
Chapter 6

Correct and Symmetric Beliefs with Incomplete
Information

In Chapter 4 we have introduced the ideas of correct and symmetric beliefs for standard games, where
the players are certain about the conditional preference relations of their opponents. Recall that we
have formalized these ideas by the notions of simple and symmetric belief hierarchies. Together with
common belief in rationality, these two restrictions on belief hierarchies led to the concepts of Nash
equilibrium and correlated equilibrium, respectively.

In this chapter we will extend this analysis to games with incomplete information. We will start
by defining simple belief hierarchies for the case of incomplete information, and show that this re-
striction, in combination with common belief in rationality, leads to a concept called generalized Nash
equilibrium. Similarly, we define symmetric belief hierarchies for the case of incomplete information,
and show that it will lead to the concept of Bayesian equilibrium when combined with common belief
in rationality. Finally, we investigate the two concepts in the light of fixed beliefs on the players’
utility functions. In Chapter 6 of the online appendix we study some economic applications.

6.1 Correct Beliefs

Like we did for standard games, we start by defining simple belief hierarchies, and explain why it
describes situations where you believe the opponents to be correct about your beliefs. Subsequently,
we merge this condition with common belief in rationality, and show that it leads to a concept called
generalized Nash equilibrium. As the name suggests, it reduces to traditional Nash equilibrium if we
apply it to games without incomplete information.
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Figure 6.1.1 A beliefs diagram for “What is Barbara’s favorite color?”

You blue green red yellow
blue 0 4 4 4
green 3 0 3 3
red 2 2 0 2

yellow 1 1 1 0
u1

Barbara blue green red yellow
blue 0 2 2 2
green 1 0 1 1
red 4 4 0 4

yellow 3 3 3 0
ur2

Barbara blue green red yellow
blue 0 4 4 4
green 2 0 2 2
red 1 1 0 1

yellow 3 3 3 0
ub2

Table 6.1.1 Decision problems for “What is Barbara’s favorite color?”

6.1.1 Simple Belief Hierarchies
Recall the definition of a simple belief hierarchy for standard games, in Section 4.1.1. It stated that
your belief hierarchy is entirely induced by a single belief σ1 about player 1’s choice, a single belief σ2
about player 2’s choice, and so on. An important feature of such a belief hierarchy is that you believe
that your opponents are correct about all the beliefs you hold. Moreover, if there are three or more
players in the game, then you believe that opponent j’s belief about a third player k will be the same
as your own belief about player k, and that your belief about j’s choice will be independent from your
belief about k’s choice.

If we turn to games with incomplete information, where you may be uncertain about the utility
functions of some of the opponents, then a belief hierarchy does not only concern the players’choices
but also the players’utility functions. To refresh your memory, consider again the beliefs diagram
in Figure 5.2.1 for the example “What is Barbara’s favorite color?”. For easier reference, we have
reproduced this beliefs diagram in Figure 6.1.1. Also, we reproduce the utilities for this example in
Table 6.1.1, to make it easier for the reader.
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In the beliefs diagram, consider the belief hierarchy that starts at your choice-utility pair (blue,
u1). It states that you believe that Barbara chooses red while having the utility function ur2. At the
same time, you believe that Barbara believes that you believe that Barbara chooses blue while having
the utility function ub2. As such, you believe that Barbara is incorrect about your first-order belief.

Compare this to the belief hierarchy that starts at your choice green: Not only do you believe that
Barbara chooses blue while having the utility function ub2, you also believe that Barbara believes that
you indeed believe this. Even more, you believe that Barbara believes that you indeed have the belief
hierarchy that starts at your choice green. In other words, you believe that Barbara is correct about
your entire belief hierarchy.

In fact, your belief hierarchy that starts at your choice green is completely generated by the single
belief σ1 = (green, u1) about you, and the single belief σ2 = (blue, ub2). Here, σ1 = (green, u1) is
the belief about your choice-utility pairs that assigns probability 1 to you wearing green while having
the utility function u1, whereas σ2 = (blue, ub2) is the belief about Barbara’s choice-utility pairs that
assigns probability 1 to Barbara wearing blue while having the utility function ub2. Indeed, in the belief
hierarchy that starts at your choice green your belief about Barbara’s choice and utility function is
σ2, you believe that Barbara’s belief about your choice and utility function is σ1, you believe that
Barbara believes that your belief about Barbara’s choice and utility function is σ2, and so on. We say
that your belief hierarchy is simple, and that it is generated by the combination of beliefs (σ1, σ2).

In general, simple belief hierarchies can be defined as follows.

Definition 6.1.1 (Simple belief hierarchy) Let σ1 be a probabilistic belief about player 1’s choice
and utility function, σ2 a probabilistic belief about player 2’s choice and utility function, and so on,
until σn being a probabilistic belief about player n’s choice and utility function. The belief hierarchy
for player i generated by the beliefs (σ1, σ2, ..., σn) is defined as follows:

(1) in the first-order belief, player i assigns to every opponents’choice-utility combination (cj , uj)j 6=i
the probability

∏
j 6=i σj(cj , uj),

(2) in the second-order belief, player i believes with probability 1 that every opponent j assigns to
every opponents’choice-utility combination (ck, uk)k 6=j the probability

∏
k 6=j σk(ck, uk),

(3) in the third-order belief, player i believes with probability 1 that every opponent j believes with
probability 1 that every opponent k assigns to every opponents’choice-utility combination (cl, ul)l 6=k
the probability

∏
l 6=k σl(cl, ul), and so on.

A belief hierarchy is called simple if it is generated by a combinations of such beliefs (σ1, σ2, ..., σn).

The only difference with the case of standard games is thus that the beliefs now concern choices
and utility functions, instead of only choices. The rest of the definition is exactly the same.

Question 6.1.1 Consider the beliefs diagram in Figure 6.1.1. Which of Barbara’s belief hierarchies
is simple?

In a sense, the simple belief hierarchy for you in Figure 6.1.1 was very special, because it reflects no
uncertainty about Barbara’s utility function. Indeed, in that simple belief hierarchy you are absolutely
convinced that Barbara’s utility function is ub2 and no other, and you believe that this is transparent
among Barbara and you.

However, there are also simple belief hierarchies that express inherent uncertainty about the op-
ponents’ utility functions. As an example, consider the beliefs diagram in Figure 6.1.2. Your be-
lief hierarchy is simple, because it is generated by the combination of beliefs σ1 = (green, u1) and
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Figure 6.1.2 Simple belief hierarchy for “What is Barbara’s favorite color?” with uncertainty about
opponent’s utility function

σ2 = (0.5) · (red, ur2)+(0.5) · (blue, ub2). In that belief hierarchy, you assign probability 0.5 to Barbara’s
utility functions ur2 and u

b
2, which means that you are inherently uncertain about Barbara’s conditional

preference relation. Moreover, you believe this uncertainty to be transparent between Barbara and
you. It may also be verified that this simple belief hierarchy expresses common belief in rationality.

Question 6.1.2 Consider the example “What is Barbara’s favorite color?”. Construct a simple belief
hierarchy for you that expresses common belief in rationality, and where you assign probability 0.9 to
Barbara’s utility function ur2 and probability 0.1 to Barbara’s utility function ub2.

6.1.2 Relation with Generalized Nash Equilibrium
Suppose we combine the condition of a simple belief hierarchy with the conditions in common belief in
rationality. What choices can you then rationally make? Recall that in the case of standard games, the
resulting choices were those that are optimal in a Nash equilibrium. We will see that something similar
will be true for games with incomplete information, if we replace Nash equilibrium by generalized Nash
equilibrium.

Let us start from a simple belief hierarchy for player i generated by a combination of beliefs
(σ1, ..., σn) where, for every player j, the belief σj is a probability distribution over j’s choice-utility
pairs. Assume, in addition, that this belief hierarchy expresses common belief in rationality. What
properties should (σ1, ..., σn) have?

Fix an opponent j. As i believes in j’s rationality, i’s belief σj about opponent j’s choice-utility
pairs should only assign positive probability to pairs (cj , uj) where cj is optimal for player j, given
the utility function uj , and given what i believes to be j’s belief about the other players’choices. By
construction, i’s belief about j’s belief about the choices of the other players is given by σ−j , where
σ−j = (σk)k 6=j is the collection of beliefs about all players except j. By putting these two insights
together, we conclude that σj should only assign positive probability to (cj , uj) if choice cj is optimal
for opponent j given the utility function uj , and given the belief σ−j about the other players.

Now, consider the belief σi about i’s choice-utility pairs from i’s viewpoint. By construction, σi is
what i believes that an opponent believes about i’s (that is, his own) choice-utility pairs. As i believes
that every opponent believes in i’s rationality, σi should only assign positive probability to (ci, ui) if
ci is optimal for player i given the utility function ui, and given what i believes that the opponents
believe about i’s belief about the other players’choices. Again, by construction, i believes that the
opponents believe that i’s belief about the other players is given by σ−i. By putting these two insights
together, we conclude that σi should only assign positive probability to (ci, ui) if choice ci is optimal
for player i given the utility function ui, and given the belief about the other players’choices induced
by σ−i.
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Altogether, we see that if the simple belief hierarchy generated by (σ1, .., σn) expresses common
belief in rationality, then for every player j, the belief σj only assigns positive probability to a choice-
utility pair (cj , uj) if the choice cj is optimal for player j given the utility function uj , and given the
belief about his opponents’choices induced by σ−j . Belief combinations (σ1, ..., σn) with this property
are called generalized Nash equilibria.

Definition 6.1.2 (Generalized Nash equilibrium) Consider a combination (σ1, ..., σn) of beliefs
where, for every player i, the belief σi is a probability distribution over i’s choice-utility function pairs.
The combination (σ1, ..., σn) is a generalized Nash equilibrium if for every player i, the belief σi
only assigns positive probability to choice-utility pairs (ci, ui) where ci is optimal for player i given
the utility function ui, and given the belief about the opponents’choices induced by σ−i .

Above we have thus seen that, if the simple belief hierarchy is generated by (σ1, ..., σn) and expresses
common belief in rationality, then (σ1, ..., σn) is a generalized Nash equilibrium. In fact, the other
direction is also true: If a simple belief hierarchy is generated by a generalized Nash equilibrium
(σ1, ..., σn), then the belief hierarchy will express common belief in rationality. We thus arrive at the
following general conclusion.

Theorem 6.1.1 (Relation with generalized Nash equilibrium) Consider a simple belief hier-
archy generated by a combination of beliefs (σ1, ..., σn) about choice-utility pairs. Then, the simple
belief hierarchy expresses common belief in rationality, if and only if, (σ1, ..., σn) is a generalized Nash
equilibrium.

As an illustration, consider the beliefs diagram in Figure 6.1.2. As we have seen before, your belief
hierarchy is simple and is generated by the combination of beliefs σ1 = (green, u1) and σ2 = (0.5)·(red,
ur2) + (0.5) · (blue, ub2). In fact, it can be shown that this combination of beliefs is a generalized Nash
equilibrium.

To see this, note that σ1 assigns probability 1 to your choice-utility pair (green, u1). The belief σ2
assigns probability 0.5 to Barbara’s choices red and blue, and under this belief it is optimal for you to
wear green if your utility function is u1. Thus, the associated optimality condition for player 1 in the
definition of a generalized Nash equilibrium is satisfied.

On the other hand, σ2 assigns positive probability to Barbara’s choice-utility pairs (red, ur2) and
(blue, ub2). If Barbara holds the belief σ1, then she believes that you will wear green with probability 1.
Under that belief, it would be optimal for Barbara to wear red if her utility function is ur2, whereas it
would be optimal for her to wear blue if her utility function is ub2. Hence, the optimality condition for
player 2 in generalized Nash equilibrium is again satisfied. Altogether, we conclude that that (σ1, σ2)
is a generalized Nash equilibrium. By Theorem 6.1.1 it then follows that your simple belief hierarchy
generated by (σ1, σ2) expresses common belief in rationality —something we already concluded above
based on the beliefs diagram.

With Theorem 6.1.1 at hand, it is now also clear what are the choices that player i can rationally
make if he holds a simple belief hierarchy that expresses common belief in rationality, and a utility
function ui. These are precisely the choices that are optimal for player i in a generalized Nash
equilibrium (σ1, ..., σn) if he holds the utility function ui.

To see this, suppose that player i holds a simple belief hierarchy that expresses common belief in
rationality, and that a choice ci is optimal for him under the utility function ui. By Theorem 6.1.1 we
know that the simple belief hierarchy must be induced by a generalized Nash equilibrium (σ1, ..., σn).
In particular, player i holds the belief σ−i about the opponents’choices. As such, the choice ci must
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be optimal, given the belief σ−i which is part of the generalized Nash equilibrium, and given the utility
function ui.

On the other hand, suppose that the choice ci is optimal in a generalized Nash equilibrium
(σ1, ..., σn) if player i holds the utility function ui. We can then use Theorem 6.1.1 to conclude that
the simple belief hierarchy induced by (σ1, ..., σn) expresses common belief in rationality. Thus, the
choice ci is optimal for player i if he holds a simple belief hierarchy that expresses common belief in
rationality, and holds the utility function ui. We therefore arrive at the following conclusion.

Theorem 6.1.2 (Choices optimal in a generalized Nash equilibrium) For player i, a choice
ci is optimal for a utility function ui and a simple belief hierarchy that expresses common belief in
rationality, if and only if, ci is optimal in a generalized Nash equilibrium (σ1, ..., σn) for the utility
function ui.

Hence, if we want to find all choices that are possible if a player holds a simple belief hierarchy that
expresses common belief in rationality, then we must concentrate on the generalized Nash equilibria
in the game.

From Chapter 4 we know that a Nash equilibrium always exists for every standard game (without
incomplete information) that contains finitely many choices. With this insight at hand, it then easily
follows that a generalized Nash equilibrium will also always exist for every game with incomplete
information that contains finitely many choices. The reason is simple: Fix a utility function ui in
Ui for every player i, and consider the standard game Γ̃ where every player i is believed to have this
particular utility function ui. From Chapter 4 we know that there is a Nash equilibrium (σ̃1, ..., σ̃n)
for Γ̃, where σ̃i is a probability distribution over i’s choices. We can then construct a combination
of beliefs (σ1, ..., σn) for the game with incomplete information, where for every player i and every
choice ci, the belief σi assigns probability σ̃i(ci) to the choice-utility pair (ci, ui), with the distinguished
utility function ui.

Question 6.1.3 Show that the combination of beliefs (σ1, ..., σn) is a generalized Nash equilibrium.

In this way, we can always construct a generalized Nash equilibrium in which you are certain about
the opponents’utility functions, and where you believe that the opponents are certain about your own
utility function. We thus obtain the following general existence result.

Theorem 6.1.3 (Generalized Nash equilibrium always exists) For every game with incomplete
information and finitely many choices, there is always at least one generalized Nash equilibrium.

Together with Theorem 6.1.1 we thus conclude that it is always possible to hold a simple belief
hierarchy that expresses common belief in rationality.

6.1.3 Examples
We will now determine, for the two examples we have investigated in Chapter 5, which choices you
can rationally make with a simple belief hierarchy that expresses common belief in rationality.

Example 6.1: What is Barbara’s favorite color.

Recall the story from Chapter 5, and the decision problems in Table 6.1.1. In Section 5.4.3 of that
chapter, we have seen that under common belief in rationality you can rationally wear blue or green,
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You 20 40 60 80 100

20 5 0 0 0 0
40 −10 −5 0 0 0
60 −30 −30 −15 0 0
80 −50 −50 −50 −25 0

100 −70 −70 −70 −70 −35
u301

You 20 40 60 80 100

20 15 0 0 0 0
40 10 5 0 0 0
60 −10 −10 −5 0 0
80 −30 −30 −30 −15 0

100 −50 −50 −50 −50 −25
u501

You 20 40 60 80 100

20 25 0 0 0 0
40 30 15 0 0 0
60 10 10 5 0 0
80 −10 −10 −10 −5 0

100 −30 −30 −30 −30 −15
u701

You 20 40 60 80 100

20 35 0 0 0 0
40 50 25 0 0 0
60 30 30 15 0 0
80 10 10 10 5 0

100 −10 −10 −10 −10 −5
u901

Table 6.1.2 Decision problems for “Chris’drawings”

Barbara can only rationally wear red if her utility function is ur2, and she can rationally wear blue or
yellow if her utility function is ub2. But which colors can you and Barbara rationally choose, for each
of the possible utility functions, if you hold a simple belief hierarchy that expresses common belief in
rationality. To answer this question we will rely on Theorem 6.1.2.

Consider the generalized Nash equilibrium σ1 = (green, u1) and σ2 = (0.5) · (red, ur2)+(0.5) · (blue,
ub2) we have investigated above. In that generalized Nash equilibrium your optimal choice is green, the
optimal choice for Barbara is red if her utility function is ur2, whereas her optimal choice is blue if her
utility function is ub2. On the basis of Theorem 6.1.2 we can thus conclude that under common belief
in rationality with a simple belief hierarchy, you can rationally wear green, Barbara can rationally
wear red if her utility function is ur2, whereas she can rationally wear blue if her utility function is u

b
2.

Consider next the belief combination (σ1, σ2) where σ1 = (blue, u1) and σ2 = (yellow, ub2).

Question 6.1.4 Explain why (σ1, σ2) is a generalized Nash equilibrium.

Note that for you, blue is optimal for the belief σ2 and the utility function u1, and for Barbara,
yellow is optimal for the belief σ1 and the utility function ub2. In the light of Theorem 6.1.2 we thus
see that under common belief in rationality with a simple belief hierarchy, you can rationally wear
blue, whereas Barbara can rationally wear yellow if her utility function is ub2.

Overall, we conclude that under common belief in rationality with a simple belief hierarchy, you
can rationally wear blue and green, Barbara can rationally wear red if her utility function is ur2, whereas
she can rationally wear blue and yellow if her utility function is ub2. As these are precisely the choices
that were possible under common belief in rationality, we see that the additional condition of a simple
belief hierarchy does not further restrict the choices that you and Barbara can rationally make.

Example 6.2: Chris’drawings.

Recall the story from Chapter 5. For convenience, we have reproduced the decision problems in Table
6.1.2. We have seen in Section 5.4.4 of that chapter that under common belief in rationality, you can
rationally bid 20, 40 or 60 if your valuation is 30, 50 or 70, whereas you can rationally bid 40, 60 or
80 if your valuation is 90, and similarly for Barbara.
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Suppose we additionally insist on a simple belief hierarchy. What bids could you then rationally
make for every possible valuation? Again, we rely on Theorem 6.1.2.

Consider first the combination of beliefs (σ1, σ2) where σ1 = (80, u901 ) and σ2 = (80, u902 ).

Question 6.1.5 Explain why (σ1, σ2) is a generalized Nash equilibrium.

Under the belief σ2, you can rationally bid 20, 40 or 60 if your valuation is 30, 50 or 70, and you
can rationally bid 80 if your valuation is 90. Thus, by Theorem 6.1.2, we see that under common belief
in rationality with a simple belief hierarchy, you can rationally bid 20, 40 or 60 if your valuation is 30,
50 or 70, and you can rationally bid 80 if your valuation is 90.

Question 6.1.6 Find a generalized Nash equilibrium where it is optimal for you to bid 40 if your
valuation is 90, and another generalized Nash equilibrium where it is optimal for you to bid 60 if your
valuation is 90.

In the light of Question 6.1.6 and Theorem 6.1.2, we can thus conclude that under common belief
in rationality with a simple belief hierarchy, you can rationally bid 40 or 60 if your valuation is 90.
Altogether, we see that under common belief in rationality with a simple belief hierarchy, you can
rationally bid 20, 40 or 60 if your valuation is 30, 50 or 70, and you can rationally bid 40, 60 or 80 if
your valuation is 90.

These were exactly the bids you could rationally make under common belief in rationality. There-
fore, also in this example the additional restriction of a simple belief hierarchy does not affect the
choices you can rationaly make under common belief in rationality.

We will end this section by investigating a new example in which the additional condition of a
simple belief hierarchy does alter the possible choices that you can rationally make under common
belief in rationality.

Example 6.3: The moonlight serenade.

Recall from the example “Movie for two”in Chapter 4 that you had a fight with Barbara, some days
ago. The plan to see each other at the cinema did not work out, and hence you have to think about a
new strategy to make up with her. There is a full moon this evening —the perfect time to apologize
to Barbara, and to let this fight behind you. Three possible plans come to your mind: You can either
give a moonlight serenade in front of her door, or bring her a box of her favorite chocolates, or send
Chris to apologize for you. The question is: When you ring the door bell, will Barbara open the door,
or will she ignore the door bell?

Your conditional preference relation is as follows: If you believe that Barbara will open the door,
then you would definitely prefer to give a serenade with your Spanish guitar. At the same time, you
would be very disappointed to only arrive with a box of chocolates in this case, as you could have
impressed her with a lovely Spanish song. As such, you would rather send Chris than offering a box
of chocolates in this case.

On the other hand, if you believe that Barbara will ignore the door bell, you would be very
disappointed if you would stand there with your Spanish guitar. For that reason, sending Chris would
be better than intending to give a serenade. However, the best option in this case is to arrive with a
box of chocolates, since you could still put it in her briefcase with a letter attached to it.

Finally, if you are inherently uncertain about Barbara opening the door or not, then your favorite
plan would be to send Chris, as to avoid any big disappointment.
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You open ignore
serenade 4 0
chocolates 0 4

Chris 3 3
u1

Barbara serenade chocolates Chris
open 0 0 0
ignore 1 1 1

ua2

Barbara serenade chocolates Chris
open 0 1 0
ignore 1 0 1

uf2

Table 6.1.3 Decision problems for “The moonlight serenade”

Figure 6.1.3 Beliefs diagram for “The moonlight serenade”

This evening, you are also not certain whether Barbara will be in an angry or a forgiving mood,
and this may well affect her decision to open the door or not. More precisely, if Barbara is in an angry
mood then she will simply prefer to ignore the door bell in any case. If she is in a forgiving mood,
she would only consider opening the door if she deems it suffi ciently likely that you bring her a box of
chocolates. The reason is that you are a terrible singer, and therefore Barbara would rather not open
the door if she thinks you are about to give a serenade. On the other hand, if she believes you sent
Chris, then she will interpret this as an act of cowardice, not worthy of opening the door.

This story can be modelled by the decision problems in Table 6.1.3. Here, ua2 and u
f
2 denote the

utility function for Barbara in case she is angry and forgiving, respectively.
Let us first investigate which plans you can rationally implement under common belief in rationality.

If we apply the generalized iterated strict dominance procedure from Section 5.4, then we can only
eliminate the choice open for Barbara at ua2, after which the procedure stops. Thus, under common
belief in rationality, you can rationally implement any of the three plans, whereas Barbara can only
rationally ignore the door bell if she is angry, and can rationally open the door or ignore the door bell
in case she is forgiving. This conclusion is also confirmed by the beliefs diagram in Figure 6.1.3, where
each of these choices is supported by a belief hierarchy that expresses common belief in rationality.

Suppose that we now additionally insist on a simple belief hierarchy. Which plans can you rationally
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implement then? From the beliefs diagram in Figure 6.1.3 it can be seen that your belief hierarchy
starting at (chocolates, u1) is simple and expresses common belief in rationality. Indeed, it is generated
by the beliefs σ1 = (chocolates, u1) and σ2 = (ignore, ua2). As your choice chocolates is optimal
under this simple belief hierarchy, you can rationally plan to bring chocolates under common belief in
rationality with a simple belief hierarchy.

What about your other two choices? Consider the combination of beliefs σ1 = (0.75) · (chocolates,
u1) + (0.25) · (Chris, u1) and σ2 = (0.25) · (open, uf2) + (0.75) · (ignore, ua2).

Question 6.1.7 Explain why (σ1, σ2) is a generalized Nash equilibrium.

Since your choice Chris, together with your choice chocolates, is optimal in the generalized Nash
equilibrium (σ1, σ2), it follows by Theorem 6.1.2 that you can rationally plan to send Chris under
common belief in rationality with a simple belief hierarchy.

Question 6.1.8 Explain why there is no generalized Nash equilibrium (σ1, σ2) where only your choice
Chris is optimal.

The question above thus explains why, in order to support the choice Chris, we had to construct
a generalized Nash equilibrium where Chris was optimal together with some other choice.

This leaves the question: Can you rationally plan to give a serenade under common belief in
rationality with a simple belief hierarchy? We will show that the answer is “no”. To see this, we prove
that there is no generalized Nash equilibrium (σ1, σ2) where the choice serenade is optimal for you.

Assume, contrary to what we want to show, that serenade would be optimal for you in a generalized
Nash equilibrium (σ1, σ2). Then, σ2 must assign positive probability to Barbara’s choice open. As open
can only be optimal for Barbara if her utility function is uf2 , we conclude that σ2 must assign positive
probability to (open, uf2). This implies, in turn, that open must be optimal for Barbara under the
belief σ1 if her utility function is u

f
2 . To make this possible, σ1 must assign positive probability to

chocolates. Hence, chocolates must be optimal for you under the belief σ2. As such, we conclude that
both serenade and chocolates must be optimal for you under the belief σ2, which is only possible if σ2
assigns probability 0.5 to both open and ignore. But then, both serenade and chocolates would yield an
expected utility of 2, which is less than what Chris gives. As such, it cannot be that both serenade and
chocolates are optimal under σ2. We thus obtain a contradiction. Therefore, we conclude that there
is no generalized Nash equilibrium where the choice serenade is optimal for you. By Theorem 6.1.2
it then follows that you cannot rationally plan to give a serenade under common belief in rationality
with a simple belief hierarchy.

Here is the intuitive reason: Planning a serenade can only be optimal if you assign a high prob-
ability to Barbara opening the door. If you believe that Barbara is correct about your belief, as is
the case in a simple belief hierarchy, you believe that Barbara believes that you indeed assign a high
probability to Barbara opening the door. Hence, you must believe that Barbara believes that you will
plan a serenade, or possibly plan to send Chris. In either case, you believe Barbara to ignore the door
bell. But then, it cannot be optimal anymore to plan a serenade.

What about Barbara’s choices? What choices can she rationally make, if she is angry or forgiving,
under common belief in rationality with a simple belief hierarchy? Clearly, if she is angry she can only
rationally choose ignore. For the case where she is forgiving, consider the generalized Nash equilibrium
σ1 = (0.75) · (chocolates, u1) + (0.25) · (Chris, u1) and σ2 = (0.25) · (open, uf2) + (0.75) · (ignore, ua2) we
have seen above. Since in this generalized Nash equilibrium it is optimal for Barbara to choose open
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if she is forgiving, we conclude on the basis of Theorem 6.1.2 that Barbara can rationally choose to
open the door if she is forgiving under common belief in rationality with a simple belief hierarchy.

But can she rationally ignore the door bell if she is forgiving in this case? The answer is “yes”.
To see why, consider the combination of beliefs σ1 = (0.5) · (chocolates, u1) + (0.5) · (Chris, u1) and
σ2 = (0.25) · (open, uf2) + (0.75) · (ignore, uf2).

Question 6.1.9 Explain why (σ1, σ2) is a generalized Nash equilibrium.

In this generalized Nash equilibrium it is optimal for Barbara to choose ignore if her utility function
is uf2 . Therefore, by Theorem 6.1.2, Barbara can rationally choose to ignore the door bell if she is
forgiving under common belief in rationality with a simple belief hierarchy.

Summarizing, we see that under common belief in rationality with a simple belief hierarchy, you
can rationally plan to bring chocolates or to send Chris, but not to give a serenade, whereas Barbara
can rationally choose to ignore the door bell if she is angry, and she can rationally choose to open the
door or to ignore the door bell if she is forgiving. In particular, if we add the condition of a simple
belief hierarchy to common belief in rationality, then you can no longer rationally plan a moonlight
serenade for Barbara.

6.2 Symmetric Beliefs

In this section we extend the idea of a symmetric belief hierarchy, as introduced in Section 4.2, to
games with incomplete information. Similarly to standard games it reveals a symmetry between what
you believe about the opponent’s choice and utility function on the one hand, and what you believe
that the opponent believes about your own choice and utility function on the other hand. As we did
in Section 4.2, we show that symmetric belief hierarchies can be characterized by common priors on
choice-type combinations. Combining the condition of common belief in rationality with that of a
symmetric belief hierarchy leads to the concept of Bayesian equilibrium. More precisely, the choices
that can rationally be made, for a given utility function, under common belief in rationality and a
symmetric belief hierarchy are precisely those that are optimal in a Bayesian equilibrium for that
utility function. In that sense, Bayesian equilibrium can be viewed as the counterpart to correlated
equilibrium when we move from standard games to games with incomplete information. Indeed, if
we apply Bayesian equilibrium to a standard game without incomplete information, then we obtain
exactly the concept of correlated equilibrium. At the end, we add the condition of one theory per
choice and show that it leads to the concept of canonical Bayesian equilibrium, similarly to how it
transformed correlated equilibrium into canonical correlated equilibrium in standard games.

6.2.1 Symmetric Belief Hierarchies
As already mentioned above, a symmetric belief hierarchy reflects a certain degree of symmetry be-
tween your belief about the opponent’s choice and utility function, and what you believe that the
opponent believes about your own choice and utility function. Like we did in Section 4.2 for standard
games, this idea can be formalized by stating that the belief hierarchy can be derived from a symmetric
weighted beliefs diagram.

To see what we mean by this in a game with incomplete information, consider the beliefs diagram,
and an associated weighted beliefs diagram, for “The moonlight serenade” in Figure 6.2.1. In the
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Figure 6.2.1 A beliefs diagram, and an associated weighted beliefs diagram, for “The moonlight serenade”
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same way as in Section 4.2, it can be seen that the beliefs diagram on top of the figure is induced by
the weighted beliefs diagram at the bottom. Consider, for instance, the two arrows that leave your
choice chocolates, which carry the weights 10 and 3, respectively, in the weighted beliefs diagram. The
relative weights are thus 10/13 and 3/13, which are exactly the associated probabilities in the beliefs
diagram on top. In the same way, it can be verified that all the relative weights of the outgoing arrows
in the weighted beliefs diagram correspond precisely to the probabilities of these outgoing arrows in
the beliefs diagram on top.

Moreover, it turns out that the weighted beliefs diagram at the bottom is symmetric. Indeed,
for every arrow from a choice-utility pair (c1, u1) of yours to a choice-utility pair (c2, u2) of Barbara,
the symmetric counterpart, which is the arrow from (c2, u2) to (c1, u1), is also present. And vice
versa. Moreover, every arrow always carries the same weight as its symmetric counterpart. Consider,
for instance, the arrow from your choice-utility pair (chocolate, u1) to Barbara’s choice-utility pair
(ignore, ua2), which carries the weight 10. Its symmetric counterpart, which is the arrow from (ignore,
ua2) to (chocolate, u1), carries the same weight 10. The same holds for all the arrows in the weighted
beliefs diagram. For that reason, the weighted beliefs diagram is symmetric.

As the beliefs diagram on top is induced by the symmetric weighted beliefs diagram at the bottom,
we say that all the belief hierarchies in it are symmetric. We thus see that the definition of a symmetric
belief hierarchy is almost identical to the one in Section 4.2 for standard games. The only difference is
that belief hierarchies now involve beliefs about choice-utility pairs, rather than about choices alone.
We thus arrive at the following definition.

Definition 6.2.1 (Symmetric belief hierarchy) (a) A weighted beliefs diagram starts from a
beliefs diagram, removes the probabilities at the forked arrows (if there are any), and assigns to every
arrow a from a choice-utility pair (ci, ui) to an opponents’choice-utility combination (cj , uj)j 6=i some
positive weight, which we call w(a).

(b) Consider an arrow a from a choice-utility pair (ci, ui) to an opponents’choice-utility combination
(cj , uj)j 6=i. For every opponent j, the symmetric counterpart to a is the arrow from the choice-utility
pair (cj , uj) to the opponents’choice-utility combination (ck, uk)k 6=j , using the same choice-utility pairs
as a.

(c) A weighted beliefs diagram is symmetric if for every arrow a, each of its symmetric counterparts
(one for every opponent) is also part of the diagram, and carries the same weight as a.

(d) The weighted beliefs diagram induces a (normal) beliefs diagram in which the probability of an
arrow a leaving a choice-utility pair (ci, ui) is equal to

p(a) =
w(a)∑

arrows a′ leaving (ci,ui)
w(a′)

.

(e) A belief hierarchy is symmetric if it is part of a beliefs diagram that is induced by a symmetric
weighted beliefs diagram.

Let us return to the beliefs diagram on top of Figure 6.2.1. We have seen that all the belief
hierarchies in this beliefs diagram are symmetric, because the beliefs diagram is induced by a symmetric
weighted beliefs diagram. Moreover, as all arrows are solid, all belief hierarchies involved express
common belief in rationality. As each of your choices can be supported by one such belief hierarchy,
we conclude that under common belief in rationality with a symmetric belief hierarchy, you can
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((ser, tser1 ), (open, tf,o2 )) ((cho, tcho1 ), (ignore, ta,i2 ))

weights 1 10
probabilities 1/17 10/17

((cho, tcho1 ), (open, tf,o2 )) ((Chris, tChris1 ), (ignore, ta,i2 ))

weights 3 1
probabilities 3/17 1/17

((Chris, tChris1 ), (open, tf,o2 )) ((Chris, tChris1 ), (ignore, tf,i2 ))

weights 1 1
probabilities 1/17 1/17

Table 6.2.1 Common prior for “The moonlight serenade”

rationally plan a serenade, to offer a box of chocolates, or to send Chris. Similarly, under common
belief in rationality with a symmetric belief hierarchy, Barbara can rationally ignore the door bell if
she is angry or forgiving, whereas she can rationally open the door if she is forgiving.

Recall that these are precisely the choices that were possible under common belief in rationality.
As such, the additional condition of a symmetric belief hierarchy does not affect the choices that
you and Barbara can rationally make under common belief in rationality. As we have seen, this was
different for simple belief hierarchies: By additionally imposing a simple belief hierarchy, you could
no longer rationally plan a serenade for Barbara.

6.2.2 Relation with Common Prior
Recall from Section 4.2.2 that in standard games, the symmetric belief hierarchies were exactly those
that are induced by a common prior on choice-type combinations. We will see that the same is true
for games with incomplete information, for identical reasons. Consider, as an example, the symmetric
belief hierarchies in Figure 6.2.1. The reason why these belief hierarchies are symmetric is because
they are all generated by the symmetric weighted beliefs diagram at the bottom.

The symmetric weights in this weighted beliefs diagram can be used to construct a common prior
on choice-type combinations, as follows. Consider the types tser1 , tcho1 and tChris1 for you, and the types
ta,i2 , t

f,o
2 and tf,i2 for Barbara, where all of your types have the utility function u1, Barbara’s type t

a,i
2

has the utility function ua2, and the other two types for Barbara have the utility function u
f
2 . Then,

we can identify the choice-utility pair (serenade, u1) with the choice-type pair (serenade, tser1 ), and
similarly for the other choice-utility pairs in the beliefs diagram. The new beliefs diagram, where
choice-utility pairs have been replaced by choice-type pairs, is called a beliefs diagram in choice-type
combinations. In fact, the original beliefs diagram and the new one represent exactly the same belief
hierarchies, only the labeling has changed. We can thus use both beliefs diagrams interchangeably.

In the beliefs diagram in choice-type combinations, take the arrow from (chocolates, tcho1 ) to (ignore,
ta,i2 ), and its symmetric counterpart from (ignore, ta,i2 ) to (chocolates, tcho1 ). By symmetry, both carry
the same weight, which in this case is 10. We can thus assign the weight w((chocolates, tcho1 ), (ignore,
ta,i2 )) = 10 to the corresponding choice-type combination ((chocolates, tcho1 ), (ignore, ta,i2 )). Of course,
we can do the same for the other arrows in the beliefs diagram, which results in the weights on the
choice-type combinations in Table 6.2.1.

Note that the sum of all the weights on the different choice-type combinations is 17. If we divide all
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weights by 17, then we obtain the probabilities on the choice-type combinations in Table 6.2.1. This
probability distribution π on the different choice-type combinations is called a common prior.

In the same way as in Chapter 4 for standard games, it can now be shown that this common prior
π induces the beliefs diagram on top of Figure 6.2.1. Consider, for instance, the arrow a1 from your
choice-utility pair (chocolates, u1) to Barbara’s choice-utility pair (ignore, ua2). The corresponding
choice-type combination is ((cho, tcho1 ), (ignore, ta,i2 )) to which the common prior π assings the proba-
bility 10/17. Similarly, the arrow a2 from (chocolates, u1) to (open, uf2) corresponds to the choice-type
combination ((cho, tcho1 ), (open, tf,o2 )), to which the common prior π assigns the probability 3/17. As
a1 and a2 are the only two arrows that leave (chocolates, u1), the relative probabilities assigned by
the common prior π to the arrows leaving (chocolates, u1) are

p(a1) =
10/17

10/17 + 3/17
= 10/13 and p(a2) =

3/17

10/17 + 3/17
= 3/13.

Note that these are precisely the probabilities assigned to these two arrows in the beliefs diagram
of Figure 6.2.1. In that sense, the common prior π induces the probabilities assigned to the arrows
leaving (chocolates, u1) in the beliefs diagram.

It can be verified that the same holds for all other arrows in the beliefs diagram. Therefore, we
conclude that the common prior π indeed induces the beliefs diagram in Figure 6.2.1.

The following definition should not come as a surprise, given what we have already seen in Section
4.2.2.

Definition 6.2.2 (Common prior on choice-type combinations) Take a beliefs diagram, and
identify every choice-utility pair (ci, ui) with a unique choice-type pair (ci, ti) where the type ti has
the utility function ui. What results is a beliefs diagram in choice-type combinations.

(a) A common prior on choice-type combinations is a probability distribution π that assigns to
every choice-type combination (c, t) = (ci, ti)i∈I so obtained a probability π(c, t).

(b) The beliefs diagram in choice-type combinations is induced by a common prior π on choice-
type combinations if for every choice-type combination ((ci, ti), (c−i, t−i)) and every player i, the
corresponding arrow a from (ci, ti) to (c−i, t−i) is present exactly when π((ci, ti), (c−i, t−i)) > 0, and
the probability of this arrow a is equal to

p(a) =
π((ci, ti), (c−i, t−i))

π(ci, ti)
.

(c) A belief hierarchy is induced by a common prior π on choice-type combinations if it is part of
a beliefs diagram in choice-type combinations that is induced by π.

Note that this definition is the same as the one we saw in Section 4.2.2. Recall that a beliefs
diagram for standard games could contain the same choice ci twice. In the beliefs diagram we could
then call these choices ci and c′i, and in the associated beliefs diagram in choice-type combinations,
these two copies could be identified with different choice-type pairs (ci, ti) and (ci, t

′
i).

Similarly, for games with incomplete information a beliefs diagram could contain different copies
of the same choice-utility pair (ci, ui). In the associated beliefs diagram in choice-type combinations,
these two copies would be identified with different choice-type pairs (ci, ti) and (ci, t

′
i), where both ti

and t′i have the utility function ui.
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For the beliefs diagram of Figure 6.2.1 we have seen that every symmetric belief hierarchy that is
present in this beliefs diagram is induced by a common prior on choice-type combinations. In fact,
the method we have used to design a common prior that induces these symmetric belief hierarchies
can be applied in general, for every symmetric belief hierarchy. As such, we can conclude that every
symmetric belief hierarchy is induced by a common prior on choice-type combinations.

The other direction is also true: If a belief hierarchy is induced by a common prior, then it will
always be symmetric. Altogether, we thus see that the symmetric belief hierarchies are precisely those
that are induced by a common prior on choice-type combinations.

Theorem 6.2.1 (Relation with common prior) A belief hierarchy is symmetric, if and only if, it
is induced by a common prior on choice-type combinations.

This result will simplify the analysis of symmetric belief hierarchies, as it shows that they can
always be summarized by a common prior on choice-type combinations —an object that is compact
and easy to work with.

6.2.3 Relation with Bayesian Equilibrium
We will now combine the conditions of common belief in rationality with the requirement of a sym-
metric belief hierarchy, and show that it leads to a concept called Bayesian equilibrium. Consider a
symmetric belief hierarchy βi for player i that expresses common belief in rationality. By symmetry,
it follows from Theorem 6.2.1 that βi is induced by a common prior π on choice-type combinations.
That is, βi is part of a beliefs diagram where all belief hierarchies present are induced by the common
prior π. Moreover, since βi expresses common belief in rationality, we can always find such a beliefs
diagram where all arrows are solid. That is, for every choice-utility pair (cj , uj) in the beliefs diagram,
the choice cj is optimal for the utility function uj and the belief about the opponents’choices given
by the outgoing arrows and their associated probabilities.

Now, identify every choice-utility pair (cj , uj) in the beliefs diagram with a choice-type pair (cj , tj)
where tj has utility function uj .Moreover, we may assume that different choice-utility pairs correspond
to different types. Since the beliefs diagram is induced by the common prior π, the probability that
every such type tj assigns to the opponents’choice-type combination (ck, tk)k 6=j is given by

bj(tj)((ck, tk)k 6=j) =
π((cj , tj), ((ck, tk)k 6=j)

π(cj , tj)
.

As in Section 4.2.3, let π(· | cj , tj) be the belief that type tj has about the opponents’choice-type
combinations, given by the formula above. We refer to π(· | cj , tj) as the belief that player j has,
conditional on his choice-type pair (cj , tj).

Recall from above that all arrows in the beliefs diagram are solid. As such, for every choice-type
pair (cj , tj) in the beliefs diagram, the choice cj must be optimal for the utility function that the type
tj has, and the belief π(· | cj , tj) that the type tj has. Moreover, as the beliefs diagram is induced by
the common prior π, the choice-type pairs (cj , tj) that are present in the beliefs diagram are exactly
those that receive positive probability by π, that is, where π(cj , tj) > 0.

By putting these two insights together, we arrive at the following conclusion: For every choice-type
pair (cj , tj) with π(cj , tj) > 0, the choice cj must be optimal given the utility function that tj has,
and given the belief π(· | cj , tj) that player j has, conditional on his choice-type pair (cj , tj). Common
priors π with this property are called Bayesian equilibria.
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Definition 6.2.3 (Bayesian equilibrium) A common prior π on choice-type combinations is a
Bayesian equilibrium if for every player i, and every choice-type pair (ci, ti) with π(ci, ti) > 0,
the choice ci is optimal for the utility function that ti has, and the belief π(· | ci, ti) that player i has
conditional on his choice-type pair (ci, ti).

Note that this definition is almost the same as the one for correlated equilibrium in Section 4.2.3.
The only difference is that in the present setup, different types may specify different utility functions. If
we apply the definition of a Bayesian equilibrium to standard games without incomplete information,
where only one utility function is possible for every player, then we get exactly the definition of
correlated equilibrium. In that sense, Bayesian equilibrium may be viewed as the counterpart to
correlated equilibrium in the context of incomplete information.

By our arguments above we have thus shown that every symmetric belief hierarchy βi that expresses
common belief in rationality must be induced by a common prior π on choice-type combinations that
is a Bayesian equilibrium. In fact, the other direction is also true: If a belief hierarchy is induced by a
Bayesian equilibrium π, then the belief hierarchy will be symmetric and it will express common belief
in rationality. We thus arrive at the following conclusion.

Theorem 6.2.2 (Relation with Bayesian equilibrium) A belief hierarchy is symmetric and ex-
presses common belief in rationality, if and only if, the belief hierarchy is induced by a Bayesian
equilibrium.

As an illustration, consider the beliefs diagram in Figure 6.2.1. We have already seen that all belief
hierarchies present are symmetric. Moreover, since only solid arrows appear in the beliefs diagram,
all these belief hierarchies express common belief in rationality. By Theorem 6.2.2 we then conclude
that every belief hierarchy in this beliefs diagram must be induced by a Bayesian equilibrium. In fact,
it turns out that all belief hierarchies present are induced by the same Bayesian equilibrium, which
is the common prior π from Table 6.2.1.

Question 6.2.1 Show that the common prior π from Table 6.2.1 is a Bayesian equilibrium.

Theorem 6.2.2 is useful for several reasons. First, it can be used to easily construct symmetric belief
hierarchies that express common belief in rationality. To do so, we start by constructing a Bayesian
equilibrium π, which is just a common prior on choice-type combinations within an epistemic model
with certain optimality properties, and then derive all possible belief hierarchies from π. All these
belief hierarchies are guaranteed to be symmetric, and to express common belief in rationality.

Moreover, it can be used to verify whether a given choice can rationally be made under common
belief in rationality with a symmetric belief hierarchy. To see how, suppose that the choice c∗i can
rationally be made, for some utility function u∗i , under common belief in rationality with a symmetric
belief hierarchy. Then, by Theorem 6.2.2, there must be a Bayesian equilibrium π such that the choice
c∗i is optimal, given the utility function u

∗
i , for the belief hierarchy induced by π.

Assume that the belief hierarchy starts at the choice-type pair (ci, ti). Then, the induced belief
about the opponents’choice-type combinations is π(· | (ci, ti)). Since the choice c∗i is optimal, given the
utility function u∗i , for this belief hierarchy, the choice c

∗
i must be optimal for the belief π(· | (ci, ti))

and the utility function u∗i . In this case, we say that c
∗
i is optimal in Bayesian equilibrium for the

utility function u∗i .

Definition 6.2.4 (Choice optimal in a Bayesian equilibrium) A choice c∗i is optimal in a
Bayesian equilibrium π for the utility function u∗i if there is some choice-type pair (ci, ti) with
π(ci, ti) > 0 such that c∗i is optimal for the induced belief π(· | (ci, ti)) and the utility function u∗i .
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You open ignore
serenade 4 0
chocolates 0 4

Chris 3 3
u1

Barbara serenade chocolates Chris
open 0 0 0
ignore 1 1 1

ua2

Barbara serenade chocolates Chris
open 0 0 0
ignore 1 0 1

uf2

Table 6.2.2 Decision problems for “The moonlight serenade with a twist”

Above we have argued that every choice c∗i that can rationally be made for a given utility function
u∗i under common belief in rationality with a symmetric belief hierarchy must be optimal in a Bayesian
equilibrium for this utility function u∗i . In fact, the other direction is also true: If the choice c

∗
i is optimal

in a Bayesian equilibrium π for the utility function u∗i , then c
∗
i can rationally be made for the utility

function u∗i under common belief in rationality with a symmetric belief hierarchy.
The reason is simple: Suppose that c∗i is optimal in a Bayesian equilibrium π for the utility function

u∗i . Then, by definition, there is some choice-type pair (ci, ti) with π(ci, ti) > 0 such that c∗i is optimal
for the induced belief π(· | (ci, ti)) and the utility function u∗i . By Theorem 6.2.2 we know that the
belief hierarchy βi that can be derived from π and that starts at (ci, ti) is symmetric and expresses
common belief in rationality. Thus, the choice c∗i is optimal for the utility function u

∗
i and the belief

hierarchy βi that is symmetric and expresses common belief in rationality. We therefore arrive at the
following conclusion.

Theorem 6.2.3 (Choices optimal in a Bayesian equilibrium) A choice ci can rationally be made
for the utility function ui under common belief in rationality with a symmetric belief hierarchy, if and
only if, the choice ci is optimal for the utility function ui in a Bayesian equilibrium.

To conclude this section, we will apply the theorem above to a new example which is only a slight
variation of “The moonlight serenade”.

Example 6.4: The moonlight serenade with a twist.

Recall the story and the decision problems from “The moonlight serenade”. Suppose now that Barbara,
if she is in a forgiving mood and believes that you bring chocolates, would be indifferent between
opening the door and ignoring the door bell. Besides this little twist, everything else is the same as
before. The new decision problems are thus given by Table 6.2.2. Note that the only difference lies
in Barbara’s utility from (open, chocolates) at uf2 , which is now 0 instead of 1. As a consequence,
opening the door is only optimal for Barbara if she in a forgiving mood and assigns probability 1 to
you bringing chocolates.

It can still be shown that under common belief in rationality, you can rationally make any plan,
whereas Barbara can rationally choose to ignore the door bell if she is angry, and she can rationally
choose to open the door or ignore the door bell if she is forgiving. Indeed, it suffi ces to consider the
beliefs diagram from Figure 6.1.3 for “The moonlight serenade”. It may be verified that this beliefs
diagram is still valid for the new example. As all the choices mentioned above are supported by a
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belief hierarchy in this beliefs diagram that expresses common belief in rationality, our statement
above about the possible choices under common belief in rationality follows.

However, if we additionally insist on a symmetric belief hierarchy, then it will no longer be rational
for you to plan a serenade. To show this we will rely on Theorem 6.2.3. Suppose, contrary to what
we want to show, that serenade is optimal for you in a symmetric belief hierarchy that expresses
common belief in rationality. Then, by Theorem 6.2.3, serenade must be optimal for you in a Bayesian
equilibrium π, which is a probability distribution on choice-type combinations.

We first show that π must assign probability 0 to your choice serenade. Suppose not. Then,
π(serenade, t1) > 0 for some type t1. As π is a Bayesian equilibrium, serenade must be optimal for the
conditional belief π(· | (serenade, t1)). This is only possible if π(· | (serenade, t1)) assigns a positive
probability to Barbara’s choice open. Hence, there must be some type t2 for Barbara such that π((open,
t2) | (serenade, t1)) > 0, which implies that π((serenade, t1), (open, t2)) > 0. In particular, π(open,
t2) > 0. As π is a Bayesian equilibrium, it follows that open must be optimal for Barbara under the
belief π(· | (open, t2)). However, since π((serenade, t1), (open, t2)) > 0 it follows that π((serenade, t1)
| (open, t2)) > 0 as well, which means that open cannot be optimal for Barbara under π(· | (open,
t2)). This yields a contradiction. Hence, we conclude that π(serenade) = 0.

Next, we show that π must also assign probability 0 to your choice Chris. Suppose not. Then,
π(Chris, t1) > 0 for some type t1, and hence Chris must be optimal under the belief π(· | (Chris, t1)).
This is only possible if π(· | (Chris, t1)) assigns a positive probability to Barbara’s choice open. Hence,
there must be some type t2 for Barbara such that π((open, t2) | π(Chris, t1)) > 0, which implies that
π((Chris, t1), (open, t2)) > 0. In particular, π(open, t2) > 0, which means that open must be optimal
for Barbara under the belief π(· | (open, t2)). However, since π((Chris, t1), (open, t2)) > 0 it follows
that π((Chris, t1) | (open, t2)) > 0 as well, which means that open cannot be optimal for Barbara
under π(· | (open, t2)). This yields a contradiction. Hence, we conclude that π(Chris) = 0.

From the two insights above we conclude that π must assign probability 1 to your choice chocolates.
Recall that we are assuming that serenade is optimal in the Bayesian equilibrium π. Hence, there must
be some type t1 with π(chocolates, t1) > 0 such that serenade is optimal for you under the belief π(·
| (chocolates, t1)). But then, both serenade and chocolates must be optimal under the belief π(· |
(chocolates, t1)), which means, in particular, that they must yield the same expected utility under π(·
| (chocolates, t1)). This is only possible if π(· | (chocolates, t1)) assigns probability 0.5 to Barbara’s
choices open and ignore. But then, sending Chris would be better than both serenade and chocolates.
We thus obtain a contradiction.

Therefore, our assumption above that serenade is optimal in a Bayesian equilibrium π cannot
be true. But then, it follows from Theorem 6.2.3 that under common belief in rationality with a
symmetric belief hierarchy, you cannot rationally plan a serenade.

We can also use Theorem 6.2.3 to show that under common belief in rationality with a symmetric
belief hierarchy, you can rationally choose chocolates and Chris, that Barbara can rationally choose
ignore if she is angry, and she can rationally choose open and ignore if she is forgiving. Consider the
common prior π on choice-type combinations given by

π((chocolates, t1), (ignore, ta2)) = 0.75 and π((chocolates, t1), (open, t
f
2)) = 0.25,

where ta2 has the utility function u
a
2, and t

f
2 has the utility function u

f
2 .

Question 6.2.2 Show that π is a Bayesian equilibrium.

Note that both chocolates and Chris are optimal for you under the belief π(· | (chocolates, t1)), that
ignore is optimal for Barbara under the belief π(· | (ignore, ta2)) and the utility function u

a
2, and that
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both open and ignore are optimal for Barbara under the belief π(· | (open, tf2)) and the utility function
uf2 . Hence, by Theorem 6.2.3 we conclude that under common belief in rationality with a symmetric
belief hierarchy, you can rationally choose chocolates and Chris, that Barbara can rationally choose
ignore if she is angry, and she can rationally choose open and ignore if she is forgiving.

Overall, we see that if we add the condition of a symmetric belief hierarchy to common belief in
rationality, then you can no longer rationally plan to give a serenade for Barbara, but it does not
affect the other choices that were possible under common belief in rationality.

6.2.4 Relation with Generalized Nash Equilibrium
Recall from Theorem 6.2.2 that Bayesian equilibria correspond to symmetric belief hierarchies that
express common belief in rationality. On the other hand, we know from Theorem 6.1.1 that generalized
Nash equilibria relate to simple belief hierarchies that express common belief in rationality. But how
do the two concepts relate to each other?

In Section 4.3.4 we have shown, for standard games, that every simple belief hierarchy is symmetric.
In a similar fashion, it can be shown that the same is true for games with incomplete information.

Theorem 6.2.4 (Relation with simple belief hierarchies) Every simple belief hierarchy is sym-
metric.

If we combine the Theorems 6.1.1, 6.2.2 and 6.2.4 we conclude that every belief hierarchy that is
induced by a generalized Nash equilibrium is also induced by a Bayesian equilibrium. As such, every
choice that can rationally be made in a generalized Nash equilibrium can also rationally be made in
a Bayesian equilibrium.

Theorem 6.2.5 (Generalized Nash equilibrium implies Bayesian equilibrium) For every
player i and every utility function ui, all choices that can rationally be made for the utility function
ui in a generalized Nash equilibrium can also rationally be made for ui in a Bayesian equilibrium.

As an illustration, consider the example “The moonlight serenade”. We have seen that under
common belief in rationality with a simple belief hierarchy, you can rationally choose to bring a box of
chocolates or to send Chris. Hence, by Theorem 6.1.1, the choices chocolates and Chris are optimal
for you in a generalized Nash equilibrium. Indeed, we have shown in Section 6.1.3 that chocolates
and Chris are both optimal for you in the generalized Nash equilibrium σ1 = (0.75) · (chocolates,
u1) + (0.25) · (Chris, u1) and σ2 = (0.25) · (open, uf2) + (0.75) · (ignore, ua2).

By Theorem 6.2.5 we may thus conclude that your choices chocolates and Chris are optimal in
a Bayesian equilibrium. This has been confirmed in Sections 6.2.1, 6.2.2 and 6.2.3, where we have
shown that all of your choices are optimal in the Bayesian equilibrium π from Table 6.2.1.

The converse of Theorem 6.2.5 may not be true in general. To see why, consider again the ex-
ample “The moonlight serenade”. We have seen that planning a serenade is optimal in the Bayesian
equilibrium π from Table 6.2.1, but in Section 6.1.3 we have shown this choice is not optimal in any
generalized Nash equilibrium.

6.2.5 One Theory per Choice-Utility Pair
In Section 4.3 we investigated the one theory per choice condition for standard games. Intuitively, it
states that in the belief hierarchy every choice is supported by a unique belief. This could be formalized
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by requiring that the belief hierarchy is induced by a beliefs diagram where every choice appears only
once. That is, no copies of the same choice are allowed in the beliefs diagram. In Section 4.3.3 we saw
that adding the one theory per choice condition to symmetric belief hierarchies that express common
belief in rationality may have consequences for the choices that can rationally be made. On the other
hand, adding the one theory per choice condition only to common belief in rationality does not alter
the choices that can rationally be made.

We will see that similar definitions and conclusions apply to games with incomplete information,
where the one theory per choice condition is replaced by one theory per choice-utility pair. Intuitively,
the one theory per choice-utility pair condition states that in the belief hierarchy, there is for every
choice-utility pair a unique belief that supports this choice for this particular utility function. In
particular, for a given choice we may use two different beliefs to support this choice for two different
utility functions. This condition may be formalized as follows.

Definition 6.2.5 (One theory per choice-utility pair) A belief hierarchy uses one theory per
choice-utility pair if it can be generated by a beliefs diagram where every choice-utility pair only
appears once.

This condition will “typically”be satisfied, and it is therefore no coincidence that all the beliefs
diagrams we have seen so far in Chapters 5 and 6 meet this condition.

The question we now wish to address is: What choices can rationally be made if you hold a
symmetric belief hierarchy that uses one theory per choice-utility pair and expresses common belief in
rationality? We will see that this leads to the concept of canonical Bayesian equilibrium, similarly to
how the same conditions led to canonical correlated equilibrium in standard games.

Consider a symmetric belief hierarchy β that uses one theory per choice-utility pair and expresses
common belief in rationality. By Theorem 6.2.2 we know that β is induced by a Bayesian equilibrium
π, which is a common prior on choice-type combinations (ci, ti)i∈I .

By the one theory per choice-utility pair condition, there is for every choice-utility pair (ci, ui)
that receives positive probability a unique belief hierarchy —and therefore a unique type tci,uii —that
supports the choice ci for the utility function ui. But then, we can replace every choice-type pair
(ci, t

ci,ui
i ) that receives positive probability by the associated choice-utility pair (ci, ui). Moreover,

the common prior π on choice-type combinations then induces a common prior π̂ on choice-utility
combinations given by

π̂((ci, ui)i∈I) := π((ci, t
ci,ui
i )i∈I)

for every choice-utility combination (ci, ui)i∈I that receives positive probability under π.
Since π is Bayesian equilibrium, we know that for every choice-type pair (ci, t

ci,ui
i ) with π(ci, t

ci,ui
i ) >

0, the associated choice ci is optimal for the utility function ui under the belief π(· | (ci, t
ci,ui
i )) con-

ditional on (ci, t
ci,ui
i ). But then, by construction, the common prior π̂ on choice-utility combinations

induced by π satisfies the following optimality condition: For every choice-utility pair (ci, ui) with
π̂(ci, ui) > 0, the associated choice ci is optimal for the utility function ui under the belief π̂(· |
(ci, ui)) conditional on (ci, ui). Common priors on choice-utility combinations with this property are
called canonical Bayesian equilibria.

Definition 6.2.6 (Canonical Bayesian equilibrium) A common prior π̂ on choice-utility combi-
nations is a canonical Bayesian equilibrium if for every player i, and every choice-utility pair
(ci, ui) with π̂(ci, ui) > 0, the associated choice ci is optimal for the utility function ui under the belief
π̂(· | (ci, ui)) conditional on (ci, ui).
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By the arguments above it follows that every symmetric belief hierarchy that uses one theory
per choice-utility pair and expresses common belief in rationality is induced by a canonical Bayesian
equilibrium. It turns out that the other direction is also true: If the belief hierarchy is induced by
a canonical Bayesian equilibrium, then the belief hierarchy is symmetric, uses one theory per choice-
utility pair, and expresses common belief in rationality. We thus arrive at the following conclusion.

Theorem 6.2.6 (Relation with canonical Bayesian equilibrium) A belief hierarchy is symmet-
ric, uses one theory per choice-utility pair and expresses common belief in rationality, if and only if,
it is induced by a canonical Bayesian equilibrium.

We say that a choice c∗i is optimal in a canonical Bayesian equilibrium π̂ for the utility function u∗i
if there is a choice-utility pair (ci, ui) with π̂(ci, ui) > 0 such that c∗i is optimal for the utility function
u∗i under the belief π̂(· | (ci, ui)). By Theorem 6.2.6 it then follows that also in terms of optimal choices,
the conditions in Theorem 6.2.6 lead to canonical Bayesian equilibrium.

Theorem 6.2.7 (Choices optimal in a canonical Bayesian equilibrium) Player i can rationally
make the choice ci for the utility function ui with a symmetric belief hierarchy that uses one theory
per choice-utility pair and expresses common belief in rationality, if and only if, the choice ci is optimal
for the utility function ui in a canonical Bayesian equilibrium.

As an illustration, consider the example “The moonlight serenade”. We have seen that under
common belief in rationality with a symmetric belief hierarchy, you can rationally plan a serenade,
to bring a box of chocolates or to send Chris. Indeed, each of these three choices is optimal for your
utility function u1 in the Bayesian equilibrium from Table 6.2.1. By Theorem 6.2.3 it thus follows that
you can rationally make each of these choices under common belief in rationality with a symmetric
belief hierarchy.

Note that the belief hierarchies that can be derived from this Bayesian equilibrium are present in
the beliefs diagram from Figure 6.2.1. As every choice-utility pair only appears once in this beliefs
diagram, we conclude that all the symmetric belief hierarchies that can be derived from the Bayesian
equilibrium use one theory per choice-utility pair. As such, you can rationally make each of your
choices under common belief in rationality with a symmetric belief hierarchy that uses one theory per
choice-utility pair.

This conclusion can be confirmed by using Theorem 6.2.7. To see this, consider the Bayesian
equilibrium π from Table 6.2.1, which is a common prior on choice-type combinations. The Bayesian
equilibrium π can be transformed into a common prior π̂ on choice-utility pairs, where

π̂((serenade, u1), (open, u
f
2)) = 1/17, π̂((chocolates, u1), (ignore, ua2)) = 10/17,

π̂((chocolates, u1), (open, u
f
2)) = 3/17, π̂((Chris, u1), (ignore, ua2)) = 1/17,

π̂((Chris, u1), (open, u
f
2)) = 1/17 and π̂((Chris, u1), (ignore, u

f
2)) = 1/17.

Question 6.2.3 Explain why π̂ is a canonical Bayesian equilibrium.

Moreover, it may be verified that serenade, chocolates and Chris are optimal for you under the
utility function u1 for the associated conditional beliefs π̂(· | (serenade, u1)), π̂(· | (chocolates, u1))
and π̂(· | (Chris, u1)). Thus, each of your choices is optimal in a canonical Bayesian equilibrium. By
Theorem 6.2.7 it then follows that you can rationally make each of your choices under common belief
in rationality with a symmetric belief hierarchy that uses one theory per choice-utility pair.
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In particular, adding the one theory per choice-utility pair condition does not alter the choices you
can rationally make under common belief in rationality with a symmetric belief hierarchy. The same
holds for the other examples we have investigated in Chapters 5 and 6. The reason is that in each
of these examples, every symmetric belief hierarchy expressing common belief in rationality that has
been used to support these choices used one theory per choice-utility pair.

But there are games with incomplete information where additionally imposing one theory per
choice-utility pair can make a difference for the choices you can rationally make. It suffi ces to consider
the standard game “Rock, paper, scissors”from Chapter 4. We have seen that under common belief
in rationality with a symmetric belief hierarchy, you can rationally choose rock, paper, scissors and
bomb, but that bomb can no longer rationally be chosen if we insist on one theory per choice.

Clearly, this game is a special case of a game with incomplete information, where there is only
one possible utility function for both players. As one theory per choice-utility pair reduces to one
theory per choice for such games, we see that additionally imposing one theory per choice-utility pair
makes a difference for the choices you can rationally make under common belief in rationality with a
symmetric belief hierarchy.

In Chapter 4, when investigating standard games, we have seen that for the choices you can
rationally make under common belief in rationality it does not matter whether we additionally impose
one theory per choice or not. See Theorem 4.3.1. Moreover, we saw in Theorem 4.3.5 that every
simple belief hierarchy automatically satisfies the one theory per choice condition.

The same is true for games with incomplete information, for essentially the same reasons. We will
therefore not repeat these reasons here. In particular, we see that for the choices you can rationally
make under common belief in rationality, or for the choices you can rationally make under common
belief in rationality with a simple belief hierarchy, it does not matter whether we additionally impose
one theory per choice-utility pair or not. But for the choices that can rationally be made under
common belief in rationality with a symmetric belief hierarchy this may matter.

6.3 *Fixed Beliefs on Utilities

In Chapter 5 we have investigated the idea of fixed beliefs on utilities, which means that you believe
that there are unique beliefs on the players’utility functions which are transparent to everyone. In
Section 5.5 we have added this condition to common belief in rationality, and provided a recursive
procedure which yields precisely those choices that are possible under the new set of conditions. In
this section we explore what happens if we add fixed beliefs on utilities to the conditions of common
belief in rationality with a simple belief hierarchy and common belief in rationality with a symmetric
belief hierarchy.

6.3.1 Definition
In a game with incomplete information, consider for every player j a probability distribution pj ∈
∆(Uj) on player j’s possible utility functions. In Section 5.5 we have defined what it means, for a type
ti within an epistemic model, to express common belief in the collection p = (pj)j∈I of probability
distributions. Intuitively, it means that ti’s belief about the opponents’utilities is given by p, that ti
believes that every opponent’s belief about the utility functions of the others is given by p, and so on.
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If we add this condition to common belief in rationality with a simple, or symmetric, belief hierarchy,
we arrive at the following definition.

Definition 6.3.1 (Rational choice with fixed beliefs on utilities) Let p = (pi)i∈I be a profile
of beliefs on utility functions, and ui ∈ Ui a utility function. Then, player i can rationally make
the choice ci with utility function ui under common belief in rationality with a simple
(symmetric) belief hierarchy and common belief in p if there is an epistemic model (Ti, vi, bi)i∈I
and a type ti ∈ Ti such that (a) ti expresses common belief in rationality, (b) ti’s belief hierarchy is
simple (symmetric), (c) ti expresses common belief in p, (d) ti has utility function ui, and (e) ci is
optimal for ti.

The belief hierarchies we have used until now in Chapter 6 to support choices that can rationally
be made under common belief in rationality with a simple (symmetric) belief hierarchy typically do
not express common belief in p, for any profile p of beliefs on utility functions. Consider, for instance,
the beliefs diagram in Figure 6.2.1. The belief hierarchy that starts at your choice serenade does
not express common belief in p for any profile p of beliefs on utility functions. Indeed, in that belief
hierarchy you assign probability 1 to Barbara being forgiving, but at the same time you believe that
Barbara assigns probability 3/5 to the event that you assign probability 10/13 to Barbara being
angry.

Question 6.3.1 Consider the beliefs diagram in Figure 6.2.1. Is there any belief hierarchy in this
beliefs diagram that expresses common belief in p, for some profile p of beliefs on utility functions?

A natural question that arises is whether we can always find, for a given profile p of beliefs on
utility functions, a simple, or symmetric, belief hierarchy that expresses common belief in rationality
and common belief in p. The answer to both questions is “yes”.

Theorem 6.3.1 (Existence) Consider a game with incomplete information and a profile p = (pi)i∈I
of beliefs on utility functions. Then, for every player i there is a simple, and hence symmetric, belief
hierarchy that expresses common belief in rationality and common belief in p.

That is, for every game, and every profile p of beliefs on utility functions, it is always possible
to simultaneously reason in accordance with common belief in rationality, in accordance with the
principles of a simple belief hierarchy, and to reason within the bounds of these fixed beliefs p on the
utility functions.

6.3.2 Examples
To conclude this section we will review the four examples we have investigated so far in this chapter.
For every example we will fix a profile p of beliefs on utility functions, and see what choices you can
rationally make with a simple or symmetric belief hierarchy that expresses common belief in rationality
and common belief in p.

Example 6.5: What is Barbara’s favorite color?

As in Section 5.5.4, let p = (p1, p2) be the profile of beliefs on utility functions where p1 assigns
probability 1 to your unique utility function u1, and p2 assigns probabilities 0.8 and 0.2 to Barbara’s
utility functions ur2 and u

b
2, respectively. We have seen in Section 5.5.4 that under common belief in
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rationality and common belief in p, you can only rationally wear blue, Barbara can only rationally
wear red if her utility function is ur2, and she can only rationally wear yellow if her utility function is
ub2.

Recall, by Theorem 6.3.1, that there is a simple belief hierarchy for you and one for Barbara that
expresses common belief in rationality and common belief in p. Hence, with a simple belief hierarchy
that expresses common belief in rationality and common belief in p, you can only rationally wear blue,
Barbara can only rationally wear red if her utility function is ur2, and she can only rationally wear
yellow if her utility function is ub2. And the same will be true if we replace simple belief hierarchy by
symmetric belief hierarchy.

We thus see that in this example, adding the condition of a simple or symmetric belief hierarchy
to common belief in rationality and common belief in p does not alter the colors that you and Barbara
can rationally wear.

Example 6.6: Chris’drawings.

As in Section 5.4.4, let p = (p1, p2) be the profile of beliefs on utility functions where p1 assigns
probability 0.25 to your valuation being 30, 50, 70 or 90, respectively, and similarly for p2. Recall from
Section 5.4.4 that under common belief in rationality and common belief in p, you can only rationally
bid 20 if your valuation is 30, you can rationally bid 20 or 40 if your valuation is 50, you can only
rationally bid 40 if your valuation is 70, and you can rationally bid 40 or 60 if your valuation is 90.

It turns out that these bids can also rationally be made if we add the condition of a simple belief
hierarchy. To see why, consider the belief σ1 on your choice-utility pairs where

σ1 = (0.25) · (20, u301 ) + (0.25) · (20, u501 ) + (0.25) · (40, u701 ) + (0.25) · (40, u901 )

and similarly for σ2.

Question 6.3.2 Explain why (σ1, σ2) is a generalized Nash equilibrium.

Consider the belief hierarchy β1 for you that is induced by the generalized Nash equilibrium
(σ1, σ2). Then, by Theorem 6.1.1, β1 is simple and expresses common belief in rationality. Moreover,
by construction of σ1 and σ2, the belief hierarchy β1 expresses common belief in p. If you hold the
belief hierarchy β1, then it is optimal for you to bid 20 if your valuation is 30 or 50, and to bid 40 if
your valuation is 70 or 90. Therefore, we conclude that with a simple belief hierarchy that expresses
common belief in rationality and common belief in p, you can rationally bid 20 if your valuation is 30
or 50, and rationally bid 40 if your valuation is 70 or 90.

Question 6.3.3 Explain, in a similar way as above, that with a simple belief hierarchy which expresses
common belief in rationality and common belief in p, you can also rationally bid 40 if your valuation
is 50, and rationally bid 60 if your valuation is 90.

Together with the insight above, we thus conclude that with a simple belief hierarchy that expresses
common belief in rationality and common belief in p, you can only rationally bid 20 if your valuation
is 30, you can rationally bid 20 or 40 if your valuation is 50, you can only rationally bid 40 if your
valuation is 70, and you can rationally bid 40 or 60 if your valuation is 90. That is, if we add the
condition of a simple belief hierarchy to the conditions of common belief in rationality and common
belief in p, then the bids that can rationally be made do not change. Since every simple belief hierarchy
is symmetric, the same holds if we replace simple belief hierarchy by symmetric belief hierarchy.
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Example 6.7: The moonlight serenade.

In Section 6.1.3 we saw that under common belief in rationality, you can rationally plan to give a
serenade, to bring a box of chocolates, or to send Chris. Moreover, Barbara can only rationally ignore
the door bell if she is angry, whereas she can rationally ignore the door bell or open the door if she
is forgiving.

Moreover, we have seen that if we add the condition of a simple belief hierarchy, then you can no
longer rationally plan to give a serenade, whereas the other choices for you and Barbara will still be
possible. In turn, all choices you and Barbara could rationally make under common belief in rationality
will still be possible if we add the requirement that the belief hierarchy must be symmetric. This can
be seen from the belief hierarchies in Table 6.2.1, which are all symmetric and express common belief
in rationality.

Now suppose that you deem it quite likely that Barbara is angry, and you believe this to be
transparent between Barbara and you. More precisely, let p = (p1, p2) be the profile of beliefs on
utility functions where p1 assigns probability 1 to your unique utility function u1, and p2 assigns
probabilities 0.8 and 0.2 to Barbara being angry and forgiving, respectively. Since Barbara can only
rationally choose ignore if she is angry, you must assign probability at least 0.8 to Barbara ignoring
the door bell. But then, your only optimal choice is to bring a box of chocolates. Barbara, anticipating
on this, will certainly open the door if she is forgiving. Hence, under common belief in rationality and
common belief in p, you can only rationally bring a box of chocolates, Barbara can only rationally
choose to ignore the door bell if she is angry, and she can only rationally choose to open the door if
she is forgiving.

Recall, by Theorem 6.3.1, that there must be a simple belief hierarchy for you and one for
Barbara that expresses common belief in rationality and common belief in p. But then, it follows from
the insight above that with a simple belief hierarchy which expresses common belief in rationality and
common belief in p, you can only rationally bring a box of chocolates, Barbara can only rationally
choose to ignore the door bell if she is angry, and she can only rationally choose to open the door if
she is forgiving. Since every simple belief hierarchy is symmetric, the same holds if we replace simple
belief hierarchy by symmetric belief hierarchy.

Example 6.8: The moonlight serenade with a twist.

In Section 6.2.3 we have seen that under common belief in rationality, you can rationally plan to give
a serenade, to bring a box of chocolates, or to send Chris. Moreover, Barbara can only rationally
ignore the door bell if she is angry, whereas she can rationally ignore the door bell or open the door
if she is forgiving. However, if we add the requirement of a symmetric belief hierarchy, then you can
no longer rationally plan a serenade for Barbara, but the other choices for you and Barbara will still
be possible.

In fact, the same will be true if we replace symmetric belief hierarchy by simple belief hierarchy.
To see this, note first that you cannot rationally plan a serenade with a simple belief hierarchy that
expresses common belief in rationality, since every simple belief hierarchy is symmetric. To see that
the other choices mentioned above can rationally be made under common belief in rationality with a
simple belief hierarchy, consider the combination (σ1, σ2) of beliefs on choice-utility pairs where

σ1 = (chocolates, u1) and σ2 = (0.75) · (ignore, ua2) + (0.25) · (open, uf2).

Question 6.3.4 Show that (σ1, σ2) is a generalized Nash equilibrium.
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Note that for you, it is optimal to bring chocolates or to send Chris under the belief σ2. Moreover,
if Barbara holds the belief σ1, then it is optimal for her to ignore the door bell if she is angry, whereas
it is optimal to ignore the door bell or to open the door if she is forgiving. Hence, these choices are all
optimal in a generalized Nash equilibrium. By Theorem 6.1.2 we thus conclude that all these choices
can rationally be made under common belief in rationality with a simple belief hierarchy.

As in the previous example, consider the profile p = (p1, p2) of beliefs on utility functions where
p1 assigns probability 1 to your unique utility function u1, and p2 assigns probabilities 0.8 and 0.2 to
Barbara being angry and forgiving, respectively.

Question 6.3.5 Show that under common belief in rationality and common belief in p, you can only
rationally bring chocolates, Barbara can only rationally ignore the door bell if she is angry, whereas
she can rationally ignore the door bell or open the door if she is forgiving.

In fact, if we add the requirement of a symmetric or simple belief hierarchy, the choices that
can rationally be made will not change. To see this, consider the combination (σ1, σ2) of beliefs on
choice-utility pairs where

σ1 = (chocolates, u1) and σ2 = (0.8) · (ignore, ua2) + (0.2) · (open, uf2).

Then, it may be verified that (σ1, σ2) is a generalized Nash equilibrium. Let β1 and β2 be the belief
hierarchies for you and Barbara, respectively, that are induced by this generalized Nash equilibrium
(σ1, σ2). By Theorem 6.1.1 we know that these two belief hierarchies are simple and express common
belief in rationality. Moreover, by construction of σ1 and σ2, the two belief hierarchies express common
belief in p.

Note that under the belief σ2 it is optimal for you to choose chocolates. Moreover, under the belief
σ1 it is optimal for Barbara to choose open or ignore if she is forgiving. Hence, with a simple belief
hierarchy that expresses common belief in rationality and common belief in p, you can only rationally
choose to bring chocolates, Barbara can only rationally ignore the door bell if she is angry, whereas
she can rationally ignore the door bell or open the door if she is forgiving.

Since every simple belief hierarchy is symmetric, the same would hold if simple belief hierarchy is
replaced by symmetric belief hierarchy.

6.4 Comparison of the Concepts

In Chapter 5 we have investigated the central concept of common belief in rationality for games with
incomplete information. In Chapter 6 we have refined this concept by additionally imposing a simple
belief hierarchy, a symmetric belief hierarchy, and a symmetric belief hierarchy using one theory per
choice-utility pair. In Table 6.4.1 we summarize how the optimal choices under these various concepts
can be characterized.

In this table we have ordered the concepts from least to most restrictive. When we talk about
optimal choices in this table we always mean optimal with respect to a particular utility function.
For instance, the choices that can rationally be made under common belief in rationality for a utility
function ui are those that survive the generalized iterated strict dominance procedure for this particular
utility function ui. Similarly for the other concepts in this table. In the table we did not incorporate
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Common belief in rationality with ... Optimal choices are those that ...
... survive generalized iterated strict dominance
symmetric belief hierarchy are optimal in a Bayesian equilibrium
symmetric belief hierarchy using are optimal in a canonical Bayesian equilibrium
one theory per choice-utility pair

simple belief hierarchy are optimal in a generalized Nash equilibrium

Table 6.4.1 Comparison of the concepts in Chapters 5 and 6

Choices you can rationally make under
common belief in rationality with ...

a symmetric
belief hierarchy

a symmetric using one theory a simple
Example ... belief hierarchy per choice-utility pair belief hierarchy

What is Barbara’s blue and green same same same
favorite color?
(Section 5.1.1)

(Section 5.4.3) (Section 6.1.3)
Chris’drawings 20,40,60 at u301 , u

50
1 , u

70
1 same same same

(Section 5.4.4) 40,60,80 at u901
(Section 5.4.4) (Section 6.1.3)

Moonlight serenade serenade, chocolates, same same chocolates, Chris
(Section 6.1.3) Chris

(Section 6.1.3) (Section 6.2.1) (Section 6.2.5) (Section 6.1.3)
Moonlight serenade serenade, chocolates, chocolates, Chris same same

with a twist Chris
(Section 6.2.3) (Section 6.2.3) (Section 6.2.3) (Section 6.2.5) (Section 6.3.2)

Table 6.4.2 The four concepts in the various examples

the condition of fixed beliefs on utilities. But recall that each of the concepts in the table can be
refined by imposing fixed beliefs on the players’utility functions, as we did in Sections 5.5 and 6.3.

If we compare this table with Table 4.4.1 in Chapter 4, we clearly see that the generalized iterated
strict dominance procedure, Bayesian equilibrium, canonical Bayesian equilibrium and generalized
Nash equilibrium are the incomplete information counterparts to the iterated elimination of strictly
dominated choices, correlated equilibrium, canonical correlated equilibrium and Nash equilibrium,
respectively. Indeed, the associated concepts are characterized by exactly the same conditions on
the belief hierarchies. The only difference is that for games with incomplete information, such belief
hierarchies also involve beliefs about the players’utility functions.

Finally, we provide in Table 6.4.2 an overview of the choices that each of these concepts selects for
you in the various examples we have analyzed in Chapters 5 and 6. In the first column we list the four
examples, and for each example we specify the section where it has been introduced. In the other four
columns we list, for each of the four concepts, which choices it selects for you in the specific example.
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We also state the section where this has been shown.
Note that in the examples “What is Barbara’s favorite color?”and “Chris’drawings”we have not

specified a section in the third and fourth column. The reason is that the results in these two columns
follow from the results in the second and fifth column. Indeed, for both examples the choices you can
rationally make under common belief in rationality are the same as those you can rationally make
under common belief in rationality with a simple belief hierarchy. As such, these choices will also be
the same as those you can rationally make under common belief in rationality with a symmetric belief
hierarchy, with or without the one theory per choice-utility pair condition.
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6.5 Proofs

6.5.1 Proofs of Section 6.1
Proof of Theorem 6.1.1. Consider the simple belief hierarchy for player i induced by the combina-
tion of beliefs (σ1, ..., σn). Suppose first that the belief hierarchy expresses common belief in rationality.
Then, it follows from the arguments in Section 6.1.2 that (σ1, ..., σn) is a generalized Nash equilibrium.

Suppose next that (σ1, ..., σn) is a generalized Nash equilibrium. We will show, for every player,
that the simple belief hierarchy generated by (σ1, ..., σn) expresses common belief in rationality. Con-
struct an epistemic model M = (Ti, vi, bi)i∈I where Ti = {tuii | ui ∈ Ui}, where vi(t

ui
i ) = ui for every

type tuii ∈ Ti, and where
bi(t

ui
i )((cj , t

uj
j )j 6=i) :=

∏
j 6=i

σj(cj , uj)

for every type tuii and every opponents’choice-type combination (cj , t
uj
j )j 6=i. In particular, t

ui
i holds

the belief σ−i about the opponents’choices and utility functions, independent of the utility function
that tuii has.

Since for every player i, it is the case that all types hold the same belief σ−i about the opponents’
choices and utility functions, the belief hierarchy of every type tuii will always be such that (i) it holds
the belief σ−i about the opponents’choices and utility functions, (ii) it believes, with probability 1,
that every opponent j holds the belief σ−j about his opponents’choices and utility functions, and so
on. That is, the belief hierarchy of every type tuii is simple, and is generated by the combination of
beliefs (σ1, ..., σn).

We next show that every type in this epistemic model believes in the opponents’ rationality.
Consider a type tuii and assume that bi(t

ui
i ) assigns positive probability to some opponent’s choice-

type pair (cj , t
uj
j ). Then, by construction, σj assigns positive probability to (cj , uj). As (σ1, ..., σn) is

a generalized Nash equilibrium, the choice cj is optimal for player j under the belief σ−j if he holds
the utility function uj . Since the type t

uj
j indeed holds the belief σ−j and the utility function uj , we

conclude that cj is optimal for t
uj
j . We thus conclude that t

ui
i believes in the opponents’rationality.

Since this holds for every type tuii in the epistemic model, we conclude that all types in the model
express common belief in rationality.

Recall from above that the belief hierarchies held by the types in the model are exactly the simple
belief hierarchies generated by (σ1, ..., σn). As such, all these simple belief hierarchies express common
belief in rationality. This completes the proof. �

Proof of Theorem 6.1.2. Follows from the arguments in Section 6.1.2. �

Proof of Theorem 6.1.3. Follows from the arguments in Section 6.1.2. �

6.5.2 Proofs of Section 6.2
Proof of Theorem 6.2.1. The proof is identical to the proof of Theorem 4.2.1, and is therefore
omitted. �

Proof of Theorem 6.2.2. (a) Suppose first that the belief hierarchy βi is symmetric and expresses
common belief in rationality. Then, we know by Theorem 6.2.1 that the belief hierarchy βi is induced
by a common prior π∗ on choice-type combinations. Suppose that, within a beliefs diagram in choice-
type representation, βi starts at the choice-type pair (c∗i , t

∗
i ). We say that a choice-type pair (cj , tj)
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can be reached within one step from (c∗i , t
∗
i ) if π((cj , tj) | (c∗i , t∗i )) > 0. Here, π((cj , tj) | (c∗i , t∗i )) denotes

the probability that π(· | (c∗i , t
∗
i )) assigns to all the opponents’choice-type combinations that contain

(cj , tj). Say that a choice-type pair (cj , tj) can be reached within two steps from (c∗i , t
∗
i ) if there is a

pair (cm, tm) that can be reached within one step from (c∗i , t
∗
i ) such that π((cj , tj) | (cm, tm)) > 0. For

k ≥ 3, we inductively define reachability with k steps as follows: Say that a choice-type pair (cj , tj)
can be reached within k steps from (c∗i , t

∗
i ) if there is a pair (cm, tm) that can be reached within k− 1

steps from (c∗i , t
∗
i ) such that π((cj , tj) | (cm, tm)) > 0.

For every player j (including i) let (Cj × Tj)∗ be the sets of choice-type pairs that can be reached
within finitely many steps from (c∗i , t

∗
i ). Moreover, let π be the restriction of π

∗ to choice-type pairs
in (Cj × Tj)∗ given by

π((cj , tj)j∈I) :=
π∗((cj , tj)j∈I)∑

(c′j ,t
′
j)j∈I∈×j∈I(Cj×Tj)∗

π∗((c′j , t
′
j)j∈I)

for every (cj , tj)j∈I ∈ ×j∈I(Cj × Tj)∗, and let π((cj , tj)j∈I) := 0 otherwise.
Then, it may be verified that the belief hierarchy βi is induced by the common prior π. We show

that π is a Bayesian equilibrium.
For every player j, let T ∗j be the set of types that enter in (Cj × Tj)∗. Assume, without loss of

generality, that for every two choice-type pairs (cj , tj), (c
′
j , t
′
j) ∈ (Cj × Tj)∗ with cj 6= c′j we have that

tj 6= t′j . Then, for every type tj ∈ T ∗j there is a unique choice cj [tj ] ∈ C∗j such that (cj [tj ], tj) ∈
(Cj × Tj)∗.

We create an epistemic model with sets of types T ∗j for every player j, where the beliefs of the
types are given by

bj(tj)((cm, tm)m6=j) := π((cm, tm)m6=j | (cj [tj ], tj)) (6.5.1)

for every tj ∈ T ∗j , and every (cm, tm)m 6=j ∈ ×m6=j(Cm × Tm)∗. Moreover, the utility functions of the
types are given by the utility functions they have in the beliefs diagram in choice-type representation.

Recall that the belief hierarchy βi starts at the choice-type pair (c∗i , t
∗
i ) = (ci[t

∗
i ], t
∗
i ). Then, by

construction, the belief hierarchy βi is the belief hierarchy induced by the type t
∗
i within this epistemic

model. We can always select the choice c∗i such that c
∗
i is optimal for t

∗
i , as this does not affect the

belief hierarchy βi. Let us therefore assume, without loss of generality, that c
∗
i is optimal for t

∗
i . In

other words, ci[t∗i ] is optimal for t
∗
i .

We will now show that for every player j and every tj ∈ Tj∗, the choice cj [tj ] is optimal for tj .
If j = i and ti = t∗i , then we know this from our assumption above. Assume now that tj 6= t∗i .
Then, (cj [tj ], tj) ∈ (Cj × Tj)∗. Hence, in view of (6.5.1), there is a choice-type pair (cm, tm) reachable
from (c∗i , t

∗
i ) such that bm(tm)(cj [tj ], tj) > 0. As the belief hierarchy βi expresses common belief in

rationality, and βi is the belief hierarchy held by the type t
∗
i , we conclude that t

∗
i expresses common

belief in rationality. Since (cm, tm) is reachable from (c∗i , t
∗
i ), it follows that tm believes in j’s rationality.

As bm(tm)(cj [tj ], tj) > 0, it must thus be that cj [tj ] is optimal for tj .
Now, take some player j and some (cj , tj) ∈ Cj × T ∗j with π(cj , tj) > 0. Then, cj = cj [tj ]. By our

insights above, we thus know that cj [tj ] is optimal for tj . By (6.5.1), the first-order belief of type tj is
π(· | (cj , tj)). As cj is optimal for tj , it follows that cj is optimal for utility function that tj has and
the induced first-order belief π(· | (cj , tj)).We thus conclude that π is a Bayesian equilibrium. Hence,
the belief hierarchy βi is induced by a Bayesian equilibrium.

(b) Assume next that the belief hierarchy βi is induced by a Bayesian equilibrium π. As π is a common
prior on choice-type combinations, it follows by Theorem 6.2.1 that βi is symmetric. It remains to
show that βi expresses common belief in rationality.
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Suppose that βi is generated within a beliefs diagram in choice-type representation, and that βi
starts at the choice-type pair (c∗i , t

∗
i ). For every player j, let (Cj × Tj)

∗ be the set of choice-type
pairs that enter in this beliefs diagram. Moreover, let T ∗j be the set of types that enter in the beliefs
diagram. Similarly to part (a), we assume that for every tj ∈ T ∗j there is a unique choice cj [tj ] such
that (cj [tj ], tj) ∈ (Cj × Tj)∗.

We construct an epistemic model with sets of types T ∗j for every player j, and where the beliefs of
the types are given by

bj(tj)((cm, tm)m6=j) := π((cm, tm)m6=j | (cj [tj ], tj)) (6.5.2)

for every tj ∈ T ∗j , and every (cm, tm)m6=j ∈ ×j 6=m(Cm × Tm)∗.
Recall that the belief hierarchy is induced by the Bayesian equilibrium π and starts at the choice-

type pair (c∗i , t
∗
i ). In view of (6.5.2), the belief hierarchy βi is precisely the belief hierarchy held by the

type t∗i . We will now show that t
∗
i expresses common belief in rationality. For this, it is suffi cient to

show that every type in the epistemic model above believes in the opponents’rationality.
For some player j, take a type tj ∈ T ∗j and an opponents’choice-type combination (cm, tm)m 6=j ∈

×m6=j(Cm × T ∗m) with bj(tj)((cm, tm)m6=j) > 0. Then, we know by (6.5.2) that π((cm, tm)m6=j |
(cj [tj ], tj)) > 0. This implies that π(cm, tm) > 0 for every player m 6= j. Fix a player m 6= j. As
π is a correlated equilibrium and π(cm, tm) > 0, we know that cm is optimal for the utility function
of tm and the induced first-order belief π(· | (cm, tm)). By (6.5.2) we know that tm’s first-order belief
is π(· | (cm, tm)). Therefore, cm is optimal for the type tm. We thus conclude that tj believes in the
opponents’rationality.

As such, every type in the epistemic model believes in the opponents’rationality. This, in turn,
implies that every type expresses common belief in rationality. In particular, type t∗i expresses common
belief in rationality, which means that belief hierarchy βi expresses common belief in rationality. This
completes the proof. �

Proof of Theorem 6.2.3. Follows from the arguments in Section 6.2.3. �

Proof of Theorem 6.2.4. The proof is essentially identical to the proof of Theorem 4.3.5, and is
therefore omitted. �

Proof of Theorem 6.2.5. Follows from the arguments in Section 6.2.4. �

Proof of Theorem 6.2.6. The proof is very similar to the proof of Theorem 4.3.3, and is therefore
omitted. �

Proof of Theorem 6.2.7. The proof is very similar to the proof of Theorem 4.3.4 and is therefore
omitted. �

Proof of Theorem 6.3.1. Like in the proof of Theorem 4.1.3, where we showed the existence of
Nash equilibria, we rely on Kakutani’s fixed point theorem. See the proofs section of Chapter 4 for
the statement of Kakutani’s fixed point theorem.

Consider the profile p = (pi)i∈I of beliefs on utility functions, where pi ∈ ∆(Ui) for every player i.
For every player i, let ∆pi(Ci×Ui) denote the set of beliefs on Ci×Ui where the induced belief on Ui
is pi. More precisely,

∆pi(Ci × Ui) := {σi ∈ ∆(Ci × Ui) |
∑
ci∈Ci

σi(ci, ui) = pi(ui) for all ui ∈ Ui}.
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By
A := ∆p1(C1 × U1)× ...×∆pn(Cn × Un)

we denote the set of all such belief combinations. Hence, A is a subset of some linear space RX .
Moreover, it may be verified that the set A is nonempty, compact and convex.

We will now show that the set A contains a generalized Nash equilibrium (σ1, ..., σn). For every
(σ1, ..., σn) ∈ A, every player i and every utility function ui, let Copti (ui, σ1, ..., σn) be the set of choices
ci ∈ Ci that are optimal under the belief σ−i for the utility function ui. Let

∆pi(Copti (σ1, ..., σn)) := {σi ∈ ∆pi(Ci × Ui) | σi(ci, ui) > 0 only if ci ∈ Copti (ui, σ1, ..., σn)}

be the set of beliefs on i’s choice-utility pairs that induces the belief pi on i’s utilities, and that for
every utility function ui only assigns positive probability to choices that are optimal under σ−i for the
utility function ui.

Define now the correspondence Copt from A to A, which assigns to every belief combination
(σ1, ..., σn) ∈ A the set of belief combinations

Copt(σ1, ..., σn) := ∆p1(Copt1 (σ1, ..., σn))× ...×∆pn(Coptn (σ1, ..., σn)),

which is a subset of ∆p1(C1 × U1)× ...×∆pn(Cn × Un), and hence is a subset of A.
It may be verified that the set Copt(σ1, ..., σn) is nonempty and convex for every (σ1, ..., σn). It thus

follows that the correspondence Copt is convex-valued. It can also be shown that the correspondence
Copt is upper-semicontinuous, similarly to how we have shown it in the proof of Theorem 4.1.3.
Altogether, we see that the set A = ∆p1(C1 × U1) × ... × ∆pn(Cn × Un) is nonempty, compact and
convex, and that the correspondence Copt from A to A is upper-semicontinuous and convex-valued. By
Kakutani’s fixed point theorem, it then follows that Copt has at least one fixed point (σ∗1, ..., σ

∗
n) ∈ A.

That is, there is some (σ∗1, ..., σ
∗
n) ∈ A with

(σ∗1, ..., σ
∗
n) ∈ Copt(σ∗1, ..., σ∗n).

By definition of Copt this means that for every player i, we have that σ∗i ∈ ∆pi(Copti (σ∗1, ..., σ
∗
n)). So,

for every player i, the probability distribution σ∗i induces the belief pi on Ui, and only assigns positive
probability to choice-type pairs (ci, ui) where ci is optimal under σ∗−i for the utility function ui. This
means, however, that (σ∗1, ..., σ

∗
n) is a generalized Nash equilibrium.

For a given player i, consider the belief hierarchy βi that is induced by the generalized Nash
equilibrium (σ∗1, ..., σ

∗
n). Then, we know by Theorem 6.1.1 that the belief hierarchy βi is simple and

expresses common belief in rationality. Moreover, by construction of (σ∗1, ..., σ
∗
n), the belief hierarchy

βi expresses common belief in p. This completes the proof. �
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Figure 6.5.1 Beliefs diagram for Question 6.1.2

Solutions to In-Chapter Questions

Question 6.1.1. Note that Barbara’s belief hierarchy that starts at her choice blue is the same as
the one starting at her choice red. This is the only belief hierarchy for Barbara that is simple. It is
generated by the beliefs σ1 = (green, u1) and σ2 = (blue, ub2).

Question 6.1.2. Consider, for instance, your belief hierarchy as depicted in Figure 6.5.1.

Question 6.1.3. Suppose that σi assigns positive probability to a choice-utility pair (ci, ui). Then,
σ̃i assigns positive probability to ci. As (σ̃1, ..., σ̃n) is a Nash equilibrium in the standard game Γ̃,
where player i has utility function ui, it follows that ci is optimal for player i under the belief σ̃−i
with the utility function ui. Since σ−i and σ̃−i induce the same belief about the opponents’choices,
we conclude that ci is optimal for player i under the belief σ−i with the utility function ui. Thus, the
optimality condition in the definition of generalized Nash equilibrium is satisfied.

Question 6.1.4. Note that for you, blue is optimal for the belief σ2 and the utility function u1.
Moreover, for Barbara, yellow is optimal for the belief σ1 and the utility function ub2. Therefore,
(σ1, σ2) is a generalized Nash equilibrium.

Question 6.1.5. For you, bidding 80 is optimal under the belief σ2 if your utility function is u801 .
Similarly, bidding 80 is optimal for Barbara under the belief σ1 if her utility function is u802 . Hence,
(σ1, σ2) is a generalized Nash equilibrium.

Question 6.1.6. It may first be verified that σ1 = (20, u301 ) and σ2 = (20, u302 ) is a generalized Nash
equilibrium. If your valuation is 90, then your optimal bid under the belief σ2 is 40.

Next, it may be verified that σ1 = (40, u501 ) and σ2 = (40, u502 ) is a generalized Nash equilibrium.
If your valuation is 90, then your optimal bid under the belief σ2 is 60.

Question 6.1.7. Note that under the belief σ2, your choices chocolates and Chris are both optimal,
as they both yield an expected utility of 3. Moreover, under the belief σ1 the choice open is optimal
for Barbara if her utility function is uf2 and her choice ignore is optimal if her utility function is u

a
2.

As such, (σ1, σ2) is a generalized Nash equilibrium.

Question 6.1.8. Suppose that the generalized Nash equilibrium (σ1, σ2) is such that only Chris is
optimal for you. Then, necessarily, σ1 = (Chris, u1). But then, the only choice for Barbara that is
optimal under σ1, no matter whether she is angry or forgiven, is ignore. Thus, σ2 assigns probability
1 to Barbara’s choice ignore. Hence, the only optimal choice for you under σ2 is chocolates, and not
Chris. This is a contradiction. We thus conclude that there is no generalized Nash equilibrium (σ1, σ2)
where only Chris is optimal for you.

Question 6.1.9. Note that under the belief σ2 your choices chocolates and Chris are both optimal,
as they both yield an expected utility of 3. Moreover, under the belief σ1 the choices open and ignore
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are both optimal for Barbara if her utility function is uf2 , since they both yield an expected utility of
0.5. As such, (σ1, σ2) is a generalized Nash equilibrium.

Question 6.2.1. We must verify the optimality condition in the definition of a Bayesian equilibrium
for the common prior π. Take some choice-type pair (ci, ti) that receives positive probability under π,
for instance (chocolates, tcho1 ). Then, the associated belief on the opponents’choice-type combinations
conditional on (chocolates, tcho1 ) is

π(· | (chocolates, tcho1 )) = (10/13) · (ignore, ta,i2 ) + (3/13) · (open, tf,o2 ),

which assigns probabilities 10/13 and 3/13 to Barbara choosing ignore and open, respectively. For
this belief, it is indeed optimal for you to choose chocolates if your utility function is u1. Thus, the
optimality condition for (chocolates, tcho1 ) is satisfied.

In the same way, it can be verified that the optimality condition for every other choice-type pair
with positive probability is satisfied as well. Therefore, the common prior π is a Bayesian equilibrum.

Question 6.2.2. Note that π(· | (chocolates, t1)) assigns probability 0.75 to ignore and probability
0.25 to open. As such, both chocolates and Chris are optimal for you under π(· | (chocolates, t1)). In
particular, chocolates is optimal for you under π(· | (chocolates, t1)).

Note also that π(· | (ignore, ta2)) and π(· | (open, tf2)) both assign probability 1 to chocolates. Thus,
ignore is optimal for Barbara under the belief π(· | (ignore, ta2)) and the utility function u

a
2 that t

a
2

has, and open is optimal for Barbara under the belief π(· | (open, tf2)) and the utility function uf2 that
tf2 has. As such, we conclude that π is a Bayesian equilibrium.

Question 6.2.3. We must verify the optimality condition in the definition of a canonical Bayesian
equilibrium for the common prior π̂. Take some choice-utility pair (ci, ui) that receives positive proba-
bility under π̂, for instance (chocolates, u1). Then, the associated belief on the opponents’choice-utility
combinations conditional on (chocolates, u1) is

π(· | (chocolates, u1)) = (10/13) · (ignore, ua2) + (3/13) · (open, uf2),

which assigns probabilities 10/13 and 3/13 to Barbara choosing ignore and open, respectively. For
this belief, it is indeed optimal for you to choose chocolates if your utility function is u1. Thus, the
optimality condition for (chocolates, u1) is satisfied.

In the same way, it can be verified that the optimality condition for every other choice-utility pair
with positive probability is satisfied as well. Therefore, the common prior π̂ is a canonical Bayesian
equilibrum.

Question 6.3.1. It may be verified that no belief hierarchy in this beliefs diagram expresses common
belief in p, for any profile p of beliefs on utility functions.

Question 6.3.2. We verify that (σ1, σ2) satisfies the optimality conditions in the definition of gen-
eralized Nash equilibrium. Take a choice-utility pair (ci, ui) to which σi assigns positive probability.
For instance, (40, u901 ). It may be verified that bidding 40 is optimal for you under the belief σ2 if
your valuation is 90. Similarly, the other optimality conditions can be verified. Therefore, (σ1, σ2) is
a generalized Nash equilibrium.

Question 6.3.3. Consider the beliefs (σ1, σ2) on choice-utility pairs where

σ1 = (0.25) · (20, u301 ) + (0.25) · (40, u501 ) + (0.25) · (40, u701 ) + (0.25) · (60, u901 )
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and similarly for σ2. It may be verified that (σ1, σ2) is a generalized Nash equilibrium.
Consider the belief hierarchy β1 for you that is induced by the generalized Nash equilibrium

(σ1, σ2). Then, by Theorem 6.1.1, β1 is simple and expresses common belief in rationality. Moreover,
by construction of σ1 and σ2, the belief hierarchy β1 expresses common belief in p. If you hold the
belief hierarchy β1, then it is optimal for you to bid 40 if your valuation is 50, and to bid 60 if your
valuation is 90. Therefore, we conclude that with a simple belief hierarchy that expresses common
belief in rationality and common belief in p, you can rationally bid 40 if your valuation is 50, and
rationally bid 60 if your valuation is 90.

Question 6.3.4. We verify the optimality conditions for generalized Nash equilibrium. Note first
that for you, chocolates is optimal under the belief σ2 and the utility function. Moreover, under the
belief σ1 Barbara’s choice ignore is optimal for the utility function ua2, whereas her choice open is
optimal for the utility function uf2 . Hence, (σ1, σ2) is a generalized Nash equilibrium.

Question 6.3.5. You must assign probability 0.8 to Barbara being angry. Since Barbara can only
rationally choose ignore if she is angry, you must assign probability at least 0.8 to Barbara ignoring
the door bell. But then, your only optimal choice is to bring chocolates. Barbara, anticipating on this,
will be indifferent between open and ignore if she is forgiving.
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Problems

Problem 6.1: Chris’football stickers.

Remember from the example “Chris’ drawings” that Chris decided to auction off the drawings he
made when he was a teenager. The auction was a big success for Chris, and therefore he is going to
auction the football stickers he gathered during those teenage years today. Again, you and Barbara
are the only participants. Suppose that you and Barbara can bid either 20, 40, 60 or 80 euros, and
that the stickers collection goes to the person with the highest bid. In case of a tie, Chris will toss a
coin to decide who gets the collection.

Different from before, the person who looses the auction must also pay his bid in euros to Chris.
Such an auction is called an all pay auction, since everybody must pay his or her bid. If you bid b and
win the auction, then your utility will be w − b, where w is your valuation for the stickers collection.
If you loose by bidding b, then your utility will be −b. Similarly for Barbara.

Suppose you do not know the valuation that Barbara has, and that Barbara does not know the
valuation that you have. However, it is known that your valuation and Barbara’s valuation is either
30 or 50.

(a) Model this story as a game with incomplete information, by specifying the various decision prob-
lems for you. By symmetry, Barbara’s decision problems will look the same.

(b) Which bids can you rationally make under common belief in rationality for each of your possible
utility functions? Which procedure do you use?

(c) Show that each of the bids found in (b) can also rationally be made, for that particular utility
function, under common belief in rationality with a simple belief hierarchy. Which theorem do you
use?

(d) Without making any new computations, find the choices you can rationally make under common
belief in rationality with a symmetric belief hierarchy, and the choices you can rationally make under
common belief in rationality with a symmetric belief hierarchy using one theory per choice-utility pair,
for each of your possible utility functions.

Consider the pair p = (p1, p2) of beliefs on utilities, where p1 assigns probability 0.5 to you having
valuation 30 and 50, respectively, and similarly for p2.

*(e) Which bids can you rationally make under common belief in rationality and common belief in p,
for each of your possible utility functions?

*(f) Which bids can you rationally make under common belief in rationality and common belief in p
with a simple belief hierarchy, for each of your possible utility functions? And with a symmetric belief
hierarchy? And with a symmetric belief hierarchy using one theory per choice-utility pair? Explain
your answer.

*(g) Make a beliefs diagram that contains, for each of your possible utility functions u1, and each of
the choices c1 you can rationally make for u1 under common belief in rationality and common belief in
p with a simple belief hierarchy, a simple belief hierarchy that expresses common belief in rationality
and common belief in p, and such that c1 is optimal for that belief hierarchy under u1.

*(h) Translate every simple belief hierarchy in this beliefs diagram into a generalized Nash equilibrium
that respects p.
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Problem 6.2: The ideal temperature.

Since a few weeks, Barbara and you share an offi ce. There is, however, a problem: You both have very
different preferences with respect to the ideal temperature in the offi ce, and therefore it can be diffi cult
to decide at which temperature to put the heating. It is well-known that your ideal temperature is
20 degrees Celcius, whereas Barbara’s most preferred temperature is known to be extreme, but may
differ from day to day. More precisely, Barbara’s ideal temperature is either 16 degrees or 24 degrees,
but you never know which of the two it will be when you go to the offi ce.

To decide on the temperature you have invented the following: You both have a separate interface
where you can enter one of the temperatures from 14, 16, 18, 20, 22 or 24 degrees, or you can choose
the option home, which means that you will go home and work there. If both you and Barbara
have selected a temperature, the machine will calculate the average of the two, and that will be the
temperature for the rest of the day. If only one person enters a temperature, the machine will adopt
that temperature. If both of you choose home, the heating will not even turn on, as the offi ce will
remain empty.

You like working at the offi ce, but only as long as the heating produces your ideal temperature.
This is revealed in your utilities as follows: Your utility is 3 if you work at the offi ce enjoying your
ideal temperature, whereas your utility is 0 if you work at the offi ce but the temperature if not ideal
for you. If you work at home, your utility will be 2.

Barbara’s conditional preferences are similar, but there is one major difference: Barbara does not
like to work in the offi ce alone. Indeed, if Barbara works at the offi ce enjoying your presence and
enjoying her ideal temperature, then her utility is 3. In all other cases her utility will be 0 if she works
at the offi ce. If she works at home, her utility will be 2.

(a) Model this story as a game with incomplete information, by specifying the decision problems for
you and Barbara for each of the possible utility functions.

(b) What choices can you and Barbara rationally make under common belief in rationality for each
of the possible utility functions? What procedure do you use?

(c) Make a beliefs diagram in which you support each of the choices found in (b) by a belief hierarchy
that expresses common belief in rationality. In the beliefs diagram, only include the choices you found
in (b), and only use solid arrows. Which of your belief hierarchies in the diagram are simple, and
which are symmetric?

(d) Show that under common belief in rationality with a simple belief hierarchy you can only rationally
make one choice. Which one? For this choice, construct a generalized Nash equilibrium for which that
choice is optimal. For your other choices, explain why they cannot be rationally made under common
belief in rationality with a simple belief hierarchy.

(e) Show that under common belief in rationality with a symmetric belief hierarchy you can only
rationally make one choice. Which one? For this choice, construct a Bayesian equilibrium for which
that choice is optimal. Can this choice also be supported by a canonical Bayesian equilibrium? For
your other choices, explain why they cannot be rationally made under common belief in rationality
with a symmetric belief hierarchy.

We will now consider the scenario where your belief about Barbara’s ideal temperature is trans-
parent between you and Barbara. More precisely, let p = (p1, p2) be the pair of beliefs on utilities,
where p1 assigns probability 1 to your ideal temperature 20, and p2 assigns probability 0.5 to Barbara
having the ideal temperature 16 and 24, respectively.
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*(f) Show that under common belief in rationality and common belief in p, there is only one choice
you can rationally make, and there is only one choice that Barbara can rationally make for each of
her utility functions. What do you expect to happen in this scenario?

*(g) In fact, there is only one belief hierarchy for you that expresses common belief in rationality
and common belief in p. Make a beliefs diagram that represents this belief hierarchy. Is this belief
hierarchy simple? Is it symmetric? Does it use one theory per choice-utility pair?

Problem 6.3: The tennis match.

Next week there will be a tennis match between Barbara and you, and Chris will be the referee. The
question is: How many hours will you practice this week before the match? To keep things simple,
suppose that Barbara and you can choose between practicing for 10 hours, for 20 hours, and not
practicing at all. Clearly, you both would like to win, but training is costly because you could have
been doing other things instead, which Barbara and you would deem even nicer.

More concretely, starting from a baseline utility of 0, winning the match would increase your
utility by 30, whereas every hour you practice would decrease your utility by 1. Similarly for Barbara.
However, you both disagree about your chances of winning. You are not so confident about your
tennis skills, and think that you will only be able to win if you practice at least 10 hours more than
Barbara. In all other cases you believe to lose. Barbara, on the other hand, is much more confident.
If she is in a confident mood, she believes to win if she practices the same, or more, than you do.
However, there are also days when she is arrogant. On those days she believes that she will always
win, no matter how much you and Barbara practice.

Finally, you strongly dislike practicing more than necessary. Indeed, if you practice 20 hours more
than Barbara, then you believe you could also have won by practicing less. In that case, your utility
will decrease by 70. Barbara, on the other hand, does not mind practicing more than necessary.

When you decide on your practice schedule, you do not know whether Barbara is in a confident
or arrogant mood.

(a) Model this story as a game with incomplete information, by writing down the decision problems
for you and Barbara, for each of the possible utility functions.

(b) Explain why under common belief in rationality you can rationally choose each of your practice
schedules. Make a beliefs diagram with solid arrows only where each of your choices is supported by
a belief hierarchy that expresses common belief in rationality. Which of your belief hierarchies are
simple? Which are symmetric?

(c) Consider the beliefs diagram in Figure 6.5.2. Explain why all belief hierarchies in this beliefs
diagram are symmetric, by constructing a symmetric weighted beliefs diagram that induces it.

(d) Translate the symmetric weighted beliefs diagram from (c) into a common prior π̂ on choice-utility
combinations, and explain why π̂ is a canonical Bayesian equilibrium.

(e) Explain why you can rationally choose each of your practice schedules under common belief in
rationality with a symmetric belief hierarchy that uses one theory per choice-utility pair.

(f) Explain why you cannot rationally choose to practice for 20 hours under common belief in ratio-
nality with a simple belief hierarchy.

(g) Explain why under common belief in rationality with a simple belief hierarchy, you can rationally
choose to practice for 0 or 10 hours.
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Figure 6.5.2 Beliefs diagram for Problem 6.3 (c)

Suppose now that you assign equal probability to Barbara being confident and arrogant, and that
this belief is transparent between you and Barbara. That is, we consider the pair of beliefs on utilities
p = (p1, p2) where p1 assigns probability 1 to your unique utility function, and p2 assigns probability
0.5 to Barbara being confident and arrogant, respectively.

*(h) Show that under common belief in rationality and common belief in p, you can only rationally
plan one of the possible practice schedules. Which one? What is the probability by which you believe
to win? What is the probability by which Barbara believes to win, depending on her mood?
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Literature

Generalized Nash equilibrium. The notion of generalized Nash equilibrium is due to Bach and
Perea (2020b, 2023b). In the latter paper it is shown that the incomplete information counterpart
to Nash equilibrium is not Bayesian equilibrium, as it is often assumed in the literature. Indeed, it
is shown that Bayesian equilibrium is characterized by the conditions of common belief in rationality
and a common prior, just like correlated equilibrium in standard games. In that light, Bayesian
equilibrium is the counterpart to correlated equilibrium, and not to Nash equilibrium. In reponse,
Bach and Perea (2020b, 2023b) define the new concept of generalized Nash equilibrium, and show that
it can be characterized by common belief in rationality and a simple belief hierarchy. More precisely, it
is shown that a choice is optimal for a utility function in a generalized Nash equilibrium precisely when
it can rationally be made for this utility function under common belief in rationality with a simple
belief hierarchy. This resembles our Theorems 6.1.1 and 6.1.2. As these are precisely the conditions
that characterize Nash equilibrium for standard games, the concept of generalized Nash equilibrium
is the incomplete information counterpart to Nash equilibrium.

In Bach and Perea (2020b) it is shown that the concept of generalized Nash equilibrium can also be
characterized by conditions on belief hierarchies that do not imply common belief in rationality. That
is, not all layers of common belief in rationality are needed to arrive at generalized Nash equilibrium.

Bayesian equilibrium. The concept of Bayesian equilibrium has been introduced by Harsanyi (1967-
68), and it has opened the door towards a systematic analysis of games with incomplete information.
Harsanyi’s original definition is somewhat different from ours, as it has been defined in a different
framework. Instead of defining a Bayesian equilibrium as a probability distribution over choice-type
combinations, as we do, he starts from a model with Harsanyi types. As explained in the literature
sections of Chapters 3 and 4, a Harsanyi type hi for player i specifies (i) a utility function for player
i, (ii) a randomized choice for player i, and (iii) a probabilistic belief over the opponents’Harsanyi
types. Similarly to how it works for epistemic models with types in this book, we can derive for every
Harsanyi type a complete belief hierarchy over the players’choices and utility functions.

Harsanyi then defines a Bayesian equilibrium as a probability distribution over combinations of
Harsanyi types such that, for every Harsanyi type hi for player i selected with positive probability,
every choice prescribed with positive probability must be optimal, given the prescribed utility function,
and the induced belief about the opponents’choice combinations. If we replace Harsanyi types by
types in our setting, and model the choices seperately from the types, then we essentially obtain our
definition of a Bayesian equilibrium. The reason we define a Bayesian equilibrium in this way, and thus
different from Harsanyi’s definition, is that we want to define all of our concepts in a unified framework,
to make the comparisons between the different concepts more direct and more transparent.

However, Bach and Perea (2023b) show that our definition is behaviorally equivalent to Harsanyi’s
definition. Indeed, in that paper it is shown that the choices that are optimal, for a given utility
function, in a Bayesian equilibrium (as defined by Harsanyi) are precisely the choices that can rationally
be made for that utility function under common belief in rationality with a common prior. Since we
have seen that a common prior is equivalent to assuming a symmetric belief hierarchy, it follows from
our Theorem 6.2.3 that these are exactly the choices that are optimal in a Bayesian equilibrium as
we define it. Thus, if we are interested in the choices that players can rationally make for a given
utility function, it does not matter whether we use Harsanyi’s original definition or our definition of a
Bayesian equilibrium.

Canonical Bayesian equilibrium. We have seen that the choices that can rationally be made under
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common belief in rationality with a symmetric belief hierarchy that uses one theory per choice-utility
pair are precisely the choices that are optimal in a canonical Bayesian equilibrium. The definition of a
canonical Bayesian equilibrium is based on the notion of incomplete information correlated equilibrium
in Bergemann and Morris (2007), which in turn is based on one of the versions of correlated equilibrium
for incomplete information in Forges (1993), and on the equivalent notion of simplified Bayesian
equilibrium in Bach and Perea (2017). However, in that paper the concept is used for a different
purpose: It is shown that the probability distributions on choice-utility combinations that are induced
by Bayesian equilibria are exactly the simplified Bayesian equilibria.

Bayesian equilibria as Nash equilibria of a different game. Interestingly, the definition of a
Bayesian equilibrium that typically appears in textbooks and papers is fundamentally different from
both Harsanyi’s definition and ours. The textbook definition fixes a common prior on the players’
Harsanyi types, and lets every player choose a mapping which assigns to each of his possible Harsanyi
types a (randomized) choice. The utility that a player gets is the expected utility induced by (i)
the common prior on the players’Harsanyi types, and (ii) the players’choice mappings. A Bayesian
equilibrium is then defined as a combination of choice mappings that constitutes a Nash equilibrium
in this modified game with complete information.

Harsanyi (1967-68) has shown that the Nash equilibria in this modified game correspond one-to-
one to the Bayesian equilibria of the original game with incomplete information. Harsanyi then uses
this result to show the existence of Bayesian equilibria, relying on Nash’s (1950, 1951) equilibrium
existence theorem for games with complete information.

However, from a conceptual point of view this modified game seems very problematic. First, it
seems unnatural for a player to select a choice for every Harsanyi type he can possible have, because
the player knows which belief hierarchy and utility function he has, and therefore the player knows
his Harsanyi type. Second, the modified game with complete information is much more complicated,
and much less transparent, than the original game with incomplete information. It therefore seems
more reasonable to use Harsanyi’s original definition of a Bayesian equilibrium, or a definition that
perfectly resembles Harsanyi’s original definition, as we do in this book.

Due to Harsanyi’s result mentioned above, which shows that Bayesian equilibria are equivalent to
the Nash equilibria of some artificial transformed game, it is often argued that Bayesian equilibrium
is the incomplete information counterpart to Nash equilibrium. However, as this chapter shows,
this statement is false: Bayesian equilibrium is the incomplete information counterpart to correlated
equilibrium.


