (8.4.12)

That is, every first-order belief for Barbara can be extended to a second-order expectation in E22 for
which Barbara’s choice black is optimal.

The set E31 of second-order expectations for you that are consistent with one-fold and two-fold
belief in rationality is given by

E31 = {e1 ∈ E1 | e1(· | white2) ∈ B32(white) and e1(· | black2) ∈ B32(black)}. (8.4.13)

Note that the condition e1(· | black2) ∈ B32(black) imposes no additional restriction on e1, since
B32(black) = ∆(C1) by (8.4.12). If we combine (8.4.13) and (8.4.11) we thus get that

E31 = {e1 ∈ E1 | e1(black1 | white2) ≥ 2/3}.

Similarly to what we have seen in round 2, we can visualize the set E31 by the left-hand panel of Figure
8.4.6, where E31 contains all the second-order expectations below the dotted grey triangle. Please
verify this.

As this dotted grey triangle lies completely below the upper grey triangle, where you are indifferent
between white and black, we conclude you prefer white to black for every second-order expectation in
E31 . In particular, there is no second-order expectation in E

3
1 for which wearing black is optimal for

you, and hence we can eliminate your choice black in round 3.
Similarly, it can be verified that the set E32 of second-order expectations for Barbara that are

consistent with one-fold and two-fold belief in rationality are those below the dotted grey triangle in
the right-hand panel of Figure 8.4.6. As this dotted grey triangle lies completely below the upper grey
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You (b, b) (b, w) (w, b) (w,w)

white 2 2 2 2

Barbara (b, b) (b, w) (w, b) (w,w)

black 2 2 2 2

Table 8.4.6 Reduced decision problems in round 3 of procedure for “Dinner with a strong preference for
surprise”

triangle, where Barbara is indifferent between white and black, we see that Barbara prefers black to
white for every second-order expectation in E32 . As such, there is no second-order expectation in E

3
2

for which wearing white is optimal for Barbara, and hence we can eliminate Barbara’s choice white in
round 3. We thus obtain the reduced decision problems for you and Barbara in Table 8.4.6.

Round 4. Note that Barbara’s choice white2 has been eliminated in Round 3, because it was not
optimal for any second-order expectation e2 ∈ E32 . As such, B42(white2) is empty. But then, it follows
that every second-order expectation e1 ∈ E41 must assign probability zero to Barbara’s choice white2.
As such, we have that the set E41 of second-order expectations that are consistent with up to three-fold
belief in rationality is given by

E41 = {e1 ∈ E1 | e1(w, b) = e1(w,w) = 0 and e1(· | black2) ∈ B42(black)}. (8.4.14)

Hence, we only need to determine B42(black) in order to obtain the set E41 . From the right-hand
panel of Figure 8.4.6 it can be seen that every second-order expectation for Barbara of the form
e2 = (1−λ) · (b, w) +λ · (w, b), where λ ∈ [0, 1], is in E32 and supports Barbara’s choice black. As every
first-order belief for Barbara is induced by one such second-order expectation, we conclude that

B42(black) = ∆(C1). (8.4.15)

By combining (8.4.14) and (8.4.15) we obtain that

E41 = {e1 ∈ E1 | e1(w, b) = e1(w,w) = 0}.

This set E41 has been visualized as the dotted grey line in the left-hand panel of Figure 8.4.7.
Similarly, the set E42 of second-order expectations for Barbara that are consistent with up to three-

fold belief in rationality can be visualized by the grey dotted line in the right-panel of that figure.

Round 5. We first compute E51 —the set of second-order expectations that are consistent with up to
four-fold belief in rationality. From the left-hand panel of Figure 8.4.7 it can be seen that E41 consists
of the second-order expectations that assign probability 1 to Barbara’s choice black. Hence, we obtain
that

E51 = {e1 ∈ E1 | e1(w, b) = e1(w,w) = 0 and e1(· | black2) ∈ B52(black)}. (8.4.16)

In order to derive E51 we therefore only need to compute B
5
2(black) — the set of first-order beliefs

for Barbara that are induced by some second-order expectation e2 ∈ E42 and that support her choice
black.

From the right-hand panel in Figure 8.4.7 it can be seen that all second-order expectations for
Barbara in E42 assign probability 1 to your choice white. Hence, every second-order expectations for
Barbara that is in E42 and supports her choice black has the first-order belief that assigns probability
1 to your choice white. This means, in turn, that

B52(black) = {b2 ∈ ∆(C1) | b2(white1) = 1}. (8.4.17)
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Figure 8.4.7 Second-order expectations consistent with up to three-fold belief in rationality for “Dinner
with a strong preference for surprise”

Figure 8.4.8 Beliefs diagram for “Dinner with a strong preference for surprise”

By combining (8.4.16) and (8.4.17) we then obtain that

E51 = {e1 ∈ E1 | e1(w, b) = e1(w,w) = 0 and e1(white1 | black2) = 1},

which means that
E51 = {e1 ∈ E1 | e1(b, w) = 1}.

In a similar fashion, it can be shown that

E52 = {e2 ∈ E2 | e2(w, b) = 1}.

Hence, E51 and E
5
2 only contain one second-order expectation, and this is where the procedure ends.

We thus conclude that under common belief in rationality, you can only rationally wear white and
Barbara can only rationally wear black. However, note that in rounds 1 and 2 of the procedure we
were not able to eliminate any choices. We could only eliminate the choice black for you and the choice
white for Barbara in round 3, after we “suffi ciently”reduced the set of second-order expectations for
you and and Barbara. Indeed, in round 3 we saw that there was no surviving second-order expectation
for you for which it is optimal to choose black, whereas in rounds 1 and 2 there still were surviving
second-order expectations for which wearing black was optimal. Similarly for Barbara.

To see why your choice white and Barbara’s choice black can rationally be made under common
belief in rationality, consider the beliefs diagram in Figure 8.4.8. Similarly to the beliefs diagram in
Figure 8.4.3 it may be verified that the unique belief hierarchy for you and the unique belief hierarchy
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You (b, b) (b, w) (w, b) (w,w)

black 0 0 0 8
white 2 2 2 2

Barbara (b, b) (b, w) (w, b) (w,w)

black 2 2 2 2
white 8 0 0 0

Table 8.4.7 Decision problems for “Dinner with a huge preference for surprise”

for Barbara in this figure express common belief in rationality. As under this belief hierarchy it is
optimal for you to wear white, we conclude that you can indeed rationally wear white under common
belief in rationality. Similarly, Barbara’s choice black is optimal for her belief hierarchy in this figure,
and hence we see that Barbara can rationally choose black under common belief in rationality. Note,
however, that under common belief in rationality you are not able to surprise Barbara by the color
you wear, nor is it possible for Barbara to surprise you.

We will next discuss an example where the procedure does not terminate after finitely many
rounds. That is, with every round we are able to decrease the sets of second-order expectations, and
this reduction process never stops.

*Example 8.5: Dinner with a huge preference for surprise.

Chris really enjoys the black and white dinners with you and Barbara, and he has therefore invited
you and Barbara once again for a dinner at his house. Compared to the example “Dinner with a
strong preference for suprise”there is only one change in your conditional preference relation: If you
believe, with probability 1, that Barbara wears white, and you believe, with probability 1, that Barbara
believes, with probability 1, that you wear white, the intensity by which you prefer black to white is
even stronger than before. And similarly for Barbara. Suppose that the new conditional preference
relations for you and Barbara are given by Table 8.4.7.

Which color(s) can you rationally wear under common belief in rationality? To answer this question
we will apply the procedure iterated elimination of choices and second-order expectations. As we will
see, the procedure does not terminate within finitely many rounds, since in every round we are able
to eliminate some second-order expectations for both players.

Round 1. We cannot eliminate any choice in round 1 since no choice is strictly dominated for you
or for Barbara.

Round 2. We first determine, for every choice c2 of Barbara, the set of first-order beliefs B22(c2) that
support the choice c2. To do this, we start by depicting the conditional preference relations for you
and Barbara in Figure 8.4.9. Indeed, you prefer black to white when the probability you assign to the
state (w,w) is at least 0.25, and you prefer white to black otherwise. Please verify this. This yields
the left-hand panel of Figure 8.4.9. Similarly for Barbara.

Therefore, the second-order expectations that support Barbara’s choice white are those that lie
above the grey triangle in the right-hand panel. These second-order expectations all induce a first-
order belief that assigns a probability of at least 0.25 to you choosing black. Hence, the set of first-order
beliefs that support Barbara’s choice white is

B22(white) = {b2 ∈ ∆(C1) | b2(black) ≥ 0.25}. (8.4.18)

At the same time, the second-order expectations that support Barbara’s choice black lie below the
grey triangle in the right-hand panel of that figure. It may be checked that every first-order belief for
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Figure 8.4.9 Conditional preference relations for ‘Dinner with a huge preference for surprise”

Barbara is induced by at least one such second-order expectation. Consequently, the set of first-order
beliefs that support Barbara’s choice black is

B22(black) = ∆(C1).

As such, the second-order expectations for you that are consistent with one-fold belief in rationality
are given by

E21 = {e1 ∈ E1 | e1(· | white2) ∈ B22(white) and e1(· | black2) ∈ B22(black)}. (8.4.19)

As B22(black) = ∆(C1), the condition e1(· | black2) ∈ B22(black) imposes no additional restriction on
the second-order expectation e1. By (8.4.18) and (8.4.19) we thus conclude that

E21 = {e1 ∈ E1 | e1(black1 | white2) ≥ 0.25}.

The set E21 has been depicted in the left-hand panel of Figure 8.4.10. More precisely, the set E
2
1 of

second-order expectations for you that are consistent with one-fold belief in rationality are the points
below the dotted grey triangle. It can be seen that both choices for you are optimal for at least one
second-order expectation in E21 , and hence we cannot eliminate any choice for you.

Similarly, it can be verified that Barbara’s second-order expectations which are consistent with
one-fold belief in rationality are given by the set

E22 = {e2 ∈ E2 | e2(white2 | black1) ≥ 0.25}.

This set can be found in the right-hand panel of Figure 8.4.10, below the dotted grey triangle. Also
for Barbara, both choices are optimal for at least one second-order expectation in E22 , and hence we
cannot eliminate any choice for Barbara either.

Round 3. We first determine, for every choice c2 of Barbara, the set B32(c2) of first-order beliefs for
Barbara that support the choice c2 and that are consistent with one-fold belief in rationality. From
the right-hand panel in Figure 8.4.10 it can be seen that the second-order expectations for Barbara
in E22 that support her choice white are the ones below the dotted grey triangle and above the solid
grey triangle. What first-order beliefs do these second-order expectations have?
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Figure 8.4.10 Second-order expectations consistent with one-fold belief in rationality for “Dinner with a
huge preference for surprise”

We denote these second-order expectations by E22(white) —the second-order expectations in E22
that support Barbara’s choice white. From Figure 8.4.10 it can be seen that the extreme points of the
set E22(white) are (0.75, 0, 0, 0.25), (0.25, 0, 0, 0.75), q1 and q2. We now compute q1. Observe that q1
is on the line between (0, 1, 0, 0) and (0.25, 0, 0, 0.75) and that the fourth coordinate is 0.25. That is,
there is some λ ∈ [0, 1] with

q1 = (1− λ) · (0, 1, 0, 0) + λ · (0.25, 0, 0, 0.75).

As the fourth coordinate must be 0.25, we obtain that

λ · (0.75) = 0.25,

which yields λ = 1/3. Hence, we have that

q1 = 2/3 · (0, 1, 0, 0) + 1/3 · (0.25, 0, 0, 0.75) = (1/12, 8/12, 0, 3/12).

In a similar way it can be checked that

q2 = (1/12, 0, 8/12, 3/12).

Observe that the first and second extreme second-order expectation in E22(white), which are
(0.75, 0, 0, 0.25) and (0.25, 0, 0, 0.75), induce the first-order belief that assigns probability 1 to your
choice black, since the first and fourth coordinate refer to the states (b, w) and (b, b), respectively.
Moreover, the other two extreme second-order expectations in E22(white), which are q1 and q2, induce
the first-order belief that assigns probability 1/12 + 3/12 = 1/3 to the choice black. Therefore, all
second-order expectations in E22(white) induce first-order beliefs for which the probability assigned to
your choice black lies between 1/3 and 1.

By definition, B32(white) are those first-order beliefs for Barbara that are induced by some second-
order expectation in E22(white). Based on our insight above we thus conclude that

B32(white) = {b2 ∈ ∆(C1) | b2(black1) ≥ 1/3}. (8.4.20)
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Figure 8.4.11 Second-order expectations consistent with up to two-fold belief in rationality for “Dinner
with a huge preference for surprise”

We next determine B32(black). For this, we concentrate on the right-hand panel of Figure 8.4.10.
Note that for Barbara, the set E22 of second-order expectations consistent with one-fold belief in
rationality contains every second-order expectation of the form (1 − λ) · (b, w) + λ · (w, b), where
λ ∈ [0, 1]. Since Barbara’s choice black is optimal for every such second-order expectation, and every
first-order belief for Barbara is induced by one such second-order expectation, we conclude that

B32(black) = ∆(C1). (8.4.21)

Thus, every first-order belief for Barbara can be extended to a second-order expectation in E22 for
which Barbara’s choice black is optimal.

By definition, the set E31 of second-order expectations for you that are consistent with one-fold
and two-fold belief in rationality is given by

E31 = {e1 ∈ E1 | e1(· | white2) ∈ B32(white) and e1(· | black2) ∈ B32(black)}. (8.4.22)

The condition e1(· | black2) ∈ B32(black) imposes no additional restriction on e1, since B32(black) =
∆(C1) by (8.4.21). If we combine (8.4.22) and (8.4.20) we thus get that

E31 = {e1 ∈ E1 | e1(black1 | white2) ≥ 1/3}.

Similarly to round 2, we can depict the set E31 by the left-hand panel of Figure 8.4.11, where E
3
1

contains all the second-order expectations below the dotted grey triangle.
As for you, both of your choices are optimal for at least one second-order expectation in E31 , we

cannot eliminate any choice for you. Similarly for Barbara.

In the rounds that follow, the set Ek1 of second-order expectations for you that are consistent with
up to (k−1)-fold belief in rationality becomes smaller and smaller, but it never completely disappears
below the solid grey triangle in Figure 8.4.11. More precisely, we will show that for every round k the
set Ek1 is given by the points below the dotted grey triangle in Figure 8.4.12, and similarly for E

k
2 . We

will show this by induction on k, starting with k = 2.
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Figure 8.4.12 Second-order expectations consistent with up to k− 1-fold belief in rationality for “Dinner
with a huge preference for surprise”

For k = 2 we have seen that the second-order expectations for you that are consistent with 1-fold
belief in rationality are the points below the dotted grey triangle in Figure 8.4.10. As

(0.25, 0, 0, 0.75) = (k−12k , 0, 0,
k+1
2k )

for k = 2, these are exactly the points below the dotted grey triangle in Figure 8.4.12. Similarly for
Barbara.

Now, suppose that k ≥ 2, and that Ek1 and E
k
2 are the points below the dotted grey triangles in

Figure 8.4.12. In other words, the extreme points of Ek2 are

(k−12k , 0, 0,
k+1
2k ), (0, 1, 0, 0) and (0, 0, 1, 0).

This will enable us to compute the set Ek+11 of second-order expectations for you that are consistent
with up to k-fold belief in rationality.

Similarly to what we have done above, let Ek2 (white) denote the set of the second-order expectations
in Ek2 that support Barbara’s choice white. From Figure 8.4.12 it can be seen that the extreme points
of the set Ek2 (white) are (k−12k , 0, 0,

k+1
2k ), (0.75, 0, 0, 0.25), q1 and q2.We now compute q1. Observe that

q1 is on the line between (0, 1, 0, 0) and (k−12k , 0, 0,
k+1
2k ) and that the fourth coordinate is 0.25. That

is, there is some λ ∈ [0, 1] with

q1 = (1− λ) · (0, 1, 0, 0) + λ · (k−12k , 0, 0,
k+1
2k ).

As the fourth coordinate must be 0.25, we obtain that

λ · k+12k = 0.25,

which yields λ = 2k
4k+4 . Hence, we have that

q1 = 2k+4
4k+4 · (0, 1, 0, 0) + 2k

4k+4 · (
k−1
2k , 0, 0,

k+1
2k ) = ( k−14k+4 ,

2k+4
4k+4 , 0,

k+1
4k+4).

In a similar way, it can be checked that

q2 = ( k−14k+4 , 0,
2k+4
4k+4 ,

k+1
4k+4).
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Observe that the first and second extreme second-order expectation in Ek2 (white), which are
(k−12k , 0, 0,

k+1
2k ) and (0.75, 0, 0, 0.25), induce the first-order belief that assigns probability 1 to your

choice black, since the first and fourth coordinate refer to the states (b, w) and (b, b), respectively.
Moreover, the other two extreme second-order expectations in Ek2 (white), which are q1 and q2, induce
the first-order belief that assigns probability

k−1
4k+4 + k+1

4k+4 = 2k
4k+4 = k

2k+2

to the choice black. Therefore, all second-order expectations in E22(white) induce first-order beliefs for
which the probability assigned to your choice black lies between k

2k+2 and 1.

By definition, Bk+1
2 (white) are those first-order beliefs for Barbara that are induced by some

second-order expectation in Ek2 (white). Based on our insight above, we thus conclude that

Bk+1
2 (white) = {b2 ∈ ∆(C1) | b2(black1) ≥ k

2k+2}. (8.4.23)

We next determine Bk+1
2 (black). For this, we concentrate on the right-hand panel of Figure 8.4.12.

Note that for Barbara, the set Ek2 of second-order expectations consistent with up to (k−1)-fold belief
in rationality contains every second-order expectation of the form (1 − λ) · (b, w) + λ · (w, b), where
λ ∈ [0, 1]. Since Barbara’s choice black is optimal for every such second-order expectation, and every
first-order belief for Barbara is induced by one such second-order expectation, we conclude that

Bk+1
2 (black) = ∆(C1). (8.4.24)

Thus, every first-order belief for Barbara can be extended to a second-order expectation in Ek2 for
which Barbara’s choice black is optimal.

By definition, the set Ek+11 of second-order expectations for you that are consistent with up to
k-fold belief in rationality is given by

Ek+11 = {e1 ∈ E1 | e1(· | white2) ∈ Bk+1
2 (white) and e1(· | black2) ∈ Bk+1

2 (black)}. (8.4.25)

The condition e1(· | black2) ∈ Bk+1
2 (black) imposes no additional restriction on e1, since Bk+1

2 (black) =
∆(C1) by (8.4.24). If we combine (8.4.25) and (8.4.23) we thus get that

Ek+11 = {e1 ∈ E1 | e1(black1 | white2) ≥ k
2k+2}.

As
k

2k+2 = (k+1)−1
2(k+1)

it follows that Ek+11 is the set of points below the dotted grey triangle in Figure 8.4.12 if we substitute
k + 1 for k. Similarly for Ek+12 .

By induction on k it thus follows that for every round k, the sets Ek1 and E
k
2 contain the points

below the two grey dotted triangles in Figure 8.4.12. Note that k−12k ≤ 0.75 for every k, which implies
that no choice can ever be eliminated in the procedure. As the sets Ek1 and E

k
2 change with every

round k, we conclude that the procedure does not terminate within finitely many rounds.
But the procedure still specifies which second-order expectations, and which choices, are possible

for you and Barbara under common belief in rationality. Recall that for every k, the set of second-
order expectations for you and Barbara that are consistent with up to (k− 1)-fold belief in rationality
are given by the points below the grey dotted triangles in Figure 8.4.12. If we let k go to infinity, then
the point (k−12k , 0, 0,

k+1
2k ) tends to (1/2, 0, 0, 1/2). As such, the set of second-order expectations E∗1 for
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Figure 8.4.13 Second-order expectations consistent with common belief in rationality for “Dinner with a
huge preference for surprise”

Figure 8.4.14 Beliefs diagram for “Dinner with a huge preference for surprise”

you that are consistent with common belief in rationality corresponds to the set of points below the
grey dotted triangle in Figure 8.4.13, and similarly for Barbara.

Note that for you, there are second-order expectations consistent with common belief in rationality
for which it is optimal to choose white, and others for which it is optimal to choose black. Hence, under
common belief in rationality you can rationally choose white and black, but this cannot be concluded
after finitely many steps of the procedure. Indeed, since the procedure does not terminate within
finitely many steps, we must follow all the —infinitely many —steps of the procedure to conclude that
both choices can rationally be made under common belief in rationality.

By symmetry, the same holds for Barbara. Hence, under common belief in rationality, both you
and Barbara can rationally wear white and black. This conclusion is confirmed by the beliefs diagram
in Figure 8.4.14. To verify the validity of the beliefs diagram, let us first focus on the second-order
expectation we obtain for you if we start at your choice white. The second-order expectation is that
you believe, with probability 1, that Barbara wears black and that Barbara believes that you wear
white. Under this second-order expectation it is indeed optimal for you to wear white.

Next, consider the second-order expectation we obtain for you if we start at your choice black.
You assign probability 0.5 to the event that “Barbara wears white and assigns probability 0.5 to you
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wearing white and black, respectively”, and you assign probability 0.5 to the event that “Barbara
wears black and assigns probability 1 to you wearing white”. The induced second-order expectation
is thus given by

(0.25) · (w,w) + (0.25) · (w, b) + (0.5) · (b, w).

Under this second-order expectation the expected utility of choosing black is (0.25) · 8 + (0.25) · 0 +
(0.5) · 0 = 2, whereas the expected utility of choosing white is also 2. Hence, you are indifferent
between choosing black and white which means, in particular, that wearing black is optimal for you
given this second-order expectation.

In a similar fashion, it can be shown that white is optimal for Barbara under the second-order
expectation that starts at her choice white, and black is optimal for Barbara under the second-order
expectation that starts at her choice black. As such, all solid arrows in the beliefs diagram are justified,
which implies that all the belief hierarchies in this beliefs diagram express common belief in rationality.
Hence, we can conclude that under common belief in rationality you can rationally wear white and
black, and the same applies to Barbara.

8.4.8 Common Belief in Rationality is Always Possible
A natural question is: Can we always find, for every player, a belief hierarchy that expresses common
belief in rationality? In other words, is it always possible to reason in accordance with common belief
in rationality? The answer to this question is “yes”, and it follows from the Theorems 8.4.1 and 8.4.2.

Indeed, Theorem 8.4.2 guarantees that for every player there is at least one choice that survives the
iterated elimination of choices and second-order expectations, whereas Theorem 8.4.1 states that for
every such choice we can always construct a type within an epistemic model that expresses common
belief in rationality and supports that choice. But we can say a little more: In the proof of Theorem
8.4.1 it is shown that we can always construct a single epistemic model, with infinitely many types
for both players, such that for every choice that survives the procedure there is a type within this
particular epistemic model that expresses common belief in rationality and supports that choice.
Moreover, this epistemic model has the property that all types which are present express common
belief in rationality. We thus obtain the following result.

Theorem 8.4.3 (Common belief in rationality is always possible) For every psychological
game with finitely many choices we can construct an epistemic model, possibly with infinitely many
types, in which all types express common belief in rationality.

Compared to previous chapters there is an important difference here: For standard games, games
with incomplete information, and games with unawareness, we could always build an epistemic model
with finitely many types such that for every choice surviving the procedure there is a type that
expresses common belief in rationality and supports this choice. For psychological games we need an
epistemic model with infinitely many types to serve this purpose, at least if we use the construction
in the proof of Theorem 8.4.1.

But suppose now that our objective is more modest: Instead of constructing an epistemic model
that supports every choice surviving the procedure by a type that expresses common belief in ratio-
nality, we look for an epistemic model that contains for every player at least one type that expresses
common belief in rationality. Can this be achieved by an epistemic model that contains finitely many
types? The answer is “yes”. In fact, it will follow from the existence of simple belief hierarchies that
express common belief in rationality in Chapter 9. Based on that result, we are even able to construct
an epistemic model with only one type for every player, such that this type induces a simple belief



8.4. RECURSIVE PROCEDURE 417

hierarchy and expresses common belief in rationality. Hence, in Theorem 8.4.3, the phrase “possibly
with infinitely many types”can be replaced by “with finitely many types”.

8.4.9 Using the Procedure to Construct Epistemic Models
The procedure iterated elimination of choices and second-order expectations does not only deliver the
choices that can rationally be made under common belief in rationality, but it also yields the second-
order expectations that are consistent with common belief in rationality. As an illustration, consider
the example “‘Dinner with a huge preference for surprise”. The second-order expectations that survive
the procedure are given by Figure 8.4.13, and these are precisely the second-order expectations that
are induced by belief hierarchies that express common belief in rationality.

Take the second-order expectation e∗1 for you given by

e∗1 = (0.6) · (w, b) + (0.4) · (w,w).

From Figure 8.4.13 it is clear that the second-order expectation e1 survives the procedure, and supports
your choice black. Hence, there must be a belief hierarchy for you that induces the second-order
expectation e1 and expresses common belief in rationality. But how do we construct such a belief
hierarchy? Below we present a method for finding such a belief hierarchy.

The method critically uses the sets of second-order expectations for you and Barbara that survive
the procedure, and the properties they have. For both players i, let E∗i be the set of second-order
expectations that survive the procedure. Moreover, for every choice ci that survives the procedure,
let B∗i (ci) be the set of first-order beliefs bi for which there is a second-order expectation ei ∈ E∗i that
has the first-order belief bi and for which the choice ci is optimal. By construction of the procedure
we then have, for every second-order expectation ei ∈ E∗i , that

ei(· | cj) ∈ B∗j (cj)

for every choice cj to which ei assigns positive probability. Or, equivalently, for every second-order
expectation ei ∈ E∗i , and every choice cj to which ei assigns positive probability,

there is ej ∈ E∗j such that ej has the first-order belief ei(· | cj) and
cj is optimal for ej . (8.4.26)

Property (8.4.26) will be crucial for constructing a belief hierarchy for you that expresses common
belief in rationality, and that has the second-order expectation e∗1 above.

Step 1. We start by graphically depicting the second-order expectation e∗1 in a beliefs diagram, in
Figure 8.4.15.

Step 2. Since e∗1 ∈ E∗1 , it follows from (8.4.26) that there is some second-order expectation e2 ∈ E∗2
for Barbara that has the first-order belief

e∗1(· | white2) = (0.6) · black1 + (0.4) · white1

and for which Barbara’s choice white2 is optimal. Here, we use the subindices 1 and 2 to indicate the
player to which the choice belongs. Recall that you are player 1 and Barbara is player 2. From Figure
8.4.13 we see that we can choose, for instance, the second-order expectation

e2 = (0.3) · (b, w) + (0.3) · (b, b) + (0.4) · (w, b).
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Figure 8.4.15 Constructing a belief hierarchy that expresses common belief in rationality: Step 1

Figure 8.4.16 Constructing a belief hierarchy that expresses common belief in rationality: Step 2

This second-order expectation can be depicted graphically by the beliefs diagram in Figure 8.4.16.

Step 3. Since Barbara’s second-order expectation e2 is in E∗2 , we know from (8.4.26) that there is a
second-order expectation e1[black1] for you in E∗1 that induces the first-order belief

e2(· | black1) = (0.5) · white2 + (0.5) · black2

and for which your choice black1 is optimal. Similarly, there is a second-order expectation e1[white1]
for you in E∗1 that induces the first-order belief

e2(· | white1) = black1

and for which your choice white1 is optimal. By looking at Figure 8.4.13 we see that can we choose
the second-order expectations

e1[black1] = (0.25) · (w, b) + (0.25) · (w,w) + (0.5) · (b, w)

and
e1[white1] = (b, w).

These two second-order expectations are graphically depicted in the beliefs diagram of Figure 8.4.17.
Here, e1[black1] is the second-order expectation that starts at your choice black, whereas e1[white1] is
the second-order expectation that starts at your choice white.

Step 4. Since e1[black1] is in E∗1 , it follows from (8.4.26) that there is some second-order expectation
e2[white2] for Barbara that has the first-order belief

e1[black1](· | white2) = (0.5) · black1 + (0.5) · white1
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Figure 8.4.17 Constructing a belief hierarchy that expresses common belief in rationality: Step 3

Figure 8.4.18 Constructing a belief hierarchy that expresses common belief in rationality: Step 4

and for which white2 is optimal, and there is some second-order expectation e2[black2] for Barbara
that has the first-order belief

e1[black1](· | black2) = white1

and for which black2 is optimal. Similarly, since e1[white1] is in E∗1 , we know from (8.4.26) that there
is some second-order expectation ê2[black2] for Barbara that has the first-order belief

e1[white1](· | black2) = white1

and for which black2 is optimal. From Figure 8.4.13 we see that we can choose

e2[white2] = (0.25) · (b, w) + (0.25) · (b, b) + (0.5) · (w, b)

and
e2[black2] = ê2[black2] = (w, b).

These two second-order expectations are graphically represented by the beliefs diagram in Figure
8.4.18.

Step 5. Since Barbara’s second-order expectation e2[white2] is in E∗2 , we know from (8.4.26) that
there is a second-order expectation ê1[black1] for you in E∗1 that induces the first-order belief

e2[white2](· | black1) = (0.5) · white2 + (0.5) · black2

and for which your choice black is optimal. Moreover, there is a second-order expectation ê1[white1]
for you in E∗1 that induces the first-order belief

e2[white2](· | white1) = black2
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Figure 8.4.19 Constructing a belief hierarchy that expresses common belief in rationality: Pasting together
the beliefs diagrams

and for which your choice white is optimal.
Similarly, since Barbara’s second-order expectation e2[black2] is in E∗2 , we know from (8.4.26) that

there is a second-order expectation ẽ1[white1] for you in E∗1 that induces the first-order belief

e2[black2](· | white1) = black2

and for which your choice white is optimal.
If we compare this to Step 3, we see that we can choose

ê1[black1] = e1[black1] = (0.25) · (w, b) + (0.25) · (w,w) + (0.5) · (b, w),

and we can choose
ê1[white1] = ẽ1[white1] = e1[white1] = (b, w).

That is, in Step 5 we can choose exactly the same second-order expectations for you as in Step 3. But
this means that from Step 5 onwards, we keep repeating Steps 3 and 4 forever. This results in the
second-order expectations from Figures 8.4.17 and 8.4.18.

If we paste the beliefs diagrams from Figures 8.4.15, 8.4.16, 8.4.17 and 8.4.18 together, we obtain
the larger beliefs diagram from Figure 8.4.19. Note that we need copies black’ and white’ of the
choices for both players, since we need two different second-order expectations for you that support
your choice black, and we need two different second-order expectations for Barbara that support her
choice white.

Question 8.4.3 Translate the beliefs diagram from Figure 8.4.19 into an epistemic model.

It may be verified that the belief hierarchy that starts at your choice black expresses common belief
in rationality and has the second-order expectation

e∗1 = (0.6) · (w, b) + (0.4) · (w,w),

as required.
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This method can be generalized to every psychological game: If we take an arbitrary psychological
game, any choice ci that survives the procedure, and any second-order expectation ei that supports ci
and survives the procedure, we can always construct, in the way described above, a belief hierarchy
for player i that supports the choice ci, holds the second-order expectation ei, and expresses common
belief in rationality.

In fact, this is precisely the way we proceed in the proof of Theorem 8.4.1: For every choice ci that
survives the procedure we take some second-order expectation ei[ci] that survives the procedure and
supports the choice ci. By relying on property (8.4.26) we then construct, by following the method
above, a type ti[ci] that expresses common belief in rationality, holds the second-order expectation ei,
and supports the choice ci.

8.5 States-First Procedure

In this section we present a variation on the procedure of iterated elimination of choices and second-
order expectations which we call the states-first procedure. In the new procedure we start by recursively
eliminating choices and states as long as we can, resulting in possibly reduced decision problems. We
subsequently apply the iterated elimination of choices and second-order expectations to these reduced
decision problems. The practical advantage of this new procedure is that we start with the “easy”
elimination of choices and states, and reserve the more tedious steps in the iterated elimination of
choices and second-order eliminations until later, when the decision problems — hopefully — have
already been reduced. We argue that the alternative procedure yields exactly the same output as the
original procedure, which implies that the states-first procedure can also be used to find those choices
that can rationally be made under common belief in rationality. We finally illustrate the states-first
procedure by a new example.

8.5.1 Elimination of States
Recall that every step of the procedure iterated elimination of choices and second-order expectations
consists of reducing the set of second-order expectations, and subsequently eliminating those choices
that are no longer optimal for any second-order expectation that survives. Especially the reduction
of the set of second-order expectations may be a diffi cult step in many examples.

Sometimes, this reduction may be mimicked by the elimination of states, in which case the re-
duction becomes a lot easier to perform. Suppose, for instance, that we are at round k, and that
the choice cj for player j has been eliminated in the previous round. Then, as we have seen, every
second-order expectation in Eki must assign probability zero to this choice cj . That is, at round k we
can safely eliminate for player i all states that involve opponent’s choices that have been eliminated
at the previous round, since second-order expectations for player i at round k will assign probability
zero to such states.

Now assume that player i’s own choice ci has been eliminated in the previous round k − 1. What
consequences does this have for player i’s second-order expectations at further rounds? By the same
argument as above, every second-order expectation for opponent j in Ekj must assign probability zero

to this choice ci. Hence, for every opponent’s choice cj , every first-order belief in Bk+1
j (cj) must assign

probability zero to the choice ci. Now, take any second-order expectation ei for player i in Ek+1i . Then,
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for every opponent’s choice cj to which ei assigns a positive probability it must hold that

ei(· | cj) is in Bk+1
j (cj).

In particular, we see that for every choice cj to which ei assigns a positive probability, the conditional
probability distribution ei(· | cj) on Ci must assign probability zero to the choice ci. But then, the
second-order expectation ei must assign probability zero to all states that involve player i’s choice
ci. Summarizing, we see that if the choice ci is eliminated at round k − 1, then every second-order
expectation for player i in round k + 1 must assign probability zero to ci. This can be mimicked by
removing, at round k+ 1, all states in i’s decision problem that involve the choice ci. In fact, we could
already remove these states at round k, since they will anyhow be eliminated in the round that follows.

Altogether, we see that if a choice is eliminated at a particular round, then in the next round
we can eliminate all states that contain this choice. Such eliminations thus constitute the “easy”
reductions of the sets of second-order expectations in the procedure.

What would happen if we would perform all these “easy” reductions at the beginning of our
procedure, and only afterwards start with the more tedious reductions of the sets of second-order
expectations? Would we end up with the same output? The answer is “yes”. The reason is that,
similarly to the other procedures considered so far in this book, also the iterated elimination of choices
and second-order expectations is order independent. That is, if at some rounds we do not eliminate
some choices or second-order expectations that could have been eliminated, then we are still guaranteed
to end up with the same end result, provided we do not forget to perform these eliminations forever.
In particular, if during the first rounds we only do the “easy” reductions described above, and only
start with the more tedious reductions later, then we will get the same output as under the original
procedure.

This alternative procedure, which we call the states-first procedure, may have some practical ad-
vantages over the original procedure, especially when there are many choices involved. If we start with
the “easy” reductions first, by iteratedly eliminating choices and states from the decision problems,
then we hopefully end up with heavily reduced decision problems, with much less choices and states
than before. This, in turn, makes it a lot easier to perform the more tedious reductions, since we
start with much smaller decision problems. To formally define the states-first procedure, we must first
explain precisely what we mean by the iterated elimination of choices and states mentioned above.

8.5.2 Iterated Elimination of Choices and States
Remember from above that, if a choice gets eliminated at a certain round, then in the next round we
can eliminate all states that involve this choice. What we are actually doing by such an elimination
of states is to exclude all second-order expectations that assign positive probability to this state.

Now assume that we have eliminated some states, and that we consider all second-order expecta-
tions that only assign positive probability to the states that remain in the reduced decision problem so
obtained. Then, by Theorem 2.6.1, the choices that are optimal for such a second-order expectation
are precisely the choices that are not strictly dominated in the reduced decision problem. All these
considerations give rise to the following procedure, which we call the iterated elimination of choices
and states.

Definition 8.5.1 (Iterated elimination of choices and states) At the beginning, set up the de-
cision problems for both players.

Round 1. Eliminate for both players the choices that are strictly dominated in their decision prob-
lem. This yields the one-fold reduced decision problems.
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Round 2. Consider player i’s one-fold reduced decision problem. Eliminate all states (cj , ci) where
either the choice cj or the choice ci has been eliminated at the previous round. In the reduced decision
problem so obtained, eliminate all choices for player i that are strictly dominated. Do the same for
player j. This yields the two-fold reduced decision problem.

Round 3. Consider player i’s two-fold reduced decision problem. Eliminate all states (cj , ci) where
either the choice cj or the choice ci has been eliminated at the previous round. In the reduced decision
problem so obtained, eliminate all choices for player i that are strictly dominated. Do the same for
player j. This yields the three-fold reduced decision problem. And so on.

The choices that survive all elimination rounds are said to survive the iterated elimination of
choices and states.

Hence, this procedure amounts to performing, in a recursive fashion, all the “easy”reductions in
the iterated elimination of choices and second-order expectations.

8.5.3 States-First Procedure
As already mentioned above, the states-first procedure is obtained if we first perform the iterated
elimination of choices and states until we can go no further. We then obtain a (possibly) reduced
decision problem for the two players. Starting from these reduced decision problems we then apply
the iterated elimination of choices and second-order expectations.

Definition 8.5.2 (States-First Procedure) At the beginning, set up the decision problems for
both players.

Step 1. Apply the iterated elimination of choices and states until no further eliminations are possible.
This yields, for both players, a reduced decision problem.

Step 2. Take these reduced decision problems as a starting point, and then apply the iterated
elimination of choices and second-order expectations.

The choices and second-order expectations that remain at the end are said to survive the states-first
procedure.

From a practical viewpoint, the states-first procedure may be more attractive than the original
iterated elimination of choices and second-order expectations. The reason is that step 1, the “easy”
step, is often able to drastically reduce the decision problems for both players. In that case, the
“tedious” reduction steps, which are all gathered in step 2, will be easier to carry out since the
number of states on which the second-order expectations operate is smaller than before. To illustrate
this, consider the following example.

Example 8.6: Exceeding Barbara’s expectations.

Yesterday, Barbara and you have won a spectacular prize at the national lottery: Within seven weeks
from now, you have the opportunity to record a song at the famous Abbey Road Studios, and the
revenue from the sales goes entirely to the two of you. Of course, you both need to practice before
you are able to do a decent recording. The problem, however, is that you and Barbara are not good
at singing, and therefore practicing comes at a considerable mental cost.

This afternoon you will gather at Chris’house, where you and Barbara must specify how many
weeks you are willing to practice. To make things easy, suppose that you can only choose between
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practicing for one week, three weeks, five weeks and seven weeks, and the same applies to Barbara.
Assume that the total revenue from selling the record, in thousands of euros, is equal to 2 · w1 · w2,
where w1 and w2 are the numbers of weeks that you and Barbara will practice, respectively. Of course,
you will split this revenue equally between Barbara and you, and hence your income from selling the
record is w1 · w2. Note that the additional income from practicing two more weeks is increasing in
Barbara’s effort: The more she practices, the more profitable it becomes to practice yourself. On the
other hand, your mental costs of practicing for w1 weeks (expressed in terms of thousands of euros) is
w21.

Finally, it is important for you not to disappoint Barbara by the number of weeks you are willing to
practice. More precisely, if you are actually willing to practice for w1 weeks, and Barbara believes, with
probability 1, that you are willing to practice for w′1 weeks, with w1 > w′1, then you receive a mental
bonus (expressed in terms of thousands of euros) of w1 − w′1 for exceeding Barbara’s expectation.
The mental bonus is thus equal to the amount by which your choice is believed to exceed Barbara’s
expectation. If w1 ≤ w′1, you receive no such mental bonus.

To illustrate how the (expected) mental bonus is computed, consider the situation where you are
willing to practice for 3 weeks, and where you believe, with probability 1, that Barbara believes with
probability 0.4 that you are willing to practice for 1 week and that she believes with probability 0.6
that you are willing to practice for 7 weeks. Then, this belief assigns probability 0.4 to the event that
w1 = 3 and w′1 = 1, and probability 0.6 to the event that w1 = 3 and w′1 = 7. The expected mental
bonus is thus (0.4) · (3− 1) + (0.6) · 0 = 0.8.

Be careful: One could also argue that in the belief above, you believe that Barbara believes that,
in expectation, you are willing to practice for (0.4) ·1 + (0.6) ·7 = 4.6 weeks. In view of this, one could
be tempted to say that your mental bonus is 0, since the actual number of weeks you want to practice,
which is 3, lies below the expected number of weeks Barbara believes you will practice, which is 4.6.
However, this is wrong: The expected mental bonus is not based on the expected number of weeks
Barbara believes you will practice, but rather on the belief that you have about the definite number
of weeks Barbara believes you are willing to practice.

Your total expected utility is given by your income from selling the record, minus the mental costs
from practicing, plus a possible mental bonus from exceeding Barbara’s expectation. That is, if you
choose to practice for w1 weeks, Barbara chooses to practice for w2 weeks, and Barbara believes that
you will practice for w′1 weeks, then your utility is

u1(w1, (w2, w
′
1)) :=

{
w1 · w2 − w21 + (w1 − w′1), if w1 > w′1

w1 · w2 − w21, otherwise
. (8.5.1)

Note that the pairs (w2, w
′
1) are precisely the states in your decision problem. The utilities for Barbara

are given by a similar expression. That is, also Barbara∪ cares about exceeding the other person’s
expectations.

Question 8.5.1 Consider the first- and second-order belief for you as specified by the partial beliefs
diagram in Figure 8.5.1.

(a) Write down the second-order expectation e1 that is induced by these beliefs.

(b) Suppose you are willing to practice for five weeks, and hold the beliefs as given by Figure 8.5.1.
Using the formula in (8.5.1), calculate your expected utility.

Note that the utilities in (8.5.1) give rise to a psychological game, since the preferences over your
choices depend on what you believe that Barbara believes about the number of weeks you are willing
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Figure 8.5.1 Partial beliefs diagram for “Exceeding Barbara’s expectations”

You (1, 1) (1, 3) (1, 5) (1, 7) (3, 1) (3, 3) (3, 5) (3, 7)

1 0 0 0 0 2 2 2 2
3 −4 −6 −6 −6 2 0 0 0
5 −16 −18 −20 −20 −6 −8 −10 −10
7 −36 −38 −40 −42 −22 −24 −26 −28

You (5, 1) (5, 3) (5, 5) (5, 7) (7, 1) (7, 3) (7, 5) (7, 7)

1 4 4 4 4 6 6 6 6
3 8 6 6 6 14 12 12 12
5 4 2 0 0 14 12 10 10
7 −8 −10 −12 −14 6 4 2 0

Table 8.5.1 Decision problem for “Exceeding Barbara’s expectations”

to practice, and similarly for Barbara. In other words, your preferences depend on your second-order
beliefs, and the same applies to Barbara. The decision problem for you is given by Table 8.5.1. The
decision problem for Barbara is similar.

The question is: Which choices can you rationally make under common belief in rationality? To
answer this question, we will use the states-first procedure. We start by the iterated elimination of
choices and states.

Round 1. In your decision problem from Table 8.5.1 your choice 7 is strictly dominated by your
choice 5, and can thus be eliminated. Similarly for Barbara. This yields the one-fold decision problem
for you in Table 8.5.2.

You (1, 1) (1, 3) (1, 5) (1, 7) (3, 1) (3, 3) (3, 5) (3, 7)

1 0 0 0 0 2 2 2 2
3 −4 −6 −6 −6 2 0 0 0
5 −16 −18 −20 −20 −6 −8 −10 −10

You (5, 1) (5, 3) (5, 5) (5, 7) (7, 1) (7, 3) (7, 5) (7, 7)

1 4 4 4 4 6 6 6 6
3 8 6 6 6 14 12 12 12
5 4 2 0 0 14 12 10 10

Table 8.5.2 One-fold reduced decision problem for “Exceeding Barbara’s expectations”
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You (1, 1) (1, 3) (1, 5) (3, 1) (3, 3) (3, 5) (5, 1) (5, 3) (5, 5)

1 0 0 0 2 2 2 4 4 4
3 −4 −6 −6 2 0 0 8 6 6

Table 8.5.3 Two-fold reduced decision problem for “Exceeding Barbara’s expectations”

You (1, 1) (1, 3) (3, 1) (3, 3)

1 0 0 2 2
3 −4 −6 2 0

Table 8.5.4 Three-fold reduced decision problem for “Exceeding Barbara’s expectations”

Round 2. From your decision problem in Table 8.5.2 we start by eliminating all states (w2, w
′
1) where

either w2 or w′1 is equal to 7. In the reduced decision problem that remains, your choice 5 is strictly
dominated by 3 and can thus be eliminated. Similarly for Barbara. This yields the two-fold reduced
decision problem for you in Table 8.5.3.

Round 3. From the decision problem in Table 8.5.3 we start by eliminating all states (w2, w
′
1) where

either w2 or w′1 is equal to 5. In the remaining decision problem no choice is strictly dominated, and
hence the iterated elimination of choices and states terminates here. The final decision problem for
the iterated elimination of choices and states is thus given by Table 8.5.4.

We now take the reduced decision problem from Table 8.5.4 as the input for applying the iterated
elimination of choices and second-order expectations.

Round 1. In the decision problem from Table 8.5.4 no choice is strictly dominated. Hence, no choice
can be eliminated for you, and similarly for Barbara.

Round 2. For both choices of Barbara, 1 and 3, we wish to find the sets B22(1) and B22(3) of first-
order beliefs that support these choices. To do so, we first visualize Barbara’s conditional preference
relation in the right-hand panel of Figure 8.5.2. Note that choosing 3 is only optimal for Barbara if
her second-order expectation assigns probability 1 to the state (3, 1). In that case, she would actually
be indifferent between choosing 1 and 3. For all other second-other expectations Barbara would prefer
1 to 3.

As a consequence, the only first-order belief for Barbara that supports her choice 3 is the one that
assigns probability 1 to you choosing 3. That is,

B22(3) = {3}. (8.5.2)

On the other hand, every first-order belief for Barbara can be extended to a second-order expectation
for which her choice 1 is optimal. Hence,

B22(1) = ∆(C1). (8.5.3)

We are now ready to derive the second-order expectations for you in E21 . By definition, E
2
1 contains

exactly those second-order expectations e1 such that

e1(· | c2) is in B22(c2)

for every choice c2 of Barbara to which e1 assigns a positive probability. Together with (8.5.2) and
(8.5.3) we thus see that E21 contains precisely those second-order expectations e1 such that

e1(· | 32) = 31 (8.5.4)
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Figure 8.5.2 Second-order expectations for round 2 in “Exceeding Barbara’s expectations”

whenever e1 assigns positive probability to 32, and

e1(· | 12) ∈ ∆(C1) (8.5.5)

whenever e1 assigns positive probability to 12. Here, the subindices 1 and 2 indicate the player to
which the choice belongs. As (8.5.5) is not a restriction, the set E21 contains exactly those second-
order expectations e1 that satisfy (8.5.4). Visually, these are the second-order expectations in the grey
dotted triangle of the left-hand panel in Figure 8.5.2.

Note that your conditional preference relation is the same as the one for Barbara, as can be seen in
the left-hand panel of this figure. By comparing your conditional preference relation with the set E21
of second-order expectations, we see that there is no second-order expectation in E21 for which your
choice 3 is optimal. We can thus eliminate your choice 3. Similarly for Barbara.

Since we are left with only one choice for both players, which is the choice 1, we conclude that
under common belief in rationality you can only rationally practice for one week. In particular, it will
not be optimal to try to exceed Barbara’s expectations under common belief in rationality. To reach
this conclusion, the iterated elimination of choices and states was not enough, as this procedure left
the choices 1 and 3 for both players. To eliminate the choice 3, we had to apply the more tedious
iterated elimination of choices and second-order expectations to the reduced decision problem in Table
8.5.4.

At the same time, applying the iterated elimination of choices and second-order expectations right
from the beginning, to the full decision problem in Table 8.5.1, would have been extremely diffi cult
and cumbersome, since we would have to deal with 16 states. This example thus shows that using the
states-first procedure can be very convenient from a practical point of view.

To conclude this example, we show that you can indeed rationally choose to practice for 1 week
under common belief in rationality. Consider the beliefs diagram in Figure 8.5.3. It can be verified
that your unique belief hierarchy expresses common belief in rationality, and that your choice 1 is
optimal for the second-order expectation (1, 1) induced by this belief hierarchy. Therefore, you can
indeed rationally practice for one week under common belief in rationality.
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Figure 8.5.3 Beliefs diagram for “Exceeding Barbara’s expectations”

8.6 When Elimination of Choices and States is Enough

In this section we will identify conditions under which the iterated elimination of choices and states
is suffi cient to capture all the choices that can rationally be made under common belief in rationality.
This will be useful, since the iterated elimination of choices and states is an easy procedure to use —
much easier than the iterated elimination of choices and second-order expectations, and it is therefore
important to know when we are allowed to use this easier procedure. As a first step, we go back to
the example “The black and white dinner”, and try to see intuitively why the elimination of choices
and states is not suffi ciently fine-grained to yield the choices that are possible under common belief in
rationality. The reason, as we will see, is that in this example, trying to support certain choices under
common belief in rationality may induce conflicting conditions on higher-order beliefs. This insight
will then help us to identify conditions where this problem of conflicting conditions cannot occur, and
where the elimination of choices and states is suffi cient to yield all the choices that can rationally be
made under common belief in rationality.

8.6.1 Conflicting Conditions on Higher-Order Beliefs
In Section 8.4.2 we have seen that in order to obtain the choices you can rationally make under common
belief in rationality, the recursive elimination of states and choices may not be enough. Recall the
example “The black and white dinner”with the decision problems as given in Table 8.4.3. We saw
that under common belief in rationality you cannot rationally choose black, but at the same time your
choice black cannot be eliminated by the recursive elimination of states and choices alone. But what
exactly causes this discrepancy?

The problem is that in order to justify your choice black while believing in Barbara’s rationality,
we obtain two conflicting conditions on your second-order belief. On the one hand, your choice black
can only be optimal if your second-order expectation is (w,w). In particular, your choice black can
only be optimal if your second-order belief assigns probability 1 to the event that Barbara assigns
probability 1 to you choosing white.

On the other hand, if your second-order expectation is (w,w) then you must assign probability
1 to Barbara choosing white. Note that for Barbara, choosing white is only optimal if she holds the
second-order expectation (b, b). Hence, if you believe in Barbara’s rationality, then your second-order
belief must assign probability 1 to the event that Barbara assigns probability 1 to you choosing black.

Summarizing, we see that in order to support your choice black, your second-order belief must
assign probability 1 to the event that Barbara assigns probability 1 to you choosing white, whereas
the belief in Barbara’s rationality implies that your second-order belief must assign probability 1 to
the event that Barbara assigns probability 1 to you choosing black. Clearly, these two conditions are
at odds, and therefore you cannot rationally choose black if you believe in Barbara’s rationality.
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Figure 8.6.1 Causality diagram for “The black and white dinner”

The tension between these two conditions can be visualized by the causality diagram in Figure 8.6.1.
Here, the restrictions on the first- and second-order belief that follow from supporting your choice black
are represented by the two solid arrows. The restriction on the second-order belief induced by the
belief in Barbara’s rationality is given by the dashed arrow.

The problem is that the removal of choices and states alone is not suffi ciently fine-grained to
identify this tension. Indeed, in the example every choice is optimal for at least one second-order
expectation, and hence no choice can be removed in the first round. As a consequence, no choice can
be removed at all if we restrict to eliminating choices and states. What this procedure overlooks is
the fact that the only second-order expectation which supports your choice black —the second-order
expectation (w,w) —is inconsistent with the belief in Barbara’s rationality.

8.6.2 When Conflicting Conditions Cannot Arise
In the example above we have seen that in order to support a given choice by a second-order expecta-
tion, the belief in the opponent’s rationality may yield contradictory conditions on the second-order
belief. When this occurs, we conclude that the choice cannot rationally be made under common
belief rationality. At the same time, the iterated elimination of choices and states is not suffi ciently
fine-grained to identify these contradictory conditions, and may therefore fail to eliminate this choice.

This raises the following question: Are there classes of psychological games where such conflicting
conditions on higher-order beliefs can simply not arise? As we will see, the answer is yes, and these
will precisely be the games where the iterated elimination of choices and states is suffi cient to identify
the choices that are possible under common belief in rationality. As a first illustration, consider the
following example.

Example 8.7: Barbara’s birthday.

Tomorrow it will be Barbara’s birthday, and you want to buy her a nice gift. Suppose you can choose
between buying her a necklace, a ring, or a bracelet, but that you prefer buying a necklace to buying
a ring, and that you prefer buying a ring to buying a bracelet. At the same time you would like it if
your gift would come as a surprise to her.

Barbara, on the other hand, would like to guess what you will be buying, and she prefers to
guess correctly. Hence, she can choose between guessing you bought a necklace, a ring, or a bracelet.
However, you do not care about Barbara’s actual guess: You only care about the gift you buy, and
about the degree by which you believe to surprise Barbara.

This situation can be modeled by the psychological game in Table 8.6.1. In your decision problem,
(·, n) represents the collection of states where you believe that Barbara believes that you will buy
a necklace. Similarly for the other two columns. The · indicates that your belief about Barbara’s
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You (·, n) (·, r) (·, b)
necklace 0 3 3

ring 2 0 2
bracelet 1 1 0

Barbara (n, ·) (r, ·) (b, ·)
necklace 1 0 0

ring 0 1 0
bracelet 0 0 1

Table 8.6.1 Decision problems for “Barbara’s birthday”

Figure 8.6.2 Causality diagram for “Barbara’s birthday”

choice — that is, your first-order belief — does not matter for your preference relation over choices.
However, it is relevant for your decision problem what Barbara believes about your choice. Hence,
your preferences only depend on your second-order belief but not on your first-order belief.

Similarly, in Barbara’s decision problem, (n, ·) represents the collection of states where she believes
that you will buy a necklace. The · thus means that Barbara’s preferences do not depend on her
second-order belief, only on her first-order belief.

Similarly to Figure 8.6.1 we can also make a causality diagram for this particular game, and see
that no conflicting conditions on higher-order beliefs can arise if we want to support a choice under
common belief in rationality. Consider the causality diagram in Figure 8.6.2. Indeed, if we wish
to support a choice for you under common belief in rationality by a second-order expectation, then
it is only relevant what we choose as the second-order belief, since your preferences do not depend
on your first-order belief. In turn, to justify the second-order belief (what you believe that Barbara
believes that you will buy) under common belief in rationality, it is only relevant what we choose as
the fourth-order belief (what you believe that Barbara believes that you believe that Barbara believes
that you will buy). The reason is similar: If you believe that Barbara believes that you buy the gift
g then, under common belief in rationality, you must believe that Barbara believes that you hold a
second-order belief that makes buying the gift g optimal. This, in turn, leads to a fourth-order belief.
Your third-order belief is not relevant here. We could of course continue in this way: To justify your
fourth-order belief it is only relevant what we choose as your sixth-order belief, for similar reasons, and
so on. By continuing in this way we never get contradicting conditions on any of your higher-order
beliefs.

Because of this, the iterated elimination of choices and states, as discussed in Section 8.5.2, will
be suffi cient to identify all choices you can rationally make under common belief in rationality. To see
why, let us first apply this procedure.

Round 1. In your decision problem, the choice bracelet is strictly dominated by the randomized
choice (0.4)· necklace + (0.6)· ring, and can thus be eliminated. This yields the one-fold reduced
decision problems in Table 8.6.2.
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You (·, n) (·, r) (·, b)
necklace 0 3 3

ring 2 0 2

Barbara (n, ·) (r, ·) (b, ·)
necklace 1 0 0

ring 0 1 0
bracelet 0 0 1

Table 8.6.2 One-fold reduced decision problems in “Barbara’s birthday”

You (·, n) (·, r)
necklace 0 3

ring 2 0

Barbara (n, ·) (r, ·)
necklace 1 0

ring 0 1

Table 8.6.3 Two-fold reduced decision problems in “Barbara’s birthday”

Round 2. Since your choice bracelet has been eliminated at round 1, we can eliminate the states
(·, b) in your decision problem, and we can eliminate the states (b, ·) in Barbara’s decision problem.
Subsequently, in Barbara’s reduced decision problem, her guess bracelet becomes strictly dominated
by the randomized guess (0.5)· necklace + (0.5)· ring, and can thus be eliminated. This leads to the
two-fold reduced decision problems in Table 8.6.3.

Round 3. Since Barbara’s choice bracelet has been eliminated in Round 2, we can eliminate the
states (b, n) and (b, r) in your decision problem, and we can eliminate the states (n, b) and (r, b) in
Barbara’s decision problem. This leads to the three-fold reduced decision problem in Table 8.6.4, after
which the procedure of iterated elimination of choices and states ends.

Hence, your choices necklace and ring survive the iterated elimination of choices and states. We
will see that under common belief in rationality you can indeed rationally make these two choices. To
show this we proceed in two steps: We first design a partial beliefs diagram where every surviving
choice for you is supported by a second-order belief that only points to surviving choices for you.
We then complete the beliefs diagram by adding first-order beliefs where you believe in Barbara’s
rationality.

On the basis of your reduced decision problem in Table 8.6.4 we can design the partial beliefs
diagram in Figure 8.6.3, where every surviving choice for you has been supported by a second-order
belief that only points to surviving choices for you. Note that we have not specified your first-order
beliefs yet, which is why we call it a partial beliefs diagram. This has been indicated by the dots,
which refer to some unspecified choices for Barbara.

Subsequently, we can complete this partial beliefs diagram to a full beliefs diagram, by additionally
specifying your first-order beliefs. Of course, we will do so in a way that reflects your belief in Barbara’s
rationality. Consider your choice necklace, which is supported by the second-order belief where you
believe that Barbara believes that you will buy a ring. If, in addition, you believe in Barbara’s
rationality, you must necessarily believe that Barbara will guess that you buy a ring. As such, your

You (n, n) (n, r) (r, n) (r, r)

necklace 0 3 0 3
ring 2 0 2 0

Barbara (n, n) (n, r) (r, n) (r, r)

necklace 1 1 0 0
ring 0 0 1 1

Table 8.6.4 Three-fold reduced decision problems in “Barbara’s birthday”
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Figure 8.6.3 Partial beliefs diagram for “Barbara’s birthday”

Figure 8.6.4 Full beliefs diagram for “Barbara’s birthday”

choice necklace will be supported by the combination of a first- and second-order belief where you
believe that Barbara guesses ring, and you believe that Barbara believes that you will buy a ring. See
the full beliefs diagram in Figure 8.6.4. By a similar reasoning, your choice ring can be supported by
the combination of a first- and second-order belief where you believe that Barbara guesses necklace,
and you believe that Barbara believes that you will buy a necklace.

Since all the arrows are solid, we conclude on the basis of Figure 8.6.4 that you can rationally buy
either a necklace or a ring under common belief in rationality. Therefore, the iterated elimination
of choices and states delivers precisely the choices you can rationally make under common belief in
rationality.

The method we have used above can be applied to any psychological game where player 1’s prefer-
ences only depend on his second-order belief and player 2’s preferences only depend on his first-order
belief. As a consequence, for every such game the choices that player 1 can rationally make under
common belief in rationality can be found by using the iterated elimination of choices and states.
Note that we are interested in the choices that player 1 can rationally make under common belief in
rationality, and hence we are approaching the game from player 1’s viewpoint.

We can go a bit further here: Suppose that player 1’s preferences depend only on his second-order
belief, whereas player 2’s preferences depend either on his first- and second-order belief, or on his
second-order belief alone. Then, we can apply a method similar to the one above to show that player
1’s choices that can rationally be made under common belief in rationality are exactly given by the
iterated elimination of choices and states.

This is even true if player 1’s preferences only depend on his first-order belief and player 2’s
preferences depend only on his second-order belief. To see why, let us consider an example which is
basically the same as “Barbara’s birthday”, but now with the roles of you and Barbara reversed.
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You (h, ·) (g, ·) (s, ·)
hat 1 0 0

gloves 0 1 0
scarf 0 0 1

Barbara (·, h) (·, g) (·, s)
hat 0 3 3

gloves 2 0 2
scarf 1 1 0

Table 8.6.5 Decision problems for “Your birthday”

You (h, h) (h, g) (g, h) (g, g)

hat 1 1 0 0
gloves 0 0 1 1

Barbara (h, h) (h, g) (g, h) (g, g)

hat 0 3 0 3
gloves 2 0 2 0

Table 8.6.6 Final reduced decision problems in “Your birthday”

Example 8.8: Your birthday.

The story is essentially the same as in “Barbara’s birthday” after switching the roles of you and
Barbara. More precisely, tomorrow it is your birthday, and Barbara wants to buy you a present. She
can choose between buying a hat, a pair of gloves, or a scarf. She prefers buying a hat to buying
gloves, which she prefers to buying a scarf, but at the same time she would like to surprise you. You,
on the other hand, try to guess which present she bought. This situation can be represented by the
psychological game in Table 8.6.5. In particular, your preferences only depend on your first-order
belief, whereas Barbara’s preferences only depend on her second-order belief.

Question 8.6.1 Draw the causality diagram, from player 1’s viewpoint, that belongs to this game.

It may be verified that this causality diagram does not induce conflicting conditions on higher-
order beliefs. As such, we suspect that the choices you can rationally make under common belief in
rationality are precisely those that survive the iterated elimination of choices and states.

To show that this is indeed true, let us first apply the procedure to the game above. Since this
game is essentially equivalent to “Barbara’s birthday”after switching the roles of you and Barbara,
it should come as no surprise that the final reduced decision problems in the procedure are given by
those in Table 8.6.6. Please verify this. We will see that under common belief in rationality, you can
indeed rationally guess hat and gloves.

Like in the example “Barbara’s birthday”we proceed in steps. On the basis of Barbara’s final
reduced decision problem in Table 8.6.6, we start by constructing a partial beliefs diagram where every
surviving choice of Barbara is supported by a second-order belief that only points to surviving choices
of Barbara. Such a partial beliefs diagram is given in Figure 8.6.5.

In the next step we will fill in Barbara’s first-order beliefs, in a similar way as we have done for
“Barbara’s birthday”. Consider Barbara’s choice hat, which is optimal for the second-order belief
where she believes that you believe that she will buy gloves. If, in addition, she believes in your
rationality, then she must believe that you will guess gloves. Thus, Barbara’s choice hat can be
supported by the combination of a first- and second-order belief, where she believes that you will
guess gloves, and she believes that you believe that she will buy gloves. Moreover, this combination
will be consistent with Barbara’s belief in your rationality, and Barbara’s belief that you believe in
Barbara’s rationality.

Similarly, Barbara’s choice gloves can be supported by the combination of a first- and second-order
belief where she believes that you will guess hat, and she believes that you believe that she will buy
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Figure 8.6.5 Partial beliefs diagram for “Your birthday”

Figure 8.6.6 Full beliefs diagram for “Your birthday”

a hat. This leads to the full beliefs diagram in Figure 8.6.6.
From this beliefs diagram it can immediately be seen that you can rationally guess gloves and hat

under common belief in rationality. We therefore conclude that the choices you can rationally make
under common belief in rationality are precisely the choices that survive the iterated elimination of
choices and states.

Such a construction of the partial and full beliefs diagram is always possible whenever player
1’s preferences only depend on his first-order belief and player 2’s preferences only depend on his
second-order belief. As a consequence, for every such game we can always find player 1’s choices that
can rationally be made under common belief in rationality by performing the iterated elimination of
choices and states.

Above we have seen that this is also true for every game where player 1’s preferences only depend
on his second-order belief. Finally, if player 1’s and player 2’s preferences only depend on their first-
order belief then we are dealing with a standard game, as defined in Chapter 3, for which we know
that the iterated elimination of choices and states yields precisely the choices that are possible under
common belief in rationality. Altogether we thus arrive at the following conclusion.

Theorem 8.6.1 (When elimination of choices and states is suffi cient) Consider a psycholog-
ical game where either

(i) player 1’s preferences only depend on his second-order belief, or

(ii) player 1’s and player 2’s preferences only depend on their first-order belief, or

(iii) player 1’s preferences only depend on his first-order belief and player 2’s preferences only depend
on his second-order belief.
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Then, the choices that player 1 can rationally make under common belief in rationality are precisely
those that survive the iterated elimination of choices and states.

In other words, if we wish to find player 1’s choices that can rationally be made under common
belief in rationality, then the only instances where we need the full-fledged iterated elimination of
choices and second-order expectations are the situations where player 1’s preferences depend on his
first- and second-order belief, and the situations where player 1’s preferences depend only on his
first-order belief and player 2’s preferences depend on his first- and second-order belief. In all other
situations we can safely use the easier procedure of iterated elimination of choices and states.
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8.7 Proofs

8.7.1 Proofs of Section 8.4
Contrary to the order of the theorems in Section 8.4, we start by proving Theorem 8.4.2.

Proof of Theorem 8.4.2. For every round k and player i, let Cki be the set of choices for player
i that survive round k, and Eki the set of second-order expectations for player i that survive round
k. For every choice ci and round k ≥ 2 we denote by Eki (ci) the set of second-order expectations in
Eki for which the choice ci is optimal. Finally, for every round k ≥ 2 we denote by Bk

i (ci) the set of
first-order beliefs induced by the second-order expectations in Ek−1i (ci).We define E1i to be the set of
all second-order expectations, E1i (ci) to be the set of second-order expectations in E1i for which ci is
optimal, and B1i (ci) to be the set of all first-order beliefs. Moreover, we define C0i to be the set of all
choices for player i. We show the following preparatory result.

Claim. For every player i and round k ≥ 1, the set Bk
i (ci) is non-empty for every ci ∈ Ck−1i , the sets

Eki and C
k
i are non-empty, and the set E

k
i (ci) is non-empty for every ci ∈ Cki .

Proof of claim. By induction on k.

Induction start. We start with k = 1. Take a choice ci ∈ C0i = Ci. Then, by definition, B1i (ci) is
the set of all first-order beliefs, and is thus non-empty. Moreover, E1i is the set of all second-order
expectations, which is non-empty as well. To show that C1i is non-empty, take a choice ci that is
optimal for some second-order expectation in the decision problem for player i. Then, by Theorem
2.6.1, the choice ci is not strictly dominated, and hence ci ∈ C1i . In particular, C

1
i is non-empty.

Finally, take some choice ci ∈ C1i . Then, ci is not strictly dominated in i’s decision problem, which
implies by Theorem 2.6.1 that ci is optimal for some second-order expectation ei ∈ E1i . As such,
ei ∈ E1i (ci), which means that E1i (ci) is non-empty.

Induction step. Let k ≥ 2, and suppose that the claim is true for k−1. Take some choice ci ∈ Ck−1i .
Since Bk

i (ci) is the set of first-order beliefs induced by the second-order expectations in Ek−1i (ci) and,
by the induction assumption, Ek−1i (ci) is non-empty, it follows that Bk

i (ci) is non-empty as well. The
same applies for opponent j, and hence Bk

j (cj) is non-empty for every cj ∈ Ck−1j . As such, we can
construct a second-order expectation ei that only assigns positive probability to opponent’s choices in
Ck−1j , and where

ei(· | cj) ∈ Bk
j (cj)

for every cj to which ei assigns positive probability. By construction, such ei is in Eki , and therefore
Eki is non-empty. Next, take a choice ci that is optimal for a second-order expectation in E

k
i . Then,

by definition, ci ∈ Cki , which means that Cki is non-empty as well. Finally, take some ci ∈ Cki . Then,
by definition, there is some ei ∈ Eki for which ci is optimal. As such, ei ∈ Eki (ci). In particular, Eki (ci)
is non-empty for all ci ∈ Cki .

By induction on k, it follows that the claim is true for every round k. In particular, we conclude
that Cki is non-empty for every round k. Since C

k
i ⊆ Ck−1i for every k ≥ 1, and there are only finitely

many choices, there must for every player i be a choice ci that is in Cki for every round k. But then,
this choice ci survives all rounds of the procedure. Thus, for every player i there is at least one choice
that survives all rounds. This completes the proof. �

For the proof of Theorem 8.4.1 we need the following preparatory result, which is known in mathe-
matics as Cantor’s intersection theorem. Recall from Section 2.7.3 what it means for a set to be closed
and bounded.
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Lemma 8.7.1 (Cantor’s intersection theorem) Let X be a finite set, and let A1, A2, A3, ... be an
infinite sequence of nested subsets of RX such that (a) Ak+1 ⊆ Ak for every k ≥ 1, and (b) Ak is
non-empty, closed and bounded for every k. Then, there is some v ∈ RX such that v ∈ Ak for every
k ≥ 1.

The proof can be found in many books on mathematics.

Proof of Theorem 8.4.1. For every round k ≥ 2, recall that Eki is the set of second-order expecta-
tions for player i that survive round k of the procedure. For round 1, we define E1i to be the set of all
second-order expectations. Moreover, we say that every type ti expresses 0-fold belief in rationality.
In other words, 0-fold belief in rationality imposes no restrictions on types.

In order to prove this theorem we first show the following preparatory result, which states that
the second-order expectations that survive round k are precisely those that are consistent with up to
(k − 1)-fold belief in rationality.

Claim. For every k ≥ 1 and every player i, we have that ei ∈ Eki if and only if there is an epistemic
model, and a type ti for player i in it, such that ti induces ei and ti expresses up to (k− 1)-fold belief
in rationality.

Proof of claim. We show the statement by induction on k.

Induction start. We start with k = 1. Take some ei ∈ E1i . Then, there is an epistemic model, and
a type ti within it, that induces the second-order expectation ei. Moreover, ti satisfies 0-fold belief in
rationality.

Suppose next that there is an epistemic model, and a type ti for player i within it, that induces
ei and expresses 0-fold belief in rationality. Then, trivially, ei ∈ E1i as E1i contains all second-order
expectations. This completes the induction start.

Induction step. Suppose that k ≥ 2 and that the claim is true for k− 1. Suppose first that ei ∈ Eki .
We show that there is a type ti that expresses up to (k− 1)-fold belief in rationality and that induces
the second-order expectation ei. Since ei ∈ Eki we know, by definition, that

ei(· | cj) ∈ Bk
j (cj) (8.7.1)

whenever ei assigns positive probability to the choice cj . Let C+j (ei) be the set of choices for player j
that receive positive probability by ei. Moreover, let ei(cj) denote the probability that ei assigns to
the opponent’s choice cj .

By definition, there is for every first-order belief b1j ∈ Bk
j (cj) a second-order expectation ej ∈ Ek−1j

that induces b1j and for which the choice cj is optimal. Hence, in view of (8.7.1), there is for every

choice cj ∈ C+j (ei) some second-order expectation ej [cj ] ∈ Ek−1j that induces the first-order belief ei(·
| cj) and for which the choice cj is optimal.

By the induction assumption, there is for every choice cj ∈ C+j (ei) an epistemic model M [cj ], and
a type tj [cj ] in M [cj ], such that tj [cj ] expresses up to (k − 2)-fold belief in rationality, and such that
tj [cj ] has the second-order expectation ej [cj ] ∈ Ek−1j . Create a large epistemic model that contains
all these epistemic models M [cj ] for every cj ∈ C+j (ei). Moreover, define a new type ti within this
epistemic model such that

bi(ti)(cj , tj) :=

{
ei(cj), if cj ∈ C+j (ei) and tj = tj [cj ]

0, otherwise
. (8.7.2)
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Then, ti only assigns positive probability to choice-type pairs (cj , tj [cj ]), where cj ∈ C+j (ei). By
construction, every such type tj [cj ] induces the second-order expectation ej [cj ] for which the choice cj
is optimal. Hence, ti only assigns positive probability to choice-type pairs (cj , tj [cj ]) where the choice
cj is optimal for the type tj [cj ]. As such, ti expresses 1-fold belief in rationality.

Moreover, by (8.7.2), the type ti only assigns positive probability to opponent’s types tj [cj ] where
cj ∈ C+j (ei). Since every such type tj [cj ] expresses up to (k−2)-fold belief in rationality, it follows that
type ti expresses 2-fold up to (k − 1)-fold belief in rationality. Since we already saw that ti expresses
1-fold belief in rationality, we conclude that ti expresses up to (k − 1)-fold belief in rationality.

We next show that ti induces the second-order expectation ei. Let ei[ti] be the second-order expec-
tation induced by the type ti. By (8.7.2) we know that ei[ti] assigns probability ei(cj) to every choice
cj ∈ C+j (ei) and probability zero to all other choices. Hence, ei[ti]’s first-order belief coincides with
the first-order belief of ei.

Now, consider a choice cj ∈ C+j (ei) and the associated type tj [cj ]. Recall that type tj [cj ] induces
the second-order expectation ej [cj ] which, in turn, induces the first-order belief ei(· | cj). Hence, the
type tj [cj ] holds the first-order belief ei(· | cj). In view of (8.7.2) we can thus conclude that

(ei[ti])(· | cj) = ei(· | cj) (8.7.3)

for every cj ∈ C+j (ei).
By (8.7.3) and the insight above that ei[ti] has the same first-order belief as ei, we conclude that

ei[ti] = ei. That is, type ti induces the second-order expectation ei. Altogether, we see that there
is a type ti that expresses up to (k − 1)-fold belief in rationality and that induces the second-order
expectation ei. Hence, for every ei ∈ Eki there is a type ti that expresses up to (k − 1)-fold belief in
rationality and that induces the second-order expectation ei.

Conversely, suppose that ei is a second-order expectation for which there is a type ti that expresses
up to (k− 1)-fold belief in rationality and that induces the second-order expectation ei. We will show
that ei ∈ Eki .

Let (cj , tj) be an opponent’s choice-type pair with bi(ti)(cj , tj) > 0. Since ti expresses up to (k−1)-
fold belief in rationality, we conclude that cj is optimal for tj , and that tj expresses up to (k− 2)-fold
belief in rationality. Let ej [tj ] be the second-order expectation induced by tj . As tj expresses up to
(k − 2)-fold belief in rationality, we know by the induction assumption that ej [tj ] ∈ Ek−1j . Hence, we
conclude that

bi(ti)(cj , tj) > 0 only if cj is optimal for tj and ej [tj ] ∈ Ek−1j .

For a given choice cj , let Ek−1j (cj) be the set of second-order expectations in Ek−1j for cj is optimal.
Together with our insight above, we thus see that

bi(ti)(cj , tj) > 0 only if ej [tj ] ∈ Ek−1j (cj).

Since, by definition, Bk
j (cj) are the first-order beliefs induced by the second-order expectations in

Ek−1j (cj), we conclude that

bi(ti)(cj , tj) > 0 only if b1j [tj ] ∈ Bk
j (cj), (8.7.4)

where b1j [tj ] is the first-order belief induced by the type tj .
On the basis of (8.7.4) we will now show that

ei(· | cj) ∈ Bk
j (cj) (8.7.5)
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for every cj ∈ C+j (ei). Recall that ei is the second-order expectation induced by the type ti. Take some
cj ∈ C+j (ei). Then, we have that

ei(ci | cj) =

∑
tj :bi(ti)(cj ,tj)>0

bi(ti)(cj , tj) · b1j [tj ](ci)

b1i [ti](cj)

for all ci ∈ Ci. This implies that

ei(· | cj) =
∑

tj :bi(ti)(cj ,tj)>0

λ[tj ] · b1j [tj ], (8.7.6)

where

λ[tj ] :=
bi(ti)(cj , tj)

b1i [ti](cj)
for every tj with bi(ti)(cj , tj) > 0. (8.7.7)

From (8.7.7) we see that λ[tj ] ≥ 0, and ∑
tj :bi(ti)(cj ,tj)>0

λ[tj ] = 1.

Together with (8.7.6) we thus conclude that ei(· | cj) is a convex combination of the first-order beliefs
b1j [tj ], where tj is such that bi(ti)(cj , tj) > 0. By (8.7.4) we know that b1j [tj ] ∈ Bk

j (cj) for every type tj
with bi(ti)(cj , tj) > 0. Together with our insight above, we see that

ei(· | cj) is a convex combination of first-order beliefs b1j [tj ] ∈ Bk
j (cj). (8.7.8)

We now show that Ek−1j (cj) is a convex set. Take some ej , êj ∈ Ek−1j (cj) and some λ ∈ [0, 1]. We

show that (1−λ) · ej +λ · êj ∈ Ek−1j (cj). By definition of Ek−1j (cj), the choice cj is optimal for ej and
êj . But then, cj is optimal for (1− λ) · ej + λ · êj . Indeed, for every c′j ∈ Cj we have that

uj(cj , (1− λ) · ej + λ · êj) = (1− λ) · uj(cj , ej) + λ · uj(cj , êj)
≥ (1− λ) · uj(c′j , ej) + λ · uj(c′j , êj)
= uj(c

′
j , (1− λ) · ej + λ · êj),

where the inequality follows the fact that cj is optimal for ej and êj .We therefore see that cj is optimal
for (1−λ) ·ej +λ · êj . Hence, (1−λ) ·ej +λ · êj ∈ Ek−1j (cj). As such, we conclude that the set Ek−1j (cj)
is convex.

By definition, Bk
j (cj) is the set of first-order beliefs implied by the second-order expectations in

Ek−1j (cj). Since the set Ek−1j (cj) is convex, it follows that the set Bk
j (cj) is convex as well.

But then, (8.7.8) implies that ei(· | cj) ∈ Bk
j (cj). Since this holds for every cj ∈ C+j (ei), we conclude

that (8.7.5) holds. Hence, by definition, ei ∈ Eki .
We have thus shown that every second-order expectation ei for which there is a type ti that

expresses up to (k − 1)-fold belief in rationality and that induces the second-order expectation ei,
must be in Eki . As the converse has also been shown above, we conclude that the statement of the
claim holds for k. By induction on k, the statement in the claim holds for every k. This completes the
proof of the claim.

We are now able to prove parts (a) and (b) of Theorem 8.4.1.
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(a) Suppose that player i can rationally make the choice ci while expressing up to k-fold belief in
rationality. Then, there is a type ti that expresses up to k-fold belief in rationality and for which the
choice ci is optimal. Suppose that ti induces the second-order expectation ei. Then, we now by the
claim that ei ∈ Ek+1i . Moreover, ci is optimal for ei. As such, ci survives the first k + 1 rounds of the
procedure.

Suppose next that choice ci survives the first k + 1 rounds of the procedure. Then, by definition,
there is a second-order expectation ei ∈ Ek+1i for which ci is optimal. By the claim we know that
there is a type ti that expresses up to k-fold belief in rationality and that induces the second-order
expectation ei. Since ci is optimal for ei, we know that ci is also optimal for ti, and hence ci can
rationally be made while expressing up to k-fold belief in rationality.

(b) Suppose that choice ci can rationally be made while expressing common belief in rationality.
Then, by (a) we know that ci survives the first k + 1 rounds, for every k ≥ 1, and hence ci survives
all rounds of the procedure.

We will now construct an epistemic model where, for every choice ci that survives all rounds of
the procedure, there is a type that expresses common belief in rationality and for which the choice ci
is optimal.

For every choice ci and round k, let Eki (ci) denote the set of second-order expectations in Eki for
which the choice ci is optimal. To construct the epistemic model we look, for both players i, at the
set of choices C∗i that survive all rounds of the procedure, at the set

E∗i := {ei ∈ Ei | ei ∈ Eki for all k ≥ 1},

and for every choice ci ∈ C∗i at the set

E∗i (ci) := {ei ∈ Ei | ei ∈ Eki (ci) for all k ≥ 1}.

Hence, E∗i contains all the second-order expectations that survive all the rounds of the procedure,
whereas E∗i (ci) contains all the second-order expectations in E∗i that support the choice ci.

We will now show that the set E∗i (ci) is non-empty for every choice ci ∈ C∗i . Take some ci ∈ C∗i that
survives all rounds. Then, for every round k there is second-order expectation eki ∈ Eki (ci) for which
the choice ci is optimal. We will show, by means of Lemma 8.7.1, that there is some second-order
expectation ei which is in Eki (ci) for all k, and therefore is in E∗i (ci).

By construction, Eki (ci) consists of probability distributions on Cj × Ci, and hence Eki (ci) is a
subset of RCj×Ci . Since for every k there is some eki in E

k
i (ci), we conclude that every set Eki (ci) is

non-empty. Moreover, since every ei ∈ Eki (ci) corresponds to a vector in RCj×Ci where all coordinates
are between 0 and 1, we conclude that every set Eki (ci) is bounded.

We next show that Eki (ci) is closed, by induction on k.
For k = 1 we have that Eki (ci) = Ei = ∆(Cj × Ci), which is a closed set.
Now, take some k ≥ 2, and assume that Ek−1i (ci) is closed. We show that Eki (ci) is closed, by

showing that RCj×Ci\Eki (ci) is open. Take some vi ∈ RCj×Ci\Eki (ci). Then, either (i) vi is not a
probability distribution on Cj ×Ci, or (ii) vi is a probability distribution but ci is not optimal for vi,
or (iii) vi is a probability distribution, ci is optimal for vi, but vi /∈ Eki (ci). In cases (i) and (ii) we can
find an open ball Br(vi) around vi such that Br(vi) ⊆ RCj×Ci\Eki (ci).

In case (iii) we know that there is some cj with

vi(cj) > 0 such that vi(· | cj) /∈ Bk
j (cj). (8.7.9)
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By the induction assumption we know that Ek−1j (cj) is closed. As Bk
j (cj) contains the first-order

beliefs induced by the second-order expectations in Ek−1j (cj), it follows that Bk
j (cj) is closed as well.

By (8.7.9) we conclude that there is an open ball Br(vi) around vi such that (8.7.9) holds for every
wi ∈ Br(vi). Hence, there is an open ball Br(vi) around vi such that Br(vi) ⊆ RCj×Ci\Eki (ci).

In view of the cases (i), (ii) and (iii), it follows that the set RCj×Ci\Eki (ci) is open, which means
that Eki (ci) is closed.

Finally, by construction, we have that Ek+1i (ci) ⊆ Eki (ci) for every k ≥ 1. We may therefore
conclude, by Lemma 8.7.1, that there is some second-order expectation ei such that ei ∈ Eki (ci) for all
k. As such, ei ∈ E∗i (ci), and thus E∗i (ci) is non-empty for every choice ci ∈ C∗i . Since we know, from
Theorem 8.4.2, that C∗i is non-empty, this implies that E

∗
i is non-empty as well.

For every choice ci, let B∗i (ci) be the set of first-order beliefs for player i that are induced by some
second-order expectation in E∗i (ci). By construction of the procedure, we then have that ei ∈ E∗i
precisely when

ei(· | cj) ∈ B∗j (cj) (8.7.10)

for every cj to which ei assigns positive probability. On the basis of this property we can now construct
second-order expectations as follows.

We first select, for both players i and every choice c1i ∈ C∗i , a second-order expectation ei[c1i ] ∈
E∗i (c1i ) for which c

1
i is optimal.

Now, take some c1i ∈ C∗i and some c2j to which ei[c1i ] assigns positive probability. Then, we have
by (8.7.10) that ei[c1i ](· | c2j ) ∈ B∗j (c2j ). This means that there must be some second-order expectation
ej [c

1
i , c

2
j ] ∈ E∗j (c2j ) that has the first-order belief ei[c

1
i ](· | c2j ) for which c2j is optimal. In particular,

it follows that c2j ∈ C∗j . Hence, for every c1i ∈ C∗i and every c2j ∈ C∗j to which ei[c1i ] assigns positive
probability, there is some second-order expectation ej [c1i , c

2
j ] ∈ E∗j (c2j ) for which c

2
j is optimal and that

has the first-order belief ei[c1i ](· | c2j ).
Next, take some c1i ∈ C∗i , some c2j ∈ C∗j to which ei[c1i ] assigns positive probability, and some c3i to

which ej [c1i , c
2
j ] assigns positive probability. As ej [c

1
i , c

2
j ] ∈ E∗j , it follows by (8.7.10) that ej [c1i , c2j ](· |

c3i ) ∈ B∗i (c3i ). This means that there must be some second-order expectation ei[c
1
i , c

2
j , c

3
i ] ∈ E∗i (c3i ) for

which c3i is optimal and that has the first-order belief ej [c
1
i , c

2
j ](· | c3i ). In particular, it follows that

c3i ∈ C∗i . Hence, for every c
1
i ∈ C∗i , every c

2
j ∈ C∗j to which ei[c

1
i ] assigns positive probability, and

every c3i ∈ C∗i to which ej [c1i , c2j ] assigns positive probability, there is some second-order expectation
ei[c

1
i , c

2
j , c

3
i ] ∈ E∗i (c3i ) that has the first-order belief ej [c

1
i , c

2
j ](· | c3i ) and for which c3i is optimal.

By continuing in this fashion, we can construct for every odd m ≥ 1, every c1i ∈ C∗i , c2j ∈ C∗j , ... ,
cmi ∈ C∗i a second-order expectation ei[c1i , c2j , ..., cmi ], and for every even m ≥ 2, every c1j ∈ C∗i , c2i ∈ C∗j ,
... , cmi ∈ C∗i a second-order expectation ei[c1j , c2i , ..., cmi ] such that the following conditions hold: For
every odd m ≥ 1,

cmi is optimal for ei[c1i , c
2
j , ..., c

m
i ] (8.7.11)

and
ei[c

1
i , c

2
j , ..., c

m
i ] has the first-order belief ej [c1i , c

2
j , ..., c

m−1
j ](· | cmi ) (8.7.12)

whenever ei[c1i ] assigns a positive probability to c
2
j , ej [c

1
i , c

2
j ] assigns a positive probability to c

3
i , ... ,

ej [c
1
i , c

2
j , ..., c

m−1
j ] assigns a positive probability to cmi . Moreover, for every even m ≥ 2,

cmi is optimal for ei[c1j , c
2
i , ..., c

m
i ] (8.7.13)

and
ei[c

1
j , c

2
i , ..., c

m
i ] has the first-order belief ej [c1j , c

2
i , ..., c

m−1
j ](· | cmi ) (8.7.14)
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whenever ej [c1j ] assigns a positive probability to c
2
i , ei[c

1
j , c

2
i ] assigns a positive probability to c

3
j , ... ,

ej [c
1
j , c

2
i , ..., c

m−1
j ] assigns a positive probability to cmi .

On the basis of the properties (8.7.11), (8.7.12), (8.7.13) and (8.7.14), we can now construct an
epistemic model as follows. For both players i, let Di be the collection of sequences [c1i , c

2
j , ..., c

m
i ]

above for odd m where c1i ∈ C∗i , c2j ∈ C∗j , ..., cmi ∈ C∗i , such that ei[c1i ] assigns a positive probability to
c2j , ej [c

1
i , c

2
j ] assigns a positive probability to c

3
i , ... , ej [c

1
i , c

2
j , ..., c

m−1
j ] assigns a positive probability to

cmi (if m ≥ 3), together with the collection of sequences [c1j , c
2
i , ..., c

m
i ] above for even m where c1j ∈ C∗j ,

c2i ∈ C∗i , ..., cmi ∈ C∗i , such that ej [c1j ] assigns a positive probability to c2i , ei[c1j , c2i ] assigns a positive
probability to c3j , ... , ej [c

1
i , c

2
j , ..., c

m−1
j ] assigns a positive probability to cmi .

For every oddm ≥ 1, both players i, and every [c1i , c
2
j , ..., c

m
i ] ∈ Di, we define a type ti[c1i , c

2
j , ..., c

m
i ],

and for every evenm ≥ 2, both players i, and every [c1j , c
2
i , ..., c

m
i ] ∈ Di, we define a type ti[c1j , c

2
i , ..., c

m
i ]

with the following beliefs: For every odd m ≥ 1,

bi(ti[c
1
i , c

2
j , ..., c

m
i ])(cj , tj) :=

 ei[c
1
i , c

2
j , ..., c

m
i ](cj),

if [c1i , c
2
j , ..., c

m
i , cj ] ∈ Dj

and tj = tj [c
1
i , c

2
j , ..., c

m
i , cj ]

0, otherwise
(8.7.15)

for every opponent’s choice-type pair (cj , tj). Here, ei[c1i , c
2
j , ..., c

m
i ](cj) denotes the probability that

the second-order expectation ei[c1i , c
2
j , ..., c

m
i ] assigns to the choice cj . Moreover, for every even m ≥ 2,

bi(ti[c
1
j , c

2
i , ..., c

m
i ])(cj , tj) :=

 ei[c
1
j , c

2
i , ..., c

m
i ](cj),

if [c1j , c
2
i , ..., c

m
i , cj ] ∈ Dj

and tj = tj [c
1
j , c

2
i , ..., c

m
i , cj ]

0, otherwise
(8.7.16)

for every opponent’s choice-type pair (cj , tj). This completes the construction of the epistemic model.
Note that the epistemic model contains infinitely many types, since the sets Di and Dj are infinite.

We first show that every type ti[c1i , c
2
j , ..., c

m
i ] induces the second-order expectation ei[c1i , c

2
j , ..., c

m
i ].

Let ei[ti[c1i , c
2
j , ..., c

m
i ]] be the second-order expectation induced by type ti. By (8.7.15) we see that

ti[c
1
i , c

2
j , ..., c

m
i ] has the same first-order belief as ei[c1i , c

2
j , ..., c

m
i ], and hence ei[ti[c1i , c

2
j , ..., c

m
i ]] has the

same first-order belief as ei[c1i , c
2
j , ..., c

m
i ].

Now, take some choice cj to which ti[c1i , c
2
j , ..., c

m
i ] assigns positive probability. Then, by (8.7.15),

ei[c
1
i , c

2
j , ..., c

m
i ] assigns positive probability to cj . Hence, by definition of Dj , we have that

[c1i , c
2
j , ..., c

m
i , cj ] ∈ Dj . Moreover, by (8.7.15), there is only one type tj such that ti[c1i , c

2
j , ..., c

m
i ]

assigns positive probability to (cj , tj), and this is the type tj [c1i , c
2
j , ..., c

m
i , cj ]. By (8.7.16) we know

that tj [c1i , c
2
j , ..., c

m
i , cj ] holds the same first-order belief as ej [c

1
i , c

2
j , ..., c

m
i , cj ]. We thus conclude that

ei[ti[c
1
i , c

2
j , ..., c

m
i ]](· | cj) is the first-order belief of ej [c1i , c2j , ..., cmi , cj ] (8.7.17)

for every cj to which ei[ti[c1i , c
2
j , ..., c

m
i ]] assigns positive probability.

Moreover, we know by (8.7.14) that

ej [c
1
i , c

2
j , ..., c

m
i , cj ] has the first-order belief ei[c

1
i , c

2
j , ..., c

m
i ](· | cj) (8.7.18)

for every cj to which ei[ti[c1i , c
2
j , ..., c

m
i ]] assigns positive probability. By combining (8.7.17) and (8.7.18)

we conclude that
ei[ti[c

1
i , c

2
j , ..., c

m
i ]](· | cj) = ei[c

1
i , c

2
j , ..., c

m
i ](· | cj) (8.7.19)
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for every cj to which ei[ti[c
1
i , c

2
j , ..., c

m
i ]] assigns positive probability. Since we already saw that

ei[ti[c
1
i , c

2
j , ..., c

m
i ]] and ei[c

1
i , c

2
j , ..., c

m
i ] have the same first-order belief, it follows by (8.7.19) that

ei[ti[c
1
i , c

2
j , ..., c

m
i ]] = ei[c

1
i , c

2
j , ..., c

m
i ], which was to show. Hence, every type ti[c1i , c

2
j , ..., c

m
i ] induces

the second-order expectation ei[c1i , c
2
j , ..., c

m
i ] for every odd m. In the same way, it can be shown that

every type ti[c1j , c
2
i , ..., c

m
i ] induces the second-order expectation ei[c1j , c

2
i , ..., c

m
i ] for every even m.

Next, we prove that for every odd m, and every type ti[c1i , c
2
j , ..., c

m
i ], the choice cmi is optimal

for the type ti[c1i , c
2
j , ..., c

m
i ]. We have seen above that type ti[c1i , c

2
j , ..., c

m
i ] induces the second-order

expectation ei[c1i , c
2
j , ..., c

m
i ]. Since, by (8.7.11), the choice cmi is optimal for ei[c1i , c

2
j , ..., c

m
i ], it follows

that cmi is indeed optimal for the type ti[c
1
i , c

2
j , ..., c

m
i ]. In the same way, it can be shown that for every

even m, and every type ti[c1j , c
2
i , ..., c

m
i ], the choice cmi is optimal for the type ti[c1j , c

2
i , ..., c

m
i ].

With this insight at hand, we can now show that every type in the epistemic model believes in the
opponent’s rationality. Consider, for an odd m, the type ti[c1i , c

2
j , ..., c

m
i ]. Suppose that ti[c1i , c

2
j , ..., c

m
i ]

assigns positive probability to an opponent’s choice-type pair (cj , tj). Then, it follows from (8.7.15)
that [c1i , c

2
j , ..., c

m
i , cj ] ∈ Dj and tj = tj [c

1
i , c

2
j , ..., c

m
i , cj ]. Since we have seen above that cj is optimal for

the type tj [c1i , c
2
j , ..., c

m
i , cj ], we conclude that type ti[c

1
i , c

2
j , ..., c

m
i ] believes in the opponent’s rationality.

In the same fashion it can be shown that, for every even m, every type ti[c1j , c
2
i , ..., c

m
i ] believes in the

opponent’s rationality as well.
As every type in the epistemic model believes in the opponent’s rationality, it follows by the same

argument as in the proof of Theorem 3.3.1 that every type in the epistemic model expresses common
belief in rationality.

Consider now a choice ci that survives all rounds of the procedure. Then, by definition, ci ∈ C∗i . As
the type ti[ci] expresses common belief in rationality and ci is optimal for the type ti[ci], we conclude
that ci can rationally be chosen under common belief in rationality. We thus see that a choice ci
survives all rounds of the procedure, if and only if, ci can rationally be chosen under common belief
in rationality. This completes the proof. �

Proof of Theorem 8.4.3. Consider the epistemic model we constructed in the proof of Theorem
8.4.1, part (b). In that epistemic model, every type expresses common belief in rationality. �

8.7.2 Proof of Section 8.6
Proof of Theorem 8.6.1. (a) We first show that, in every psychological game, every choice that
can rationally be made under common belief in rationality must survive the iterated elimination of
choices and states.

We use the following notation: For every round k ≥ 1, let Cki be the set of choices for player i that
survive round k of the procedure. Set C0i := Ci. Then, for every round k, the set Cki contains precisely
those choices that are not strictly dominated in the reduced decision problem (Ck−1i , Ck−1j × Ck−1i )

where the set of choices is Ck−1i and the set of states only contains those pairs (cj , ci) where cj ∈ Ck−1j

and ci ∈ Ck−1i . We show the following result.

Claim. Take an epistemic model M and a type ti for player i within it that expresses common belief
in rationality. Then, for every k ≥ 0, every choice that is optimal for ti is in Cki .

Proof of claim. By induction on k. For k = 0 the statement is trivially true as C0i = Ci.
Now, take some k ≥ 1 and assume that the statement is true for k − 1. Take an epistemic model

M and a type ti within it that expresses common belief in rationality. Then, ti only assigns positive
probability to opponent’s choice-type pairs (cj , tj) where tj expresses common belief in rationality and
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cj is optimal for tj . By the induction assumption we then know that every such choice cj is in Ck−1j .

Thus, ti’s first-order belief only assigns positive probability to opponent’s choices that are in Ck−1j .
Moreover, ti only assigns positive probability to opponent’s types tj which only assign positive

probability to i’s choice-type pairs (c′i, t
′
i) where t

′
i expresses common belief in rationality and c

′
i is

optimal for t′i. By the induction assumption we know that every such choice c
′
i is in C

k−1
i . Thus, ti’s

second-order belief only assigns positive probability to i’s choices that are in Ck−1i .
By combining the two insights above we conclude that the second-order expectation ei[ti] induced

by ti only assigns positive probability to pairs (cj , ci) ∈ Ck−1j ×Ck−1i . Take a choice ci that is optimal for

the type ti. Then, ci is optimal for the second-order expectation ei[ti] ∈ ∆(Ck−1j ×Ck−1i ). By Theorem

2.6.1 it then follows that ci is not strictly dominated in the reduced decision problem (Ck−1i , Ck−1j ×
Ck−1i ). But then, by definition of the procedure, ci ∈ Cki .

By induction on k, the proof of the claim follows.

By the claim, we conclude that every choice that is optimal for a type that expresses common
belief in rationality must survive all the rounds of iterated elimination of choices and states. This
completes the proof of part (a).

(b) We now show that for every class of psychological games listed in the statement of the theorem,
every choice that survives the iterated elimination of choices and states can rationally be made under
common belief in rationality. We distinguish 5 cases: (1) player 1’s and player 2’s preferences only
depend on the first-order belief, (2) player 1’s preferences only depend on his first-order belief and
player 2’s preferences only depend on his second-order belief, (3) player 1’s preferences only depend
on his second-order belief and player 2’s preferences only depend on his first-order belief, (4) player
1’s and player 2’s preferences only depend on the second-order belief, and (5) player 1’s preferences
only depend on his second-order belief and player 2’s preferences depend on his first- and second-order
belief.

Case 1. Suppose that player 1’s and player 2’s preferences only depend on the first-order belief. Then
we are dealing with a standard game as defined in Chapter 3. Moreover, for this class of games the
iterated elimination of choices and states coincides with the iterated elimination of strictly dominated
choices from Chapter 3. By Theorem 3.4.1 we know that for this class of games, the choices that
can rationally be made under common belief in rationality are precisely the choices that survive the
iterated elimination of strictly dominated choices, and hence survive the iterated elimination of choices
and states.

For Cases 2—5 we adopt the following notation: By C∗1 and C
∗
2 we denote the sets of choices for

player 1 and 2, respectively, that survive the iterated elimination of choices and states.

Case 2. Suppose that player 1’s preferences only depend on his first-order belief and player 2’s
preferences only depend on his second-order belief. Then, every choice c1 ∈ C∗1 is optimal for a first-
order belief bc11 ∈ ∆(C∗2 ) and every choice c2 ∈ C∗2 is optimal for a second-order belief b

c2
2 ∈ ∆(C∗2 ).

For every second-order belief bc22 ∈ ∆(C∗2 ), let c1[c2] be a choice for player 1 that is optimal if player
1 holds the belief bc22 about player 2’s choice.

We construct an epistemic model with sets of types

T1 = {tc11 | c1 ∈ C∗1} ∪ {t
c2
1 | c2 ∈ C∗2} and T2 = {tc22 | c2 ∈ C∗2}.

The beliefs of the types are as follows:

b1(t
c1
1 )(c2, t2) :=

{
bc11 (c2), if c2 ∈ C∗2 and t2 = tc22

0, otherwise
(8.7.20)
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for every c1 ∈ C∗1 and every (c2, t2) ∈ C2 × T2,

b1(t
c2
1 )(c′2, t2) :=

{
bc22 (c′2), if c′2 ∈ C∗2 and t2 = t

c′2
2

0, otherwise
(8.7.21)

for every c2 ∈ C∗2 and every (c′2, t2) ∈ C2 × T2, and

b2(t
c2
2 )(c1, t1) :=

{
1, if c1 = c1[c2] and t1 = tc21
0, otherwise

(8.7.22)

for every c2 ∈ C∗2 and every (c1, t1) ∈ C1 × T1.
By (8.7.20) we see that every type tc11 has the first-order belief b

c1
1 for which the choice c1 is optimal.

From (8.7.21) we conclude that every type tc21 has the first-order belief bc22 for which the choice c1[c2]
is optimal. Moreover, by combining (8.7.21) and (8.7.22) we see that every type tc22 has the second-
order belief bc22 for which the choice c2 is optimal. These insights, together with (8.7.20), (8.7.21) and
(8.7.22), imply that every type in the epistemic model constructed above believes in the opponent’s
rationality. Therefore, every type in the model expresses common belief in rationality.

Now, take an arbitrary choice c1 ∈ C∗1 . Then, c1 is optimal for the type t
c1
1 that expresses common

belief in rationality. That is, c1 can rationally be chosen under common belief in rationality.

Case 3. Suppose that player 1’s preferences only depend on his second-order belief and player 2’s
preferences only depend on his first-order belief. Then, every choice c1 ∈ C∗1 is optimal for a second-
order belief bc11 ∈ ∆(C∗1 ) and every choice c2 ∈ C∗2 is optimal for a first-order belief b

c2
2 ∈ ∆(C∗1 ). For

every second-order belief bc11 ∈ ∆(C∗1 ), let c2[c1] be a choice for player 2 that is optimal if player 2
holds the belief bc11 about player 1’s choice.

We construct an epistemic model with sets of types

T1 = {tc11 | c1 ∈ C∗1} and T2 = {tc12 | c1 ∈ C∗1}.

The beliefs of the types are as follows:

b1(t
c1
1 )(c2, t2) :=

{
1, if c2 = c2[c1] and t2 = tc12
0, otherwise

(8.7.23)

for every c1 ∈ C∗1 and every (c2, t2) ∈ C2 × T2, and

b2(t
c1
2 )(c′1, t1) :=

{
bc11 (c′1), if c′1 ∈ C∗1 and t1 = t

c′1
1

0, otherwise
(8.7.24)

for every c1 ∈ C∗1 and every (c′1, t1) ∈ C1 × T1.
By combining (8.7.23) and (8.7.24) we see that every type tc11 has the second-order belief bc11 for

which the choice c1 is optimal. From (8.7.24) we conclude that every type tc12 has the first-order
belief bc11 for which the choice c2[c1] is optimal. These insights, together with (8.7.23) and (8.7.24),
imply that every type in the epistemic model constructed above believes in the opponent’s rationality.
Therefore, every type in the model expresses common belief in rationality.

Now, take an arbitrary choice c1 ∈ C∗1 . Then, c1 is optimal for the type t
c1
1 that expresses common

belief in rationality. That is, c1 can rationally be chosen under common belief in rationality.

Case 4. Suppose that player 1’s and player 2’s preferences only depend on the second-order belief.
Then, every choice c1 ∈ C∗1 is optimal for a second-order belief b

c1
1 ∈ ∆(C∗1 ). Consider a choice c12 ∈ C∗2
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for player 2. For every k ≥ 2, let ck2 be a choice that is optimal for player 2 if he believes that player
1 assigns probability 1 to player 2 choosing ck−12 . Since there are finitely many choices, there must be
some k ≥ 1 and m ≥ 1 such that ck+m2 = ck2.

We construct an epistemic model with sets of types

T1 = {tc1,k+l1 | c1 ∈ C∗1 , l ∈ {0, ...,m− 1}} and T2 = {tc1,k+l2 | c1 ∈ C∗1 , l ∈ {0, ...,m− 1}}.

The beliefs of the types are as follows:

b1(t
c1,k+l
1 )(c2, t2) :=

{
1, if c2 = ck+l2 and t2 = tc1,k+l2

0, otherwise
(8.7.25)

for every c1 ∈ C∗1 , l ∈ {0, ...,m− 1} and every (c2, t2) ∈ C2 × T2, and

b2(t
c1,k+l
2 )(c′1, t1) :=

{
bc11 (c′1), if c′1 ∈ C∗1 and t1 = t

c′1,k+l−1
1

0, otherwise
(8.7.26)

for every c1 ∈ C∗1 , l ∈ {0, ...,m − 1} and every (c′1, t1) ∈ C1 × T1. Here, we use the convention that
t
c′1,k−1
1 = t

c′1,k+m−1
1 .

By combining (8.7.25) and (8.7.26) we see that every type tc1,k+l1 has the second-order belief bc11
for which the choice c1 is optimal. If we combine (8.7.25) and (8.7.26) we also conclude that every
type tc1,k+l2 has the second-order belief that assigns probability 1 to ck+l−12 for which the choice ck+l2

is optimal. These insights, together with (8.7.25) and (8.7.26), imply that every type in the epistemic
model constructed above believes in the opponent’s rationality. Therefore, every type in the model
expresses common belief in rationality.

Now, take an arbitrary choice c1 ∈ C∗1 . Then, c1 is optimal for the type t
c1,k
1 that expresses common

belief in rationality. That is, c1 can rationally be chosen under common belief in rationality.

Case 5. Suppose that player 1’s preferences only depend on his second-order belief and player 2’s
preferences depend on his first- and second-order belief. Then, every choice c1 ∈ C∗1 is optimal for a
second-order belief bc11 ∈ ∆(C∗1 ). For every choice c1 ∈ C∗1 , consider a choice c12[c1] ∈ C∗2 for player 2.
For every k ≥ 2 and every c1 ∈ C∗1 , let ck2[c1] be a choice that is optimal for player 2 if his first-order
belief about player 1’s choice is given by bc11 and believes, with probability 1, that player 1 assigns
probability 1 to player 2 choosing ck−12 [c1]. Since there are finitely many choices, there must be some
k ≥ 1 and m ≥ 1 such that ck+m2 [c1] = ck2[c1] for every c1 ∈ C∗1 .

We construct an epistemic model with sets of types

T1 = {tc1,k+l1 | c1 ∈ C∗1 , l ∈ {0, ...,m− 1}} and T2 = {tc1,k+l2 | c1 ∈ C∗1 , l ∈ {0, ...,m− 1}}.

The beliefs of the types are as follows:

b1(t
c1,k+l
1 )(c2, t2) :=

{
1, if c2 = ck+l2 [c1] and t2 = tc1,k+l2

0, otherwise
(8.7.27)

for every c1 ∈ C∗1 , l ∈ {0, ...,m− 1} and every (c2, t2) ∈ C2 × T2, and

b2(t
c1,k+l
2 )(c′1, t1) :=

{
bc11 (c′1), if c′1 ∈ C∗1 and t1 = t

c′1,k+l−1
1

0, otherwise
(8.7.28)
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for every c1 ∈ C∗1 , l ∈ {0, ...,m − 1} and every (c′1, t1) ∈ C1 × T1. Here, we use the convention that
t
c′1,k−1
1 = t

c′1,k+m−1
1 .

By combining (8.7.27) and (8.7.28) we see that every type tc1,k+l1 has the second-order belief bc11
for which the choice c1 is optimal. If we combine (8.7.27) and (8.7.28) we also conclude that every
type tc1,k+l2 has the first-order belief bc11 ∈ ∆(C∗1 ), and the second-order belief that assigns probability
1 to ck+l−12 [c1], for which the choice ck+l2 [c1] is optimal. These insights, together with (8.7.27) and
(8.7.28), imply that every type in the epistemic model constructed above believes in the opponent’s
rationality. Therefore, every type in the model expresses common belief in rationality.

Now, take an arbitrary choice c1 ∈ C∗1 . Then, c1 is optimal for the type t
c1,k
1 that expresses common

belief in rationality. That is, c1 can rationally be chosen under common belief in rationality.

We have thus explored all 5 cases, which completes the proof. �
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Solutions to In-Chapter Questions

Question 8.1.1. The expected utility of choosing blue is (0.2) · 0 + (0.4) · 6 + (0.4) · 6 = 4.8, whereas
the expected utility of choosing red is (0.2) · 2 + (0.4) · 1 + (0.4) · 0 = 0.8. Hence, blue is the optimal
choice.

Question 8.1.2. The second-order expectation induced by the upper part is (0.7) · (b, b) + (0.18) ·
(r, b) + (0.12) · (r, g).

Clearly, the second-order belief in the lower part is different from the upper part: In the upper
part, you assign probability 0.3 to the event that Barbara assigns probabilities 0.6 and 0.4 to your
choices blue and green, respectively. In particular, you assign probability 0.3 to the event that Barbara
is inherently uncertain about your choice. In contrast, in the lower part you assign probability 0.7 to
the event that Barbara assigns probability 1 to your choice blue, you assign probability 0.18 to the
event that Barbara assigns probability 1 to your choice blue, and you assign probability 0.12 to the
event that Barbara assigns probability 1 to your choice green. In particular, you assign probability
1 to the event that Barbara is certain about your choice, which is fundamentally different from the
second-order belief in the upper part.

Nevertheless, the second-order expectation induced by the lower part is also (0.7) · (b, b) + (0.18) ·
(r, b) + (0.12) · (r, g), like for the upper part.

Given this second-order expectation, the expected utilities induced by your choices are

u1(blue) = (0.7) · 0 + (0.18) · 3 + (0.12) · 6 = 1.26,

u1(green) = (0.7) · 4 + (0.18) · 4 + (0.12) · 2 = 3.76,

u1(red) = (0.7) · 2 + (0.18) · 1 + (0.12) · 1 = 1.7,

and hence your optimal choice is green.

Question 8.3.1. We first derive the second-order expectation that type tgreen1 has. Note that type
tgreen1 assigns probability 1 to the event that “Barbara chooses red and has type tred2 ”. In turn,
Barbara’s type tred2 assigns probability 0.9 to you choosing blue and probability 0.1 to you choosing
green. By putting this together, we see that type tgreen1 assigns probability 1 to the event that “Barbara
chooses red and assigns probabilities 0.9 and 0.1 to you choosing blue and green, respectively”.

As such, the second-order expectation e1 induced by type tblue1 is

e1 = (0.9) · (r, b) + (0.1) · (r, g).

The expected utilities that you obtain by making your three choices are thus

u1(blue, t1) = (0.9) · 3 + (0.1) · 6 = 3.3.

u1(green, t1) = (0.9) · 4 + (0.1) · 2 = 3.8 and

u1(red, t1) = (0.9) · 1 + (0.1) · 1 = 1.

As green yields the highest expected utility, your choice green is optimal for the type tgreen1 .

Question 8.4.1. Start with the second-order expectation (2/3, 0, 0, 1/3), where e1(w, b) = 2/3 and
e1(w,w) = 1/3, and which assigns probability 0 to the states (b, w) and (b, b). Then,

e1(b1 | w2) =
e1(w2, b1)

e1(w2, w1) + e1(w2, b1)
=

2/3

1/3 + 2/3
= 2/3,
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which implies that (8.4.5) is satisfied. Moreover, (8.4.6) is trivially satisfied since e1 assigns probability
0 to Barbara choosing black.

Consider next the state (w, b), which corresponds to the second-order expectation with e1(w, b) = 1.
Then,

e1(b1 | w2) =
e1(w2, b1)

e1(w2, w1) + e1(w2, b1)
=

1

0 + 1
= 1 ≥ 2/3,

which implies that (8.4.5) is satisfied. Moreover, (8.4.6) is trivially satisfied since e1 assigns probability
0 to Barbara choosing black.

Take now the state (b, w), which corresponds to the second-order expectation with e1(b, w) = 1.
Then, (8.4.5) is trivially satisfied since e1 assigns probability 0 to Barbara wearing white. Moreover, it
also satisfies (8.4.6) as this condition puts no additional restrictions on the second-order expectation.

In a similar way, we can also show that the second-order expectation associated with state (b, b)
satisfies the conditions (8.4.5) and (8.4.6).

Question 8.4.2. Take a second-order expectation

e1 = λ1 · (2/3, 0, 0, 1/3) + λ2 · (1, 0, 0, 0) + λ3 · (0, 1, 0, 0) + λ4 · (0, 0, 1, 0),

where λ1, λ2, λ3, λ4 ≥ 0 and λ1 + λ2 + λ3 + λ4 = 1. We distinguish two cases: (1) λ1 + λ2 = 0, and (2)
λ1 + λ2 > 0.

Case 1. Suppose that λ1 + λ2 = 0. Thus, e1 assigns probability 0 to Barbara choosing white, which
means that (8.4.5) is trivially satisfied. As (8.4.6) imposes no additional restrictions, we conclude that
(8.4.6) is satisfied as well.

Case 2. Suppose that λ1+λ2 > 0. Then, e1 assigns a positive probability to Barbara choosing white.
Moreover,

e1(w2, w1) = λ1 · 1/3 and e1(w2, b1) = λ1 · 2/3 + λ2.

Thus,

e1(b1 | w2) =
e1(w2, b1)

e1(w2, w1) + e1(w2, b1)
=

λ1 · 2/3 + λ2
λ1 · 1/3 + (λ1 · 2/3 + λ2)

=
λ1 · 2/3 + λ2
λ1 + λ2

=
λ1

λ1 + λ2
· 2/3 +

λ2
λ1 + λ2

· 1 ≥ 2/3.

This implies that (8.4.5) is satisfied. As (8.4.6) imposes no additional restrictions, condition (8.4.6) is
satisfied as well.

Question 8.4.3. Consider the sets of types T1 = {tblack1 , t̂black1 , twhite1 } and T2 = {twhite2 , t̂white2 , tblack2 }
where

b1(t
black
1 ) = (white, twhite2 ),

b1(t̂
black
1 ) = (0.5) · (white, t̂white2 ) + (0.5) · (black, tblack2 ),

b1(t
white
1 ) = (black, tblack2 ),

b2(t
white
2 ) = (0.6) · (black, t̂black1 ) + (0.4) · (white, twhite1 ),

b2(t̂
white
2 ) = (0.5) · (black, t̂black1 ) + (0.5) · (white, twhite1 ),

b2(t
black
2 ) = (white, twhite1 ).
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Question 8.5.1. (a) The beliefs in the partial beliefs diagram induce the second-order expectation

e1 = (0.5) · (7, 1) + (0.5) · (3, 7).

(b) If you practice for 5 weeks, then your utility under the two states (7, 1) and (3, 7) are given by

u1(5, (7, 1)) = 5 · 7− 52 + (5− 1) = 14

and
u1(5, (3, 7)) = 5 · 3− 52 = −10.

Note that in the second utility there is no mental bonus for exceeding Barbara’s expectations, as your
choice 5 would be below Barbara’s expectation 7. The expected utility is thus given by

u1(5, e1) = (0.5) · 14 + (0.5) · (−10) = 2.

Question 8.6.1. The causality diagram that belongs to this game is the following:

Indeed, to support a given choice for you we only need a first-order belief. In turn, to justify
this first-order belief under common belief in rationality, we need to specify what you believe about
Barbara’s second-order belief. That is, we need to specify your third-order belief. To support this
third-order belief under common belief in rationality we need to specify what you believe that Barbara
believes that you believe about Barbara’s second-order belief. In other words, we must specify your
fifth-order belief. And so on.
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Problems

Problem 8.1: The hieroglyphs exam.

You and Barbara are both fascinated by ancient Egypt, and have recently started to study the ancient
egyptian hieroglyphs. Next month you will both take an exam on hieroglyphs at the Open University,
and you must decide which grade you would like to obtain for the exam. This is not an easy problem
since you do not only care about your grade, but also about (i) the time and effort it takes to obtain
that grade, (ii) how close your grade is to Barbara’s, and (iii) whether you will be able to exceed
Barbara’s expectations by your grade.

More precisely, raising the grade by 1 point will on the one hand increase your utility by 3 units
because you enjoy writing a good exam. On the other hand, achieving a grade of g1 will lower your
utility by g21 units because of the time and effort you would need to put in. Moreover, since Barbara is
such a good friend, you would like to have your grade close to Barbara’s grade: Every point by which
your grades differ will lower your utility by an additional 5 units. Finally, you would like to exceed
Barbara’s expectations if possible: If your grade is higher than what you believe Barbara expects,
then this will increase your utility by an additional 10 units.

All this can be represented by your utility function u1, where

u1(g1, (g2, g
′
1)) = 3g1 − g21 − 5 · |g1 − g2| +

{
10, if g1 > g′1
0, otherwise

.

Here, g1 is the grade you would like to achieve, g2 is the grade you believe that Barbara wants to
achieve, and g′1 is the grade that you believe that Barbara believes that you try to achieve. Barbara’s
utility function is similar.

To keep things easy, assume that you only consider achieving a 6 (out of 10), a 7, an 8 or a 9 as
your grade, and similarly for Barbara.

(a) Translate this story into a psychological game, by specifying your decision problem. The decision
problem for Barbara is the same, by symmetry.

(b) Suppose you would like to find the choices you can rationally make under common belief in
rationality. Is the iterated elimination of choices and states guaranteed to be suffi cient for this purpose?
Explain your answer.

(c) Find the grades that you can rationally try to achieve under common belief in rationality. Which
procedure do you use?

(d) Based on the outcome in (c), create a beliefs diagram with solid arrows only that uses all the
choices for you and Barbara that can rationally be made under common belief in rationality. Translate
the beliefs diagram into an epistemic model where all types express common belief in rationality.

Problem 8.2: Time to choose a sport.

You and Barbara have been studying a lot for the hieroglyphs exam lately. A bit too much, actually,
since you both have not done any physical exercise during this period. To compensate for this, you
both want to start doing some sports. In your neighbourhood there is the choice between football,
rugby, handball, water polo, swimming and athletics. Today, you and Barbara must both choose one
of these sports.
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football rugby handball water polo swimming athletics
You 4 16 8 24 20 12

Barbara 12 20 24 8 4 16

Table 8.7.1 Baseline utilities in Problem 8.2

Figure 8.7.1 Differences between the sports in Problem 8.2

When making your choice, you do not only care about how much you enjoy that sport, but you
would also like to surprise Barbara as much as possible by your choice. Barbara, on the other hand,
cares about choosing a sport that is as different as possible from the sport that you choose.

More precisely, the baseline utilities you and Barbara derive from choosing one of these sports are
given by Table 8.7.1. These utilities indicate how much you and Barbara like that particular sport.

The differences between the various sports can be visualized by Figure 8.7.1. Assume that the
distance between two neighbouring dots is always 1. Then, the difference between two sports is
measured by the distance between their respective dots in the figure. For instance, the difference
between rugby and water polo is 2, whereas the distance between football and swimming is 4. For two
sports s and s′ we denote their difference by d(s, s′).

Suppose that you choose the sport s1 and that you believe that Barbara believes that you choose
the sport s′1. Then, your surprise utility is given by

(d(s1, s
′
1))

2.

Hence, the higher the difference between your actual choice and what you believe that Barbara believes
that you choose, the higher your surprise utility. Moreover, larger differences have a higher impact
on your preferences than smaller differences. Your total utility is the sum of your baseline utility and
your surprise utility.

Similarly, if you choose the sport s1 and Barbara chooses the sport s2, then Barbara’s utility from
being different is given by

(d(s1, s2))
2.

Barbara’s total utility is the sum of her baseline utility and her utility from being different.
The question is: Which sport will you choose?

(a) Translate this story into a psychological game, by specifying the decision problems for you and
Barbara.

(b) Suppose you would like to find the choices you can rationally make under common belief in
rationality. Is the iterated elimination of choices and states guaranteed to be suffi cient for this purpose?
Explain your answer.

(c) Find the sports you can rationally choose under common belief in rationality. Which procedure
do you use?
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(d) Based on the outcome in (c), create a beliefs diagram with solid arrows only that uses all the
sports that you can rationally choose under common belief in rationality. Translate the beliefs diagram
into an epistemic model where all types express common belief in rationality.

*Problem 8.3: How to disappoint Barbara?

Chris is moving to a smaller apartment, and wants to get rid of all the things he has not used during
the last few years. He just came across a Beatles-mug that he received as a present from a friend many
years ago, but has never used. Barbara and you, however, are both lifelong Beatles fans and would
really like to have the mug. Since there is only one Beatles-mug, Chris decides to auction it. The
rules of the auction are as follows: You and Barbara must simultaneously whisper a price in Chris’
ear, which must be either 20 or 40 euros, and the person who names the highest price will get the
mug and must pay the price he or she chose. If you both name the same price, Chris will toss a coin
to decide who gets the mug.

You and Barbara both value the mug at 30 euros. Consequently, your baseline utility if you win
the auction will be 30 − p, where p is the price you pay. If you lose the auction your baseline utility
will be 0.

Yesterday, you and Barbara entered into a long fight about who was the best musician among the
four Beatles, and for that reason you would like to disappoint Barbara if possible. More precisely, if
you happen to win the auction, but believe that Barbara believes that she would win the auction with
probability 1, then you believe that Barbara will be very disappointed. In that case, your utility will
be the baseline utility plus a disappointment bonus of 160. In all other cases, your utility will just be
the baseline utility. The utilities for Barbara are similar.

(a) Translate this story into a psychological game, by specifying the decision problem for you. The
decision problem for Barbara will be similar.

(b) Suppose you would like to find the choices you can rationally make under common belief in
rationality. Is the iterated elimination of choices and states guaranteed to be suffi cient for this purpose?
Explain your answer.

(c) Apply the first four rounds of the iterated elimination of choices and second-order expectations
to find those second-order expectations for you that are consistent with up to three-fold belief in
rationality.

It turns out that the second-order expectations consistent with common belief in rationality are
approximately the second-order expectations you found in (c).

(d) Which prices can you rationally whisper into Chris’ear under common belief in rationality?

(e) Based on the set of second-order expectations found in (c), and using the method outlined in
Section 8.4.9, create a beliefs diagram with solid arrows only that involves all the prices you found in
(d). Translate this beliefs diagram into an epistemic model where all types express common belief in
rationality.
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Literature

Psychological games. The first to introduce psychological games were Geanakoplos, Pearce and
Stacchetti (1989). In their model, the utility of a player may depend on his choice, and —potentially
— on all layers of his belief hierarchy. It is thus more general than our setting, where we assume
that the utility of a player depends at most on the first two layers of his belief hierarchy, that is, his
first- and second-order belief. Moreover, we make the additional assumptions that the utility only
depends on the second-order expectation, which is a summary statistic of the first- and second-order
belief, and that the utility depends linearly on the second-order expectation. Indeed, we assume that
the conditional preferences of the player have an expected utility representation, which is equivalent
to saying that the player’s utility depends linearly on his second-order expectation. The model by
Geanakoplos, Pearce and Stacchetti (1989), in contrast, does not make any of these assumptions, and
is therefore also more general along those dimensions.

In addition, the model of Geanakoplos, Pearce and Stacchetti (1989) also covers dynamic games,
whereas we restrict attention to static games in this book. In dynamic games, their model specifies
that the utility of a player depends on his hierarchy of initial beliefs and the outcome of the game.
Later, Battigalli and Dufwenberg (2009) extended their model by (i) allowing the player’s utility to
depend on conditional beliefs during the game, and not only on initial beliefs at the beginning, and
(ii) allowing the player’s utility to depend on the full strategies of the players, and not only on the
outcome that is finally reached. See also Battigalli, Corrao and Dufwenberg (2019).

Linear psychological games. As already mentioned, the model in this chapter is more restrictive
than the original model in Geanakoplos, Pearce and Stacchetti (1989), because we assume that (i) the
player’s utility only depends on his first- and second-order belief, (ii) in fact, the player’s utility only
depends on the second-order expectation induced by his first- and second-order belief, and (iii) the
player’s utility depends linearly on his second-order expectation.

As such, the model we use belongs to the class of belief-finite linear psychological games as in-
troduced by Jagau and Perea (2023). In a belief-finite linear psychological game, (i) the utility of a
player only depends on finitely many layers of beliefs, that is, only depends on his beliefs up to order
n, for some n, (ii) the utility only depends on the n-th order expectation induced by his beliefs up to
order n, and (iii) the utility is linear in his n-th order expectation. Hence, in this chapter we focus
on belief-finite linear psychological games where n is equal to 2. Also, the concept of higher-order
expectation is taken from Jagau and Perea (2023).

Procedure for common belief in rationality. In this chapter we have introduced a recursive
elimination procedure, called the iterated elimination of choices and second-order expectations, which
yields precisely those choices that are possible under common belief in rationality. This procedure
is based on the iterated elimination of choices and n-th order beliefs in Jagau and Perea (2022) for
psychological games that are not necessarily linear, and the iterated elimination of choices and n-
th order expectations in Jagau and Perea (2023) for psychological games that are linear. A related
procedure can be found in Battigalli, Corrao and Sanna (2020) which characterizes the strategies that
can rationally be made under common strong belief in rationality in a dynamic psychological game.

(Im)possibility of common belief in rationality. In a psychological game with finitely many
choices, but where a player’s utility depends on all layers of his belief hierarchy, it may happen that
there is no belief hierarchy that expresses common belief in rationality. Examples can be found in
Bjorndahl, Halpern and Pass (2013) and Jagau and Perea (2022). Both papers provide suffi cient
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conditions on the players’ utility functions which guarantee that for every player there is a belief
hierarchy that expresses common belief in rationality.

When elimination of choices and states is enough. In Section 8.6 we have investigated for
which classes of psychological games the iterated elimination of choices and states is suffi cient to find
all choices that can rationally be made under common belief in rationality. The concept of a causality
diagram played a crucial role in that analysis. Our findings in Theorem 8.6.1, as well as the notion
of a causality diagram, are based on Mourmans (2019). He explored this issue for the class of all
belief-finite linear psychological games, including psychological games where the player’s utility may
depend on his third-order belief or higher. Mourmans (2019) showed a little more in his theorem than
we did in our Theorem 8.6.1: He did not only identify the classes of belief-finite linear psychological
games where the iterated elimination of choices and states is suffi cient for finding those choices that
are possible under common belief in rationality, he also showed that for every type of psychological
game outside this class we can always find associated utility functions for the players such that the
iterated elimination of choices and states fails to identify precisely those choices that are possible
under common belief in rationality.


