
Chapter 4

Correct and Symmetric Beliefs in Standard
Games

In this chapter we will focus on two special kinds of belief hierarchies: simple belief hierarchies and
symmetric belief hierarchies. Simple belief hierarchies have the property that a player believes that
his opponents are correct about the beliefs he holds. We will show that simple belief hierarchies,
together with common belief in rationality, lead to the concept of Nash equilibrium. Symmetric belief
hierarchies may be viewed as a more permissive variant of simple belief hierarchies, where a player
need not believe that his opponents are correct about the beliefs he holds. However, they display
some form of symmetry between the beliefs a player holds himself, and the beliefs he thinks that
other players hold. It is shown that symmetric belief hierarchies in combination with common belief
in rationality yield the concept of correlated equilibrium. If, in addition, we impose one theory per
choice, we arrive at the more restrictive concept of canonical correlated equilibrium. In Chapter 4 of
the online appendix we discuss some economic applications.

4.1 Correct Beliefs

In the previous chapter we have investigated the reasoning concept of common belief in rationality.
For every player it selects those belief hierarchies where the player believes that his opponents choose
rationally, believes that every opponent believes that all other players choose rationally, and so on.
In a sense, according to common belief in rationality, all belief hierarchies with these properties are
regarded as equal.

However, we will see in this section that two belief hierarchies which both express common belief in
rationality may display completely different properties. For instance, in some belief hierarchy you may
believe that the opponents are correct about the actual beliefs that you hold, whereas this may not be
true in other belief hierarchies. In this section we will formalize the idea of correct beliefs by means
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You Cinema Palace Movie Corner home
Cinema Palace 4 0 0
Movie Corner 0 4 0

home 3 3 3

Barbara Cinema Palace Movie Corner home
Cinema Palace 0 4 0
Movie Corner 4 0 0

home 3 3 3

Table 4.1.1 Decision problems in “Movie for two”

of simple belief hierarchies, and show that common belief in rationality in combination with simple
belief hierarchies leads to the concept of Nash equilibrium. Subsequently we prove that in every game,
every player will have at least one simple belief hierarchy that expresses common belief in rationality.
We finally discuss how reasonable the concept of Nash equilibrium really is.

4.1.1 Simple Belief Hierarchies
To explain what we mean by saying that “you believe that the opponent is correct about your beliefs”,
consider the following example.

Example 4.1: Movie for two.

This evening, both you and Barbara want to go to the movies. In town there are two movie theaters,
Cinema Palace and The Movie Corner. The question for Barbara and you is: To which movie theater
do you go? What complicates the matter is that last night you had a fight with Barbara. Now she is
so upset that she would rather not talk to you this evening, and hence she prefers to go to a different
theater than you. You, on the other hand, would really like to make up with her, and therefore you
would like to go to the same theater as Barbara. The third option for Barbara and you is simply to
stay at home, avoid any possible disappointment and watch your all-time favorite movie on Netflix.

The utilities are as follows: If you go to the same theater as Barbara, you will be happy to make
up with her and your utility will be 4. If, on the other hand, you go out and Barbara goes to the other
theater or stays at home, you will be very disappointed and your utility will be 0. If you stay at home
you feel okay, but still regret not to have the chance to make up with Barbara, and your utility will
be 3. For Barbara the utilities are similar: If she goes out and you go to the other cinema, she will be
relieved and enjoy a utility of 4. If you go to the same cinema as she does, Barbara will not enjoy the
movie at all and her utility will be 0. If she goes out and discover that you have stayed at home, she
will feel sorry about this and her utility will be 0. If she stays at home, she regrets not to be watching
a movie on the big screen and her utility will be 3. These utilities give rise to the decision problems
for you and Barbara in Table 4.1.1.

In this game, it turns out that both you and Barbara can rationally make any choice under common
belief in rationality. This is most easily seen from the beliefs diagram in Figure 4.1.1. Since all arrows
in this beliefs diagram are solid, it follows from Theorem 3.3.2 that all belief hierarchies generated by
this beliefs diagram express common belief in rationality.

Note that going to Cinema Palace is optimal for the belief hierarchy that is obtained if we start at
your choice Palace and follow the arrows. Indeed, the induced first-order belief is that you believe that
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Figure 4.1.1 Beliefs diagram for “Movie for two”

Barbara goes to Cinema Palace, and going to Cinema Palace yourself is optimal for that belief. As
this belief hierarchy expresses common belief in rationality, we conclude that you can rationally go to
Cinema Palace under common belief in rationality. In a similar fashion, we can conclude that under
common belief in rationality you can also rationally go to The Movie Corner or stay at home. And
also Barbara can rationally go to Cinema Palace, The Movie Corner or stay at home under common
belief in rationality.

Consider now the belief hierarchy that starts at your choice to stay at home. In that belief
hierarchy, you believe that Barbara stays at home. That is your first-order belief. At the same time,
you believe that Barbara believes that you indeed believe that Barbara stays at home. In other words,
you believe that Barbara is correct about your first-order belief.

Question 4.1.1 In that same belief hierarchy, do you also believe that Barbara is correct about your
second-order belief?

Compare this to the belief hierarchy that starts at your choice Palace. There, your first-order belief
is that you believe that Barbara goes to Cinema Palace. At the same time, however, you believe that
Barbara believes that you believe that Barbara goes to The Movie Corner (and not Cinema Palace).
Hence, you believe that Barbara is not correct about your first-order belief. The same can be said
about the belief hierarchy that starts at your choice Corner. Please check this.

Question 4.1.2 Consider the beliefs diagram from Figure 3.2.1 for “Going to a party”. In which of
your belief hierarchies do you believe that Barbara is correct about your first-order belief?

Hence, at the belief hierarchies that start at your choices Palace and Corner, you believe that
Barbara is incorrect about your first-order belief, while at the belief hierarchy that starts at your
choice home you believe that Barbara is correct about your first-order belief. In fact, in the latter
belief hierarchy you do not only believe that Barbara is correct about your first-order belief, you also
believe that Barbara is correct about your second-order belief, your third-order belief, and so on.
Indeed, in the belief hierarchy that starts at your choice home you believe that Barbara is correct
about your entire belief hierarchy.
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Note also that this belief hierarchy is completely generated by only two beliefs: the belief σ2 that
Barbara chooses to stay at home, and the belief σ1 that you choose to stay at home. To see this,
observe that your first-order belief about Barbara’s choice is σ2. Moreover, your second-order belief
is that you believe that Barbara believes that you choose to stay at home, that is, you believe that
Barbara has belief σ1 about your choice. Your third-order belief is that you believe that Barbara
believes that you believe that Barbara chooses to stay at home, which means that you believe that
Barbara believes that you have belief σ2 about Barbara’s choice. And so on. We call this a simple
belief hierarchy that is generated by the belief σ1 about your choice and the belief σ2 about Barbara’s
choice. Here, the subindex 1 in σ1 indicates that this is a belief about player 1’s (hence, your) choice,
whereas the subindex 2 in σ2 stresses that this belief is about player 2’s (hence, Barbara’s) choice.

More generally, a simple belief hierarchy generated by beliefs about choices can be defined as
follows.

Definition 4.1.1 (Simple belief hierarchy) Let σ1 be a probabilistic belief about player 1’s choice,
σ2 a probabilistic belief about player 2’s choice, and so on, until σn being a probabilistic belief about
player n’s choice. The belief hierarchy for player i generated by the beliefs (σ1, σ2, ..., σn) is defined
as follows:

(1) in the first-order belief, player i assigns to every opponents’choice combination (cj)j 6=i the prob-
ability

∏
j 6=i σj(cj),

(2) in the second-order belief, player i believes with probability 1 that every opponent j assigns to
every opponents’choice combination (ck)k 6=j the probability

∏
k 6=j σk(ck),

(3) in the third-order belief, player i believes with probability 1 that every opponent j believes with
probability 1 that every opponent k assigns to every opponents’choice combination (cl)l 6=k the prob-
ability

∏
l 6=k σl(cl), and so on.

A belief hierarchy is called simple if it is generated by a combinations of such beliefs (σ1, σ2, ..., σn).

Here, we denote by
∏
j 6=i σj(cj) the product of the probabilities σj(cj) for every opponent j 6= i.

For instance, if there are two players, then
∏
j 6=1 σj(cj) = σ2(c2). If there are three players, then∏

j 6=1 σj(cj) = σ2(c2) ·σ3(c3). To illustrate the notion of a simple belief hierarchy for games with more
than two players, consider the game “When Chris joins the party”, with the decision problems as
depicted in Table 3.2.1. Let

σ1 = green

be the belief about player 1’s (your) choice that assigns probability 1 to your choice green. Let

σ2 = (0.3) · blue+ (0.7) · red

be the probabilistic belief about player 2’s (Barbara’s) choice that assigns probability 0.3 to her choice
blue and probability 0.7 to her choice red. Finally, let

σ3 = (0.6) · blue+ (0.4) · yellow

be the belief about player 3’s (Chris’) choice that assigns probability 0.6 to Chris choosing blue and
probability 0.4 to Chris choosing yellow.

Consider your simple belief hierarchy generated by these beliefs σ1, σ2 and σ3. How does this belief
hierarchy look like? Let us start with your first-order belief about the choice combinations by Barbara
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and Chris. By definition, your belief about Barbara’s choice is σ2 and your belief about Chris’choice
is σ3. Hence, the probability that you assign to Barbara wearing blue and Chris wearing blue is

σ2(blue) · σ3(blue) = (0.3) · (0.6) = 0.18.

Similarly, the probability that you assign to Barbara wearing blue and Chris wearing yellow is

(0.3) · (0.4) = 0.12,

the probability you assign to Barbara wearing red and Chris wearing blue is

(0.7) · (0.6) = 0.42,

and the probability you assign to Barbara wearing red and Chris wearing yellow is

(0.7) · (0.4) = 0.28.

The probability you assign to every other choice combination by Barbara and Chris is zero. This
constitutes your first-order belief.

What is your second-order belief? As a part of your second-order belief, let us describe what you
believe that Barbara believes about your choice and Chris’ choice? You believe that Barbara has
belief σ1 about your choice and belief σ3 about Chris’choice. Hence, the probability you believe that
Barbara assigns to you wearing green and Chris wearing blue is

σ1(green) · σ3(blue) = 1 · (0.6) = 0.6.

Similarly, the probability you believe that Barbara assigns to you wearing green and Chris wearing
yellow is

1 · (0.4) = 0.4,

whereas you believe that Barbara assigns probability zero to all other choice combinations by you and
Chris. This is your belief about Barbara’s first-order belief.

Question 4.1.3 As another part of your second-order belief, describe your belief about Chris’first-
order belief. As a part of your third-order belief, describe what you believe that Barbara believes
about Chris’first-order belief.

In this way, we can derive the full simple belief hierarchy for you by only using the three beliefs
σ1, σ2 and σ3.

Throughout this book, we will use simple belief hierarchies as a way to express correct beliefs. To
see why, consider a simple belief hierarchy for player i generated by the beliefs σ1, σ2, ..., σn. Then,
by construction, player i does not only have belief σj about j’s choice, but i also believes that every
opponent k believes that i indeed has this particular belief σj about j’s choice. That is, in this simple
belief hierarchy player i believes that each of his opponents is correct about his first-order belief.

We can say even more: In the simple belief hierarchy above, player i does not only believe that
player j has belief σk about k’s choice, but i also believes that every opponent l believes that i indeed
believes that j has belief σk about k’s choice. That is, player i believes that every opponent is correct
about his second-order beliefs also. In the same fashion we can conclude that player i also believes
that his opponents are correct about his third-order beliefs and higher. In other words, in a simple
belief hierarchy player i believes that his opponents are correct about his entire belief hierarchy.
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Chris
Probability 0.6 0.4

blue yellow
Barbara 0.3 blue 0.18 0.12

0.7 red 0.42 0.28

Table 4.1.2 Simple belief hierarchy induces independent beliefs about opponents’choices

Question 4.1.4 Consider the simple belief hierarchy for player i generated by the beliefs σ1, σ2, ..., σn.
Explain why player i believes that every opponent j believes that every other player is correct about
j’s first-order belief.

In the same way as in Question 4.1.4 it can be shown that in a simple belief hierarchy, player i
also believes that every opponent j believes that every other player is correct about j’s entire belief
hierarchy. And so on.

For games with more than two players, a simple belief hierarchy also displays other properties that
go beyond the idea of correct beliefs. Consider a game with at least three players, and the simple
belief hierarchy for player i generated by the beliefs σ1, σ2, ..., σn. Choose two different opponents j
and k of player i. Then, player i does not only have the belief σk about k’s choice, but also believes
that player j has the same belief σk about k’s choice. In other words, player i believes that every
opponent j shares his belief about a third player k’s choice. In the example for “When Chris joins the
party”above, for instance, we see that you do not only assign probability 0.6 to Chris wearing blue,
but you additionally believe that Barbara also assigns probability 0.6 to Chris wearing blue.

Another property, beyond correct beliefs, that follows for games with more than two players is
that player i’s belief about j’s choice must be independent from i’s belief about k’s choice. To see
what this means, consider again the example above for “When Chris joins the party”. Your belief
about the choice combinations by Barbara and Chris can be summarized by Table 4.1.2. Note that
the probability you assign to the choice combination (blue, blue) by Barbara and Chris is obtained
by taking the product of the probability σ2(blue) = 0.3 about Barbara’s choice and the probability
σ3(blue) = 0.6 about Chris’choice. The same holds for the three other choice combinations in the
table. We thus see that your first-order belief about Barbara’s and Chris’choice combinations can be
written as the product of your belief σ2 about Barbara’s choice and the belief σ3 about Chris’choice.
In this case, we say that your belief about Barbara’s choice is independent from your belief about
Chris’choice.

Generally, the first-order belief generated by a simple belief hierarchy is always independent in this
sense. Consider the simple belief hierarchy for player i generated by the beliefs σ1, σ2, ..., σn. Then,
the probability that player i assigns to the choice combination where j chooses cj and k chooses ck is
given by the product

σj(cj) · σk(ck),
and hence i’s belief about j’s choice is independent from i’s belief about k’s choice.

A belief hierarchy that is not simple may easily contain first-order beliefs that are not independent.
In the example “When Chris joins the party”, for instance, consider the first-order belief

(0.5) · (blue, blue) + (0.5) · (red, yellow),

in which you assign probability 0.5 to the event that Barbara and Chris both wear blue, and assign
probability 0.5 to the event that Barbara wears red and Chris wears yellow. Intuitively, your belief
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about Barbara’s choice is heavily dependent on your belief about Chris’ choice. Indeed, you only
consider Barbara wearing blue if at the same time Chris wears blue also, and you only consider
Barbara wearing red if at the same time Chris wears yellow. One can also formally show that this
first-order belief cannot be written as the product of a belief about Barbara’s choice and a belief about
Chris’choice.

Question 4.1.5 Explain why the first-order belief above cannot be written as the product of a prob-
abilistic belief σ2 about Barbara’s choice and a probabilistic belief σ3 about Chris’choice.

Such non-independent (or correlated) first-order beliefs are thus excluded if we concentrate on
simple belief hierarchies. Summarizing we thus see that player i, in a simple belief hierarchy, (a)
believes that every opponent is correct about his belief hierarchy, (b) believes that every opponent j
believes that every other player is correct about j’s belief hierarchy, (c) believes that every opponent j
has the same belief as i himself about a third player k’s choice, and (d) has independent beliefs about
the choice combinations of two different opponents j and k. Of course, the properties (c) and (d) are
only relevant if there are three players or more.

Question 4.1.6 Consider the example “When Chris joins the party”, and the beliefs diagram for this
game in Figure 3.2.2. Look at your belief hierarchy that starts at your choice green. Is this belief
hierarchy simple or not? Answer the same question for Barbara’s belief hierarchy that starts at her
choice yellow.

4.1.2 Relation with Nash Equilibrium
In the previous subsection we have introduced the notion of a simple belief hierarchy, to express the
belief that your opponents are correct about your beliefs. Suppose we now combine the conditions of
common belief in rationality with that of a simple belief hierarchy. What kind of belief hierarchies
do we get? And what choices can a player rationally make if he holds a simple belief hierarchy that
expresses common belief in rationality? These are the questions we wish to answer in this subsection.

Consider a belief hierarchy for player i generated by a combination of beliefs σ1, σ2, ..., σn. Re-
member that σj is a probabilistic belief about player j’s choice, for every j. As a short-hand notation,
denote by σ−j the belief that j holds about his opponents’choice combinations. Hence, the belief σ−j
assigns to every opponents’choice combination (ck)k 6=j the probability∏

k 6=j
σk(ck).

Then, in his simple belief hierarchy, player i has belief σ−i about the opponents’choices, believes that
every opponent j holds the belief σ−j about his opponents’choices, and so on.

Suppose that, in addition, this simple belief hierarchy expresses common belief in rationality. Then,
in particular, player i believes in every opponent j’s rationality. That is, if player i assigns positive
probability to j’s choice cj , then cj must be optimal for j, given what i thinks that j believes about
his opponents’choices. Now, if i assigns positive probability to j’s choice cj , then it must be that
σj(cj) > 0, because σj is i’s belief about j’s choice. On the other hand, i thinks that j holds the belief
σ−j about his opponents’choices. Therefore, this choice cj must be optimal for j under the belief
σ−j . Overall, we thus see that if σj(cj) > 0, then cj must be optimal for j under the belief σ−j . This
must hold for every opponent j, and every choice cj with σj(cj) > 0.

Under common belief in rationality, i must also believe that each opponent j believes in i’s ra-
tionality. That is, if i believes that j assigns positive probability to his own choice ci, then i must
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believe that j believes that ci is optimal for i, given what i thinks that j thinks is i’s belief about his
opponents’choices. Now, if i believes that j assigns positive probability to his choice ci, then we must
have that σi(ci) > 0, since i believes that j holds the belief σi about i’s choice. At the same time, i
thinks that j thinks that i’s belief about his opponents’choices is σ−i, and hence this choice ci must
be optimal for i under the belief σ−i. We thus see that if σi(ci) > 0, then ci must be optimal for i
under the belief σ−i.

Overall, we conclude that for every player j (including player i himself), the belief σj about j’s
choice can only assign positive probability to choices cj that are optimal for j under the belief σ−j .
Belief combinations (σ1, σ2, ..., σn) with this property are called Nash equilibria.

Definition 4.1.2 (Nash equilibrium) Consider a combination of beliefs (σ1, σ2, ..., σn), where σi
is a probabilistic belief about i’s choice for every player i. The belief combination (σ1, σ2, ..., σn) is a
Nash equilibrium if for every player i, the belief σi only assigns positive probability to choices ci
that are optimal for i under the belief σ−i.

From our arguments above we can thus conclude the following: If player i holds the simple belief
hierarchy generated by the belief combination (σ1, ..., σn), and this belief hierarchy expresses common
belief in rationality, then necessarily this belief combination (σ1, ..., σn) must be a Nash equilibrium.

In fact, we will show that the other direction is also true: If a simple belief hierarchy is generated
by a Nash equilibrium, then it will express common belief in rationality. To see this, consider the
simple belief hierarchy for player i generated by a Nash equilibrium (σ1, ..., σn). We first show that
i believes in the opponents’rationality. Suppose that i assigns positive probability to j’s choice cj .
Then, σj(cj) > 0. Since (σ1, ..., σn) is a Nash equilibrium, cj must be optimal for j under the belief
σ−j . Since i thinks that j has belief σ−j , we conclude that cj is optimal for j, given what i thinks that
j believes about his opponents’choices. Hence, if i assigns positive probability to j’s choice cj , then
cj is optimal for j, given what i thinks that j believes about his opponents’choices. In other words,
i believes in j’s rationality. As this applies to every opponent j, player i believes in the opponents’
rationality.

Question 4.1.7 Explain why in the simple belief hierarchy above, i also believes that every opponent
j believes in his opponents’rationality.

By continuing in this fashion, we eventually conclude that player i expresses common belief in
rationality with this simple belief hierarchy. Hence, we see that every simple belief hierarchy that is
generated by a Nash equilibrium will express common belief in rationality. Altogether, we arrive at
the following conclusion.

Theorem 4.1.1 (Relation with Nash equilibrium) Consider the simple belief hierarchy for player
i generated by a belief combination (σ1, ..., σn). Then, this belief hierarchy expresses common belief
in rationality, if and only if, the belief combination (σ1, ..., σn) is a Nash equilibrium.

As an illustration, consider the beliefs diagram in Figure 4.1.1 for “Movie for two”. Let us focus on
the belief hierarchy for you that starts at your choice home. This is a simple belief hierarchy generated
by the belief σ1 = home about your choice, assigning probability 1 to you staying at home, and the
belief σ2 = home about Barbara’s choice, assigning probability 1 to Barbara staying at home as well.
As we have seen that this simple belief hierarchy expresses common belief in rationality, we conclude
from the theorem above that (σ1, σ2) must be a Nash equilibrium. Indeed, σ1 assigns probability 1 to
you staying at home, which is optimal for you under the belief σ−1 = σ2 that Barbara stays at home
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as well. Also, σ2 assigns probability 1 to Barbara staying at home, which is optimal for Barbara under
the belief σ−2 = σ1 that you stay at home as well.

With Theorem 4.1.1 at hand, we can now answer the following question: What choices can you
rationally make if you hold a simple belief hierarchy that expresses common belief in rationality?
Suppose player i holds a simple belief hierarchy, generated by the belief combination (σ1, ..., σn), that
expresses common belief in rationality. Then, we know from Theorem 4.1.1 that (σ1, ..., σn) must be a
Nash equilibrium. Also, every choice ci that is optimal for player i under this simple belief hierarchy
must be optimal under the belief σ−i, as this is the belief that i holds about his opponents’choices.
In other words, ci is optimal for player i in the Nash equilibrium (σ1, ..., σn).We thus conclude that if
player i holds a simple belief hierarchy that expresses common belief in rationality, then every choice
that is optimal for player i must be optimal in some Nash equilibrium.

Definition 4.1.3 (Choice optimal in a Nash equilibrium) A choice ci is optimal in a Nash
equilibrium if there is some Nash equilibrium (σ1, ..., σn) such that ci is optimal for the belief σ−i.

The other direction is also true: If a choice is optimal in a Nash equilibrium, then it is optimal
for a simple belief hierarchy that expresses common belief in rationality. To see this, suppose that
choice ci is optimal for player i in a Nash equilibrium (σ1, ..., σn), which means that ci is optimal under
the belief σ−i. By Theorem 4.1.1 we know that the simple belief hierarchy for player i generated by
(σ1, ..., σn) expresses common belief in rationality. In this belief hierarchy, player i holds the belief σ−i
about the opponents’choices. Since ci is optimal under the belief σ−i, we conclude that ci is optimal
for this simple belief hierarchy that expresses common belief in rationality. The choices that a player
can rationally make with a simple belief hierarchy that expresses common belief in rationality can
thus be characterized as follows.

Theorem 4.1.2 (Relation with Nash equilibrium choices) A choice is optimal for a simple be-
lief hierarchy that expresses common belief in rationality, if and only if, that choice is optimal in a
Nash equilibrium.

In other words, if we want to find all choices in a game that are optimal for a simple belief hierarchy
that expresses common belief in rationality, then we must first find all Nash equilibria for this game,
and subsequently all choices that are optimal in these Nash equilibria. Unfortunately, however, finding
all Nash equilibia in a game can be rather diffi cult, as some of the examples in the next subsection
will show.

4.1.3 Examples
We will now apply Theorem 4.1.2 to three examples, to find the choices you can rationally make under
common belief in rationality with a simple belief hierarchy.

Example 4.2: Movie for two.

Consider the example “Movie for two”which has been introduced before, with the decision problems
as depicted in Table 4.1.1. The question we wish to answer is: What choice(s) can you rationally
make with a simple belief hierarchy that expresses common belief in rationality?

From the beliefs diagram of Figure 4.1.1 we can conclude that under common belief in rationality
—without insisting on a simple belief hierarchy —you can rationally go to Cinema Palace, The Movie
Corner, or stay at home. Indeed, in that beliefs diagram your choices Palace and Corner are supported



142 CHAPTER 4. CORRECT AND SYMMETRIC BELIEFS IN STANDARD GAMES

by non-simple belief hierarchies that express common belief in rationality, while your choice to stay
at home is even supported by a simple belief hierarchy that expresses common belief in rationality.
The question thus remains: Can you also rationally go to Cinema Palace or The Movie Corner with
a simple belief hierarchy that expresses common belief in rationality? If such simple belief hierarchies
exist, they must be part of some different beliefs diagram. Instead of checking for all alternative beliefs
diagrams —which is anyhow an impossible task since there are infinitely many —we rely on Theorem
4.1.2 to answer this question. That is, we will first try to find all Nash equilibria in this game, and
then check whether your choice Palace or Corner is optimal in some of these Nash equilibria.

We will show that the only Nash equilibrium in this game is (σ1, σ2) = (home, home), in which
it is believed with probability 1 that you and Barbara stay at home. To prove this, consider a Nash
equilibrium (σ1, σ2) for this game and assume, contrary to what we want to show, that σ1(Palace) > 0.
Then, since (σ1, σ2) is a Nash equilibrium, Palace must be optimal for you under the belief σ2, which
is only possible if σ2(Palace) > 0. Indeed, if σ2(Palace) = 0, then choosing Palace would yield a utility
of 0, which would be less than what you get by choosing home. Since σ2(Palace) > 0 and (σ1, σ2) is
a Nash equilibrium, the choice Palace must be optimal for Barbara under the belief σ1. This is only
possible if σ1(Corner) > 0, since otherwise choosing Palace would yield Barbara a utility of 0, which
would be less than what she gets by choosing home. Hence, we conclude that σ1(Corner) > 0 and
σ1(Palace) > 0. However, this means that both Palace and Corner must be optimal for you under
the belief σ2. In particular, Palace and Corner must give you the same expected utility, which is
only possible if σ2(Palace) = σ2(Corner). Please check this. As a consequence, both σ2(Palace) and
σ2(Corner) cannot be larger than 0.5. But then, the expected utility you get from choosing Palace can
be at most (0.5) · 4 = 2, which is less than what you would get by choosing home. We thus conclude
that in a Nash equilibrium, σ1(Palace) > 0 is impossible, and hence σ1(Palace) = 0.

This implies, however, that choosing Corner can no longer be optimal for Barbara, as it would
yield her a utility of 0. Since (σ1, σ2) is a Nash equilibrium, we thus conclude that σ2(Corner) = 0.
But then, choosing Corner can no longer be optimal for you, as it would yield you a utility of 0.
As such, σ1(Corner) = 0. Since σ1(Palace) = 0 and σ1(Corner) = 0, it follows that σ1(home) = 1.
But then, only home can be optimal for Barbara, which means that σ2(home) = 1 as well. We thus
conclude that (σ1, σ2) = (home, home), and hence this is the only Nash equilibrium in this game.
Since the only optimal choice for you in this Nash equilibrium is to stay at home, we see that under
common belief in rationality with a simple belief hierarchy, you can only rationally choose to stay at
home, and expect Barbara to do the same.

The intuitive reason why under common belief in rationality with a simple belief hierarchy you
cannot rationally go to Cinema Palace is the following. Cinema Palace is only optimal for you if you
believe, with high probability, that Barbara chooses Cinema Palace as well. For Barbara, in turn, it
can only be optimal to choose Cinema Palace if she assigns a high probability to you choosing The
Movie Corner. Finally, it can only be optimal for you to choose The Movie Corner if you believe, with
high probability, that Barbara chooses The Movie Corner as well. Hence, you can only rationally go
to Cinema Palace under common belief in rationality if you assign a high probability to (a) Barbara
choosing Cinema Palace, a high probability to the event that (b) Barbara assigns a high probability
to you choosing The Movie Corner, and a high probability to the event that (c) Barbara assigns
a high probability to the event that you assign a high probability to Barbara choosing The Movie
Corner. Because of (a) and (c), you must then necessarily believe, with high probability, that Barbara
is incorrect about your first-order belief, and hence you cannot hold a simple belief hierarchy. In the
same fashion, one can also intuitively explain why under common belief in rationality with a simple
belief hierarchy, you cannot rationally go to The Movie Corner. That is, under common belief in
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rationality with a simple belief hierarchy, you can only rationally choose to stay at home.

Example 4.3: When Chris joins the party.

Reconsider the example “When Chris joins the party”from Section 3.2.2, with the decision problems
as depicted in Table 3.2.1. Which choices can you rationally make here under common belief in
rationality with a simple belief hierarchy?

In the beliefs diagram from Figure 3.2.2, consider the belief hierarchy that starts at your choice
green. In Question 4.1.6 we have already seen that this belief hierarchy is simple, because it is generated
by the belief combination (σ1 = green, σ2 = blue, σ3 = yellow). Since your choice green is optimal
under this belief hierarchy, we can conclude that you can rationally wear green under common belief
in rationality with a simple belief hierarchy. Another way to see this is to observe that (σ1 = green,
σ2 = blue, σ3 = yellow) is a Nash equilibrium, and that your choice green is optimal in this Nash
equilibrium. Please check this. In light of Theorem 4.1.2 we then know that you can rationally choose
green under common belief in rationality with a simple belief hierarchy.

What about your choices red and yellow? Can you rationally make these choices as well under
common belief in rationality with a simple belief hierarchy? Since we have seen in Section 3.4.3 that
yellow can never be optimal for you for any belief, we know that you cannot rationally choose yellow
under common belief in rationality with a simple belief hierarchy. It remains to explore your choice red.
In the beliefs diagram from Figure 3.2.2, the belief hierarchy that starts at your choice red expresses
common belief in rationality, since the diagram only involves solid arrows. Since your choice red is
rational for that belief hierarchy, we see that you can rationally choose red under common belief in
rationality. However, the belief hierarchy starting at your choice red is not simple. To see this, note
that you believe that Barbara chooses green, yet at the same time you believe that Chris believes that
Barbara chooses yellow, and not green. Hence, this belief hierarchy cannot be simple.

Therefore, the beliefs diagram from Figure 3.2.2 does not yet tell us whether or not you can
rationally make your choice red under common belief in rationality with a simple belief hierarchy. To
answer this question we rely on Theorem 4.1.2, and ask whether there are Nash equilibria in which
your choice red is optimal. In fact, there is a Nash equilibrium in this game in which both green and
red are optimal for you. Consider the belief combination

(σ1 = 1
2 · green + 1

2 · red , σ2 = 1
3 · green + 2

3 · yellow , σ3 = blue).

Question 4.1.8 Show that this belief combination is a Nash equilibrium, and that your choices green
and red are both optimal in this Nash equilibrium.

Hence, we conclude by Theorem 4.1.2 that under common belief in rationality with a simple belief
hierarchy, you can also rationally choose red. Summarizing, we see that in this game you can rationally
choose green and red under common belief in rationality with a simple belief hierarchy, but not yellow.

What choices can Barbara and Chris rationally make under common belief in rationality with a
simple belief hierarchy? To answer this question, it is suffi cient to look at the two Nash equilibria
above. Let us start with Barbara’s choices. We know from Section 3.4.3 that under common belief in
rationality, Barbara can only rationally make the choices blue, green and yellow, but not red. Hence,
Barbara can definitely not rationally choose red under common belief in rationality with a simple
belief hierarchy. Note that her choice blue is optimal in the Nash equilibrium (σ1 = green, σ2 = blue,
σ3 = yellow), and that her choices green and yellow are optimal in the Nash equilibrium

(σ1 = 1
2 · green + 1

2 · red , σ2 = 1
3 · green + 2

3 · yellow , σ3 = blue).
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Please check this. In light of Theorem 4.1.2, we thus conclude that Barbara can rationally choose
blue, green and yellow under common belief in rationality with a simple belief hierarchy.

For Chris’choices, observe that his choice yellow is optimal in the Nash equilibrium (σ1 = green,
σ2 = blue, σ3 = yellow), and that his choice blue is optimal in the Nash equilibrium

(σ1 = 1
2 · green + 1

2 · red , σ2 = 1
3 · green + 2

3 · yellow , σ3 = blue).

By Theorem 4.1.2 we therefore know that Chris can rationally choose yellow and blue under common
belief in rationality with a simple belief hierarchy.

Summarizing, we see that under common belief in rationality with a simple belief hierarchy, you
can rationally choose green and red but not yellow, that Barbara can rationally choose blue, green
and yellow but not red, and that Chris can rationally choose blue and yellow. Since we know from
Section 3.4.3 that these are exactly the choices that you, Barbara and Chris can rationally make under
common belief in rationality, the focus on simple belief hierarchies does not further restrict the choices
that the players can rationally make under common belief in rationality here.

We thus see that in the example “When Chris joins the party”, it does not matter for your choices
whether, in addition to common belief in rationality, we also insist on simple belief hierarchies or not.
We will now consider a new example with three players where simple belief hierarchies do make a
difference for the choices you can rationally make.

Example 4.4: Opera for three.

This evening there will be the première of a new opera in the local theater. Although you are not
too fond of opera, you are willing to go if both Barbara and Chris would join. However, last night
Barbara and Chris had a fierce fight and would therefore rather avoid each other. In fact, Barbara
would only consider going to the opera if you would join but not Chris. Similarly, Chris would only go
to the opera if you would join but not Barbara. Every person thus has two choices: to go to the opera,
or to stay at home. The utilities for you are as follows: If you stay at home you would watch your
favorite movie and have a utility of 3. If you go to the opera and both Barbara and Chris are there,
you would have a good time and enjoy a utility of 4. However, if you go the opera but either Barbara
or Chris does not show up, you will not enjoy the evening and have a utility of 0. The utilities for
Barbara and Chris are similar. The only difference is that Barbara will only have a good time at the
opera if you join but not Chris, whereas Chris will only have a good time if you join but not Barbara.
This story gives rise to the decision problems in Table 4.1.3. Here, the state (home, opera) in your
decision problem means that Barbara stays at home and Chris goes to the opera. The state (home,
opera) in Barbara’s decision problem means that you stay at home and Chris goes to the opera. The
state (home, opera) in Chris’decision problem means that you stay at home and Barbara goes to the
opera.

The question is: What choice(s) can you rationally make under common belief in rationality with
a simple belief hierarchy? A partial answer is given by the beliefs diagram in Figure 4.1.2.

Here, the choices home and opera are abbreviated by h and o, respectively. Note that all arrows in
this beliefs diagram are solid, which means that every choice in this diagram is optimal for the belief
hierarchy that starts at that choice. Please check this. Hence, by Theorem 3.3.2, all belief hierarchies
in this diagram express common belief in rationality. Since it is optimal for you to go to the opera
under the belief hierarchy that starts at your choice opera, and it is optimal for you to stay at home
for the belief hierarchy that starts at your choice home, we conclude that under common belief in
rationality you can rationally go to the opera or stay at home.
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You (opera, opera) (home, opera) (opera, home) (home, home)
opera 4 0 0 0
home 3 3 3 3

Barbara (opera, opera) (home, opera) (opera, home) (home, home)
opera 0 0 4 0
home 3 3 3 3

Chris (opera, opera) (home, opera) (opera, home) (home, home)
opera 0 0 4 0
home 3 3 3 3

Table 4.1.3 Decision problems in“Opera for three”

Figure 4.1.2 Beliefs diagram for “Opera for three”
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Moreover, the belief hierarchy that starts at your choice home is generated by the belief combina-
tion (σ1 = home, σ2 = home, σ3 = home), and is therefore simple. Hence, you can rationally choose
to stay at home under common belief in rationality with a simple belief hierarchy.

What about going to the opera? Can you rationally make this choice under common belief in
rationality with a simple belief hierarchy? The beliefs diagram does not give an answer to that
question. The belief hierarchy that starts at your choice opera is not simple, since you believe that
Chris goes to the opera, but at the same time you believe that Barbara believes that Chris stays at
home. Hence, you believe that Barbara does not share your belief about Chris. But maybe there is
some other beliefs diagram in which going to the opera is supported by a simple belief hierarchy that
expresses common belief in rationality.

To answer this question we rely on Theorem 4.1.2 and try to find all Nash equilibria in this game.
In fact, we will show that (σ1 = home, σ2 = home, σ3 = home) is the only Nash equilibrium here.
Suppose that (σ1, σ2, σ3) is a Nash equilibrium and assume, contrary to what we want to show, that
σ1(opera) > 0. Then, opera must be optimal for you under the belief σ−1 about the opponents’choices.
Let us denote by u1(opera, σ−1) the expected utility for you of going to the opera under the belief
σ−1, and by u1(home, σ−1) the expected utility of staying at home. From your decision problem in
Table 4.1.3 we see that

u1(opera, σ−1) = 4 · σ2(opera) · σ3(opera)

and
u1(home, σ−1) = 3.

Since opera must be optimal for you under the belief σ−1, we must have that u1(opera, σ−1) ≥ u1(home,
σ−1), which is only possible if σ2(opera) ≥ 0.75 and σ3(opera) ≥ 0.75. In particular, σ2(opera) > 0.
Since (σ1, σ2, σ3) is a Nash equilibrium, the choice opera must be optimal for Barbara under the belief
σ−2 about her opponents’choices. From Barbara’s decision problem in Table 4.1.3 we see that

u2(opera, σ−2) = 4 · σ1(opera) · σ3(home)

and
u2(home, σ−2) = 3.

However, we have just seen that σ3(opera) ≥ 0.75, which means that σ3(home) ≤ 0.25. But then,
u2(opera, σ−2) ≤ 4 · (0.25) < 3. Since Barbara can guarantee a utility of 3 by staying at home, we
conclude that going to the opera cannot be optimal for Barbara under the belief σ−2, which is a
contradiction. We thus conclude that our initial assumption, that σ1(opera) > 0, must be wrong.
Hence, in every Nash equilibrium we must have that σ1(opera) = 0, and hence σ1 = home. But
if Barbara and Chris expect you to stay at home with probability 1, it can never be optimal for
Barbara and Chris to go to the opera, and hence we must also have that σ2 = home and σ3 = home.
Summarizing, we see that the only Nash equilibrium in this game is (σ1 = home, σ2 = home, σ3 =
home). In this Nash equilibrium, your only optimal choice is to stay at home, and hence we conclude
that you can only rationally stay at home under common belief in rationality with a simple belief
hierarchy.

In particular, there is no simple belief hierarchy expressing common belief in rationality that
would make you go to the opera. The intuitive reason is as follows. Consider a belief hierarchy that
expresses common belief in rationality and that makes you go to the opera. Then, you must assign
a high probability to Barbara going to the opera, and a high probability to Chris going to the opera.
However, for Barbara it is only optimal to go to the opera if she assigns a low probability to Chris
going to the opera. Hence, you must (a) assign a high probability to Chris going to the opera, and
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(b) assign a high probability to the event that Barbara assigns a low probability to Chris going to
the opera. But then, you must believe, with high probability, that Barbara does not share your belief
about Chris, and therefore this belief hierarchy cannot be simple.

4.1.4 Nash Equilibria Always Exist
In each of the examples above we were always able to find simple belief hierarchies that express
common belief in rationality. But is this always the case? That is, can we always find, for every game
and every player, at least one simple belief hierarchy that expresses common belief in rationality? The
answer is not that obvious. We have seen, in Theorem 3.4.2, that for every game and for every player
we can always find at least one belief hierarchy that expresses common belief in rationality. But such
a belief hierarchy need not necessarily be simple.

Nevertheless, we can show that simple belief hierarchies that express common belief in rationality
always exist for every player. To show this, we prove that for every game there is always at least one
Nash equilibrium. Since, by Theorem 4.1.1, every simple belief hierarchy that is generated by a Nash
equilibrium will express common belief in rationality, this will guarantee the existence of simple belief
hierarchies expressing common belief in rationality.

Theorem 4.1.3 (Nash equilibria always exist) For every game there is at least one Nash equi-
librium.

Unfortunately, the proof for this existence theorem is not as intuitive as the proof for Theorem
3.4.2, where we showed that for every game there is at least one belief hierarchy that expresses common
belief in rationality. The details can be found in the proofs section at the end of this chapter.

Now, consider an arbitrary game and a player i within that game. Theorem 4.1.3 guarantees that
there is a Nash equilibrium (σ1, ..., σn) in this game. Consider the simple belief hierarchy for player
i generated by the Nash equilibrium (σ1, ..., σn). Then, we know by Theorem 4.1.1 that this belief
hierarchy will express common belief in rationality. Therefore, we can construct for every player i at
least one simple belief hierarchy that expresses common belief in rationality.

Theorem 4.1.4 (Existence) For every game, and every player i, we can always find a simple belief
hierarchy for player i that expresses common belief in rationality.

In particular, for every game it is always possible to simultaneously reason in accordance with
common belief in rationality, and to believe that your opponents are correct about your beliefs.

4.1.5 How Reasonable is Nash Equilibrium?
We know from Theorem 4.1.1 that Nash equilibrium is obtained if we combine the reasoning of common
belief in rationality with the logic of a simple belief hierarchy. Suppose we accept common belief in
rationality as a meaningful way of reasoning. Then, the question whether Nash equilibrium is a
meaningful concept or not reduces to the following: To what extent are the conditions imposed by a
simple belief hierarchy natural?

Recall that a simple belief hierarchy imposes the following restrictions on your beliefs: (a) you
believe that your opponents are correct about your beliefs, and if there are at least two other players
j and k, (b) you believe that player j holds the same belief about player k as you do, and (c) your
belief about j’s choice is independent from your belief about k’s choice. But how reasonable are these
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conditions (a), (b) and (c)? Of course this is highly subjective, but let me at least try to argue why I
personally do not find these conditions very compelling.

First, it seems highly artificial to impose that you must believe that your opponents are correct
about the beliefs you hold. After all, the opponents cannot read your mind, and hence there is no
particular reason why we should expect others to be correct about our own beliefs. Consider, for
instance, the beliefs diagram in Figure 4.1.1 for “Movie for two”. In the belief hierarchy that justifies
your choice to go to Cinema Palace you believe that Barbara goes to Cinema Palace while at the same
time you believe that Barbara believes that you believe that Barbara goes to The Movie Corner (and
not to Cinema Palace). Hence, you believe that Barbara is wrong about your first-order belief. In my
view there is nothing wrong with this belief hierarchy, since it expresses common belief in rationality,
but this belief hierarchy is excluded by the concept of Nash equilibrium. Even more, we have seen that
Nash equilibrium completely excludes the choice to go to Cinema Palace, although it can be justified
by a perfectly meaningful belief hierarchy that expresses common belief in rationality.

Also, I find the restriction (b) above, stating that you must believe that player j has the same
belief about player k’s choice as you do, hard to justify. In case there are at least two reasonable
choices for player k, say a and b, it seems perfectly fine to believe that player k chooses a, while at the
same time believing that player j believes that player k chooses b. Consider, for instance, the beliefs
diagram in Figure 4.1.2 for “Opera for three”. According to common belief in rationality, both staying
at home and going to the opera seem reasonable choices for Chris. Hence, there does not seem to be
a problem with your belief hierarchy that starts at your choice opera, in which you believe that Chris
goes to the opera, while at the same time believing that Barbara believes that Chris will stay at home.
Nevertheless, this belief hierarchy, and your choice opera supported by it, are excluded by the concept
of Nash equilibrium.

Finally, condition (c) above, which states that your belief about j’s choice must be independent
from your belief about k’s choice, also seems problematic to me. Consider the example “Opera for
three”, and suppose the première of the opera will be tomorrow evening. Assume you know that there
is a 50% chance of a thunderstorm tomorrow evening. With this particular background information,
it seems reasonable to believe that, with probability 0.5, both Barbara and Chris will stay at home
(because there will be a thunderstorm), and with probability 0.5, both Barbara and Chris will go to
the opera (because the weather will be good). Such beliefs, however, are excluded by Nash equilibrium,
because your belief about Barbara’s choice is not independent from your belief about Chris’choice.

My personal conclusion is thus that Nash equilibrium is based on rather problematic epistemic
assumptions. This despite the fact that Nash equilibrium has been the dominant concept in game
theory for a very long time. At the same time, this also shows the power of an epistemic approach to
game theory: It reveals the —often implicit —epistemic assumptions behind various concepts in game
theory, such as Nash equilibrium. And by doing so we can discuss the appeal of these concepts by
critically analyzing the epistemic assumptions on which they are based.

4.2 Symmetric Beliefs

In this section we focus on symmetric belief hierarchies. We first explain what we mean by a symmetric
belief hierarchy, and show that symmetric belief hierarchies can be characterized by a common prior
on choice-type combinations. We use this insight to demonstrate that common belief in rationality
in combination with symmetric belief hierarchies can be characterized by the concept of correlated
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equilibrium. This result, in turn, is applied to various examples to identify those choices that can
rationally be made under common belief in rationality with a symmetric belief hierarchy. We finally
discuss how reasonable the notion of correlated equilibrium is from a conceptual point of view.

4.2.1 Symmetric Belief Hierarchies
Consider the beliefs diagram in Figure 3.2.1 for “Going to a party”, and concentrate on your belief
hierarchy that starts at your choice blue. One way to read this belief hierarchy is as follows: You
choose blue because you believe that Barbara chooses red, and you believe that Barbara chooses red
because you believe that Barbara believes that you choose blue. And so on. This belief hierarchy can
be viewed as symmetric, because the second piece of this sentence can be interpreted as the symmetric
counterpart to the first piece. This symmetry can also be detected visually, by noting that the second
arrow, which goes from Barbara’s choice red to your choice blue, is literally symmetric to the first
arrow, which goes from your choice blue to Barbara’s choice red.

The same cannot be said about your other belief hierarchies in this beliefs diagram. Take, for
instance, the belief hierarchy that starts at your choice green. There, you choose green because you
believe that Barbara chooses blue, but you do not believe that Barbara chooses blue because she
believes that you choose green. Even stronger, you believe that Barbara chooses blue because you
believe that she holds a belief in which she assigns probability zero to you choosing green. Hence, this
belief hierarchy is certainly not symmetric.

The distinction between symmetric and non-symmetric belief hierarchies can also be made in
games with more than two players. Consider, for instance, the example “Opera for three”, with the
beliefs diagram in Figure 4.1.2. Your belief hierarchy that starts at your choice home is symmetric.
To see this, note that according to this belief hierarchy you choose home because you believe that
both Barbara and Chris choose home. Moreover, you believe that Barbara chooses home because you
believe that Barbara believes that both you and Chris choose home. Similarly, you believe that Chris
chooses home because you believe that Chris believes that both you and Barbara choose home. Here,
the last two sentences can be viewed as the symmetric counterparts —from Barbara’s and Chris’view,
respectively —of the first sentence. Or, in visual terms, the belief hierarchy is generated by the arrow
from your choice h to Barbara’s and Chris’choice pair (h, h), the arrow from Barbara’s choice h to
your and Chris’choice pair (h, h), and the arrow from Chris’choice h to your and Barbara’s choice
pair (h, h). Since these three arrows are symmetric, the belief hierarchy generated by it may be viewed
as symmetric as well.

In contrast, your belief hierarchy that starts at your choice opera is definitely not symmetric.
Indeed, you choose opera because you believe that Barbara chooses opera and Chris chooses opera, yet
at the same time you believe that Barbara chooses opera because you believe that Barbara believes
that Chris chooses home (and not opera). This belief hierarchy thus assumes a clear asymmetry
between Barbara and you when it comes to the belief about Chris’choice.

The symmetric belief hierarchies above display a particularly easy case of symmetry, for two
reasons. First, they both involve probability 1 beliefs only. Moreover, both belief hierarchies are
simple which, as we will see, constitutes a very special and strong case of symmetry. In general,
however, symmetric belief hierarchies need not be restricted to probability 1 beliefs, nor need they be
simple. The following example will illustrate this.

Example 4.5: Rock, paper, scissors.

During a long and boring train ride, Barbara and you decide to play the famous game of rock, paper,
scissors. After a while, the game gets equally boring, however. To make it more interesting, you and
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You rock paper scissors diamond
rock 1 3 4 1
paper 4 1 3 4

scissors 3 4 1 3
bomb 4 0 1 1

Barbara rock paper scissors bomb
rock 1 3 4 0
paper 4 1 3 4

scissors 3 4 1 1
diamond 1 3 4 1

Table 4.2.1 Decision problems in “Rock, paper, scissors”

Barbara are allowed to add one more object next to the rock, the paper and the scissors. After a
long thought you decide to add a bomb, which can be visualized by an exploding hand. You are the
only one who can use this object. Since the bomb would destroy the rock, it will win against a rock.
However, the paper could wrap the bomb, and hence the bomb would lose against paper. Finally, it
would tie against scissors, as neither of the two could destroy the other.

In response to your surprising contribution, Barbara decides to add a diamond to the game since
it would be strong enough to survive an explosion. More precisely, there would be a tie between a
bomb and a diamond, as neither would be able to destroy the other. Apart from this, the diamond
has the same properties as the rock: It would tie against a rock, lose against paper, since it would be
wrapped by it, and win against scissors, as it is strong enough to crush the scissors. Barbara is the
only one who can use the diamond. As usual, the rock beats the scissors, the paper beats the rock,
and the scissors beat the paper. And, of course, equal objects tie against each other.

Importantly, Barbara and you both find joy in mimicking the act of beating the other object, or
even the act of being beaten by the other object. Indeed, the act of wrapping, crushing, cutting or
exploding the other object creates a moment of intense laughter for the two of you during the boring
train ride. Whenever an object beats the other object, then the person with the winning object enjoys
a utility of 4, whereas the other person still obtains a utility of 3. If there is a tie between the two
objects, then there is no act to enjoy, and both would get a utility of only 1.

There are two exceptions to this rule: If you choose the bomb and Barbara chooses the rock, then
you tremendously enjoy the act of exploding the rock, and your utility will be 4, as expected. However,
Barbara would feel cheated by this, and her utility would only be 0 in this case. If, on the other hand,
you choose the bomb and Barbara chooses the paper, the bomb will be wrapped by the paper, and
this would give Barbara a utility of 4, as expected. In contrast, you would feel terribly disappointed in
this case, since your new invention would loose against something as simple as paper, and your utility
would only be 0.

This story can be summarized by the decision problems in Table 4.2.1. Consider the beliefs diagram
at the top of Figure 4.2.1, in which your choice paper appears twice. The second time it appears,
we denote it by paper’ as to distinguish it from the first time it appears. Concentrate on your belief
hierarchy that starts at your choice rock.

At first sight this belief hierarchy does not appear symmetric, especially because of the different
probabilities that are involved. However, the same belief hierarchy can also be represented by the
weighted beliefs diagram at the bottom of Figure 4.2.1, which is symmetric.

This weighted beliefs diagram should be read as follows: The numbers 1, 2 and 3 at the various
arrows represent the weights that we assign to these arrows. We therefore speak of a weighted beliefs
diagram. Note that the two outgoing arrows at your choice rock carry the weights 1 and 2. Therefore,
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Figure 4.2.1 Beliefs diagram and an associated symmetric weighted beliefs diagram for “Rock, paper,
scissors”
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the relative weight of the first outgoing arrow is

1

1 + 2
= 1/3,

whereas the relative weight of the second outgoing arrow is

2

1 + 2
= 2/3.

These numbers 1/3 and 2/3 are exactly the probabilities of the same outgoing arrows in the non-
weighted beliefs diagram on top. The weights 1 and 2 at the outgoing arrows leaving your choice rock
therefore induce the probabilistic belief that assigns probability 1/3 to Barbara choosing scissors and
probability 2/3 to Barbara choosing paper. These probabilities are obtained by taking the relative
weights.

Similarly, the weights 2 and 3 at the outgoing arrows leaving Barbara’s choice paper induce the
probabilistic belief in which Barbara assigns probability

2

2 + 3
= 2/5

to you choosing rock, and probability
3

2 + 3
= 3/5

to you choosing scissors. Again, these probabilities are obtained by taking the relative weights at
both outgoing arrows. Note that these probabilities coincide exactly with the probabilities in the
non-weighted beliefs diagram on top.

Consider finally the unique outgoing arrow at your choice paper’ in the weighted beliefs diagram,
carrying a weight of 2. Of course, its relative weight is

2

2
= 1

because there is no other outgoing arrow here. It thus induces the belief for you that assigns probability
1 to Barbara choosing rock, just like the corresponding arrow in the non-weighted beliefs diagram.

In the same fashion, it can be verified that the remaining relative weights in the weighted beliefs
diagram at the bottom induce exactly the probabilities at the corresponding arrows in the beliefs
diagram on top. We thus conclude that the weighted beliefs diagram at the bottom of Figure 4.2.1
induces exactly the same beliefs —and hence, the same belief hierarchies —as the non-weighted beliefs
diagram on top of Figure 4.2.1. Therefore, the weighted beliefs diagram at the bottom induces the
(non-weighted) beliefs diagram on top.

Note that the weighted beliefs diagram is symmetric, because every arrow carries the same weight
as its symmetric counterpart. To see this, consider for instance the arrow from your choice paper’ to
Barbara’s choice rock, which has a weight of 2. The symmetric counterpart would be the arrow from
Barbara’s choice rock to your choice paper’, which also has a weight of 2. Similarly, the arrow from
your choice scissors to Barbara’s choice paper has a weight of 3. This is the same as the weight of its
symmetric counterpart, which is the arrow from Barbara’s choice paper to your choice scissors. The
same form of symmetry can be verified for all other arrows in this weighted beliefs diagram as well.

Summarizing, we see that your belief hierarchy that starts at your choice rock is induced by a
symmetric weighted beliefs diagram —the one at the bottom of Figure 4.2.1. For that reason, we call
this belief hierarchy symmetric.
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Note, however, that this belief hierarchy is not simple. Indeed, your first-order belief assigns
probability 1/3 to Barbara choosing scissors and 2/3 to Barbara choosing paper. At the same time,
you believe with probability 1/3 that Barbara assigns probability 1/2 to the event that you assign
probability 1/2 to Barbara’s choices scissors and rock. As such, you do not believe, with probability
1, that Barbara is correct about your first-order belief, and therefore this belief hierarchy cannot be
simple. We thus see that a symmetric belief hierarchy need not be simple.

Question 4.2.1 Consider the beliefs diagram for “Going to a party”in Figure 3.2.1, and concentrate
on the belief hierarchy that starts at your choice red. Explain why this belief hierarchy cannot be
generated by a symmetric weighted beliefs diagram. We therefore conclude that this belief hierarchy
is not symmetric.

The idea of symmetric belief hierarchies can also be extended to games with more than two players.
As an illustration, consider the example “When Chris joins the party”from the previous chapter, and
the beliefs diagram in the upper half of Figure 4.2.2.

We will argue that your belief hierarchy starting at your choice green is symmetric. To see this,
observe first that the beliefs diagram in the upper half of Figure 4.2.2 is induced by the weighted beliefs
diagram in the lower half of that same figure. For instance, the forked arrow from Chris’choice y to
your and Barbara’s choice combinations (g, b) and (r, g) carries the weights 4 and 1 in the weighted
beliefs diagram. Therefore, the induced probability that Chris assigns to your and Barbara’s choice
combination (g, b) is equal to its relative weight, which is

4

4 + 1
= 0.8.

This is exactly the probability assigned to the corresponding arrow in the beliefs diagram. In a similar
way, it can be checked that all the relative weights in the weighted beliefs diagram correspond exactly
to the probabilities in the beliefs diagram. We can therefore conclude that the weighted beliefs diagram
in the lower half of Figure 4.2.2 induces the beliefs diagram in the upper half of that figure.

Moreover, the weighted beliefs diagram turns out to be symmetric. Take, for instance, the arrow
from your choice g to Barbara and Chris’ choice combination (b, y), which carries a weight of 4.
The symmetric arrow from Barbara’s perspective is the arrow from Barbara’s choice b to your and
Chris’choice combination (g, y), which carries the same weight of 4. The symmetric arrow from Chris’
perspective is the arrow from his choice y to your and Barbara’s choice combination (g, b), which also
carries this weight of 4.

In a similar fashion it can be verified that for every arrow in the weighted beliefs diagram, the two
symmetric arrows for the two opponents are also present in the weighted beliefs diagram, and these
symmetric counterparts carry the same weight as the arrow we started from. As such, the weighted
beliefs diagram can be called symmetric.

We thus conclude that the beliefs diagram from Figure 4.2.2 is induced by the symmetric weighted
beliefs diagram from the same figure. In particular, your belief hierarchy starting at your choice green
is induced by this particular symmetric weighted beliefs diagram, and therefore we call this belief
hierarchy symmetric. In fact, all belief hierarchies from Figure 4.2.2 are symmetric, since they are all
induced by the same symmetric weighted beliefs diagram in the lower half of that figure.

With these illustrations in mind, we can now give a general definition of symmetric belief hierar-
chies. We will do so in steps: First, we define a weighted beliefs diagram, we then explain when such
a weighted beliefs diagram is symmetric, indicate how a weighted beliefs diagram induces a normal
beliefs diagram, and finally call a belief hierarchy symmetric if it is part of a beliefs diagram that is
induced by a symmetric weighted beliefs diagram.
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Figure 4.2.2 A beliefs diagram and an associated symmetric weighted beliefs diagram for “When Chris
joins the party”



4.2. SYMMETRIC BELIEFS 155

Definition 4.2.1 (Symmetric belief hierarchy) (a) A weighted beliefs diagram starts from a
beliefs diagram, removes the probabilities at the forked arrows (if there are any), and assigns to every
arrow a from a choice ci to an opponents’choice combination (cj)j 6=i some positive weight, which we
call w(a).

(b) Consider an arrow a from a choice ci to an opponents’ choice combination (cj)j 6=i. For every
opponent j, the symmetric counterpart to a is the arrow from the choice cj to the opponents’
choice combination (ck)k 6=j , using the same choices as a.

(c) A weighted beliefs diagram is symmetric if for every arrow a, each of its symmetric counterparts
(one for every opponent) is also part of the diagram, and carries the same weight as a.

(d) The weighted beliefs diagram induces a (normal) beliefs diagram in which the probability of an
arrow a leaving a choice ci is equal to

p(a) =
w(a)∑

arrows a′ leaving ci
w(a′)

.

(e) A belief hierarchy is symmetric if it is part of a beliefs diagram that is induced by a symmetric
weighted beliefs diagram.

In part (a) we interpret a forked arrow, from a choice ci to several opponents’choice combinations,
as a collection of arrows. Consider, for instance, the beliefs diagram from Figure 4.2.2. The forked
arrow from Chris’choice y to the choice combinations (g, b) and (r, g) by you and Barbara is interpreted
as a pair of arrows: one arrow from Chris’choice y to the opponents’choice combination (g, b), which
receives weight 4 in the weighted beliefs diagram, and one arrow from Chris’choice y to the opponents’
choice combination (r, g), which receives weight 1 in the weighted beliefs diagram.

To illustrate parts (b) and (c), consider the weighted beliefs diagram from Figure 4.2.2, and the
arrow a from your choice r to the opponents’choice combination (g, b). The symmetric counterpart
for Barbara to a is the arrow from Barbara’s choice g to the opponents’ choice combination (r, b),
whereas the symmetric counterpart for Chris is the arrow from Chris’choice b to the opponents’choice
combination (r, g). Note that all these symmetric counterparts carry the same weight 1, because the
weighted beliefs diagram is symmetric.

In case the same choice ci of a player appears more than once in the (weighted) beliefs diagram,
the different copies of ci are formally viewed as different choices. Suppose, for instance, that the choice
ci appears twice, with the first copy denoted by ci and the second copy denoted by c′i. Then, ci and
c′i are viewed as different. Fix an opponents’choice combination (cj)j 6=i. Then, also the arrow from ci
to (cj)j 6=i and the arrow from c′i to (cj)j 6=i are viewed as different.

As an illustration, consider the beliefs diagram and the weighted beliefs diagram from Figure 4.2.1
for “Rock, paper, scissors”, where your choice paper appears twice. The second time it appears, it is
denoted by paper’. Formally, paper and paper’ are then viewed as different choices within the beliefs
diagram. Also, the arrow from your choice paper to Barbara’s choice rock and the arrow from your
choice paper’ to Barbara’s choice rock are viewed as different in the (weighted) beliefs diagram.

The reason your choices paper and paper’ are viewed as different is that they induce different
belief hierarchies. Indeed, if we start at your choice paper then, in the induced belief hierarchy, you
assign probability 1/2 to Barbara’s choices scissors and rock. If we start at your choice paper’ instead
then you assign probability 1 to Barbara’s choice rock. This is true in general: Within a given beliefs
diagram, two copies of the same choice will typically induce two different belief hierarchies. Therefore,
we will treat these as two different choices.



156 CHAPTER 4. CORRECT AND SYMMETRIC BELIEFS IN STANDARD GAMES

4.2.2 Relation with Common Prior
We will now look for an easy way to characterize belief hierarchies that are symmeric. Remember that
the same choice may appear more than once in a beliefs diagram. In the beliefs diagram from Figure
4.2.1, for instance, your choice paper appears twice. This enables us to model a belief hierarchy in
which the same choice paper for you is justified by two different beliefs. Indeed, consider Barbara’s
belief hierarchy that starts at her choice rock. There, she assigns probability 1/5 to the event that you
choose paper and that you assign probability 1/2 to Barbara’s choices scissors and rock. At the same
time, she assigns probability 2/5 to the event that you choose paper (denoted by paper’ in the beliefs
diagram) and that you assign probability 1 to Barbara’s choice rock. Hence, Barbara justifies your
choice paper by two different first-order beliefs that you can have about her. In general, it may be
necessary to include two, or more, copies of the same choice ci if we want to model a belief hierarchy
in which the same choice ci is justified by two, or more, different beliefs.

To distinguish between the various copies of ci that may be present, we identify every copy of ci
with a choice-type pair (ci, ti), where ti is some type. The intuition is that ti represents the belief
hierarchy that is obtained if we start at this particular copy of the choice ci. As an illustration,
consider again the beliefs diagram from Figure 4.2.1. In the beliefs diagram, the two copies of your
choice paper are denoted by paper and paper’, respectively. To distinguish between these two copies,
we may identify the first copy with the choice-type pair (paper, tp1) and the second copy with (paper,
t̂p1). Here, t

p
1 represents your belief hierarchy that starts at paper for you, and t̂

p
1 represents the belief

hierarchy that starts at paper’ for you. In the same way, we can identify your choices rock and scissors
with the choice-type pairs (rock, tr1) and (scissors, ts1), where t

r
1 represents the unique belief hierarchy

that starts at your choice rock and ts1 represents the unique belief hierarchy that starts at your choice
scissors. Similarly, Barbara’s choices scissors, paper and rock can be identified with the choice-type
pairs (scissors, ts2), (paper, tp2) and (rock, tr2). This results in the alternative representation of the
beliefs diagram, and the associated symmetric weighted beliefs diagram, in Figure 4.2.3.

We call these two diagrams the choice-type representation of the beliefs diagram and the weighted
beliefs diagram, respectively. The sets of types T1 = {tr1, t

p
1, t̂

p
1, t

s
1} and T2 = {ts2, t

p
2, t

r
2} needed for

the choice-type representation are called the associated sets of types.
On the basis of these choice-type representations, we can show that the entire beliefs diagram is

induced by a unique probability distribution on choice-type combinations, which we call a common
prior. To see how this works, consider the symmetric weighted beliefs diagram from Figure 4.2.3,
and the choice-type combination (c, t) = ((paper , t̂p1), (rock , t

r
2)) within that weighted beliefs diagram.

Since the weighted beliefs diagram is symmetric, the arrow from (paper , t̂p1) to (rock , tr2) and the arrow
from (rock , tr2) to (paper , t̂p1) both receive weight 2. As such, we can assign the unique weight w(c, t) = 2
to this particular choice-type combination.

If we assign such weights to all choice-type combinations, then we obtain the weights as displayed
in Table 4.2.2. Here, the weights always correspond to the first number in the cell. All choice-type
combinations that do not appear are assumed to receive weight 0.

If we divide every weight w(c, t) by the sum of all weights, which is 12, we obtain the second
number in each cell, which appears between brackets. As each of these second numbers is at least 0,
and the sum of all second numbers is 1, these numbers correspond to a probability distribution π on
choice-type combinations, which we call a common prior.

Moreover, this common prior π induces the beliefs diagram in the upper half of Figure 4.2.3, as
follows. Consider, for instance, the arrow from your choice-type pair (rock, tr1) to Barbara’s choice-
type pair (scissors, ts2), which carries the probability 1/3. We are thus looking at the choice-type
combination (c, t) = ((rock, tr1), (scissors, t

s
2)) with common prior probability π(c, t) = 1/12. The total
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Figure 4.2.3 Choice-type representation of the beliefs diagram and weighted beliefs diagram for “Rock,
paper, scissors”

(c, t) ((rock, tr1), (scissors, t
s
2)) ((rock, tr1), (paper, t

p
2)) ((paper, tp1), (scissors, t

s
2))

weight w(c, t) 1 (1/12) 2 (2/12) 1 (1/12)

(c, t) ((paper, tp1), (rock, t
r
2)) ((paper, t̂p1), (rock, t

r
2))

weight w(c, t) 1 (1/12) 2 (2/12)

(c, t) ((scissors, ts1), (paper, t
p
2)) ((scissors, ts1), (rock, t

r
2))

weight w(c, t) 3 (3/12) 2 (2/12)

Table 4.2.2 Weights on choice-type combinations in “Rock, paper, scissors”
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common prior probability assigned to the choice-type pair (rock, tr1) we started from is

π(rock, tr1) = π((rock, tr1), (scissors, t
s
2)) + π((rock, tr1), (paper, t

p
2)) = 1/12 + 2/12 = 3/12.

As such,
π((rock, tr1), (scissors, t

s
2))

π(rock, tr1)
=

1/12

3/12
= 1/3,

which happens to be the probability attached to the arrow from (rock, tr1) to (scissors, ts2).
The fraction above has a natural interpretation: The enumerator may be viewed as the prior

probability of the event that “you choose rock, your type is tr1, Barbara chooses scissors, and Barbara’s
type is ts2”. In turn, the denominator represents the prior probability of the event that “you choose
rock and your type is tr1”. The fraction may thus be seen as the probability you assign to the event
that “Barbara chooses scissors and Barbara’s type is ts2”, conditional on the event that “you choose
rock and your type is tr1”. In other words, the fraction is the probability that your type t

r
1 assigns to

Barbara’s choice-type pair (scissors, ts2), which is indeed 1/3.
More generally, it may be verified in Figure 4.2.3 that for every arrow a from a choice-type pair

(c1, t1) of yours to a choice-type pair (c2, t2) of Barbara, we have that

p(a) =
π((c1, t1), (c2, t2))

π(c1, t1)
, (4.2.1)

where p(a) is the probability of arrow a in the beliefs diagram, and π(c1, t1) is the total common prior
probability assigned to (c1, t1). Please check this. Similarly as above, the fraction represents the prior
probability you assign to the event that “Barbara chooses c2 and Barbara’s type is t2”, conditional on
the event that “you choose c1 and your type is t1”. This, in turn, should match the probability that
your type t1 assigns to (c2, t2), which is p(a).

We can also view the situation from Barbara’s perspective, and verify that for every arrow a from
a choice-type pair (c2, t2) of Barbara to a choice-type pair (c1, t1) of yours, it holds that

p(a) =
π((c1, t1), (c2, t2))

π(c2, t2)
. (4.2.2)

In this sense, the common prior π on choice-type combinations induces the beliefs diagram from Figure
4.2.3.

The reason why the beliefs diagram is induced by a common prior lies in its symmetry: Since there
is an associated symmetric weighted beliefs diagram, we could build a common prior on the basis of
the weights in that symmetric weighted beliefs diagram, and this common prior induces the beliefs
diagram we started with.

This construction does not only work in this specific example, but it works in general: Whenever we
have a symmetric beliefs diagram in choice-type representation (possibly with more than two players),
we can look at the associated symmetric weighted beliefs diagram, and build a common prior on the
basis of these weights. This common prior will then always induce the symmetric beliefs diagram we
started with.

The other direction is also true: If the beliefs diagram is induced by a common prior, then the
beliefs diagram will automatically be symmetric.

Hence, we reach the general conclusion that the symmetric beliefs diagrams are precisely those that
are induced by a common prior on choice-type combinations. As a consequence, a belief hierarchy is
symmetric (that is, part of a symmetric beliefs diagram) precisely when it is part of a beliefs diagram
that is induced by a common prior on choice-type combinations.
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To formally state this result, we first need to define what it means, in general, that a beliefs diagram
is induced by a common prior. Consider a beliefs diagram in choice-type representation with possibly
more than two players. Then, an arrow a will always go from a choice-type pair (ci, ti) for player i to
an opponents’choice-type combination (cj , tj)j 6=i, where we abbreviate the latter by (c−i, t−i). Every
such arrow a will have a probability p(a) in the beliefs diagram.

Definition 4.2.2 (Common prior on choice-type combinations) Consider a beliefs diagram in
choice-type representation, with associated sets of types Ti for every player i. Let C × T be the
corresponding set of all choice-type combinations.

(a) A common prior on choice-type combinations is a probability distribution π that assigns to
every choice-type combination (c, t) in C × T a probability π(c, t).

(b) The beliefs diagram is induced by a common prior π on choice-type combinations, if for every
choice-type combination ((ci, ti), (c−i, t−i)) and every player i, the corresponding arrow a from (ci, ti)
to (c−i, t−i) is present exactly when π((ci, ti), (c−i, t−i)) > 0, and the probability of this arrow a is
equal to

p(a) =
π((ci, ti), (c−i, t−i))

π(ci, ti)
.

(c) A belief hierarchy is induced by a common prior π on choice-type combinations if it is part of
a beliefs diagram that is induced by π.

Above we have argued that a beliefs diagram is symmetric precisely when it is induced by a common
prior. As a consequence, a belief hierarchy is symmetric precisely when it is induced by a common
prior. This leads to the following result.

Theorem 4.2.1 (Relation with common prior) A belief hierarchy is symmetric, if and only if, it
is induced by a common prior on choice-type combinations.

As an illustration, consider the beliefs diagram in choice-type representation on top of Figure 4.2.3,
for “Rock, paper, scissors”. Concentrate on your belief hierarchy that starts at (rock, tr1). Since we
have shown that this belief hierarchy is symmetric, we know by Theorem 4.2.1 that this belief hierarchy
can be derived from a common prior on choice-type combinations π. Moreover, we have seen that one
such common prior on choice-type combinations is the probability distribution π from Table 4.2.2.

Question 4.2.2 Consider the beliefs diagram in Figure 4.2.2 for “When Chris joins the party”. Find
a common prior on choice-type combinations that induces this beliefs diagram.

4.2.3 Relation with Correlated Equilibrium
In the previous two subsections we have focused on symmetric belief hierarchies. First, we have
defined what it means for a belief hierarchy to be symmetric, and subsequently we have characterized
symmetric belief hierarchies as those that are induced by a common prior on choice-type combinations.

We now wish to combine symmetric belief hierarchies with the central notion of common belief
in rationality. More precisely, we will zoom in on symmetric belief hierarchies that express common
belief in rationality, and try to characterize those choices that can rationally be made while holding
such belief hierarchies. As we shall see, this will lead us to the concept of correlated equilibrium.
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Consider a belief hierarchy βi that expresses common belief in rationality. Suppose it is part of
some beliefs diagram in choice-type representation, where it starts at a choice-type pair (c∗i , t

∗
i ) for

player i. We can always design the beliefs diagram in such a way that the choice c∗i is optimal for the
first-order belief in the belief hierarchy. In this case, the outgoing arrows at (c∗i , t

∗
i ) are all solid. As

the belief hierarchy βi believes in the opponents’rationality, all step 2 arrows following these outgoing
arrows will be solid as well. Moreover, all step 3 arrows following the step 2 arrows will also be solid,
because the belief hierarchy expresses 2-fold belief in rationality. And so on. By continuing in this
fashion, we conclude that all arrows that are part of this belief hierarchy are solid. But then, we may
restrict to the —possibly smaller —beliefs diagram that only contains the arrows that are present in
the belief hierarchy βi, and where all arrows are solid. We thus see that every belief hierarchy that
expresses common belief in rationality is part of some beliefs diagram where all arrows are solid.

Hence, let us assume that the belief hierarchy βi above is indeed part of a beliefs diagram in
which all arrows are solid. Suppose now that the belief hierarchy βi does not only express common
belief in rationality, but is also symmetric. Then, by Theorem 4.2.1, the beliefs diagram is induced
by a common prior π on choice-type combinations. That is, for every player j, every choice-type pair
(cj , tj), and every opponents’choice-type combination (c−j , t−j), the arrow a from (cj , tj) to (c−j , t−j)
is present in the beliefs diagram exactly when π((cj , tj), (c−j , t−j)) > 0, and the arrow a has probability

p(a) =
π((cj , tj), (c−j , t−j))

π(cj , tj)
. (4.2.3)

Let us denote by π(· | cj , tj) the belief of player j about the opponents’choice-type combinations
given by

π(c−j , t−j | cj , tj) :=
π((cj , tj), (c−j , t−j))

π(cj , tj)
for every (c−j , t−j) ∈ C−j × T−j . (4.2.4)

We call π(· | cj , tj) the belief of player j conditional on his choice-type pair (cj , tj). Hence, by (4.2.3)
and (4.2.4) we can write that

p(a) = π(c−j , t−j | cj , tj) (4.2.5)

whenever a is an arrow from the choice-type pair (cj , tj) to the opponents’choice-type combination
(c−j , t−j).

We say that a choice c∗j is optimal for the belief π(· | cj , tj) conditional on (cj , tj) if∑
(c−j ,t−j)∈C−j×T−j

π(c−j , t−j | cj , tj) · uj(c∗j , c−j) ≥
∑

(c−j ,t−j)∈C−j×T−j

π(c−j , t−j | cj , tj) · uj(c′j , c−j)

(4.2.6)
for all c′j ∈ Cj . That is, c∗j yields the highest possible expected utility under the belief π(· | cj , tj).

Fix a choice-type pair (cj , tj) for some player j with an outgoing arrow, which means that π(cj , tj) >
0. Remember from above that all arrows in the beliefs diagram are solid, and hence, in particular,
every arrow leaving (cj , tj) is solid. This means that the choice cj is optimal for the first-order belief
represented by the arrow(s) leaving (cj , tj). Since, by (4.2.5), this first-order belief is induced by the
belief π(· | cj , tj) for player j conditional on (cj , tj), we conclude that the choice cj must be optimal
for the belief π(· | cj , tj).

We thus see that every symmetric belief hierarchy βi that expresses common belief in rationality
is induced by a common prior π on choice-type combinations that satisfies the following optimality
condition: for every player j, and every choice-type pair (cj , tj) that receives positive probability under
π, the choice cj must be optimal for the belief π(· | cj , tj) of player j conditional on (cj , tj). A common
prior on choice-type combinations with this special property is called a correlated equilibrium.
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Definition 4.2.3 (Correlated equilibrium) A common prior π on choice-type combinations is a
correlated equilibrium if, for every player i and every choice-type pair (ci, ti) with π(ci, ti) > 0, the
choice ci is optimal for the belief π(· | ci, ti) of player i conditional on his choice-type pair (ci, ti).

By the arguments above we may thus conclude that every symmetric belief hierarchy that expresses
common belief in rationality is induced by a correlated equilibrium. We can show, in fact, that the
other direction is also true: Every belief hierarchy that is induced by a correlated equilibrium is
symmetric and expresses common belief in rationality. We thus obtain the following characterization
of symmetric belief hierarchies that express common belief in rationality.

Theorem 4.2.2 (Relation with correlated equilibrium) A belief hierarchy is symmetric and ex-
presses common belief in rationality, if and only if, the belief hierarchy is induced by a correlated
equilibrium.

To illustrate this theorem, consider the beliefs diagram on top of Figure 4.2.3, for “Rock, paper,
scissors”. Focus on your belief hierarchy that starts at (rock, tr1). We have already seen that this belief
hierarchy is symmetric, because it is induced by the symmetric weighted beliefs diagram at the bottom
of Figure 4.2.3. Moreover, we have shown above that this symmetric belief hierarchy is induced by
the common prior π on choice-type combinations given by Table 4.2.2.

Note that the belief hierarchy starting at (rock, tr1) expresses common belief in rationality, since
all the arrows in the beliefs diagram are solid. We therefore know by Theorem 4.2.2 that this belief
hierarchy must be induced by a correlated equilibrium. In fact, we can show that the common prior
π on choice-type combinations in Table 4.2.2 is a correlated equilibrium, by checking the optimality
conditions in Definition 4.2.3.

Take, for instance, the choice-type pair (paper, tp1) for you, with π(paper, tp1) > 0. Conditional
on this choice-type pair (paper, tp1), the induced conditional belief π(· | paper, tp1) about Barbara’s
choice-type combinations is given by

π(scissors, ts2 | paper, t
p
1) =

π((paper, tp1), (scissors, ts2))
π(paper, tp1)

=
1/12

1/12 + 1/12
= 1/2,

and

π(rock, tr2 | paper, t
p
1) =

π((paper, tp1), (rock, tr2))
π(paper, tp1)

=
1/12

1/12 + 1/12
= 1/2.

In particular, the belief π(· | paper, tp1) assigns probability 1/2 to Barbara’s choices scissors and rock.
Since your choice paper is optimal for this belief, we conclude that your choice paper is optimal for
the belief π(· | paper, tp1) conditional on your choice-type pair (paper, tp1).

Next, consider the choice-type pair (rock, tr2) for Barbara, with π(rock, tr2) > 0. Conditional on
this choice-type pair (rock, tr2), the induced conditional belief π(· | rock, tr2) for Barbara about your
choice-type combinations is given by

π(paper, tp1 | rock, tr2) =
π((paper, tp1), (rock, tr2))

π(rock, tr2)
=

1/12

1/12 + 2/12 + 2/12
= 1/5,

π(paper, t̂p1 | rock, tr2) =
π((paper, t̂p1), (rock, tr2))

π(rock, tr2)
=

2/12

1/12 + 2/12 + 2/12
= 2/5

and

π(scissors, ts1 | rock, tr2) =
π((scissors, ts1), (rock, tr2))

π(rock, tr2)
=

2/12

1/12 + 2/12 + 2/12
= 2/5.
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In particular, Barbara’s conditional belief π(· | rock, tr2) assigns probability 1/5 + 2/5 = 3/5 to your
choice paper and probability 2/5 to your choice scissors. Since Barbara’s choice rock is optimal for
this belief, we conclude that Barbara’s choice rock is optimal for her conditional belief π(· | rock, tr2).

In a similar fashion it may be verified that for you, the choice rock is optimal for the belief π(· |
rock, tr1), the choice paper is optimal for the belief π(· | paper, t̂p1) and the choice scissors is optimal for
the belief π(· | scissors, ts1). Also, it may be checked that for Barbara, the choice scissors is optimal
for her belief π(· | scissors, ts2) and that the choice paper is optimal for her belief π(· | paper, tp2).
Please verify this.

Summarizing, we conclude that the common prior π on choice-type combinations satisfies all
optimality conditions, and is therefore a correlated equilibrium. Hence, your belief hierarchy that
starts at your choice rock —and in fact every belief hierarchy from Figure 4.2.3 —is induced by the
correlated equilibrium π above.

Question 4.2.3 Consider the beliefs diagram in Figure 4.2.2 for “When Chris joins the party”, and
focus on your belief hierarchy that starts at your choice green. Is this belief hierarchy induced by a
correlated equilibrium? If so, find a correlated equilibrium that induces it, and explain why it is a
correlated equilibrium by checking the optimality conditions.

On the basis of Theorem 4.2.2 we can now easily characterize those choices that you can rationally
make under common belief in rationality with a symmetric belief hierarchy. Suppose that player i
holds a belief hierarchy βi that is symmetric and expresses common belief in rationality, and assume
that the choice c∗i is optimal for the first-order belief b

1
i in that belief hierarchy. By Theorem 4.2.2

we know that the belief hierarchy βi is induced by a correlated equilibrium π. That is, βi is part
of a beliefs diagram in choice-type representation that is induced by the correlated equilibrium π on
choice-type combinations. Let βi be the belief hierarchy that starts at the choice-type pair (ci, ti).
Then, π(ci, ti) > 0 and the first-order belief b1i of βi is induced by π(· | ci, ti). As the choice c∗i is
optimal for the first-order belief b1i , it immediately follows that c

∗
i is optimal for the belief π(· | ci, ti)

of player i conditional on (ci, ti). In this case, we say that c∗i is optimal in the correlated equilibrium π.

Definition 4.2.4 (Choice optimal in a correlated equilibrium) A choice c∗i is optimal in a
correlated equilibrium π if there is some choice-type pair (ci, ti) with π(ci, ti) > 0 such that c∗i is
optimal for the belief π(· | ci, ti) of player i conditional on (ci, ti).

We have thus shown that every choice c∗i that can rationally be made under common belief in
rationality with a symmetric belief hierarchy must be optimal in a correlated equilibrium.

The other direction is also true: Every choice that is optimal in a correlated equilibrium can
rationally be made under common belief in rationality with a symmetric belief hierarchy. To see this,
consider a choice c∗i that is optimal in a correlated equilibrium π. Then, there must be some choice-
type pair (ci, ti) with π(ci, ti) > 0 such that c∗i is optimal for the belief π(· | ci, ti). Consider the beliefs
diagram induced by the correlated equilibrium π, and the belief hierarchy βi in this beliefs diagram
that starts at the choice-type pair (ci, ti). By Theorem 4.2.2 we know that the belief hierarchy βi is
symmetric and expresses common belief in rationality. Moreover, the first-order belief in the belief
hierarchy βi is induced by π(· | ci, ti) because βi is the belief hierarchy that starts at (ci, ti). Since c∗i
is optimal for the belief π(· | ci, ti), it is also optimal for the first-order belief of the belief hierarchy βi
that starts at (ci, ti). Hence, c∗i is optimal for the symmetric belief hierarchy βi that expresses common
belief in rationality.
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Summarizing, we see that a choice c∗i can rationally be made under common belief in rationality
with a symmetric belief hierarchy, precisely when it is optimal in a correlated equilibrium. We thus
obtain the following characterization result.

Theorem 4.2.3 (Relation with correlated equilibrium choices) A choice is optimal for a sym-
metric belief hierarchy that expresses common belief in rationality, if and only if, the choice is optimal
in a correlated equilibrium.

In the next subsection we will use this result to find, in three of the examples we have seen, those
choices you can rationally make under common belief in rationality with a symmetric belief hierarchy.

4.2.4 Examples
In Theorem 4.2.3, we have seen that the choices that can rationally be made under common belief in
rationality with a symmetric belief hierarchy are precisely those that are optimal in some correlated
equilibrium. This result, besides having an important conceptual value, can also be of great practical
use to find, in a given game, those choices that are possible under common belief in rationality with a
symmetric belief hierarchy. This will become clear below, where we apply Theorem 4.2.3 to the three
examples we have seen so far in this chapter.

*Example 4.6: Movie for two.

Recall the story from Section 4.1.1, and the decision problems from Table 4.1.1. Which choices can you
rationally make here under common belief in rationality with a symmetric belief hierarchy? By looking
at the beliefs diagram from Figure 4.1.1 we can easily see that under common belief in rationality
with a symmetric belief hierarchy, you can rationally choose to stay at home. Indeed, consider your
belief hierarchy that starts at your choice home. This belief hierarchy is clearly symmetric.

Question 4.2.4 Find a common prior on choice-type combinations that induces your symmetric belief
hierarchy that starts at your choice home.

Moreover, this belief hierarchy expresses common belief in rationality because both arrows that
constitute this belief hierarchy are solid. As your choice home is optimal under this belief hierarchy,
you can rationally choose home under common belief in rationality with a symmetric belief hierarchy.

But what about your other two choices, to go to Cinema Palace or The Movie Corner? Can you
rationally make these choices under common belief in rationality with a symmetric belief hierarchy?
The beliefs diagram in Figure 4.1.1 does not answer this question, since the belief hierarchies that
support your choices Palace and Corner are not symmetric.

Question 4.2.5 Explain why these two belief hierarchies are not symmetric.

But perhaps there is another beliefs diagram in which your choices Palace and Corner are sup-
ported by symmetric belief hierarchies that express common belief in rationality.

We will see, however, that this is not possible. To show this, we use Theorem 4.2.3 and prove
that every correlated equilibrium must assign probability 1 to your choice home and Barbara’s choice
home. However, showing this is rather tedious and lengthy.
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Consider a correlated equilibrium π, which is a common prior on the set of choice-type combinations
C × T. We will show that π assigns probability 1 to your choice home, and probability 1 to Barbara’s
choice home. Along the way, we will use the following abbreviations:

π(c1, (c2, t2)) : =
∑
t1∈T1

π((c1, t1), (c2, t2)), π((c1, t1), c2) :=
∑
t2∈T2

π((c1, t1), (c2, t2)),

π(c1, c2) : =
∑
t1∈T1

∑
t2∈T2

π((c1, t1), (c2, t2)),

π(c1) : =
∑
c2∈C2

π(c1, c2) and π(c2) :=
∑
c1∈C1

π(c1, c2).

Assume, contrary to what we want to show, that π(Pal1, t1) > 0 for some type t1 ∈ T1. Here, Pal1
stands for Palace, and we use the subscript 1 in Pal1 to indicate that this choice belongs to player 1
(you). Then, by definition of a correlated equilibrium, Palace must be optimal for you for your belief
π(· | Pal1, t1). In particular, your choice Palace must be at least as good as your choice home under
that belief π(· | Pal1, t1), which means that

u1(Pal1, π(· | Pal1, t1)) ≥ u1(home1, π(· | Pal1, t1)).

Note that

u1(Pal1, π(· | Pal1, t1)) =
∑

(c2,t2)∈C2×T2

π((Pal1, t1), (c2, t2))

π(Pal1, t1)
· u1(Pal1, c2)

=
π((Pal1, t1), Pal2)

π(Pal1, t1)
· 4.

Moreover,

u1(home1, π(· | Pal1, t1)) = 3.

As u1(Pal1, π(· | Pal1, t1)) ≥ u1(home, π(· | Pal1, t1)), we must have that

π((Pal1, t1), Pal2)

π(Pal1, t1)
· 4 ≥ 3

and hence
π((Pal1, t1), Pal2) ≥ 3/4 · π(Pal1, t1).

Since this holds for every type t1 ∈ T1 with π(Pal1, t1) > 0, it follows that∑
t1∈T1

π((Pal1, t1), Pal2) ≥ 3/4 ·
∑
t1∈T1

π(Pal1, t1),

and therefore
π(Pal1, Pal2) ≥ 3/4 · π(Pal1). (4.2.7)

Since π(Pal1, t1) > 0 for some type t1, this implies that π(Pal1, Pal2) > 0 and hence π(Pal2, t2) >
0 for some type t2 ∈ T2. Therefore, Palace must be optimal for Barbara for her belief π(· | Pal2, t2).
In particular, Palace must be at least as good as home for Barbara under that belief. That is,

u2(Pal2, π(· | Pal2, t2)) ≥ u2(home2, π(· | Pal2, t2)).
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Since

u2(Pal2, π(· | Pal2, t2)) =
π(Cor1, (Pal2, t2))

π(Pal2, t2)
· 4 and

u2(home2, π(· | Pal2, t2)) = 3

it follows that
π(Cor1, (Pal2, t2)) ≥ 3/4 · π(Pal2, t2).

As this holds for every t2 ∈ T2 with π(Pal2, t2) > 0, we conclude that∑
t2∈T2

π(Cor1, (Pal2, t2)) ≥ 3/4 ·
∑
t2∈T2

π(Pal2, t2)

and hence
π(Cor1, Pal2) ≥ 3/4 · π(Pal2). (4.2.8)

Since π(Pal2, t2) > 0 for some type t2 we have that π(Cor1, Pal2) > 0, and therefore π(Cor1, t1) >
0 for some type t1 ∈ T1. Hence, Corner must be optimal for you under your belief π(· | Cor1, t1),
which implies that

u1(Cor1, π(· | Cor1, t1)) ≥ u1(home1, π(· | Cor1, t1)).
In the same way as above, it can then be shown that

π(Cor1, Cor2) ≥ 3/4 · π(Cor1). (4.2.9)

Please verify this.
As π(Cor1, t1) > 0 for some type t1, we conclude that π(Cor1, Cor2) > 0. Thus, π(Cor2, t2) > 0

for some t2 ∈ T2. Hence, Corner must be for Barbara under her belief π(· | Cor2, t2). In particular,

u2(Cor2, π(· | Cor2, t2)) ≥ u2(home2, π(· | Cor2, t2)).

In the same way as above, it can then be shown that

π(Pal1, Cor2) ≥ 3/4 · π(Cor2). (4.2.10)

Please verify this.
By combining (4.2.7), (4.2.8), (4.2.9) and (4.2.10) we get that

π(Pal1, Pal2) + π(Cor1, Pal2) + π(Cor1, Cor2) + π(Pal1, Cor2)

≥ 3/4 · (π(Pal1) + π(Pal2) + π(Cor1) + π(Cor2)).

As

π(Pal1) ≥ π(Pal1, Pal2) + π(Pal1, Cor2),

π(Pal2) ≥ π(Pal1, Pal2) + π(Cor1, Pal2),

π(Cor1) ≥ π(Cor1, Pal2) + π(Cor1, Cor2) and

π(Cor2) ≥ π(Cor1, Cor2) + π(Pal1, Cor2)

it follows that

π(Pal1, Pal2) + π(Cor1, Pal2) + π(Cor1, Cor2) + π(Pal1, Cor2)

≥ 3/4 · 2 · (π(Pal1, Pal2) + π(Cor1, Pal2) + π(Cor1, Cor2) + π(Pal1, Cor2)).



166 CHAPTER 4. CORRECT AND SYMMETRIC BELIEFS IN STANDARD GAMES

This, however, is only possible when

π(Pal1, Pal2) + π(Cor1, Pal2) + π(Cor1, Cor2) + π(Pal1, Cor2) = 0.

In particular, π(Pal1, Pal2) = 0, which contradicts our conclusion above that π(Pal1, Pal2) > 0.

Therefore, our assumption that π(Pal1, t1) > 0 for some type t1 ∈ T1 must be wrong. Hence, every
correlated equilibrium π must have the property that π(Pal1, t1) = 0 for all types t1 ∈ T1, and hence
π(Pal1) = 0.

Now suppose that π(Cor2, t2) > 0 for some type t2. Then, Barbara’s belief π(· | Cor2, t2) must
assign probability 0 to Pal1 since π(Pal1) = 0. This implies that Barbara’s choice Cor2 cannot
be optimal for her belief π(· | Cor2, t2), which contradicts the assumption that π is a correlated
equilibrium. Hence, the assumption π(Cor2, t2) > 0 cannot be true. Therefore, every correlated
equilibrum π must satisfy π(Cor2) = 0. By similar arguments, it can then be shown that π(Cor1) = 0
and π(Pal2) = 0. Please verify this.

Summarizing, we see that every correlated equilibrium π must satisfy π(Pal1) = π(Cor1) = 0
and π(Pal2) = π(Cor2) = 0. Therefore, every correlated equilibrium has the property that π(home1,
home2) = 1. In every such correlated equilibrium π, your conditional belief π(·| home, t1) will always
assign probability 1 to Barbara’s choice home, and hence the only choice that is optimal for you in a
correlated equilibrium is home.

Therefore, by Theorem 4.2.3, you can only rationally stay at home under common belief in ratio-
nality with a symmetric belief hierarchy. The intuitive reason, however, is not as easy as it was for
common belief in rationality with a simple belief hierarchy, which also uniquely led to your choice to
stay at home. But here is a possible intuition.

Suppose there would be a symmetric belief hierarchy for you that expresses common belief in
rationality, and for which choosing Palace is optimal. Then, in your first-order belief you must assign
a high probability to Barbara choosing Palace, and hence in the associated symmetric weighted beliefs
diagram, the arrow from your choice Palace to Barbara’s choice Palace must carry a weight a that
is higher than the weights of the (possible) other arrows leaving your choice Palace. As the weighted
beliefs diagram is symmetric, there must also be an arrow from Barbara’s choice Palace to your choice
Palace, with the same weight a. To make the choice Palace optimal for Barbara, we must assign an
even higher weight b to the arrow from Barbara’s choice Palace to your choice Corner. By symmetry,
the arrow from your choice Corner to Barbara’s choice Palace must carry the same weight b. To make
your choice Corner optimal, we must assign an even higher weight c to the arrow from your choice
Corner to Barbara’s choice Corner. Again, by symmetry, there must be an arrow from Barbara’s
choice Corner to your choice Corner with the same weight c. To make the choice Corner optimal for
Barbara, we must assign an even higher weight d to the arrow from Barbara’s choice Corner to your
choice Palace. But then, by symmetry, we must assign the same, very high, weight d to the arrow from
your choice Palace to Barbara’s choice Corner. Consequently, this arrow from your choice Palace to
Barbara’s choice Corner would have a higher weight, d, than the arrow from your choice Palace to
Barbara’s choice Palace, which only has a weight of a. However, this means that in your first-order
belief starting at your choice Palace, you assign a higher probability to Barbara choosing Corner than
to Barbara choosing Palace, and thus your choice Palace cannot be optimal for the belief hierarchy
that starts at your choice Palace. This cannot be. Therefore, there is no symmetric belief hierarchy
expressing common belief in rationality for which it is optimal to choose Palace. A similar reasoning
can be used to exclude your choice Corner.

*Example 4.7: Opera for three.
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Remember the story from Section 4.1.3, and the decision problems from Table 4.1.3. We again ask:
Which choices can you rationally make under common belief in rationality with a symmetric belief
hierarchy? From the beliefs diagram in Figure 4.1.2 we can immediately conclude that you can
rationally stay at home under common belief in rationality with a symmetric belief hierarchy. The
reason is that your belief hierarchy that starts at your choice home is symmetric.

Question 4.2.6 Find a common prior on choice-type combinations that induces your symmetric belief
hierarchy that starts at your choice home.

This symmetric belief hierarchy also expresses common belief in rationality, because all arrows
involved in this belief hierarchy are solid. As your choice home is optimal under this belief hierarchy,
we conclude that you can rationally stay at home under common belief in rationality with a symmetric
belief hierarchy.

What about your choice opera? Can you rationally go to the opera under common belief in
rationality with a symmetric belief hierarchy? Again, the beliefs diagram does not answer this question,
because the belief hierarchy in Figure 4.1.2 that supports your choice opera is not symmetric.

Question 4.2.7 Explain why this belief hierarchy is not symmetric.

But perhaps there is another beliefs diagram in which your choice opera is supported by a symmet-
ric belief hierarchy that expresses common belief in rationality. We will show, however, that this is not
possible. To prove this, we use Theorem 4.2.3 and show that every correlated equilibrium must assign
probability 1 to the choice home for you, Barbara and Chris. Again, the proof is rather involved.
Hence, in every correlated equilibrium you will always believe, with probability 1, that Barbara and
Chris will stay at home, and hence the only optimal choice for you in a correlated equilibrium is to
stay at home as well.

Consider an arbitrary correlated equilibrium π, which is a common prior on choice-type combi-
nations. Assume, contrary to what we want to show, that π(opera1, t1) > 0 for some type t1 ∈ T1.
Since π is a correlated equilibrium, your choice opera must be optimal for the conditional belief π(· |
opera1, t1). That is, u1(opera1, π(· | opera1, t1)) ≥ u1(home1, π(· | opera1, t1)). We have that

u1(opera1, π(· | opera1, t1)) =
π((opera1, t1), opera2, opera3)

π(opera1, t1)
· 4

where

π((opera1, t1), opera2, opera3) =
∑
t2∈T2

∑
t3∈T3

π((opera1, t1), (opera2, t2), (opera3, t3)).

Moreover,
u1(home1, π(· | opera1, t1)) = 3.

As u1(opera1, π(· | opera1, t1)) ≥ u1(home1, π(· | opera1, t1)), it follows that

π((opera1, t1), opera2, opera3)

π(opera1, t1)
· 4 ≥ 3,

and hence
π((opera1, t1), opera2, opera3) ≥ 3/4 · π(opera1, t1).
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Since this holds for all types t1 with π(opera1, t1) > 0, it follows that∑
t1∈T1

π((opera1, t1), opera2, opera3) ≥ 3/4 ·
∑
t1∈T1

π(opera1, t1),

which means that
π(opera1, opera2, opera3) ≥ 3/4 · π(opera1). (4.2.11)

As π(opera1) > 0, it follows that π(opera1, opera2, opera3) > 0, and hence π(opera2) > 0 and
π(opera3) > 0.

Since π(opera2) > 0, there is some type t2 with π(opera2, t2) > 0. As π is a correlated equilibrium,
the choice opera must be optimal for Barbara under the belief π(· | opera2, t2). That is, u2(opera2,
π(· | opera2, t2)) ≥ u2(home2, π(· | opera2, t2)) = 3. Since

u2(opera2, π(· | opera2, t2)) =
π(opera1, (opera2, t2), home3)

π(opera2, t2)
· 4

it follows that
π(opera1, (opera2, t2), home3)

π(opera2, t2)
· 4 ≥ 3,

and hence
π(opera1, (opera2, t2), home3) ≥ 3/4 · π(opera2, t2).

Since this holds for all types t2 with π(opera2, t2) > 0, it follows that∑
t2∈T2

π(opera1, (opera2, t2), home3) ≥ 3/4 ·
∑
t2∈T2

π(opera2, t2),

and therefore
π(opera1, opera2, home3) ≥ 3/4 · π(opera2). (4.2.12)

In a similar fashion it can be shown that

π(opera1, home2, opera3) ≥ 3/4 · π(opera3). (4.2.13)

Please verify this.
Note that

π(opera1) ≥ π(opera1, opera2, home3) + π(opera1, home2, opera3)

≥ 3/4 · π(opera2) + 3/4 · π(opera3)

≥ 3/4 · π(opera1, opera2, opera3) + 3/4 · π(opera1, opera2, opera3)

= 3/2 · π(opera1, opera2, opera3)

≥ 3/2 · 3/4 · π(opera1)

= 9/8 · π(opera1).

Here, the second inequality follows from (4.2.12) and (4.2.13), the third inequality is true by definition,
whereas the fourth inequality follows from (4.2.11). Since π(opera1) ≥ 9/8 · π(opera1), we conclude
that π(opera1) = 0, which contradicts our assumption that π(opera1, t1) > 0 for some type t1 ∈ T1.

Hence, we conclude that in every correlated equilibrium we must have that π(opera1) = 0, and
hence π(home1) = 1. Therefore, in every correlated equilibrium, the conditional belief π(· | c2, t2) for
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Barbara must always assign probability 1 to you staying at home. Hence, only home can be optimal
for Barbara for every conditional belief π(· | c2, t2). Since π is a correlated equilibrium, π can only
assign positive probability to choice-type pairs (c2, t2) for Barbara where c2 is optimal for π(· | c2, t2).
But then, π can only assign positive probability to choice-type pairs (home2, t2) for Barbara, and
hence π(home2) = 1.

Question 4.2.8 Show, in a similar fashion, that every correlated equilibrium π must assign proba-
bility 1 to Chris’choice home.

Since every correlated equilibrium π must satisfy π(home2) = 1 and π(home3) = 1, your conditional
belief π(· | c1, t1) in a correlated equilibrium must always assign probability 1 to Barbara and Chris
staying at home. Hence, the only choice that is optimal for you in a correlated equilibrium is to stay
at home as well. By Theorem 4.2.3 we thus conclude that under common belief in rationality with a
symmetric belief hierarchy, you can only rationally choose to stay at home. Recall that under common
belief in rationality with a simple belief hierarchy, you can also only rationally stay at home.

The intuitive reason is as follows. Suppose there is a symmetric belief hierarchy for you that
expresses common belief in rationality, and for which it is optimal to go to the opera. Then, in your
first-order belief, you must assign a high probability to Barbara and Chris going to the opera as well.
Therefore, in the associated symmetric weighted beliefs diagram, the weight a of the arrow from your
choice opera to Barbara’s and Chris’choice pair (opera, opera) must be higher than the weights of
the (possible) other outgoing arrows at your choice opera. By symmetry, the arrow from Barbara’s
choice opera to your and Chris’choice pair (opera, opera) must carry the same weight a. To make the
choice opera optimal for Barbara, the arrow from Barbara’s choice opera to your and Chris’choice pair
(opera, home) must carry an even higher weight b. But then, by symmetry, the arrow from your choice
opera to Barbara’s and Chris’choice pair (opera, home) must also be present, and must carry the
same weight b, higher than a. However, this means that the arrow from your choice opera to Barbara’s
and Chris’choice pair (opera, home) has a higher weight, b, than the arrow from your choice opera
to Barbara’s and Chris’choice pair (opera, opera), which only carries a weight of a. Hence, in your
first-order belief that starts at your choice opera, you deem it most likely that at least one of your
friends stays at home. But then, it cannot be optimal to go to the opera under that first-order belief.
This cannot be. Hence, we conclude that there is no symmetric belief hierarchy expressing common
belief in rationality for which it is optimal to go to the opera.

Example 4.8: Rock, paper scissors.

Recall the story from Section 4.2.1 and the decision problems from Table 4.2.1. Which choices can
you rationally make under common belief in rationality with a symmetric belief hierarchy? One way
of answering this question is to focus on the common prior π on choice-type combinations given by
Table 4.2.2. We have seen in Section 4.2.3 that π is a correlated equilibrium.

Moreover, every choice for you is optimal in this correlated equilibrium. Indeed, your choice rock
is optimal for the conditional belief π(· | rock, tr1) which assigns probability 1/3 to Barbara’s choice
scissors and probability 2/3 to Barbara’s choice paper, your choice paper is optimal for the conditional
belief π(· | paper, tp1) which assigns probability 1/2 to Barbara choosing scissors and probability 1/2
to Barbara choosing rock, your choice scissors is optimal for the conditional belief π(· | scissors, ts1)
which assigns probability 2/5 to Barbara’s choice rock and probability 3/5 to Barbara’s choice paper,
whereas your choice bomb is optimal (together with your choice paper) for the conditional belief π(· |
paper , t̂p1) that assigns probability 1 to Barbara choosing rock. Hence, we conclude by Theorem 4.2.3
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that under common belief in rationality with a symmetric belief hierarchy, you can rationally choose
rock, paper, scissors or bomb.

Another way to see this is by looking at the beliefs diagram at the top of Figure 4.2.1. We have
seen that this beliefs diagram is induced by the symmetric weighted beliefs diagram at the bottom
of Figure 4.2.1. Hence, every belief hierarchy present in this beliefs diagram is symmetric. Moreover,
every belief hierarchy in this beliefs diagram also expresses common belief in rationality, because all
arrows in the beliefs diagram are solid. As such, all belief hierarchies in this beliefs diagram express
common belief in rationality and are symmetric. Note that your choice rock is optimal for the belief
hierarchy that starts at your choice rock, your choice paper is optimal for the belief hierarchy that
starts at your choice paper, your choice bomb is optimal for the belief hierarchy that starts at your
choice paper’, and your choice scissors is optimal for the belief hierarchy that starts at your choice
scissors. Hence, you can rationally make each of your choices under common belief in rationality with
a symmetric belief hierarchy.

4.2.5 How Reasonable is Correlated Equilibrium?
In Section 4.1.5 we have seen that the concept of Nash equilibrium imposes the following three prob-
lematic conditions: (a) player i believes that every opponent is correct about the beliefs player i has,
(b) player i believes that opponent j has the same belief about a third player k’s choice as player i
has himself, and (c) player i’s belief about opponent j’s choice is independent from player i’s belief
about a third player k’s choice. Here, the conditions (b) and (c) only apply to games with more than
two players.

It turns out the concept of a symmetric belief hierarchy —and hence also the notion of correlated
equilibrium —displays a weak version of the problematic properties (a) and (b). To see this, consider a
symmetric belief hierarchy βi for player i, induced by a symmetric weighted beliefs diagram. Suppose
that βi is obtained if we start at the choice-type combination (ci, ti). Now assume that the belief
hierarchy βi assigns positive probability to j’s belief hierarchy βj which starts at (cj , tj). Then, in the
symmetric weighted beliefs diagram, there must be an arrow from (ci, ti) to an opponents’choice-type
combination including (cj , tj). Since the weighted beliefs diagram is symmetric, there must also be an
arrow from (cj , tj) to an opponents’choice-type combination including (ci, ti). In other words, player
j’s belief hierarchy βj must assign positive probability to player i’s actual belief hierarchy βi.

We thus see that, whenever a symmetric belief hierarchy βi assigns positive probability to an
opponent’s belief hierarchy βj , then βj must assign positive probability to i’s actual belief hierarchy
βi. That is, with a symmetric belief hierarchy a player must believe that all opponents assign a positive
probability to his actual belief hierarchy. This may be seen as a weak version of the correct beliefs
condition (a) above. Indeed, condition (a) above states that a player with a simple belief hierarchy
must believe that all opponents assign full probability to his actual belief hierarchy. But still, this
weaker correct beliefs condition implied by a symmetric belief hierarchy seems problematic. Indeed,
why must a player believe that his opponents assign a positive probability to his actual belief hierarchy?
Why can a player not believe that his opponents are entirely wrong about his belief hierarchy? If there
are several plausible belief hierarchies for a player, then in my opinion this player should be free to
believe that his opponents assign probability 0 to his actual belief hierarchy.

As to property (b), suppose there are at least three players. Assume that the symmetric belief
hierarchy βi above assigns positive probability to k’s choice ck. Since βi starts at the choice-type pair
(ci, ti), there must be an arrow from (ci, ti) to an opponents’choice-type combination including ck.
Suppose that this opponents’choice-type combination includes the choice-type pair (cj , tj) for a third
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player j. Let βj be the belief hierarchy for player j that starts at (cj , tj). Since the weighted beliefs
diagram is symmetric, there must be an arrow from (cj , tj) to player k’s choice ck. That is, player j’s
belief hierarchy βj must assign a positive probability to k’s choice ck.

Altogether, we see that with a symmetric belief hierarchy the following holds: If player i assigns
positive probability to an opponent’s choice ck, then player i must assign positive probability to the
event that every other player also assigns positive probability to ck. This may be seen as a weak version
of property (b) above. Still, I find this condition problematic as it excludes belief hierarchies where
player i believes that player k chooses a, while believing that another player j believes that player k
chooses b. Here, by “believe”we mean “assign probability 1 to”. If both a and b are reasonable choices
for player k, then such a belief hierarchy may be perfectly plausible, yet it is excluded by a symmetric
belief hierarchy, and hence by correlated equilibrium as well.

Note that the concept of correlated equilibrium does not display a property similar to condition
(c) above, since the concept of correlated equilibrium allows a player to have correlated beliefs about
the choices of two different opponents. In that sense, correlated equilibrium is crucially different from
Nash equilibrium.

4.3 One Theory per Choice

In the previous section we allowed for symmetric belief hierarchies in which the same choice is being
explaining by two different beliefs. We will now restrict to belief hierarchies where every choice is
explained by a single belief only. This condition is called one theory per choice. We show that
symmetric belief hierarchies using one theory per choice can be characterized by a common prior on
choice combinations. This is a simpler object than the common prior on choice-type combinations
that was used to characterize symmetric belief hierarchies that possibly violate the one theory per
choice condition. Building on this insight, we demonstrate how symmetric belief hierarchies that use
one theory per choice and express common belief in rationality can be characterized by the concept of
canonical correlated equilibrium. The latter is a common prior on choice combinations that satisfies
certain optimality conditions, similar to those in correlated equilibrium. We apply this characterization
to the example “Rock, paper, scissors”to show that your choice bomb cannot rationally be made with a
symmetric belief hierarchy that expresses common belief in rationality and uses one theory per choice.
Remember that you could rationally choose bomb with a symmetric belief hierarchy, violating the
one theory per choice condition, that expresses common belief in rationality. Hence, the one theory
per choice condition crucially matters here. We finally investigate the relation with simple belief
hierarchies from Section 4.1. We show that every simple belief hierarchy is symmetric and uses one
theory per choice. Since we know that simple belief hierarchies expressing common belief in rationality
always exist, it follows that we can always find symmetric belief hierarchies that use one theory per
choice and express common belief in rationality.

4.3.1 One Theory per Choice Condition
Consider the beliefs diagram for “Rock, paper, scissors” at the top of Figure 4.2.1. Note that your
choice paper appears twice in this beliefs diagram. The second time it appears it is denoted by paper’.
What results is a belief hierarchy where the same choice paper for you is being explained by two
different beliefs, as we have already seen in Section 4.2.1. We say that this belief hierarchy of yours
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violates the one theory per choice condition. On the other hand, one theory per choice is guaranteed
if we consider beliefs diagrams in which every choice of a player only appears once. This naturally
leads to the following definition.

Definition 4.3.1 (One theory per choice) A belief hierarchy uses one theory per choice if it
is generated by a beliefs diagram in which every choice of a player only appears once.

It may be verified that all belief hierarchies considered in this chapter so far —except those that
correspond to the beliefs diagram in Figure 4.2.1 —use one theory per choice. The reader may wonder
why we did not explore the one theory per choice condition in the previous chapter, while investigating
common belief in rationality. The reason is that for the choices you can rationally make under common
belief in rationality, it does not matter whether we impose the one theory per choice condition or not.

To see this, remember from Theorem 3.4.1 that the choices which can rationally be made under
common belief in rationality are exactly the choices that survive the iterated elimination of strictly
dominated choices. In Section 3.4.5 we have shown how to construct an epistemic model, with a unique
type tcii associated to every choice ci that survives the procedure, such that type t

ci
i expresses common

belief in rationality and ci is optimal for t
ci
i . By construction, all the types t

ci
i within this epistemic

model have the following property: The belief bi(t
ci
i ) only assigns positive probability to choice-type

pairs (cj , t
cj
j ) for opponent j, where tcjj is the unique type associated with the choice cj . This means

that within the belief hierarchy of tcii , every choice cj is being explained by a single belief hierarchy,
which is the belief hierarchy induced by the unique type tcjj associated with the choice cj . In other
words, all belief hierarchies generated within this epistemic model use one theory per choice.

As a consequence, every choice that survives the iterated elimination of strictly dominated choices
is optimal for a belief hierarchy that uses one theory per choice and expresses common belief in
rationality. This, combined with Theorem 3.4.1, yields the following insight: Every choice that is
optimal for a belief hierarchy that expresses common belief in rationality, is also optimal for a belief
hierarchy that not only expresses common belief in rationality, but also uses one theory per choice.
We thus obtain the following result.

Theorem 4.3.1 (One theory per choice does not matter for common belief in rationality)
A choice is optimal for a belief hierarchy that expresses common belief in rationality, if and only if, it
is optimal for a belief hierarchy that expresses common belief in rationality and uses one theory per
choice.

Hence, for the choices that can rationally be made under common belief in rationality, it does
not matter whether we additionally impose the one theory per choice condition or not. This is not
true for symmetric belief hierarchies, however. We will see that for the choices that can rationally be
made under common belief in rationality with a symmetric belief hierarchy, it is of crucial importance
whether we additionally impose one theory per choice or not.

4.3.2 Relation with Common Prior
In Theorem 4.2.1 we have seen that every symmetric belief hierarchy —also those that violate the one
theory per choice condition —can be characterized by a common prior on choice-type combinations.
We will see that, if we additionally impose the one theory per choice condition, then a symmetric belief
hierarchy can be characterized by an even simpler object: a common prior on choice combinations,
without any mentioning of types.
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Consider a symmetric belief hierarchy β that uses one theory per choice. Then, by Theorem 4.2.1,
the belief hierarchy β is generated by a common prior π on choice-type combinations, assigning to every
choice-type combination (ci, ti)i∈I some probability π((ci, ti)i∈I). In other words, the belief hierarchy β
is generated by a symmetric weighted beliefs diagram in choice-type representation, where the choice-
type pairs (ci, ti) that appear are exactly the choice-type pairs that receive positive probability by
π, and the weight of the arrow from (ci, ti) to (c−i, t−i) is given by π((ci, ti), (c−i, t−i)). Moreover,
since the belief hierarchy β uses one theory per choice, the symmetric weighted beliefs diagram can be
chosen such that every choice only appears once. This means that for every choice ci there is a unique
type, say tcii , that figures together with ci as a choice-type pair in the weighted beliefs diagram.

Now, consider the beliefs diagram that is induced by this symmetric weighted beliefs diagram.
Since in the weighted beliefs diagram every choice only appears once, the same is true for the induced
beliefs diagram. Moreover, in the beliefs diagram every arrow a from a choice ci to an opponents’
choice combination c−i has the probability

p(a) =
π((ci, t

ci
i ), (c−i, t

c−i
−i ))

π(ci, t
ci
i )

, (4.3.1)

where tc−i−i is an abbreviation for (t
cj
j )j 6=i.

We can now define, on the basis of π, a common prior π̂ on choice-combinations, which assigns to
every choice-combination (ci)i∈I the probability

π̂((ci)i∈I) := π((ci, t
ci
i )i∈I).

Together with (4.3.1) we conclude that within the induced beliefs diagram, every arrow a from ci to
c−i has the probability

p(a) =
π̂(ci, c−i)

π̂(ci)
, (4.3.2)

where
π̂(ci) =

∑
c′−i∈C−i

π̂(ci, c
′
−i).

When (4.3.2) is satisfied, we say that the beliefs diagram is induced by the common prior on choice
combinations π̂.

Definition 4.3.2 (Common prior on choice combinations) (a) A common prior on choice
combinations is a probability distribution π̂ that assigns to every choice combination (ci)i∈I a prob-
ability π̂((ci)i∈I).

(b) A beliefs diagram is induced by the common prior on choice combinations π̂ if every choice
only appears once, if for every choice ci and choice combination c−i, the arrow a from ci to c−i is
present exactly when π̂(ci, c−i) > 0, and this arrow a has probability

p(a) =
π̂(ci, c−i)

π̂(ci)
.

(c) A belief hierarchy is induced by a common prior on choice combinations π̂ if it is part of a
beliefs diagram induced by π̂.
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So far we have seen that every symmetric belief hierarchy that uses one theory per choice is induced
by a common prior on choice combinations. It is easily seen that the other direction is also true. We
thus obtain the following result.

Theorem 4.3.2 (Relation with common prior) A belief hierarchy is symmetric and uses one the-
ory per choice, if and only if, it is induced by a common prior on choice combinations.

As an illustration, consider the beliefs diagram in Figure 4.2.2 for “When Chris joins the party”.
As every choice only appears once, every belief hierarchy in this beliefs diagram uses one theory per
choice. Moreover, we have seen that the beliefs diagram is induced by the symmetric weighted beliefs
diagram in the same figure, and hence every belief hierarchy is symmetric as well. By Theorem 4.3.2,
each of these belief hierarchies is therefore induced by a common prior on choice combinations. From
Question 4.2.2 we know that the beliefs diagram is induced by the common prior on choice-type
combinations π given by

π((g, tg1), (b, t
b
2), (y, t

y
3)) = 4/10, π((g, tg1), (y, t

y
2), (b, t

b
3)) = 4/10,

π((r, tr1), (g, t
g
2), (b, t

b
3)) = 1/10, π((r, tr1), (g, t

g
2), (y, t

y
3)) = 1/10.

This, in turn, induces the common prior π̂ on choice combinations given by

π̂(g, b, y) = 4/10, π̂(g, y, b) = 4/10, π̂(r, g, b) = 1/10, π̂(r, g, y) = 1/10.

It may be verified that the beliefs diagram, and hence each of its symmetric belief hierarchies using
one theory per choice, are induced by this common prior π̂ on choice combinations.

4.3.3 Relation with Canonical Correlated Equilibrium
As a next step, we will characterize those symmetric belief hierarchies that use one theory per choice
and express common belief in rationality. This will eventually lead us to the concept of canonical
correlated equilibrium.

Consider a symmetric belief hierarchy β that uses one theory per choice and expresses common
belief in rationality. Then we know from Theorem 4.2.2 that the belief hierarchy β is induced by a
correlated equilibrium π, which is a common prior on choice-type combinations. That is, the belief
hierarchy β is part of some beliefs diagram which is induced by the correlated equilibrium π. As β
uses one theory per choice, every choice only appears once in this beliefs diagram, and hence for every
choice ci there is a unique type t

ci
i such that the choice-type pair (ci, t

ci
i ) receives positive probability

under π. But then, the beliefs diagram, and hence the belief hierarchy β, is induced by the common
prior π̂ on choice combinations which assigns to every choice-combination (ci)i∈I the probability

π̂((ci)i∈I) := π((ci, t
ci
i )i∈I). (4.3.3)

As π is a correlated equilibrium, we know that for every player i, and every choice ci with π(ci, t
ci
i ) >

0, the choice ci is optimal for the conditional belief π(· | ci, tcii ). By (4.3.3) we conclude that for every
player i, and every choice ci with π̂(ci) > 0, the choice ci is optimal for the conditional belief π̂(· | ci).
Here, the conditional belief π̂(· | ci) is the belief about the opponents’choice combinations given by

π̂(c−i | ci) :=
π̂(ci, c−i)

π̂(ci)
for all c−i ∈ C−i.

A common prior π̂ on choice combinations satisfying these optimality conditions is called a canonical
correlated equilibrium.
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Definition 4.3.3 (Canonical correlated equilibrium) A common prior π̂ on choice combinations
is a canonical correlated equilibrium if for every player i, and every choice ci with π̂(ci) > 0, the
choice ci is optimal for the conditional belief π̂(· | ci) of player i conditional on his choice ci.

By the arguments above, we have thus seen that every symmetric belief hierarchy β which uses
one theory per choice and expresses common belief in rationality is induced by a canonical correlated
equilibrium π̂.

The other direction is also true, as we will show now. Indeed, consider a belief hierarchy β that
is induced by a canonical correlated equilibrium π̂, which is a common prior on choice combinations.
Then, we immediately conclude from Theorem 4.3.2 that the belief hierarchy β is symmetric and uses
one theory per choice. It remains to show that β also expresses common belief in rationality.

For every choice ci that receives positive probability by π̂, we can define a single type t
ci
i . Then, π̂

induces a common prior π on choice-type combinations given by

π((ci, t
ci
i )i∈I) := π̂((ci)i∈I) (4.3.4)

for every choice-type combination (ci, t
ci
i )i∈I . As π̂ is a canonical correlated equilibrium, we know that

for every player i, and every choice ci with π̂(ci) > 0, the choice ci is optimal for the conditional belief
π̂(· | ci). But then, by (4.3.4) we conclude that for every player i, and every choice ci with π(ci, t

ci
i ) > 0,

the choice ci is optimal for the conditional belief π(· | ci, tcii ). Therefore, the induced common prior π
on choice-type combinations is a correlated equilibrium.

Since the belief hierarchy β is induced by the correlated equilibrium π, it follows from Theorem
4.2.2 that β expresses common belief in rationality. We thus have shown that every belief hierarchy
that is induced by a canonical correlated equilibrium is symmetric, uses one theory per choice, and
expresses common belief in rationality.We therefore arrive at the following characterization.

Theorem 4.3.3 (Relation with canonical correlated equilibrium) A belief hierarchy is sym-
metric, uses one theory per choice, and expresses common belief in rationality, if and only if, it is
induced by a canonical correlated equilibrium.

With this result at hand, we can now also characterize the choices that you can rationally make
while holding a symmetric belief hierarchy that uses one theory per choice and expresses common
belief in rationality. Suppose that the choice c∗i is optimal for a belief hierarchy βi that is symmetric,
uses one theory per choice, and expresses common belief in rationality. Then we know, by Theorem
4.3.3, that βi is part of a beliefs diagram that is induced by a canonical correlated equilibrium π̂.
Remember that π̂ is a common prior on choice combinations.

Let βi be the belief hierarchy that starts at the choice ci within the beliefs diagram. Since the
belief hierarchy βi expresses common belief in rationality, we can choose the beliefs diagram such that
all arrows are solid. In particular, every arrow leaving ci is solid, meaning that ci is optimal for the
first-order belief represented by the arrows leaving ci. As the beliefs diagram is induced by π̂, this
first-order belief is the conditional belief π̂(· | ci). Hence, we conclude that the first-order belief of the
belief hierarchy βi is given by π̂(· | ci). Since the choice c∗i is optimal for βi, it must be the case that
c∗i is optimal for the conditional belief π̂(· | ci) in the canonical correlated equilibrium π̂. In this case,
we say that c∗i is optimal in the canonical correlated equilibrium π̂.

Definition 4.3.4 (Choice optimal in a canonical correlated equilibrium) A choice c∗i is op-
timal in a canonical correlated equilibrium π̂ if there is some choice ci with π̂(ci) > 0 such that
c∗i is optimal for the belief π̂(· | ci) of player i conditional on ci.
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With our argument above, we concluded that every choice that is optimal for a symmetric belief
hierarchy that uses one theory per choice and expresses common belief in rationality, must be optimal
in a canonical correlated equilibrium. The other direction is also true.

To see this, consider a choice c∗i that is optimal in a canonical correlated equilibrium π̂. That is,
there is some choice ci with π̂(ci) > 0 such that c∗i is optimal for the conditional belief π̂(· | ci). Now,
consider the beliefs diagram induced by π̂, and the belief hierarchy βi that starts at ci. By Theorem
4.3.3, this belief hierarchy βi is symmetric, uses one theory per choice, and expresses common belief in
rationality. By construction, the first-order belief of βi is given by the conditional belief π̂(· | ci). Since
c∗i is optimal for π̂(· | ci), we conclude that c∗i is optimal for the belief hierarchy βi, which is symmetric,
uses one theory per choice, and expresses common belief in rationality. Hence, every choice c∗i that
is optimal in a canonical correlated equilibrium will be optimal for a symmetric belief hierarchy that
uses one theory per choice and expresses common belief in rationality. We thus obtain the following
characterization.

Theorem 4.3.4 (Relation with canonical correlated equilibrium choices) A choice is optimal
for a symmetric belief hierarchy that uses one theory per choice and expresses common belief in ra-
tionality, if and only if, the choice is optimal in a canonical correlated equilibrium.

We will now use this characterization to identify, in the example “Rock, paper, scissors”, those
choices you can rationally make with a symmetric belief hierarchy that uses one theory per choice and
expresses common belief in rationality.

*Example 4.9: Rock, paper, scissors.

We have seen in Example 4.8 in Section 4.2.4 that under common belief in rationality with a symmetric
belief hierarchy, you can rationally make each of your choices rock, paper, scissors and bomb. Indeed,
all belief hierarchies at the top of Figure 4.2.1 are symmetric, because they are generated by the
symmetric weighted beliefs diagram at the bottom of that same figure. Moreover, all these belief
hierarchies express common belief in rationality as all arrows are solid. Since your choice rock is
optimal for the belief hierarchy that starts at rock, your choice paper is optimal for the belief hierarchies
that start at paper and paper’, your choice scissors is optimal for the belief hierarchy that starts at
scissors, and your choice bomb is optimal for the belief hierarchy that starts at paper’, we conclude
that you can rationally make each of your choices under common belief in rationality with a symmetric
belief hierarchy.

Note, however, that all the belief hierarchies in Figure 4.2.1 violate the one theory per choice
condition, as your choice paper appears twice in the beliefs diagram. In fact, each of these belief
hierarchies uses two different beliefs to justify the same choice paper for you. We will now show,
on the basis of Theorem 4.3.4, that your choice bomb is not optimal for any belief hierarchy that is
symmetric, expresses common belief in rationality, and uses one theory per choice. However, showing
this will be far from easy, as will become clear below. Hence, in this example it is crucial for your
optimal choices whether, in addition to symmetry and common belief in rationality, we add the one
theory per choice condition or not.

Suppose, contrary to what we want to show, that your choice bomb is optimal for a symmetric
belief hierarchy that expresses common belief in rationality and uses one theory per choice. Then, by
Theorem 4.3.4, your choice bomb must be optimal in a canonical correlated equilibrium π̂. That is,
there must be a choice c1 ∈ C1 for you such that π̂(c1) > 0 and bomb is optimal under the conditional
belief π(· | c1). We show that this cannot be the case. We proceed by several steps.
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(a) We first show that π̂(bomb1) = 0. Here, we use the subindex 1 to indicate that this choice
belongs to you. Suppose, contrary to what we want to show, that π̂(bomb1) > 0. Since π̂ is a canonical
correlated equilibrium, it must then be the case that your choice bomb1 is optimal for the conditional
belief π̂(· | bomb1). Note that your choice bomb1 is only optimal for the belief that assigns probability
1 to Barbara’s choice rock2. Indeed, if you assign a positive probability to any of the other choices for
Barbara, your choice paper1 would be strictly better than bomb1. Hence, it must be that π̂(rock2 |
bomb1) = 1, where we use the subindex 2 to indicate that this choice belongs to Barbara. It then follows
that π̂(rock2) > 0. Hence, rock2 must be optimal for Barbara under the belief π̂(· | rock2), since π̂ is a
canonical correlated equilibrium. However, as π̂(rock2 | bomb1) = 1 we have that π̂(bomb1, rock2) > 0,
and hence π̂(bomb1 | rock2) > 0. But then, diamond2 is strictly better for Barbara than rock2, as
diamond2 yields Barbara a higher utility than her choice rock2 if you choose bomb1, whereas both
choices yield the same utility for Barbara in all other cases. In particular, rock2 cannot be optimal
for Barbara under the belief π̂(· | rock2), which contradicts the fact that π̂ is a canonical correlated
equilibrium. We thus conclude that π̂(bomb1) > 0 cannot be the case, and hence π̂(bomb1) = 0.

(b) We next show that π̂(rock2 | paper1) = 1. Recall from above that we assume there is a choice
c1 ∈ C1 with π̂(c1) > 0 such that bomb1 is optimal under the conditional belief π̂(· | c1). Since bomb1
is only optimal for you under the belief that assigns probability 1 to Barbara’s choice rock2, we must
have that π̂(rock2 | c1) = 1. As π̂ is a canonical correlated equilibrium, c1 must be optimal for the
conditional belief π̂(· | c1) which assigns probability 1 to Barbara’s choice rock2. Hence, c1 can only
be your choice paper1 or your choice bomb1. By (a) we know that π̂(bomb1) = 0, and hence it must
be that c1 is your choice paper1. As π̂(rock2 | c1) = 1, we conclude that π̂(rock2 | paper1) = 1.

(c) Now we will show that π̂(scissors2) = 0. Suppose, contrary to what we want to show, that
π̂(scissors2) > 0. Since π̂ is a canonical correlated equilibrium, scissors2 must be optimal for Barbara
for the conditional belief π̂(· | scissors2). By (a) we know that π̂(bomb1) = 0, and hence π̂(bomb1
| scissors2) = 0. Moreover, by (b) we know that π̂(rock2 | paper1) = 1, which implies that π̂(paper1,
c2) = 0 for all of Barbara’s choices c2 other than rock2. In particular, π̂(paper1, scissors2) = 0, from
which it follows that π̂(paper1 | scissors2) = 0. But then, Barbara’s choice paper2 is better than her
choice scissors2 under the belief π̂(· | scissors2). This contradicts the assumption that scissors2 is
optimal for Barbara under the belief π̂(· | scissors2). Hence, we conclude that π̂(scissors2) > 0 cannot
be the case, therefore π̂(scissors2) = 0.

(d) We continue by showing that π̂(rock1) = 0. Suppose, contrary to what we want to show, that
π̂(rock1) > 0. Since π̂ is a canonical correlated equilibrium, the choice rock1 must be optimal for you
for the belief π̂(· | rock1). By (c) we know that π̂(scissors2) = 0, and hence π̂(scissors2 | rock1) = 0.
But then, your choice scissors1 is better than your choice rock1 under the belief π̂(· | rock1), which
contradicts the assumption that rock1 is optimal for the belief π̂(· | rock1). Hence, our assumption
that π̂(rock1) > 0 cannot hold, which implies that π̂(rock1) = 0.

(e) Next, we prove that π̂(paper2) = 0. Suppose, contrary to what we want to show, that
π̂(paper2) > 0. Since π̂ is a canonical correlated equilibrium, Barbara’s choice paper2 must be op-
timal for the belief π̂(· | paper2). From (a) and (d) we know that π̂(bomb1) = 0 and π̂(rock1) = 0,
which imply that π̂(rock1, paper2) = 0 and π̂(bomb1, paper2) = 0. Moreover, from (b) we know that
π̂(rock2 | paper1) = 1, which implies that π̂(paper1, paper2) = 0. Hence, we conclude that π̂(rock1,
paper2) = 0, π̂(paper1, paper2) = 0 and π̂(bomb1, paper2) = 0, thus it must be that π̂(scissors1 |
paper2) = 1. But then, rock2 and diamond2 will be better for Barbara than paper2 under the belief
π̂(· | paper2), which contradicts the assumption that paper2 is optimal for the belief π̂(· | paper2).
Hence, the assumption that π̂(paper2) > 0 cannot be true, which means that π̂(paper2) = 0.

(f) We show that π̂(scissors1) = 0. Suppose, contrary to what we want to show, that π̂(scissors1) >
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0. Since π̂ is a canonical correlated equilibrium, your choice scissors1 must be optimal for the belief
π̂(· | scissors1). Since we know by (c) and (e) that π̂(scissors2) = 0 and π̂(paper2) = 0, it follows that
π̂(scissors2 | scissors1) = 0 and π̂(paper2 | scissors1) = 0. But then, your choice paper1 is better
than scissors1 under the belief π̂(· | scissors1), which contradicts the assumption that scissors1 is
optimal for π̂(· | scissors1). Therefore, the assumption that π̂(scissors1) > 0 cannot be true, which
means that π̂(scissors1) = 0.

By (a), (b), (d) and (f) we thus see that π̂(bomb1) = 0, π̂(rock2 | paper1) = 1, π̂(rock1) = 0 and
π̂(scissors1) = 0. But then, it must be that π̂(paper1, rock2) = 1 and π̂(c1, c2) = 0 otherwise. As π̂ is a
canonical correlated equilibrium, Barbara’s choice rock2 must be optimal for the conditional belief π̂(·
| rock2) which assigns probability 1 to your choice paper1. This, however, is not true since Barbara’s
choice scissors2 is better than rock2 under that belief π̂(· | rock2). We thus obtain a contradiction.

Hence, there is a no canonical correlated equilibrium π̂ for which there is a choice c1 with π̂(c1) > 0
such that your choice bomb is optimal for the belief π̂(· | c1). In other words, your choice bomb is not
optimal in a canonical correlated equilibrium. By Theorem 4.3.4 we therefore conclude that you
cannot rationally choose bomb with a symmetric belief hierarchy that uses one theory per choice and
expresses common belief in rationality.

What about your other three choices rock, paper and scissors? Can you rationally make each
of those choices under common belief in rationality with a symmetric belief hierarchy that uses one
theory per choice? The answer, as we will see, is “yes”. The reason is that we can find a single
canonical correlated equilibrium π̂ for which your choices rock, paper and scissors are all optimal.

Consider the common prior on choice combinations π̂ given by

π̂(rock1, paper2) = 1/6, π̂(rock1, scissors2) = 1/6,

π̂(paper1, rock2) = 1/6, π̂(paper1, scissors2) = 1/6,

π̂(scissors1, rock2) = 1/6 and π̂(scissors1, paper2) = 1/6.

It can be shown that π̂ is a canonical correlated equilibrium. Please verify this.

Question 4.3.1 For this canonical correlated equilibrium π̂, design the corresponding symmetric
weighted beliefs diagram, and the beliefs diagram it induces. Explain why all belief hierarchies are
symmetric, use one theory per choice, and express common belief in rationality.

Since your choice rock is optimal for the belief π̂(· | rock1), your choice paper is optimal for the
belief π̂(· | paper1) and your choice scissors is optimal for the belief π̂(· | scissors1), it follows that all
of these three choices are optimal in a canonical correlated equilibrium. Hence, by Theorem 4.3.4, you
can rationally choose rock, paper and scissors under common belief in rationality with a symmetric
belief hierarchy that uses one theory per choice.

However, as we have seen, you can rationally choose bomb under common belief in rationality
with a symmetric belief hierarchy, but not under common belief in rationality with a symmetric belief
hierarchy that uses one theory per choice.

4.3.4 Relation with Simple Belief Hierarchies
An important question is whether we can always find, for every game and for every player, a belief
hierarchy that meets all the conditions of this section —that is, a belief hierarchy that is symmetric,
uses one theory per choice and expresses common belief in rationality. The answer is “yes”. The
reason is that every simple belief hierarchy, as defined in Section 4.1.1, is symmetric and uses one
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Figure 4.3.1 A symmetric weighted beliefs diagram inducing a simple belief hierarchy

theory per choice. Since we have seen in Theorem 4.1.4 that we can always find, for every player, a
simple belief hierarchy that expresses common belief in rationality, it follows that every player has at
least one belief hierarchy that is symmetric, uses one theory per choice, and expresses common belief
in rationality.

To see why a simple belief hierarchy is symmetric and uses one theory per choice, consider the
example “When Chris joins the party”, and the simple belief hierarchy for you generated by the belief
combination

(σ1 = 1
2 · green + 1

2 · red, σ2 = 1
3 · green + 2

3 · yellow, σ3 = blue).

We have seen in Question 4.1.8 that this belief combination is in fact a Nash equilibrium. How can
we generate this simple belief hierarchy by a symmetric weighted beliefs diagram?

The answer is given by the weighted beliefs diagram in Figure 4.3.1. Consider, for instance, the
arrow from your choice g to the choice combination (y, b) by Barbara and Chris. The weight assigned
to this arrow a is

w(a) = σ1(g) · σ2(y) · σ3(b) = 1/2 · 2/3 · 1 = 1/3.

That is, the weight is given by the product of the probabilities assigned to the choices involved in the
arrow. The weights for the other arrows are determined in the same fashion. Please check this. It
may be verified that this weighted beliefs diagram is indeed symmetric.

The induced beliefs diagram is the one depicted in Figure 4.3.2. The belief hierarchy for you
that starts at your choice g, and the one that starts at your choice r, are both equal to the simple
belief hierarchy generated by the belief combination (σ1, σ2, σ3) above. Please check this. Therefore,
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Figure 4.3.2 Beliefs diagram induced by the weighted beliefs diagram in Figure 4.3.1
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the symmetric weighted beliefs diagram from Figure 4.3.1 induces the simple belief hierarchy for you
generated by (σ1, σ2, σ3).

Question 4.3.2 Consider the example “Movie for two”, and the simple belief hierarchy for you gen-
erated by the belief combination (σ1 = (0.4)· Palace +(0.6)· home, σ2 = (0.7)· Corner +(0.3)· home).
Create a symmetric weighted beliefs diagram that induces this simple belief hierarchy, using the con-
struction above.

This construction works in general. That is, by using the method above we can create, for every
simple belief hierarchy, a symmetric weighted beliefs diagram that induces it. Moreover, since the
symmetric weighted beliefs diagram so constructed only contains every choice once, it automatically
uses one theory per choice. We thus obtain the following general relationship.

Theorem 4.3.5 (Relation with simple belief hierarchies) Every simple belief hierarchy is sym-
metric and uses one theory per choice.

Recall, from Theorem 4.1.4, that we can always find a simple belief hierarchy that expresses
common belief in rationality. Together with Theorem 4.3.5, we conclude that every game always
contains belief hierarchies that are symmetric, use one theory per choice, and express common belief
in rationality.

Corollary 4.3.1 (Existence) For every game and every player, there is at least one belief hierarchy
that expresses common belief in rationality, is symmetric, and uses one theory per choice.

Theorem 4.3.5 reveals that simplicity of a belief hierarchy can be viewed as a particular form
of symmetry. However, a simple belief hierarchy has additional properties that a symmetric belief
hierarchy need not have. Remember that in a simple belief hierarchy βi, player i believes that his
opponents are correct about the actual belief hierarchy βi he has. That is, if we follow the arrows in
βi, then all the choices ci for player i that are reached will give rise to the same belief hierarchy βi. As
an illustration, consider the beliefs diagram of Figure 4.3.2 for “When Chris joins the party”, and the
simple belief hierarchy β1 for you that starts at your choice green. It may be verified that the belief
hierarchy for you that starts at your other choice red is exactly the same as β1. Hence, there is only
one belief hierarchy β1 for you in this beliefs diagram, and the same holds for Barbara and Chris.

This need not be true in a symmetric belief hierarchy. Indeed, consider the beliefs diagram in
Figure 4.2.2 for “When Chris joins the party”, and the symmetric belief hierarchy β1 for you that
starts at your choice green. In that belief hierarchy, you believe with probability 0.5 that Chris assigns
probability 0.2 to the event that you hold the belief hierarchy β′1 that starts at your choice red, which
is different from your actual belief hierarchy β1. Hence, with the symmetric belief hierarchy β1 you
do not believe, with certainty, that Chris is correct about your actual belief hierarchy.

Another property that a simple belief hierarchy has, but which is not necessarily shared by a
symmetric belief hierarchy, is the following: In a game with more than two players, player i believes
that opponent j has the same belief about the choice of a third player k as player i has himself. We
have seen that simple belief hierarchies always display this feature. Symmetric belief hierarchies may
violate this property, however. Consider again the beliefs diagram in Figure 4.2.2 for “When Chris
joins the party”, and the symmetric belief hierarchy for you that starts at your choice red. In that
belief hierarchy, you assign probability 1 to the event that Barbara chooses green, yet at the same
time you believe with probability 0.5 that Chris assigns probability 0.8 to Barbara choosing yellow.
Hence, you do not believe with certainty that Chris shares your belief about Barbara’s choice.
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You gladiator emperor lion
gladiator 5 4 2
emperor 4 5 0

lion 2 6 5

Barbara gladiator emperor lion
gladiator 5 2 4
emperor 2 5 0

lion 4 5 5

Table 4.3.1 Choices and utilities for you and Barbara in “The masquerade ball”

Remember also that in a game with more than two players, a player i with a simple belief hierarchy
holds independent beliefs about the choices of his opponents. That is, player i’s belief about opponent
j’s choice is independent from i’s belief about a second opponent k’s choice. Also this property
need not hold within a symmetric belief hierarchy, as can be seen from the beliefs diagram in Figure
4.2.2. Consider again your symmetric belief hierarchy that starts at your choice green, which assigns
probability 0.5 to the event that Barbara chooses blue and Chris chooses yellow, and assigns probability
0.5 to the event that Barbara chooses yellow and Chris chooses blue. This belief cannot be written
as the product of a probabilistic belief σ2 about Barbara’s choice and a probabilistic belief σ3 about
Chris’choice, and is therefore not independent. We therefore conclude that simple belief hierarchies
may be viewed as a particular instance of symmetry, but display additional properties that may not
be shared by symmetric belief hierarchies.

A direct consequence of Theorem 4.3.5 is that, whenever a choice is optimal for a simple belief
hierarchy that expresses common belief in rationality, then this choice will also be optimal for a
symmetric hierarchy that uses one theory per choice and expresses common belief in rationality. The
other direction, however, is not always true: A choice that is optimal for a symmetric belief hierarchy
that uses one theory per choice and expresses common belief in rationality need not be optimal for a
simple belief hierarchy that expresses common belief in rationality. This will become clear from the
new example that follows.

Example 4.10: The masquerade ball.

This evening there will be a masquerade ball to which Barbara and you will be going. The theme of
the ball is “The Roman empire”, and both of you must choose which Roman outfit to wear. Because
of past Carnival celebrations, you can both dress like a gladiator, an emperor or a lion. Since you will
dance together at the ball, the combination of the outfits will be important. If you both choose the
same oufit, the combination will be perfect and you both get a utility of 5. You like the combination
of a gladiator and an emperor, which would give you a utility of 4 but Barbara a utility of only 2.
Barbara, on the other hand, enjoys the combination of a gladiator and a lion, which would give her a
utility of 4 but you a utility of 2 only. If you dress like a lion and Barbara like an emperor, that would
be extremely funny for you, yielding you a utility of 6, but it would be embarassing for Barbara, who
would get a utility of 0 in this case. Similarly, if Barbara dresses like a lion and you like an emperor,
Barbara would find it very funny too (but not as funny as you deem it), yielding her a utility of 5,
whereas this would be very embarrassing for you, giving you a utility of 0.

All the above can be summarized by the decision problems in Table 4.3.1. Consider the beliefs
diagram at the top of Figure 4.3.3, and verify that it is induced by the symmetric weighted beliefs
diagram at the bottom of that figure. Hence, all belief hierarchies in the beliefs diagram are symmetric.
As every choice only appears once, and all arrows are solid, we may also conclude that all these belief
hierarchies additionally use one theory per choice, and express common belief in rationality.

Question 4.3.3 Find the canonical correlated equilibrium that induces this beliefs diagram.



4.3. ONE THEORY PER CHOICE 183

Figure 4.3.3 A beliefs diagram and an associated weighted beliefs diagram for “The masquerade ball”
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Note that your choice gladiator is optimal for the belief hierarchy that starts at your choice
gladiator, your choice emperor is optimal for the belief hierarchy that starts at your choice emperor,
and your choice lion is optimal for the belief hierarchy that starts at your choice lion. Hence, you can
rationally make each of your three choices under common belief in rationality with a symmetric belief
hierarchy that uses one theory per choice.

However, we will see that under common belief in rationality with a simple belief hierarchy, you
cannot rationally choose to dress like an emperor. Suppose, contrary to what we want to show, that
you could rationally choose emperor under common belief in rationality with a simple belief hierarchy.
Then we know, by Theorem 4.1.2, that there must be a Nash equilibrium (σ1, σ2) in which your choice
emperor is optimal.

This is only possible, however, if σ2 assigns positive probability to Barbara’s choices gladiator and
emperor. Indeed, if σ2 would assign probability 0 to Barbara’s choice gladiator, then your choice
lion would be better than your choice emperor. If, on the other hand, σ2 would assign probability 0
to Barbara’s choice emperor, then your choice gladiator would be better than your choice emperor.
Therefore, emperor can only be optimal for you if σ2(gladiator) > 0 and σ2(emperor) > 0. Since
(σ1, σ2) is a Nash equilibrium, both gladiator and emperor must be optimal for Barbara under the
belief σ1. This cannot be, however. To see this, note that emperor can only be optimal for Barbara
if σ1(emperor) = 1 , since otherwise Barbara’s choice lion would be better than her choice emperor.
Please verify this. But if σ1(emperor) = 1, Barbara’s choice gladiator cannot be optimal for her under
the belief σ1. And hence we obtain a contradiction.

We must therefore conclude that your choice emperor cannot be optimal in a Nash equilibrium
(σ1, σ2), and you can thus not rationally dress like an emperor under common belief in rationality
with a simple belief hierarchy.

Question 4.3.4 Find a Nash equilibrium in which your choice gladiator is optimal, and another Nash
equilibrium in which your choice lion is optimal.

In view of the question above, we know that under common belief in rationality with a simple
belief hierarchy you can rationally dress like a gladiator or a lion, but not like an emperor.

The intuitive reason why a simple belief hierarchy, in combination with common belief in rational-
ity, rules out your choice emperor is the following: In order for your choice emperor to be optimal, you
must assign a positive probability to Barbara choosing gladiator and to Barbara choosing emperor.
Since your belief hierarchy is simple, you believe that Barbara believes your are correct about her
belief hierarchy, and hence you only deem possible one belief hierarchy β2 for Barbara. Since you
assign positive probability to Barbara choosing gladiator and to Barbara choosing emperor, these two
choices must both be optimal for Barbara under the same belief hierarchy β2. This, however, cannot
be, since Barbara’s choice emperor can only be optimal if she is certain you will choose emperor as
well, in wich case it would be suboptimal for Barbara to choose gladiator.

Under common belief in rationality with a symmetric belief hierarchy, on the other hand, you may
still assign positive probability to Barbara choosing gladiator and emperor, because you may support
these two choices of Barbara by two different belief hierarchies. Consider, for instance, the beliefs
diagram in Figure 4.3.3 and your symmetric belief hierarchy that starts at your choice emperor. This
symmetric belief hierarchy supports your choice emperor. In that belief hierarchy, you assign positive
probability to Barbara’s choices gladiator and emperor. Importantly, you support Barbara’s choice
gladiator by the belief hierarchy that starts at her choice gladiator, whereas you support her choice
emperor by the different belief hierarchy that starts at her choice emperor.
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Common belief in rationality with ... Optimal choices are those that ...
... survive iterated elimination of

strictly dominated choices
symmetric belief hierarchy are optimal in a correlated equilibrium
symmetric belief hierarchy using are optimal in a canonical correlated equilibrium
one theory per choice

simple belief hierarchy are optimal in a Nash equilibrium

Table 4.4.1 Comparison of the concepts in Chapters 3 and 4

This is not possible in a simple belief hierarchy: There, you must use one and the same belief
hierarchy β2 for Barbara to support each of Barbara’s choices that you assign positive probability to.

4.4 Comparison of the Concepts

To conclude this chapter, we will compare the four concepts we have discussed in Chapters 3 and 4:
common belief in rationality, common belief in rationality with a simple belief hierarchy, common belief
in rationality with a symmetric belief hierarchy, and common belief in rationality with a symmetric
belief hierarchy using one theory per choice. In Table 4.4.1 we compare the concepts in terms of
the characterization of the choices that can rationally be made under the concept at hand. In this
table, we have listed the four concepts from least restrictive (common belief in rationality) to most
restrictive (common belief in rationality with a simple belief hierarchy). Recall from the previous
section that every simple belief hierarchy is symmetric and uses one theory per choice, and hence the
fourth concept is indeed more restrictive than the third.

We next compare the four concepts according to the choices they select for you in the various
examples of Chapters 3 and 4. See Table 4.4.2. In the first column we indicate for every example the
section in which it was first introduced. In the other four columns, we indicate the choice(s) selected
for you by the associated concept in that example. We also indicate the section in which it was shown
that these were precisely the choices you can rationally make under the concept at hand. Consider, for
instance, the example “Going to a party”, and the second column that corresponds to common belief
in rationality without further restrictions. In the corresponding cell, we state that under common
belief in rationality you can only rationally choose the color blue, and this has been shown in Section
3.4.3. This implies that under the other three concepts, which are all more restrictive than common
belief in rationality, the only choice you can rationally make must also be blue. Hence, no section
needs to be specified at the other three columns for the example “Going to a party”, because these
results follow from the result of common belief in rationality.

Or consider the example “When Chris joins the party”. In Section 3.4.3 it was shown that under
common belief in rationality you can rationally choose green and red. Later, in Section 4.1.3, we have
shown that under common belief in rationality with a simple belief hierarchy, you can also rationally
choose green and red. As a consequence, you can also rationally choose green and red, but no other
colors, under common belief in rationality with a symmetric belief hierarchy, or under common belief
in rationality with a symmetric belief hierarchy that uses one theory per choice. The reason is that
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Choices you can rationally make under
common belief in rationality with ...

a symmetric
a symmetric belief hierarchy using a simple

Example ... belief hierarchy one theory per choice belief hierarchy

Going to a party blue blue blue blue
(Section 3.1)

(Section 3.4.3)
When Chris joins party green, red green, red green, red green, red

(Section 3.2.2)
(Section 3.4.3) (Section 4.1.3)

Movie for two Palace, Corner, home home home
(Section 4.1.1) home

(Section 4.1.1) (Section 4.2.4) (Section 4.1.3)
Opera for three home, opera home home home
(Section 4.1.3)

(Section 4.1.3) (Section 4.2.4) (Section 4.1.3)
Rock, paper, scissors rock, paper, rock, paper, rock, paper, rock, paper,

(Section 4.2.1) scissors, bomb scissors, bomb scissors scissors

(Section 4.2.4) (Section 4.3.3) (Question 4.4.1)
Masquerade ball gladiator, gladiator, gladiator, gladiator,
(Section 4.3.4) emperor, lion emperor, lion emperor, lion lion

(Section 4.3.4) (Section 4.3.4)

Table 4.4.2 The four concepts in the various examples
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the latter two concepts are both more restrictive than common belief in rationality, but less restrictive
than common belief in rationality with a simple belief hierarchy. Therefore, no sections need to be
specified for the third and fourth column at this particular example.

In the same fashion, it can be verified that all the results at cells without a section number follow
from the results of cells with a section number. There is only one exception in the table: For the
example “Rock, paper, scissors”we have not shown yet that under common belief in rationality with
a simple belief hierarchy, you can rationally choose rock, paper and scissors. This will be the task in
the following question.

Question 4.4.1 In the example “Rock, paper, scissors”, find a single Nash equilibrium in which each
of your choices rock, paper and scissors is optimal.

Hence, in light of Theorem 4.1.2, you can rationally choose rock, paper and scissors under common
belief in rationality with a simple belief hierarchy.

Table 4.4.2 shows, among other things, that the four concepts may yield different optimal choices
in a game. In “Movie for two”, for instance, you can rationally choose Palace under common belief in
rationality, but not under common belief in rationality with a symmetric belief hierarchy. In “Rock,
paper, scissors”, you can rationally choose bomb under common belief in rationality with a symmetric
belief hierarchy, but not under common belief in rationality with a symmetric belief hierarchy that
uses one theory per choice. In “The masquerade ball ”, finally, you can rationally choose emperor
under common belief in rationality with a symmetric belief hierarchy that uses one theory per choice,
but not under common belief in rationality with a simple belief hierarchy. That is, the four concepts
are fundamentally different not only in terms of the restrictions they impose on a belief hierarchy, but
also when it comes to the optimal choices they induce.
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4.5 Proofs

4.5.1 Proofs of Section 4.1
Proof of Theorem 4.1.1. See the arguments in Section 4.1.2. �

Proof of Theorem 4.1.2. See the arguments in Section 4.1.2. �

To prove Theorem 4.1.3 we need some additional definitions and a mathematical result known as
Kakutani’s fixed point theorem (Kakutani (1941)). This result states that, under some conditions, a
correspondence is guaranteed to have a fixed point. Before we can state Kakutani’s fixed point theorem
formally, we must first define what we mean by a correspondence, a fixed point, and we must formally
introduce the conditions assumed in the theorem.

Let X be some finite set, and let A ⊆ RX be some subset of the linear space RX . Recall from
Section 2.7.1.1 that RX contains all vectors v that assign a number v(x) ∈ R to every element x ∈ X.
A correspondence from A to A is a mapping F that assigns to every vector a ∈ A a nonempty set
of vectors F (A) ⊆ A. Hence, a function is a special case of a correspondence where F (a) consists
of a single vector for every a ∈ A. A vector a∗ ∈ A is called a fixed point of the correspondence F
if a∗ ∈ F (a∗). That is, the image of the vector a∗ under F contains the vector a∗ itself. Not every
correspondence F from A to A has a fixed point. The question we wish to answer is: Can we find
conditions on the correspondence F which guarantee that F has at least one fixed point? Kakutani’s
fixed point theorem presents one such set of conditions. We will now present these conditions.

Recall from Section 2.7.1.4 that a set A ⊆ RX is convex if for every two points a, b ∈ A, and every
number λ ∈ [0, 1], the convex combination (1 − λ) · a + λ · b is also in A. Geometrically, the convex
combination (1 − λ) · a + λ · b is a point on the line segment between a and b. Hence, in geometric
terms, a set A is convex if the line segment between any two points a, b ∈ A is completely contained
in A. We call the correspondence F from A to A convex-valued if F (a) is a non-empty convex set for
every a ∈ A. Recall from Section 2.7.3 what it means for the set A to be closed and bounded. A set
A ⊆ RX is compact if it is both closed and bounded.

Finally, the correspondence F from A to A is upper-semicontinuous if for every two sequences
(ak)k∈N and (bk)k∈N in A the following holds: if bk ∈ F (ak) for all k, the sequence (ak)k∈N converges
to a ∈ A, and the sequence (bk)k∈N converges to b ∈ A, then b ∈ F (a). If the correspondence F is
a function, then upper-semicontinuity is just the same as continuity. We are now ready to present
Kakutani’s fixed point theorem.

Theorem 4.5.1 (Kakutani’s fixed point theorem) Let X be a finite set, and A a nonempty,
compact and convex subset of RX . Moreover, let F be a correspondence from A to A which is convex-
valued and upper-semicontinuous. Then, the correspondence F has at least one fixed point.

The proof can be found in the original paper by Kakutani (1941), but also in books like Border
(1985). We are now ready to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. For every player i, let ∆(Ci) denote the set of probability distributions
on Ci. So, every combination of beliefs (σ1, ..., σn) belongs to the set ∆(C1)× ...×∆(Cn). By

A := ∆(C1)× ...×∆(Cn)

we denote the set of all such belief combinations. Hence, A is a subset of some linear space RX .
Moreover, it may easily be verified that the set A is nonempty, compact and convex.
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For every (σ1, ..., σn) ∈ A and every player i, let Copti (σ1, ..., σn) be the set of choices ci ∈ Ci that
are optimal under the belief σ−i. By ∆(Copti (σ1, ..., σn)) we denote the set of probability distributions
in ∆(Ci) that only assign positive probability to choices in C

opt
i (σ1, ..., σn). Define now the correspon-

dence Copt from A to A, which assigns to every belief combination (σ1, ..., σn) ∈ A the set of belief
combinations

Copt(σ1, ..., σn) := ∆(Copt1 (σ1, ..., σn))× ...×∆(Coptn (σ1, ..., σn)),

which is a subset of ∆(C1)× ...×∆(Cn), and hence is a subset of A.
It may easily be verified that the set Copt(σ1, ..., σn) is nonempty and convex for every (σ1, ..., σn). It

thus follows that the correspondence Copt is convex-valued. We now show that the correspondence Copt

is upper-semicontinuous. That is, we must show that for every sequence (σk1, ..., σ
k
n)k∈N converging to

some (σ1, ..., σn), and every sequence (σ̂k1, ..., σ̂
k
n)k∈N converging to some (σ̂1, ..., σ̂n) with (σ̂k1, ..., σ̂

k
n) ∈

Copt(σk1, ..., σ
k
n) for every k, it holds that (σ̂1, ..., σ̂n) ∈ Copt(σ1, ..., σn).

Suppose, contrary to what we want to prove, that (σ̂1, ..., σ̂n) /∈ Copt(σ1, ..., σn). Then, there is
some player i such that σ̂i assigns positive probability to some ci, whereas ci is not optimal under σ−i.
But then, if k is large enough, σ̂ki assigns positive probability to ci, and ci is not optimal under σ

k
−i.

However, this contradicts the assumption that (σ̂k1, ..., σ̂
k
n) ∈ Copt(σk1, ..., σ

k
n). So, we conclude that

(σ̂1, ..., σ̂n) ∈ Copt(σ1, ..., σn), and hence the correspondence Copt is upper-semicontinuous.
Summarizing, we see that the set A = ∆(C1)× ...×∆(Cn) is nonempty, compact and convex, and

that the correspondence Copt from A to A is upper-semicontinuous and convex-valued. By Kakutani’s
fixed point theorem, it then follows that Copt has at least one fixed point (σ∗1, ..., σ

∗
n) ∈ A. That is,

there is some (σ∗1, ..., σ
∗
n) ∈ A with

(σ∗1, ..., σ
∗
n) ∈ Copt(σ∗1, ..., σ∗n).

By definition of Copt this means that for every player i, we have that σ∗i ∈ ∆(Copti (σ∗1, ..., σ
∗
n)). So,

for every player i, the probability distribution σ∗i only assigns positive probability to choices ci that
are optimal under σ∗−i. This means, however, that (σ∗1, ..., σ

∗
n) is a Nash equilibrium. So, a Nash

equilibrium always exists. �

4.5.2 Proofs of Section 4.2
Proof of Theorem 4.2.1. (a) Suppose first that a belief hierarchy βi is symmetric. We will show
that βi is induced by a common prior π on choice-type combinations.

Since βi is symmetric, it is part of a beliefs diagram which is induced by a symmetric weighted
beliefs diagram. Consider some arrow a from (ci, ti) to (cj , tj)j 6=i in this symmetric weighted beliefs
diagram. Since the weighted beliefs diagram is symmetric, every symmetric counterpart to a is present
in the weighted beliefs diagram, and has the same weight as a. That is, for every choice-type com-
bination (c, t) = (ci, ti)i∈I we can find a unique weight, call it w(c, t), such that every arrow from a
choice-type pair in (c, t) to the opponents’choice-type combination in (c, t) receives the same weight
w(c, t). Here, we assume that every arrow that is not present in the weighted beliefs diagram receives
weight zero.

Now, consider an arbitrary arrow a in the symmetric weighted beliefs diagram, from the choice-
type pair (ci, ti) to an opponents’choice-type combination (c−i, t−i). In the induced beliefs diagram,
the probability assigned to arrow a is then equal to

p(a) =
w(a)∑

arrows a′ leaving (ci,ti)
w(a′)

. (4.5.1)
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Note that w(a) = w((ci, ti), (c−i, t−i)). Moreover, every arrow a′ leaving (ci, ti) is an arrow from (ci, ti)
to a (possibly different) opponents’choice-type combination (c′−i, t

′
−i), which has weight w((ci, ti), (c

′
−i, t

′
−i)).

Together with (4.5.1) this leads to the insight that

p(a) =
w((ci, ti), (c−i, t−i))∑

(c′−i,t
′
−i)∈C−i×T−i

w((ci, ti), (c′−i, t
′
−i))

,

where T−i is the set of opponents’type combinations. As an abbreviation, define

w(ci, ti) :=
∑

(c′−i,t
′
−i)∈C−i×T−i

w((ci, ti), (c
′
−i, t

′
−i))

as the total weight assigned to player i’s choice-type pair (ci, ti). Then, we have that

p(a) =
w((ci, ti), (c−i, t−i))

w(ci, ti)
(4.5.2)

for every arrow a from a choice-type pair (ci, ti) to an opponents’choice-type combination (c−i, t−i).
Let C × T be the set of all choice combinations (ci, ti)i∈I , and let

W :=
∑

(c,t)∈C×T
w(c, t)

be the sum of the weights assigned to all choice-type combinations. Define new weights π(c, t) by

π(c, t) :=
1

W
· w(c, t) (4.5.3)

for all choice-type combinations (c, t). That is, we take the original weight w(c, t) and divide it by the
sum of all weights. What is special about these new weights π(c, t) is that the sum of all weights is
equal to 1. This follows from the observation that∑

(c,t)∈C×T
π(c, t) =

∑
(c,t)∈C×T

1

W
· w(c, t) =

1

W
·

∑
(c,t)∈C×T

w(c, t) =
1

W
·W = 1.

But then, the new weights π(c, t) constitute a probability distribution over the choice-type combina-
tions in C × T, as every number π(c, t) is non-negative, and the sum of all numbers is equal to 1.
Hence, π is a common prior on choice-type combinations.

In the induced beliefs diagram, consider an arrow a from a choice-type pair (ci, ti) to an opponents’
choice-type combination (c−i, t−i). By (4.5.2) and (4.5.3) it follows that

p(a) =
π((ci, ti), (c−i, t−i))

π(ci, ti)
, (4.5.4)

where
π(ci, ti) :=

∑
(c′−i,t

′
−i)∈C−i×T−i

π((ci, ti), (c
′
−i, t

′
−i))

is the total probability assigned by π to player i’s choice-type pair (ci, ti).
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This means, however, that the beliefs diagram so constructed is induced by the common prior π
on choice-type combinations. In particular, the belief hierarchy βi we started with is induced by this
common prior π. This completes the proof for part (a).

(b) Suppose now that the belief hierarchy βi is induced by a common prior π on choice-type combi-
nations. We will show that βi is symmetric.

Note that, by definition, βi is part of a beliefs diagram that is induced by the common prior
π. We will show that this beliefs diagram is induced by a symmetric weighted beliefs diagram. To
see this, take an arrow a from a choice-type pair (ci, ti) to an opponents’ choice-type combination
(c−i, t−i), present in this beliefs diagram. By part (b) in Definition 4.2.2 it must then be the case
that π((ci, ti), (c−i, t−i)) > 0. Hence, for every player j, the symmetric counterpart of a will then be
present also, since ((cj , tj), (c−j , t−j)) = ((ci, ti), (c−i, t−i)) and hence π((cj , tj), (c−j , t−j)) > 0. That
is, for every arrow in the beliefs diagram, every symmetric counterpart of this arrow will be present
as well. Now, construct a weighted beliefs diagram in which every arrow a from a choice-type pair
(ci, ti) to an opponents’choice-type combination (c−i, t−i) receives the weight

w(a) := π((ci, ti), (c−i, t−i)). (4.5.5)

We have already seen that for every opponent j, the symmetric counterpart to arrow a is also present.
Moreover, by (4.5.5), the symmetric counterpart to a receives the same weight π(c, t) as a, where
(c, t) = ((ci, ti), (c−i, t−i)). We therefore conclude that the weighted beliefs diagram so constructed is
symmetric.

From (4.5.5) it follows that∑
arrows a′ leaving (ci,ti)

w(a′) =
∑

(c′−i,t
′
−i)∈C−i×T−i

π((ci, ti), (c
′
−i, t

′
−i)) = π(ci, ti). (4.5.6)

Consider an arrow a from a choice-type pair (ci, ti) to an opponents’choice-type combination (c−i, t−i).
By part (b) in Definition 4.2.2, and equations (4.5.5) and (4.5.6), we know that the probability of arrow
a in the beliefs diagram is

p(a) =
π((ci, ti), (c−i, t−i))

π(ci, ti)
=

w(a)∑
arrows a′ leaving (ci,ti)

w(a′)
.

This means, however, that the beliefs diagram is induced by the symmetric weighted beliefs diagram
constructed above. Since the belief hierarchy βi is part of this beliefs diagram, we conclude that βi is
symmetric. This completes the proof of part (b). �

Proof of Theorem 4.2.2. (a) Suppose first that the belief hierarchy βi is symmetric and expresses
common belief in rationality. Then, we know by Theorem 4.2.1 that the belief hierarchy βi is induced
by a common prior π∗ on choice-type combinations. Suppose that, within a beliefs diagram in choice-
type representation, βi starts at the choice-type (c∗i , t

∗
i ). We say that a choice-type pair (cj , tj) can

be reached within one step from (c∗i , t
∗
i ) if π((cj , tj) | (c∗i , t

∗
i )) > 0. Here, π((cj , tj) | (c∗i , t

∗
i )) denotes

the probability that π(· | (c∗i , t
∗
i )) assigns to all the opponents’choice-type combinations that contain

(cj , tj). Say that a choice-type pair (cj , tj) can be reached within two steps from (c∗i , t
∗
i ) if there is a

pair (cm, tm) that can be reached within one step from (c∗i , t
∗
i ) such that π((cj , tj) | (cm, tm)) > 0. For

k ≥ 3, we inductively define reachability within k steps as follows: Say that a choice-type pair (cj , tj)
can be reached within k steps from (c∗i , t

∗
i ) if there is a pair (cm, tm) that can be reached within k− 1

steps from (c∗i , t
∗
i ) such that π((cj , tj) | (cm, tm)) > 0.
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For every player j (including i) let (Cj × Tj)∗ be the sets of choice-type pairs that can be reached
within finitely many steps from (c∗i , t

∗
i ). Moreover, let π be the restriction of π

∗ to choice-type pairs
in (Cj × Tj)∗ given by

π((cj , tj)j∈I) :=
π∗((cj , tj)j∈I)∑

(c′j ,t
′
j)j∈I∈×j∈I(Cj×Tj)∗

π∗((c′j , t
′
j)j∈I)

for every (cj , tj)j∈I ∈ ×j∈I(Cj × Tj)∗, and let π((cj , tj)j∈I) := 0 otherwise.
Then, it may be verified that the belief hierarchy βi is induced by the common prior π. We show

that π is a correlated equilibrium.
For every player j, let T ∗j be the set of types that enter in (Cj × Tj)∗. Assume, without loss of

generality, that for every two choice-type pairs (cj , tj), (c
′
j , t
′
j) ∈ (Cj × Tj)∗ with cj 6= c′j we have that

tj 6= t′j . Then, for every type tj ∈ T ∗j there is a unique choice cj [tj ] ∈ C∗j such that (cj [tj ], tj) ∈
(Cj × Tj)∗.

We create an epistemic model with sets of types T ∗j for every player j, and where the beliefs of the
types are given by

bj(tj)((cm, tm)m6=j) := π((cm, tm)m6=j | (cj [tj ], tj)) (4.5.7)

for every tj ∈ T ∗j , and every (cm, tm)m6=j ∈ ×m 6=j(Cm × Tm)∗.
Recall that the belief hierarchy βi starts at the choice-type pair (c∗i , t

∗
i ) = (ci[t

∗
i ], t
∗
i ). Then, by

construction, the belief hierarchy βi is the belief hierarchy induced by the type t
∗
i within this epistemic

model. We can always select the choice c∗i such that c
∗
i is optimal for t

∗
i , as this does not affect the

belief hierarchy βi. Let us therefore assume, without loss of generality, that c
∗
i is optimal for t

∗
i . In

other words, ci[t∗i ] is optimal for t
∗
i .

We will now show that for every player j and every tj ∈ Tj∗, the choice cj [tj ] is optimal for tj .
If j = i and ti = t∗i , then we know this from our assumption above. Assume now that tj 6= t∗i .
Then, (cj [tj ], tj) ∈ (Cj × Tj)∗. Hence, in view of (4.5.7), there is a choice-type pair (cm, tm) reachable
from (c∗i , t

∗
i ) such that bm(tm)(cj [tj ], tj) > 0. As the belief hierarchy βi expresses common belief in

rationality, and βi is the belief hierarchy held by the type t
∗
i , we conclude that t

∗
i expresses common

belief in rationality. Since (cm, tm) is reachable from (c∗i , t
∗
i ), it follows that tm believes in j’s rationality.

As bm(tm)(cj [tj ], tj) > 0, it must thus be that cj [tj ] is optimal for tj .
Now, take some player j and some (cj , tj) ∈ Cj × T ∗j with π(cj , tj) > 0. Then, cj = cj [tj ]. By our

insights above, we thus know that cj [tj ] is optimal for tj . By (4.5.7), the first-order belief of type tj
is π(· | (cj , tj)). As cj is optimal for tj , it follows that cj is optimal for the induced first-order belief
π(· | (cj , tj)). We thus conclude that π is a correlated equilibrium. Hence, the belief hierarchy βi is
induced by a correlated equilibrium.

(b) Assume next that the belief hierarchy βi is induced by a correlated equilibrium π. As π is a
common prior on choice-type combinations, it follows by Theorem 4.2.1 that βi is symmetric. It
remains to show that βi expresses common belief in rationality.

Suppose that βi is generated within a beliefs diagram in choice-type representation, and that βi
starts at the choice-type pair (c∗i , t

∗
i ). For every player j, let (Cj × Tj)

∗ be the set of choice-type
pairs that enter in this beliefs diagram. Moreover, let T ∗j be the set of types that enter in the beliefs
diagram. Similarly to part (a), we assume that for every tj ∈ T ∗j there is a unique choice cj [tj ] such
that (cj [tj ], tj) ∈ (Cj × Tj)∗.

We construct an epistemic model with set of types T ∗j for every player j, and where the beliefs of
the types are given by

bj(tj)((cm, tm)m6=j) := π((cm, tm)m 6=j | (cj [tj ], tj)) (4.5.8)
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for every tj ∈ T ∗j , and every (cm, tm)m6=j ∈ ×j 6=m(Cm × Tm)∗. Similarly for player j’s types.
Recall that the belief hierarchy is induced by the correlated equilibrium π and starts at the choice-

type pair (c∗i , t
∗
i ). In view of (4.5.8), the belief hierarchy βi is precisely the belief hierarchy held by

the type t∗i . We will now show that t
∗
i expresses common belief in rationality. By Theorem 3.3.1 it is

suffi cient to show that every type in the epistemic model above believes in the opponents’rationality.
For some player j, take a type tj ∈ T ∗j and an opponents’choice-type combination (cm, tm)m 6=j ∈

×m6=j(Cm × T ∗m) with bj(tj)((cm, tm)m6=j) > 0. Then, we know by (4.5.8) that π((cm, tm)m6=j |
(cj [tj ], tj)) > 0. This implies that π(cm, tm) > 0 for every player m 6= j. Fix a player m 6= j. As
π is a correlated equilibrium and π(cm, tm) > 0, we know that cm is optimal for the induced first-order
belief π(· | (cm, tm)). By (4.5.8) we know that tm’s first-order belief is π(· | (cm, tm)). Therefore, cm is
optimal for the type tm. We thus conclude that tj believes in the opponents’rationality.

As such, every type in the epistemic model believes in the opponents’rationality. This, in turn,
implies that every type expresses common belief in rationality. In particular, type t∗i expresses common
belief in rationality, which means that belief hierarchy βi expresses common belief in rationality. This
completes the proof. �

Proof of Theorem 4.2.3. See the arguments in Section 4.2.3. �

4.5.3 Proofs of Section 4.3
Proof of Theorem 4.3.1. See the arguments in Section 4.3.1. �

Proof of Theorem 4.3.2. See the arguments in Section 4.3.2. �

Proof of Theorem 4.3.3. See the arguments in Section 4.3.3. �

Proof of Theorem 4.3.4. See the arguments in Section 4.3.3. �

Proof of Theorem 4.3.5. Consider a simple belief hierarchy β∗i for player i generated by a combi-
nation of beliefs (σ1, ..., σn). Design a weighted beliefs diagram as follows: Every choice ci of a player
i appears at most once. Moreover, choice ci is present in the weighted beliefs diagram precisely when
σi(ci) > 0. For every choice ci and opponents’choice combination (cj)j 6=i, include the arrow a from ci
to (cj)j 6=i in the diagram precisely when σi(ci) > 0 and σj(cj) > 0 for every opponent j 6= i. Moreover,
set the weight of this arrow a equal to

w(a) = σi(ci) ·
∏
j 6=i

σj(cj) = σ1(c1) · σ2(c2) · ... · σn(cn). (4.5.9)

It can then be shown that this weighted beliefs diagram is symmetric, and that it induces a beliefs
diagram that the belief hierarchy β∗i is part of.

To see why it is symmetric, consider an arbitrary arrow a in the weighted beliefs diagram, from a
choice ci to an opponents’choice combination (cj)j 6=i. Then, it must be the case that σi(ci) > 0 and
σj(cj) > 0 for every opponent j 6= i. That is, σk(ck) > 0 for all players k. But then, for every opponent
j, the symmetric arrow from cj to (ck)k 6=j must also be in the diagram. Moreover, both a and each of
its symmetric counterparts carry the same weight, which by (4.5.9) is

σ1(c1) · σ2(c2) · ... · σn(cn).

We thus conclude that the weighted beliefs diagram is symmetric.
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Now consider the beliefs diagram induced by this symmetric weighted beliefs diagram. Since every
choice appears at most once, all belief hierarchies use one theory per choice. Look at the belief
hierarchy βi for player i that starts at some arbitrary choice ci in the beliefs diagram. We will see that
this belief hierarchy βi is exactly the simple belief hierarchy β

∗
i for player i generated by (σ1, ..., σn)

—the belief hierarchy we started from.
Since the belief hierarchy βi starts at choice ci, it must be the case that σi(ci) > 0. Now, consider

an arrow a from ci to an opponents’choice combination (σj)j 6=i in the induced beliefs diagram. Then,
we must have that σj(cj) > 0 for all opponents j 6= i, and by (4.5.9) this arrow a carries the weight

w(a) = σ1(c1) · σ2(c2) · ... · σn(cn) (4.5.10)

in the weighted beliefs diagram. Therefore, by part (d) in Definition 4.2.1, the probability p(a) of this
arrow is equal to

p(a) =
w(a)∑

arrows a′ leaving ci
w(a′)

. (4.5.11)

By construction, the arrows leaving ci are precisely the arrows a′ from ci to some opponents’choice
combination (c′j)j 6=i where σj(c

′
j) > 0 for all j 6= i, and every such arrow a′ carries the weight

w(a′) = σi(ci) ·
∏
j 6=i

σj(c
′
j).

Therefore,

∑
arrows a′ leaving ci

w(a′) =
∑

(c′j)j 6=i∈C−i : σj(c′j)>0 for all j 6=i

σi(ci) ·∏
j 6=i

σj(c
′
j)


=

∑
(c′j)j 6=i∈C−i

σi(ci) ·∏
j 6=i

σj(c
′
j)


= σi(ci) ·

∑
(c′j)j 6=i∈C−i

∏
j 6=i

σj(c
′
j)


= σi(ci) ·

∏
j 6=i

 ∑
c′j∈Cj

σj(c
′
j)


= σi(ci) · 1 = σi(ci).

In the second equality we use the fact that summing over choice combinations (c′j)j 6=i with σj(c
′
j) = 0

for some j 6= i does not change the result, because the term σi(ci) ·
∏
j 6=i σj(c

′
j) will be 0 in this

case. In the third equality we take the constant term σi(ci) outside the sum. The fourth equality is
based on elementary algebraic manipulations, whereas in the fifth equality we use the fact that σj is
a probability distribution on Cj and therefore

∑
c′j∈Cj

σj(c
′
j) = 1. Hence, we conclude that

∑
arrows a′ leaving ci

w(a′) = σi(ci). (4.5.12)
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By combining (4.5.11), (4.5.10) and (4.5.12) we see that in the induced beliefs diagram, the arrow
a from ci to the opponents’choice combination (σj)j 6=i has probability

p(a) =
w(a)∑

arrows a′ leaving ci
w(a′)

=
σ1(c1) · σ2(c2) · ... · σn(cn)

σi(ci)
=
∏
j 6=i

σj(cj). (4.5.13)

Since this is independent from the choice ci we started at, we conclude that in the induced beliefs
diagram, every arrow from a choice of player i to the opponents’choice combination (σj)j 6=i has the
same probability

∏
j 6=i σj(cj).

In the induced beliefs diagram, let us start at an arbitrary choice ci for player i with σi(ci) > 0,
and let us keep following the arrows to derive the induced belief hierarchy βi for player i. By (4.5.13)
above, every arrow from ci to an opponents’choice combination (σj)j 6=i has probability

∏
j 6=i σj(cj).

Hence, in the first-order belief, player i assigns probability
∏
j 6=i σj(cj) to every opponents’ choice

combination (σj)j 6=i, just as in the simple belief hierarchy β∗i generated by (σ1, ..., σn).
Consider an arrow from ci to an arbitrary opponent’s choice cj with σj(cj) > 0. By (4.5.13), every

arrow from cj to an opponents’choice combination (ck)k 6=j has probability
∏
k 6=j σk(ck). That is, in

the second-order belief, player i believes that player j assigns to every opponents’choice combination
(σk)k 6=j probability

∏
k 6=j σk(ck), just as in the simple belief hierarchy β

∗
i generated by (σ1, ..., σn).

By continuing in this fashion, we can also show that in the third-order belief, player i believes that
every opponent j believes that every other player k assigns probability

∏
l 6=k σl(cl) to every opponents’

choice combination (σl)l 6=k, just as in the simple belief hierarchy β∗i generated by (σ1, ..., σn), and
similarly for all higher-order beliefs.

In other words, in the beliefs diagram induced by the weighted beliefs diagram above, every belief
hierarchy for player i is the same as the simple belief hierarchy β∗i generated by (σ1, ..., σn). As a
consequence, there is only one belief hierarchy for every player i in the induced beliefs diagram, which
is the simple belief hierarchy β∗i generated by (σ1, ..., σn). Since the weighted beliefs diagram above is
symmetric, the simple belief hierarchy β∗i generated by (σ1, ..., σn) can be generated from a symmetric
weighted beliefs diagram, and is therefore symmetric. As we have seen above that all belief hierarchies
in the beliefs diagram use one theory per choice, we know that β∗i has one theory per choice as well.
This completes the proof. �

Proof of Corollary 4.3.1. See the arguments in Section 4.3.4. �
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Solutions to In-Chapter Questions

Question 4.1.1. Your second-order belief is that you believe that Barbara believes that you stay at
home. Since you believe that Barbara believes that you indeed believe that Barbara believes that you
stay at home, you believe that Barbara is correct about your second-order belief.

Question 4.1.2. In the belief hierarchy that starts at your choice blue, you believe that Barbara
chooses red, and believe that Barbara believes that you indeed believe that Barbara chooses red.
Hence, you believe that Barbara is correct about your first-order belief. In the belief hierarchy that
starts at your choice green, you believe that Barbara chooses blue, but at the same time you believe
that Barbara assigns probability 0.4 to the event that you believe that Barbara chooses yellow. Hence,
you do not believe that Barbara is correct about your first-order belief. In the belief hierarchy that
starts at your choice red, your first-order belief is that you assign probability 0.6 to Barbara choosing
blue and probability 0.4 to Barbara choosing green. At the same time, you assign probability 0.4 to
the event that Barbara believes that you assign probability 1 to Barbara choosing blue. Hence, you do
not believe that Barbara is correct about your first-order belief. Consider finally the belief hierarchy
that starts at your choice yellow. There, you believe that Barbara chooses yellow, but you believe
that Barbara believes that you assign probability 0.6 to Barbara choosing blue and probability 0.4
to Barbara choosing green. Hence, you do not believe that Barbara is correct about your first-order
belief.

Question 4.1.3. The probability you believe that Chris assigns to you wearing green and Barbara
wearing blue is

σ1(green) · σ2(blue) = 1 · (0.3) = 0.3.

The probability you believe that Chris assigns to you wearing green and Barbara wearing red is

σ1(green) · σ2(red) = 1 · (0.7) = 0.7.

You believe that Chris assigns probability zero to all other choice combinations by you and Barbara.
You also believe that Barbara believes that Chris has exactly this first-order belief.

Question 4.1.4. Player i believes that j has belief σk about k’s choice. At the same time, i believes
that j believes that every other player l believes that j has belief σk about k’s choice.

Question 4.1.5. Suppose that the probability distribution p = (0.5) · (blue, blue) + (0.5) · (red,
yellow) could be written as the product of a probabilistic belief σ2 about Barbara’s choice and a
probabilistic belief σ3 about Chris’ choice. Since p assigns positive probability to (blue, blue) and
(red, yellow), the belief σ2 must assign positive probability to Barbara’s choices blue and red, and
the belief σ3 must assign positive probability to Chris’ choices blue and yellow. But then, p(blue,
yellow) = σ2(blue) · σ3(yellow) > 0, which is a contradiction.

Question 4.1.6. Consider first your belief hierarchy that starts at your choice green. That belief
hierarchy is simple because it is generated by the combination of beliefs (σ1 = green, σ2 = blue,
σ3 = yellow). Consider next Barbara’s belief hierarchy that starts at her choice yellow. In that belief
hierarchy, Barbara assigns probability 0.3 to you choosing red and probability 0.7 to you choosing
green. At the same time, she believes that Chris assigns probability 1 to you choosing red. Hence,
Barbara believes that Chris has a different belief about your choice as she has herself. Therefore, this
belief hierarchy cannot be simple.
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Question 4.1.7. Consider an opponent j of player i, and an opponent k of player j. Note that k may
be i. Suppose that i believes that j assigns positive probability to k’s choice ck. Then, σk(ck) > 0,
as i believes that j has the belief σk about k’s choice. Since (σ1, ..., σn) is a Nash equilibrium, the
choice ck must be optimal for player k under the belief σ−k. Note that i believes that j believes that
k has belief σ−k about his opponents’choices. Hence, we conclude that if i believes that j assigns
positive probability to k’s choice ck, then ck is optimal for k given what i believes that j believes that
k believes about his opponents’choices. In other words, i believes that j believes in k’s rationality.
As this holds for every opponent k of j, we conclude that i believes that j believes in his opponents’
rationality.

Question 4.1.8. We must show that (σ1 = 1
2 · green +1

2 · red, σ2 = 1
3 · green +2

3 · yellow , σ3 =
blue) is a Nash equilibrium. Note that σ1 assigns positive probability to your choices green and
red. Hence, we must verify that your choices green and red are both optimal under the belief σ−1.
The expected utilities of your three possible choices under the belief σ−1 are u1(green) = 2

3 · 3 = 2,
u1(red) = 2 and u1(yellow) = 1

3 · 1 = 1
3 . Hence, indeed, your choices green and red are both optimal

under the belief σ−1. The belief σ2 assigns probability 1
3 to Barbara’s choice green and probability

2
3 to Barbara’s choice yellow. We must verify that green and yellow are optimal for Barbara under
the belief σ−2. The expected utilities for Barbara’s four choices under the belief σ−2 are u2(blue) = 0,
u2(green) = 1

2 · 4 = 2, u2(red) = 1
2 · 1 = 1

2 and u2(yellow) = 2. Hence, green and yellow are indeed
optimal for Barbara under the belief σ−2. Finally, the belief σ3 assigns probability 1 to Chris’choice
blue. Hence, we must verify that blue is optimal for Chris under the belief σ−3. The expected utilities
for both of Chris’choices under the belief σ−3 are u3(blue) = 2 and u2(yellow) = 1

3 ·1 = 1
3 . Hence, blue

is optimal for Chris under the belief σ−3. We thus conclude that (σ1, σ2, σ3) is a Nash equilibrium.
Above we have already shown that for you, both green and red are optimal under the belief σ−1, and
hence both green and red are optimal for you in this Nash equilibrium.

Question 4.2.1. Note that in the belief hierarchy that starts at your choice red, there is an arrow
from your choice red to Barbara’s choice green, but there is no “symmetric” arrow from Barbara’s
choice green to your choice red. Hence, there can be no symmetric weighted beliefs diagram that
generates this belief hierarchy.

Question 4.2.2. Note first that every choice only appears once in the beliefs diagram. Hence,
for the choice-type representation of the beliefs diagram we only need one type for every choice.
The accociated sets of types thus become T1 = {tg1, tr1} for you, T2 = {tb2, t

y
2, t

g
2} for Barbara and

T3 = {ty3, tb3} for Chris. We know that the beliefs diagram is induced by the symmetric weighted
beliefs diagram in Figure 4.2.2. The weights in this symmetric weighted beliefs diagram induce the
following weights on choice-type combinations:

w((g, tg1), (b, t
b
2), (y, t

y
3)) = 4, w((g, tg1), (y, t

y
2), (b, t

b
3)) = 4,

w((r, tr1), (g, t
g
2), (b, t

b
3)) = 1, w((r, tr1), (g, t

g
2), (y, t

y
3)) = 1.

The sum of all weights is therefore 10. The induced common prior on choice-type combinations π is

π((g, tg1), (b, t
b
2), (y, t

y
3)) = 4/10, π((g, tg1), (y, t

y
2), (b, t

b
3)) = 4/10,

π((r, tr1), (g, t
g
2), (b, t

b
3)) = 1/10, π((r, tr1), (g, t

g
2), (y, t

y
3)) = 1/10.

This common prior on choice-type combinations π induces the beliefs diagram from Figure 4.2.2.

Question 4.2.3. We know that this belief hierarchy is symmetric, because it is induced by the
symmetric weighted beliefs diagram in Figure 4.2.2. Moreover, the belief hierarchy satisfies common
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belief in rationality because all arrows in the beliefs diagram are solid. Hence, we conclude by Theorem
4.2.2 that this belief hierarchy is induced by some correlated equilibrium π. It remains to find a
correlated equilibrium that induces this belief hierarchy. We have seen in Question 4.2.2 that all belief
hierarchies in Figure 4.2.2 are induced by the common prior on choice-type combinations π, where

π((g, tg1), (b, t
b
2), (y, t

y
3)) = 4/10, π((g, tg1), (y, t

y
2), (b, t

b
3)) = 4/10,

π((r, tr1), (g, t
g
2), (b, t

b
3)) = 1/10, π((r, tr1), (g, t

g
2), (y, t

y
3)) = 1/10.

This common prior π on choice-type combinations is in fact a correlated equilibrium. To see why, we
can verify all the optimality conditions. We check only one optimality condition here, as checking the
other conditions can be done in a similar fashion.

Consider your choice-type pair (g, tg1) with π(g, tg1) > 0. Conditional on (g, tg1), the induced belief
π(· | g, tg1) on the opponents’choice-type combinations is given by

π((b, tb2), (y, t
y
3)) | g, t

g
1) =

π((g, tg1), (b, t
b
2), (y, t

y
3))

π(g, tg1)
=

4/10

4/10 + 4/10
= 0.5 and

π((y, ty2), (b, t
b
3)) | g, t

g
1) =

π((g, tg1), (y, t
y
2), (b, t

b
3))

π(g, tg1)
=

4/10

4/10 + 4/10
= 0.5.

Hence, the conditional belief π(· | g, tg1) assigns probability 0.5 to the opponents’choice combinations
(b, y) and (y, b). Since the expected utilities of your three choices under this belief are given by

u1(g, π(· | g, tg1)) = (0.5) · 3 + (0.5) · 3 = 3,

u1(r, π(· | g, tg1)) = (0.5) · 2 + (0.5) · 2 = 2 and

u1(y, π(· |g, tg1)) = (0.5) · 0 + (0.5) · 0 = 0,

it follows that your choice green is optimal for your belief π(· | g, tg1).
In a similar way, the other optimality conditions for you, Barbara and Chris may be verified. We

thus see that π satisfies all optimality conditions, and is therefore a correlated equilibrium. Moreover,
this correlated equilibrium π induces all belief hierarchies from Figure 4.2.2, and hence in particular
the belief hierarchy for you that starts at your choice green.

Question 4.2.4. Consider a single type thome1 for you and a single type thome2 for Barbara. Then,
the common prior π that assigns probability 1 to the choice-type combination ((home, thome1 ), (home,
thome2 )) induces your symmetric belief hierarchy that starts at your choice home.

Question 4.2.5. Consider your belief hierarchy that starts at your choice Palace. There is an arrow
from your choice Palace to Barbara’s choice Palace. However, the symmetric counterpart to it, which
is the arrow from Barbara’s choice Palace to your choice Palace, is not even present. Hence, this
belief hierarchy is not symmetric. A similar argument holds for your belief hierarchy that starts at
your choice Corner.

Question 4.2.6. Consider a single type thome1 for you, a single type thome2 for Barbara and a single type
thome3 for Chris. Then, the common prior π that assigns probability 1 to the choice-type combination
((home, thome1 ), (home, thome2 ), (home, thome3 )) induces your symmetric belief hierarchy that starts at
your choice home.

Question 4.2.7. In the belief hierarchy, there is an arrow from your choice opera to Barbara’s and
Chris’ choice combination (opera, opera). However, the symmetric counterpart for Barbara, which
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Figure 4.5.1 A symmetric weighted beliefs diagram, and induced beliefs diagram, for Question 4.3.1

would be the arrow from Barbara’s choice opera to your and Chris’choice combination (opera, opera),
is not even present. Hence, this belief hierarchy is not symmetric.

Question 4.2.8. We have seen that in every correlated equilibrium we must have that π(home1) = 1.
Therefore, in every correlated equilibrium, the conditional belief π(· | (c3, t3)) for Chris must always
assign probability 1 to you staying at home. Hence, only home can be optimal for Chris for every
conditional belief π(· | (c3, t3)). Since π is a correlated equilibrium, π can only assign positive proba-
bility to choice-type pairs (c3, t3) for Chris where c3 is optimal for π(· | (c3, t3)). But then, π can only
assign positive probability to choice-type pairs (home3, t3) for Chris, and hence π(home3) = 1.

Question 4.3.1. Consider the symmetric weighted beliefs diagram, and the induced beliefs diagram,
in Figure 4.5.1. Since the beliefs diagram is induced by a symmetric weighted beliefs diagram, all belief
hierarchies are symmetric. As every choice only appears once, all belief hierarchies use one theory per
choice. Finally, all belief hierarchies express common belief in rationality because all arrows are solid.

Question 4.3.2. See Figure 4.5.2. Like in a usual beliefs diagram, we use solid and dashed arrows.
If the arrow starts at a choice ci, and ci is not optimal for the belief represented by the arrow, then we
use a dashed arrow instead of a solid arrow. It may be verified that this weighted beliefs diagram is
symmetric. The two belief hierarchies for you, starting at your choices Palace and home, are identical,
as they are both equal to the simple belief hierarchy generated by (σ1 = (0.4)· Palace +(0.6)· home,
σ2 = (0.7)· Corner +(0.3)· home).
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Figure 4.5.2 A symmetric weighted beliefs diagram for Question 4.3.2

Question 4.3.3. This canonical correlated equilibrium π̂ is given by

π̂(gladiator1, gladiator2) = 8/14, π̂(emperor1, gladiator2) = 2/14,

π̂(emperor1, emperor2) = 3/14 and π̂(lion1, lion2) = 1/14 .

Question 4.3.4. Your choice gladiator is optimal in the Nash equilibrium (σ1 = gladiator, σ2 =
gladiator), and your choice lion is optimal in the Nash equilibrium (σ1 = lion, σ2 = lion).

Question 4.4.1. It may be verified that the combinations of beliefs (σ1, σ2), where

σ1 = 1
3 · rock + 1

3 · paper + 1
3 · scissors

and
σ2 = 1

3 · rock + 1
3 · paper + 1

3 · scissors

is a Nash equilibrium. Your choices rock, paper and scissors are all optimal under the belief σ−1 = σ2.
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Figure 4.5.3 A map of the dancing places in “Dancing with Barbara”

Problems

Problem 4.1: Dancing with Barbara.

This evening, both Barbara and you feel like dancing. In town there are four places which are perfect
for dancing: All Night, Beatles Club, Calypso and Disco Inferno. In Figure 4.5.3 you find a map of
these four places. As you can see on the map, the distance between the two closest dancing places is
always 100 meters.

Both you and Barbara can choose between staying at home and studying for the epistemic game
theory exam, or going to one of these four places for an endless evening of dancing, not knowing where
the other person will go. The problem, however, is that you are a terrible dancer whereas Barbara is
a real dancing queen. For that reason, you would like to be as close as possible to Barbara when you
go out dancing, whereas Barbara would like to be as far away from you as possible.

More precisely, if both you and Barbara go out dancing, then your utility would be 300 minus the
distance (in meters) between the two places you and Barbara go to. Barbara’s utility, on the other
hand, would be exactly the distance (in meters) between these two places.

If you stay at home and study for the exam your utility will be 250. However, if you go out dancing
and Barbara stays at home studying for the exam, then you feel guilty and your utility will be 0. The
same holds for Barbara.

(a) Write down the decision problems for you and Barbara.

(b) Find all the choices that you and Barbara can rationally make under common belief in rationality.
Which procedure do you use?

(c) Construct a beliefs diagram for this game with only solid arrows, using all of the choices you
found in (b). For every belief hierarchy of you in this beliefs diagram, discuss whether it (i) expresses
common belief in rationality, (ii) is symmetric, (iii) uses one theory per choice, and (iv) whether it is
simple or not. Motivate your answers.

(d) Construct an epistemic model for this game such that for every choice ci found in (b) there is a
type ti in the epistemic model that expresses common belief in rationality, and for which ci is optimal.

(e) Explain why, in general, every correlated equilibrium can only assign positive probability to choices
that can rationally be made under common belief in rationality.

*(f) Show that there is only one choice you can rationally make under common belief in rationality
with a symmetric belief hierarchy. (Hint: Use part (e)). For this choice, find a symmetric belief
hierarchy that expresses common belief in rationality and for which that choice is optimal. To show
that the belief hierarchy is symmetric, construct a symmetric weighted beliefs diagram that induces
this belief hierarchy.
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(g) Find all the choices you can rationally make under common belief in rationality with a simple belief
hierarchy, and those you can rationally make under common belief in rationality with a symmetric
belief hierarchy using one theory per choice.

Problem 4.2: The flat tyre.

You and Barbara are driving to a ballet performance which starts at 8.00 pm. Today is not your lucky
day, since at 7.30 pm you get a flat tyre, just in front of Deborah’s house. The question is: What
should you do? Essentially, there are three options for you and Barbara: You can either call Deborah,
or call Chris, who lives a few kilometers away, on you can decide to change the wheel yourself. Since
you must act quickly, there is no time for long discussions, and you both decide independently what
to do.

If you both call Deborah, or both call Chris, then this person will come and change the wheel. If
you decide to do it yourself and Barbara calls another person, then this person will come for nothing
since you will have changed the wheel by the time the person has arrived. Similarly if Barbara decides
to change the wheel herself and you call another person. If you both want to do it yourself, then you
will insist so long until Barbara gives in and lets you change the wheel. In all of these occasions, the
car will be fixed and you will both make it in time for the ballet performance. However, if you call
Deborah and Barbara calls Chris, or the other way around, then Deborah and Chris will eventually
see each other at your car and leave, because they have had a fierce argument last week. In that case,
you will definitely be too late for the performance.

There are some situations here that make one of you angry. If you both call Deborah and she
comes to fix the car, then you know by experience that she will only talk to Barbara, which makes
you angry. Moreover, if you call Chris and Barbara decides to change the wheel herself, then you feel
angry because Chris has come all the way for nothing. Similarly, if Barbara calls Chris and you fix the
car yourself, then Barbara will be angry because Chris has come all the way for nothing. Remember
that Deborah lives exactly where the accident happened, hence if she has to come for nothing it is not
such a big deal, and nobody will be angry. However, if you both want to change the wheel yourself,
then Barbara will be angry because you will not let her.

The utilities for you are as follows: If you make it on time for the ballet performance, then this will
increase your utility by 3. Changing the wheel yourself is quite tiring and stressful, and will decrease
your utility by 1, whereas getting angry will decrease your utility by 3. For Barbara the utilities are
similar.

(a) Write down the decision problems for you and Barbara.

(b) Which choices can you and Barbara rationally make under common belief in rationality?

(c) Make a beliefs diagram in which only the choices found in (b) appear, and in which all arrows are
solid. Which belief hierarchies for you express common belief in rationality? Which are symmetric?
Which are simple? Which use one theory per choice?

(d) Show that each of your choices found in (b) can rationally be made under common belief in
rationality with a symmetric belief hierarchy. To show this, construct for each of these choices a
symmetric belief hierarchy that expresses common belief in rationality and for which that choice is
optimal. Represent these belief hierarchies within the same beliefs diagram. Moreover, construct a
symmetric weighted beliefs diagram that induces each of these symmetric belief hierarchies.

(e) Find a correlated equilibrium that induces each of the symmetric belief hierarchies constructed in
(d).
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Athens Rome Toledo
You 3 4 8

Barbara 8 4 3
Chris 8 3 1

Table 4.5.1 Utilities in “The summer holiday”

(f) Which of the symmetric belief hierarchies constructed in (d) use one theory per choice? For each
of these, construct a canonical correlated equilibrium that induces it.

(g) Show that one of your choices found in (b) cannot rationally be made under common belief in
rationality with a simple belief hierarchy. Which choice is it?

(h) For each of your other choices found in (b), construct a simple belief hierarchy that expresses
common belief in rationality and for which that choice is optimal. For each of these simple belief
hierarchies, find the Nash equilibrium that generates it.

Problem 4.3: The summer holiday.

Next summer, Barbara, Chris and you plan to go on a holiday together, visiting a historical city in
southern Europe. Now it is time to agree on the final destination. The latest shortlist contains three
candidates: Athens, Rome and Toledo. The last city has been suggested by you, because you have
read some wonderful stories about it. Indeed, Toledo is a delightful medieval city close to Madrid, but
only few people know about it. The utilities that you, Barbara and Chris enjoy when visiting these
three cities are given by Table 4.5.1. Moreover, staying at home would give you a utility of 2, and
similarly for Barbara and Chris. As you can see, Barbara and Chris are both rather sceptical about
Toledo, mainly because they are not familiar with this city. Chris even prefers to stay at home rather
than going there. In contrast, you would love to see the impressive medieval city walls of Toledo with
your own eyes.

To decide where to go, you have agreed on the following voting procedure: Each person secretly
writes down one of the destinations on a piece of paper. If all three persons vote for the same city, you
will all go there next summer and spend the holiday together. If two persons vote for the same city,
and a third person votes for a different city, then these two persons will go on holiday in the city they
voted for, whereas the other person will sadly stay at home. If all three persons vote for a different
city, then the holiday destination will be decided by a dice roll: If the dice lands on 1 or 2, you will
all go to Athens. If the result is 3 or 4, the destination will be Rome. If, finally, the dice lands on 5
or 6, you will all visit Toledo.

(a) Write down the decision problems for you, Barbara and Chris.

(b) Which cities can you, Barbara and Chris rationally vote for under common belief in rationality?

(c) Set up a beliefs diagram with solid arrows only, in which each of the choices found in (b) has an
outgoing arrow. For each of your belief hierarchies in this diagram, discuss whether it (i) expresses
common belief in rationality, (ii) is symmetric, (iii) satisfies the one theory per choice condition, and
(iv) whether it is simple.

(d) Translate this beliefs diagram into an epistemic model.

(e) Show that each of your choices found in (b) can rationally be made under common belief in
rationality with a symmetric belief hierarchy. That is, for each of these choices construct a symmetric
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belief hierarchy that expresses common belief in rationality and for which that choice is optimal.
For every symmetric belief hierarchy so constructed, give an associated symmetric weighted beliefs
diagram that generates it. Which of these symmetric belief hierarchies satisfy the one theory per
choice condition?

(f) For every symmetric belief hierarchy constructed in (e), find a correlated equilibrium that induces
it. In case the belief hierarchy satisfies the one theory per choice condition, find also a canonical
correlated equilibrium that induces it.

*(g) Show that there is exactly one choice for you found in (b) that cannot rationally be made under
common belief in rationality with a simple belief hierarchy. For the other choices of you, construct a
simple belief hierarchy expressing common belief in rationality for which that choice is optimal.
(Hint: For the first part of the question, proceed by showing the following steps. (1) Show that,
under common belief in rationality, voting for Rome can only be optimal for Barbara if she assigns at
least probability 0.6 to the event that Chris votes for Rome as well. (2) Show that, under common
belief in rationality, voting for Rome can only be optimal for Chris if he assigns at least probability 0.8
to the event that Barbara votes for Rome as well. (3) Show that, under common belief in rationality
with a simple hierarchy, you will either (i) assign probability 0 to the event that Barbara or Chris will
vote for Rome, or (ii) assign at least probability 0.48 to the event that both Barbara and Chris will
vote for Rome.)

(h) Explain intuitively why you cannot rationally make this choice under common belief in rationality
with a simple belief hierarchy.
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Literature

Simple belief hierarchies. The concept of simple belief hierarchies has been borrowed from Perea
(2012), the predecessor to this book. It also appears in Geanakoplos, Pearce and Stacchetti (1989),
although they do not employ the term simple belief hierarchies. They use it to define the concept of a
psychological Nash equilibrium for psychological games. See Chapter 9 of this book for more details.

We use simple belief hierarchies to formalize the idea that a player believes that his opponents
are correct about the belief hierarchy he holds. In fact, Perea (2007) and Perea (2012) show that
this condition essentially characterizes simple belief hierarchies in two-player games. More precisely,
Lemma 4.4 in Perea (2007) and Theorem 4.4.3 in Perea (2012) state that in a two-player game, player
i holds a simple belief hierarchy precisely when he believes that his opponent is correct about his belief
hierarchy, and believes that his opponent believes that he (player i) is correct about the opponent’s
belief hierarchy.

Lemma 4.4 in Perea (2007) and Theorem 4.4.5 in Perea (2012) also indicate which additional
conditions are needed to epistemically characterize simple belief hierarchies in games with more than
two players. For such games, simple belief hierarchies can be characterized by imposing, next to the
two conditions above, the following requirements: (a) player i holds conditionally independent beliefs
(Brandenburger and Friedenberg (2008)) about the choices of the various opponents, that is, holds
independent beliefs about the choices of his opponents if we condition on a fixed belief hierarchy for
each of the opponents, (b) player i believes, for every two different opponents j and k, that j holds
the same belief about k as i does, and (c) player i believes that every opponent satisfies the conditions
(a) and (b). In other words, not only does the concept of a simple belief hierarchy imply that player i
believes that his opponents are correct about his beliefs, that player i holds conditionally independent
beliefs, and that player i believes that j holds the same belief about k as i does, but these three
conditions, and the belief that the opponents satisfy these conditions, also epistemically characterize
the notion of a simple belief hierarchy.

Nash equilibrium. The notion of Nash equilibrium has been introduced by Nash (1950, 1951), and
has had an enormous influence on the development of game theory during many decades. Indeed, for a
very long time the concept of Nash equilibrium has been the central concept for studying the behavior
of players in a static game. Moreover, it has been the basis for several refinements of Nash equilibrium
in the literature, such as perfect equilibrium (Selten (1975)) and proper equilibrium (Myerson (1978))
for static games, and subgame perfect equilibrium (Selten (1965)) and sequential equilibrium (Kreps
and Wilson (1982)) for dynamic games. At the same time, it remained rather unclear for several
decades which assumptions Nash equilibrium, and each of its refinements, imposes on the reasoning of
players. These assumptions were only revealed during the rise of epistemic game theory as a discipline
that explicitly studies the beliefs and reasoning of players before they make a choice. As we have seen
in this chapter, many of these assumptions seem highly problematic. For instance, how reasonable is
it to assume that your opponents are correct about the beliefs that you have? Nevertheless, this is
what is implicitly assumed if we use Nash equilibrium, or any of its refinements, to analyze a game.

Weakening common belief in rationality. In Theorem 4.1.1 we have shown that a simple belief
hierarchy expresses common belief in rationality precisely when it is induced by a Nash equilibrium.
In other words, Nash equilibrium can be epistemically characterized by a simple belief hierarchy in
combination with common belief in rationality. However, for proving this result we only used the
first two layers of common belief in rationality. Indeed, for showing that the simple belief hierarchy
is induced by a Nash equilibrium, we only used that player i believes in his opponents’rationality,
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and that player i believes that his opponents believe in i’s rationality. We can therefore alternatively
characterize Nash equilibrium by a simple belief hierarchy in combination with the first two layers of
common belief in rationality only.

This insight, together with Theorem 4.1.1, leads to the following observation: If a simple belief
hierarchy satisfies the first two layers of common belief in rationality, then it also satisfies all the other
layers of common belief in rationality. This, of course, is not true if we do not assume a simple belief
hierarchy to begin with.

Epistemic foundations for Nash equilibrium in two-player games. We have seen above that
Nash equilibrium can be characterized by the following three conditions: (a) player i’s belief hierarchy
is simple, (b) player i believes in the opponents’rationality, and (c) player i believes that all other
players believe in their opponents’ rationality (and hence, in particular, believe in i’s rationality).
We have also seen that in a two-player game, a simple belief hierarchy can be characterized by the
following two conditions: (a1) player i believes that his opponent is correct about his belief hierarchy,
and (a2) player i believes that his opponent believes that i is correct about the opponent’s belief
hierarchy.

Altogether, we conclude that in a two-player game the concept of Nash equilibrium can be epis-
temically characterized by the following conditions: (a1) player i believes that j is correct about his
beliefs, and (a2) player i believes that j believes that i is correct about j’s beliefs, (b) player i believes
in j’s rationality, and (c) player i believes that j believes in i’ rationality. This is essentially the
content of the “intrapersonal theorem”of Spohn (1982) on page 253 —the first epistemic characteri-
zation of Nash equilibrium I am aware of. In this intrapersonal theorem, Spohn adopts a one-person
perspective like we do in this book, by imposing all epistemic conditions on the beliefs of a single
player. The intrapersonal theorem of Spohn corresponds exactly to Perea’s (2007) characterization of
Nash equilibrium, when restricted to two-player games.

Spohn also offers an “interpersonal”variant of his theorem, in which the epistemic conditions are
imposed on the beliefs of both players simultaneously. More precisely, he shows that in a two-player
game, Nash equilibrium can be characterized by the following interpersonal conditions: (1) player 1 is
rational, (2) player 2 is rational, (3) player 1 has belief σ2 about 2’s choice, (4) player 2 has belief σ1
about 1’s choice, (5) player 1 believes (2) and (4), and (6) player 2 believes (1) and (3). This result
also appears as Theorem A in Aumann and Brandenburger (1995).

These conditions need not imply common belief in rationality. Hence, this is different from our
insight above, where we have seen that a simple belief hierarchy in combination with the first two
layers of common belief in rationality implies all other layers of common belief in rationality. The
reason is that the conditions (3), (4), (5) and (6) do not guarantee that the belief hierarchies for both
players are simple.

Polak (1999) shows, however, that if in the theorem above the conditions are strengthened so that
there is common belief in the first-order beliefs σ2 and σ1, then these conditions would imply common
belief in rationality. The argument is that these new, stronger conditions would imply a simple belief
hierarchy for both players, namely the belief hierarchy generated by (σ1, σ2). Brandenburger and Dekel
(1989) provide an epistemic characterization of Nash equilibrium that goes in this direction: They
show for two-player games that common belief in rationality, together with common belief in the first-
order beliefs (σ1, σ2), guarantee that (σ1, σ2) is a Nash equilibrium, and vice versa. This result is thus
very closely related to our epistemic characterization of Nash equilibrium in Theorem 4.1.1, where we
have replaced “common belief in (σ1, σ2)”by “the simple belief hierarchy generated by (σ1, σ2)”.

Other epistemic characterizations of Nash equilibrium for two-player games can be found in Asheim
(2006, p.5) and Tan and Werlang (1988, Theorem 6.2.1).
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Epistemic foundations for Nash equilibrium in games with more than two players. As we
have seen above, a simple belief hierarchy in a game with more than two players can be characterized by
the following conditions: (a) player i believes that the opponents are correct about his belief hierarchy,
(b) player i holds conditionally independent beliefs about the choices of his various opponents, (c)
player i believes that j holds the same belief about k’s choice as i does, and (d) player i believes that
every opponent satisfies (a), (b) and (c). Moreover, we have argued that Nash equilibrium can be
characterized by a simple belief hierarchy and the first two layers of common belief in rationality. Put
together, we conclude that Nash equilibrium in games with more than two players can be characterized
by the conditions (a)—(d) above, together with the following two rationality restrictions: (e) player
i believes in the opponents’rationality, and (f) player i believes that every opponent believes in the
other players’rationality. This is essentially the message of Corollary 4.6 in Perea (2007).

Aumann and Brandenburger (1995) provide, in their Theorem B, a rather different foundation for
Nash equilibrium in games with more than two players. They consider the following interpersonal
conditions: (1) the belief hierarchies of all players are derived from a common prior on choice-type
combinations, (2) there is common belief in the players’actual belief hierarchies, and (3) every player
believes in the opponents’ rationality. Theorem B shows that under these conditions, each of i’s
opponents holds the same belief σi about i’s choice, and these beliefs (σ1, ..., σn) constitute a Nash
equilibrium.

Other epistemic foundations for Nash equilibrium in games with more than two players can be
found in Brandenburger and Dekel (1987, Proposition 4.1), Barelli (2009, Proposition 6.1) and Bach
and Tsakas (2014, Theorem 1).

Criticisms of Nash equilibrium. In Section 4.1.5 we have argued that Nash equilibrium imposes
some potentially problematic conditions on the reasoning of players. Other, and relatively early,
criticisms of the reasoning behind Nash equilibrium can be found, for instance, in Bernheim (1984)
and Pearce (1984). Both Bernheim and Pearce argue that Nash equilibrium seems diffi cult to justify
on the basis of rationality principles alone, and that some additional —hard to justify —assumptions
must be made. They both claim that Nash equilibrium is certainly not a necessary consequence of
plausible reasoning in games.

Common prior. The idea of a common prior goes back to Harsanyi (1967—1968). In this trilogy of
papers, Harsanyi lays out a model for studying games with incomplete information (see Chapters 5
and 6 in this book) in which players may be uncertain about the opponents’utility functions. Harsanyi
encodes the belief hierarchies about the players’utility functions and choices by means of information
vectors (he also calls these attribute vectors or types at times) which specify, for a given player, a
utility function, a choice and a probabilistic belief about the opponents’information vectors. Every
such information vector induces an infinite belief hierarchy about the players’utility functions and
choices, in the same way as a type in this and the previous chapter induces an infinite belief hierarchy
about choices. From now on, we will refer to these information vectors as Harsanyi types.

Harsanyi then considers an important special case, which he calls the consistent case, in which
the probabilistic beliefs of the various Harsanyi types about the opponents’Harsanyi types are all
derived from a single probability distribution over the Harsanyi types. This is what we nowadays
call a common prior. Since a Harsanyi type specifies a choice for the player, the common prior on
Harsanyi types plays the same role as the common prior on choice-type combinations in this chapter.

There were several reasons why Harsanyi was especially interested in the consistent case, where
all beliefs are derived from a common prior π on the set of Harsanyi type combinations. First, it
allowed him to mimick the game with incomplete information by a convenient, standard game with
complete information, where the game starts with a chance move that randomly selects a Harsanyi
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type combination according to the probability distribution π. Moreover, Harsanyi argued that the
common prior still leaves suffi cient room for modelling asymmetric beliefs between the players, by
choosing a suffi ciently asymmetric common prior. The assumption that all beliefs of all the players
come from the same basic probability distribution is often called the Harsanyi doctrine.

Symmetric belief hierarchies. In Theorem 4.2.1 we use the idea of a common prior on choice-type
combinations to characterize symmetric belief hierarchies. Hence, a common prior can be viewed as
an expression of symmetry in the belief hierarchy. The concept of a symmetric belief hierarchy is, to
the best of my knowledge, new.

However, Harsanyi (1967—1968) already hints at a form of symmetry that is implied by a common
prior when looking at his posterior-lottery model. In this model it is assumed that first of all, every
player specifies a choice for each of his possible Harsanyi types, before his actual Harsanyi type has
been selected. Afterwards, the actual Harsanyi type hi for player i is selected, the associated choice is
implemented, and his Harsanyi type hi is matched with a combination of opponents’Harsanyi types
(hj)j 6=i according to some subjective probability distribution. If there is a common prior π, then all
these subjective probability distributions, for all the players, are equal to the probability distribution
π. In particular, if player i with Harsanyi type hi believes to be matched with Harsanyi type hj with
some positive probability, then hj expects to be matched with hi with some positive probability. Hence,
under a common prior, partnerships between Harsanyi types are symmetric in the posterior-lottery
model.

Note that the idea of a common prior is much older than that of a symmetric belief hierarchy. One
possible interpretation of our Theorem 4.2.1, from a historical perspective, is therefore that symmetry
of a belief hierarchy can be viewed as an epistemic characterization of a common prior.

A crucial difference between our approach and that adopted in most papers and other books is that
we interpret symmetry, and the common prior, from a one-person perspective, restricting the belief
hierarchy of one player only. In most of the literature, it is assumed that the common prior determines
the actual belief hierarchies of all players simultaneously. Interestingly, by carefully reading Harsanyi
(1967—1968) one gets the impression that Harsanyi’s approach was leaning more towards a one-person
perspective.

Alternative interpretations of a common prior. Like Harsanyi (1967—1968), we interpret a
common prior as a tool that restricts the belief hierarchies of the players in a game. More specifically,
Harsanyi (1967—1968) views it as an expression of mutually consistent beliefs, whereas we use it as an
expression of symmetry of a belief hierarchy.

There are other papers that adopt a different interpretation of a common prior. Aumann (1974),
for instance, looks at a model with states of the world, where every state specifies a choice for each of
the players, and where every player i, at each of the states ω, knows that the true state is in some set
Ii(ω) containing the true state ω. In the objective version of correlated equilibrium, Aumann assumes
that there is a common prior π on the set of all states, randomly selecting the true state ω, after which
all players implement the choice associated to ω. As such, Aumann (1974) interprets the common prior
as a correlation device that, as an output, may produce a correlated probability distribution over the
players’choice combinations.

In Myerson (1986) and Forges (1986) the common prior may be interpreted as the outcome of a
communication game in which the players send some input to a mediator, receive some probabilistic
signal from the mediator and subsequently base their choice on the signal they receive. The correlation
device in Aumann (1974) may be viewed as a special case of such a communication device in which
players send no inputs.
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Agreement theorems. Aumann (1976) has shown that, if the beliefs of two agents are derived from
a common prior, then it cannot be common knowledge that agent 1 assigns probability p to an event
A, and that agent 2 assigns a different probability q 6= p to the same event A. In other words, the
agents cannot agree to disagree about the probability of an event A. This result is known as Aumann’s
agreement theorem, and displays a remarkable property of beliefs that come from a common prior.
Although Aumann (1976) proved the result for two agents only, the agreement theorem in fact applies
to any number of agents.

In terms of belief hierarchies in games, Aumann’s agreement theorem states the following: If i’s
belief hierarchy is induced by a common prior on choice-type combinations, then it cannot express
common belief in the event that player j assigns probability p to an event A, and that another player
k assigns a different probability q 6= p to A. Here, player j or k may be equal to player i. This property
is not true if the belief hierarchy is not derived from a common prior, however.

Subsequently, Aumann’s agreement theorem has been extended and varied in different directions.
Milgrom and Stokey (1982), for instance, consider a trading environment in which the agents have
uncertainty about the allocations of others. Suppose we start from a Pareto optimal allocation.
Milgrom and Stokey prove that if the beliefs of the agents come from a common prior, then there
cannot be common knowledge of a trade that would make every agent weakly better off, and at least
one agent strictly better off, than before. That is, the agents cannot agree on a trade that would be
strictly beneficial for everyone. This result is known as Milgrom and Stokey’s no trade theorem.

Bacharach (1985) proves a variant of Aumann’s agreement theorem, which states that two “like-
minded” agents cannot agree on two different rational decisions. Here, two agents are called like-
minded if they would always reach the same rational decision if they had the same information. This
can be seen as a generalization of the common prior assumption, since two agents whose beliefs come
from the same common prior would always have the same belief —and hence reach the same decision —
if they had the same information. Bacharach’s result then states that between two like-minded agents,
it cannot be common knowledge that agent 1 rationally reaches decision a and that agent 2 rationally
reaches a different decision b 6= a.

Other papers that investigate Aumann’s agreement theorem in variations of Aumann’s original
setting include Monderer and Samet (1989), Samet (1990), Hellman (2013), Bach and Perea (2013)
and Bach and Cabessa (2017).

The theorems mentioned above thus display necessary conditions that follow from a common
prior. In later years, people have found conditions that are not only necessary, but also suffi cient,
for a common prior. In other words, these people have specified conditions that characterize beliefs
that are derived from a common prior. The first to do so was Morris (1994), who studied the trading
environment by Milgrom and Stokey (1982). Like Milgrom and Stokey, he also started from a Pareto
optimal allocation. Morris showed that the beliefs of the agents come from a common prior, if and
only if, there is no trade that would make every agent weakly better off, and at least one agent strictly
better off. In other words, a common prior can be characterized by the absence of a trade that is
strictly beneficial for everyone. With this result, Morris (1994) thus essentially provides a converse to
Milgrom and Stokey’s no trade theorem.

Bonanno and Nehring (1999) prove a result for two agents that can be seen as a converse to
Aumann’s agreement theorem. They define a proper belief index as a function that assigns to every
probabilistic belief some index, satisfying a certain regularity condition. It is then shown that the
beliefs of the two agents come from a common prior, if and only if, for every proper belief index it
cannot be common knowledge that agent 1’s index is a and agent 2’s index is b 6= a. That is, the two
agents cannot agree to disagree on the value of any proper belief index. If the proper belief index is
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chosen to represent the probability assigned to a fixed event A, then we are back in Aumann’s original
setting of his agreement theorem.

Samet (1998a), Bonanno and Nehring (1999) and Feinberg (2000) prove that a common prior can
also be characterized by the absence of a mutually acceptable bet. More precisely, it is shown that
the beliefs of the agents are derived from a common prior, if and only if, there is no bet by which all
agents would expect to make a strictly positive profit. This is often referred to as the no bet theorem.

Communicating beliefs. Geanakoplos and Polemarchakis (1982) investigate a dynamic communi-
cation process in which two agents alternatively communicate their subjective belief probability of a
certain event to the other agent. The other agent then uses the communicated belief probability to
update his own belief about the event, and communicates the updated belief probability to the other
agent, and so on. Geanakoplos and Polemarchakis show that, if the agents’initial beliefs are derived
from a common prior, then this communication process will terminate within finitely many steps, and
the final belief probabilities of the two agents will coincide. This property will not generally hold if
the beliefs are not derivable from a common prior.

Iterated expectations. Samet (1998b) studies the notion of iterated expectations induced by a
belief hierarchy, and provides a characterization of the common prior based on this. To see what we
mean by iterated expectations, consider the example “When Chris joins the party” and the beliefs
diagram in Figure 4.2.2. Consider your belief hierarchy that starts at your choice green. In that belief
hierarchy, you assign probability 0.5 to Barbara choosing blue. We call this your first-order expectation
about Barbara’s choice blue. At the same time, you assign probability 0.5 to the event that Chris
assigns probability 0.8 to Barbara choosing blue, and you assign probability 0.5 to the event that Chris
assigns probability 0 to Barbara choosing blue. Hence, the expected probability you believe that Chris
assigns to Barbara choosing blue is (0.5) ·(0.8)+(0.5) ·0 = 0.4.We call this a second-order expectation
about Barbara’s choice blue, summarizing what you believe that Chris believes about Barbara’s choice
blue. In a similar fashion we can derive a third-order expectation about Barbara’s choice blue, which
summarizes what you believe that Chris believes that you believe about Barbara’s choice blue. It may
be verified that this third-order expectation —and all higher-order expectations —all assign probability
0.4 to Barbara’s choice blue. That is, the iterated expectations about Barbara’s choice blue finally
converge, and the limit expectation about her choice blue is 0.4. Moreover, this limit probability is
precisely the probability that the associated common prior assigns to Barbara’s choice blue. Indeed,
we have seen in Question 4.2.3 that all belief hierarchies in Figure 4.2.2 are derived from the common
prior
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which assigns probability 0.4 to Barbara choosing blue.
Samet (1998b) shows that this is not a coincidence — it always holds whenever the beliefs are

derived from a common prior. More precisely, he considers a random variable f, and defines iterated
expectations about the value of this random variable f, similarly to how we have defined iterated
expectations above. If we order the agents along an infinite sequence i1, i2, i3, ... then the first-order
expectation about f is i1’s expectation of the value of f, the second-order expectation is what i1
expects of i2’s expectation of the value of f, and so on. Samet shows that, if the beliefs of the
agents are derived from a common prior, then these iterated expectations about f converge to a limit
expectation, and this limit expectation is exactly the expected value of f under the common prior.
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In fact, Samet shows that the opposite direction is also true: If for every random variable f, the
iterated expectations about f always converge to the same limit, no matter which order of the agents
we choose, then the agents’beliefs are derivable from a common prior. Altogether, Samet thus shows
that the beliefs of the agents come from a common prior, if and only if, the iterated expectations of
any random variable always converge to the same limit, independent of the order of players we choose.

Criticisms of the common prior. In Section 4.2.5 we have argued that the notion of a symmetric
belief hierarchy —and hence the concept of a common prior —display some properties that may be
subject to criticism. Other criticisms of the common prior assumption can be found, for instance,
in Morris (1995) and Gul (1998). Gul argues that a common prior, as a probability distribution on
choice-type combinations or choice combinations, has no clear intrinsic meaning, and that it is the
belief hierarchy that matters and not the common prior that induces it. Moreover, using his words, he
finds that the common prior imposes a “complex and unintuitive restriction”on the belief hierarchy
of a player. Both Morris and Gul explain, by means of a quote by Savage (1954), that Savage seemed
to argue against the assumption of a common prior.

Correlated equilibrium. The concept of correlated equilibrium is equivalent to Harsanyi’s (1967—
1968) notion of Bayesian equilibrium if we restrict to games with complete information, in which no
uncertainty about the opponents’utility functions is at play. Harsanyi defined a Bayesian equilibrium
for a game with incomplete information as follows:

The players’belief hierarchies about choices and utility functions are encoded by means of Harsanyi
types hi, which prescribe for player i a utility function ui(hi) and a randomized choice σi(hi). More-
over, there is a common prior π̃ on the set of Harsanyi type combinations which induces for every
Harsanyi type hi the conditional belief π̃(· | hi) about the opponents’Harsanyi types. Since every op-
ponent’s Harsanyi type prescribes a utility function and choice, the conditional belief π̃(· | hi) induces
a conditional belief for Harsanyi type hi about the opponents’utility functions and choices. In the
same way as for epistemic models with types, every Harsanyi type induces a full belief hierarchy on
the players’utility functions and choices.

The common prior π̃ is called a Bayesian equilibrium if for every player i and every Harsanyi
type hi selected with positive probability by π̃, the following optimality condition holds: Every choice
ci selected with positive probability by the prescribed randomized choice σi(hi) is optimal given the
specified utility function ui(hi) and given hi’s conditional belief π̃(· | hi) about the opponents’Harsanyi
types.

Suppose now that there is no incomplete information, meaning that there is no uncertainty about
the opponents’utility functions. Then, in Harsanyi’s model we can forget about the prescribed utility
functions ui(hi), and hence every Harsanyi type hi only prescribes a randomized choice σi(hi), and
induces a full belief hierarchy on choices. Moreover, we may assume without loss of generality that
the randomized choice σi(hi) assigns probability one to one particular choice ci(hi). Indeed, if σi(hi)
assigns positive probability to two different choices c1i and c

2
i , then we may “split”the Harsanyi type hi

into two copies h1i and h
2
i that have the same belief hierarchy as hi, but where h

1
i prescribes the choice

c1i and h
2
i prescribes the choice c

2
i . As such, a Harsanyi type hi can be identified with a choice-type

pair (ci, ti) in our set-up, where ci is the choice prescribed by hi and ti represents the belief hierarchy
on choices induced by hi.

But then, the common prior π̃ on Harsanyi type combinations corresponds to a common prior π on
choice-type combinations, and Harsanyi’s optimality condition states that for every choice-type pair
(ci, ti) which receives positive probability by π, the choice ci is optimal given the conditional belief π(·
| ci, ti) about the opponents’choice-type pairs. This, however, is exactly our definition of a correlated
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equilibrium. We therefore conclude that our definition of correlated equilibrium is indeed equivalent
to Harsanyi’s concept of Bayesian equilibrium if we restrict to complete information games.

This equivalence is formally shown in Bach and Perea (2023b), who prove that a choice ci is optimal
for a utility function ui in a Bayesian equilibrium precisely when ci is optimal, within an epistemic
model with types, for the utility function ui under common belief in rationality with a common prior.
Since we have seen that a common prior characterizes symmetric belief hierarchies, it follows that the
choices that are optimal in a Bayesian equilibrium are precisely the choices that are optimal under
common belief in rationality with a symmetric belief hierarchy. However, by Theorem 4.2.3, these are
exactly the choices that are optimal in a correlated equilibrium. Hence, Bayesian equilibrium and our
definition of correlated equilibrium deliver exactly the same optimal choices for every player, and may
therefore be seen as behaviorally equivalent if we restrict to complete information games.

Aumann (1974) subsequently introduced a concept for games with complete information, which
he called correlated equilibrium, that is equivalent to Bayesian equilibrium in such games, and hence
is equivalent to our definition of correlated equilibrium as well. The difference lies in the languange
he uses. Aumann defines a correlated equilibrium as follows:

He starts with a set Ω of states of the world, and assigns to every state ω a choice ci(ω) for every
player i. If the state ω is realized, then player i knows that the true state must be in the set Ii(ω)
containing the true state ω. These sets Ii(ω) constitute a partition of the set Ω for every player i. The
sets Ii(ω) are called information cells. A correlated equilibrium is then defined as a common prior π̃
on Ω satisfying the following optimality condition: For every state ω selected with positive probability
by π̃ and for every player i, the prescribed choice ci(ω) is optimal for player i, given the belief π̃(· |
Ii(ω)) about the state, conditional on the information cell Ii(ω).

Similarly as for epistemic models with types, every state ω induces, for every player i, a full belief
hierarchy on choices. To see this, first note that player i, at ω, holds the conditional belief π̃(· |
Ii(ω)) about the state. Since every state prescribes a choice for every opponent, π̃(· | Ii(ω)) induces
a first-order probabilistic belief about the opponents’choices. Moreover, as every state induces, for
every opponent, a first-order belief about the other players’choices, the conditional belief π̃(· | Ii(ω))
about the state also induces a second-order belief about the opponents’first-order beliefs, and so on.
In this way, every state ω induces for every player a full belief hierarchy on choices.

As such, every state ω can be indentified with a choice-type combination (ci, ti)i∈I , where ci is the
choice for player i prescribed at ω and ti represents i’s belief hierarchy induced by ω. The common prior
π̃ on states can thus be identified with a common prior π on choice-type combinations, and Aumann’s
optimality condition states that for every player i and every choice-type pair (ci, ti) that receives
positive probability by π, the choice ci must be optimal for the conditional belief π(· | ci, ti) about
the opponents’choice-type pairs. This, however, is exactly our definition of a correlated equilibrium.
We therefore conclude that Aumann’s definition of correlated equilibrium is equivalent to ours, and
hence is equivalent to Harsanyi’s notion of Bayesian equilibrium when applied to games with complete
information.

This equivalence has been proven formally in Bach and Perea (2020a), who show that a choice
ci is optimal in Aumann’s definition of a correlated equilibrium precisely when ci is optimal, within
an epistemic model with types, under common belief in rationality with a common prior. Above
we have seen that the latter choices are exactly those that are optimal in a correlated equilibrium
as defined in this chapter. Altogether, we see that a choice is optimal in Aumann’s definition of a
correlated equilibrium exactly when it is optimal in our definition of a correlated equilibrium. Hence,
our definition of a correlated equilibrium is indeed equivalent to Aumann’s.

The definition of correlated equilibrium we use in this chapter, employing epistemic models with
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types, is essentially the same as the definition of objective correlated equilibrium used in Dekel and
Siniscalchi (2015).

Canonical correlated equilibrium. In Theorems 4.3.3 and 4.3.4 we have seen that adding the new
condition of one theory per choice to common belief in rationality with a symmetric belief hierarchy,
leads to a variant of correlated equilibium which we have called canonical correlated equilibrium. This
concept is also sometimes called correlated equilibrium distribution. The condition of one theory per
choice is taken from Bach and Perea (2020a). Moreover, the two theorems mentioned above, which
show that canonical correlated equilibrium is characterized by common belief in rationality with a
symmetric belief hierarchy that uses one theory per choice, are also based on that paper.

In Section 4.3.3 we have shown, by means of the example “Rock, paper, scissors”, that correlated
equilibrium and canonical correlated equilibrium may differ in terms of the optimal choices they induce.
Indeed, we have identified a choice in that example which can rationally be made under common belief
in rationality with a symmetric belief hierarchy, but not under common belief in rationality with a
symmetric belief hierarchy that uses one theory per choice. Hence, in view of Theorems 4.2.3 and
4.3.4, that choice is optimal is a correlated equilibrium, but not in a canonical correlated equilibrium.
Our example “Rock, paper, scissors”is based on an example in Bach and Perea (2020a). Some years
earlier, Aumann and Drèze (2008) already showed by means of a different example that correlated
equilibrium and canonical correlated equilibrium may differ in terms of the first-order beliefs they
induce. However, in that example correlated equilibrium and canonical correlated equilibrium induce
the same optimal choices for the players.

Despite the difference in terms of induced optimal choices and first-order beliefs, the literature often
does not distinguish between correlated equilibrium and canonical correlated equilibrium, and employs
both concepts under the same name correlated equilibrium. Many textbooks in game theory, for
instance, only give the definition of canonical correlated equilibrium and call it correlated equilibrium.
This may lead to some unfortunate confusion.

A possible reason for not distinguishing between correlated and canonical correlated equilibrium
may be the well-known fact that both concepts are equivalent from an ex-ante perspective. That is,
if we take a correlated equilibrium π, being a common prior on choice-type combinations, then the in-
duced probability distribution π̂ on the choice combinations will be a canonical correlated equilibrium.
And conversely, every canonical correlated equilibrium π̂ can be extended to a correlated equilibrium π
that induces the same probability distribution on choice combinations as π̂. Since most textbooks only
concentrate on the ex-ante perspective, by considering only the induced probability distributions on
choice combinations, it does not matter for their purpose whether one looks at correlated equilibrium
or canonical correlated equilibrium.

However, from a decision-theoretic perspective it is not the ex-ante perspective that matters, but
rather the ad-interim perspective that looks at the induced first-order beliefs and optimal choices.
Indeed, ultimately we are interested in the choices a player can rationally make under a specific
reasoning concept, and for this we must explore the possible first-order beliefs and optimal choices
for that player. As an illustration, consider the example “Rock, paper, scissors” where we have
seen that your choice bomb is optimal in a correlated equilibrium, but not in a canonical correlated
equilibrium. From an ex-ante perspective, both concepts are equivalent because they induce the same
set of probability distributions on the players’choice combinations. However, this ex-ante perspective
is not suffi cient to explain why you cannot optimally choose bomb in a canonical correlated equilibrium.
For this, we must take the ad-interim perspective, and look at the possible first-order beliefs you
can hold in a correlated equilibrium and a canonical correlated equilibrium. It turns out that in a
canonical correlated equilibrium, you cannot hold the belief that assigns probability 1 to Barbara’s
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choice rock, whereas in a correlated equilibrium you can. This is the reason why you cannot rationally
choose bomb in a canonical correlated equilibrium, whereas you can in a correlated equilibrium. This,
however, requires taking an ad-interim perspective.

Somewhat remarkably, also Aumann (1987) and Aumann and Drèze (2008) use the concept of
canonical correlated equilibrium but call it correlated equilibrium. This despite the fact that Aumann
and Drèze (2008) explicitly take an ad-interim perspective. By means of an example, they show that
the first-order beliefs induced by canonical correlated equilibria may change if we duplicate the choices
of all players, thereby transforming the game into the doubled game. However, duplicating a choice ci
is equivalent to considering two different choice-type pairs (ci, ti) and (ci, t

′
i) involving the same choice

ci. A canonical correlated equilibrium in the doubled game would then correspond to a common prior
over such choice-type combinations, and would thus qualify as a correlated equilibrium of the original
(non-doubled) game. Hence, Aumann and Drèze (2008) effectively compare the first-order beliefs that
are possible, for a given game, in a canonical correlated equilibrium and a correlated equilibrium,
respectively.

Epistemic foundations for (canonical) correlated equilibrium. In Theorems 4.2.2 and 4.2.3
we have shown that correlated equilibrium can be epistemically characterized by common belief in
rationality in combination with a symmetric belief hierarchy. As, in turn, a symmetric belief hierarchy
is characterized by a common prior, correlated equilibrium can be characterized by common belief in
rationality together with a common prior.

This is essentially the message in Aumann (1987), Dekel and Siniscalchi (2015, Theorem 4) and
Bach and Perea (2020a). There are a few differences between the first two papers and our characteri-
zation, though. First, Aumann (1987) and Dekel and Siniscalchi (2015) take an ex-ante perspective,
and epistemically characterize the probability distributions on choice combinations, rather than the
beliefs and the optimal choices as we do. Moreover, Aumann (1987) considers canonical correlated
equilibrium rather than correlated equilibrium. However, since he takes an ex-ante perspective, it does
not matter for his characterization. Finally, Aumann (1987) replaces common belief in rationality by
a stronger condition, which requires that the players’choices are optimal at all states of the world.
This change is inessential for the epistemic characterization, however.

In Theorems 4.3.3 and 4.3.4, we show that canonical correlated equilibrium can be characterized
by common belief in rationality in combination with a symmetric belief hierarchy that uses one theory
per choice. These results are based on Bach and Perea (2020a).

Nash equilibria of games with communication. Forges (1986) and Myerson (1986), amongst
others, study games with communication in which the players can send some input to a mediator,
who then sends signals to the various players in a probabilistic fashion. Players can then base their
choice upon the signal they receive. Forges (1986) characterizes the Nash equilibria of such games with
communication. For the special case where the players do not send any input, she finds that the Nash
equilibria of the game with communication correspond exactly to the canonical correlated equilibria
of the original game, in terms of the induced probability distributions on choice combinations. In this
sense, (canonical) correlated equilibria may be viewed as the result of adding a communication device
to the game, provided one uses Nash equilibrium to explore the resulting game with communication.

Choices versus beliefs. In game theory, it is absolutely crucial to clearly distinguish between
choices and beliefs about choices. This is especially important when investigating Nash equilibrium
and (canonical) correlated equilibrium. Consider, for instance, the example “Rock, paper, scissors”
with the utilities as depicted in Table 4.2.1. We have seen that your choice bomb is optimal in a
correlated equilibrium. That is, you can rationally choose bomb with a symmetric belief hierarchy
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You c d
a 2 0
b 1 1

Barbara a b

c 0 0
d 1 0

Table 4.5.2 Choices versus beliefs in Nash equilibrium

that expresses common belief in rationality.
At the same time, it may be verified that there is no correlated equilibrium that assigns positive

probability to your choice bomb. Indeed, assume there were a correlated equilibrium π that assigns
positive probability to your choice bomb. Then, as we have seen above, the induced probability
distribution π̂ on choice combinations would be a canonical correlated equilibrium. In particular, π̂
would assign positive probability to your choice bomb. In Example 4.9 we have seen, however, that no
canonical correlated equilibrium assigns positive probability to your choice bomb. We thus conclude
that there is indeed no correlated equilibrium that assigns positive probability to your choice bomb.
Or, equivalently put, there is no symmetric belief hierarchy that expresses common belief in rationality
and that assigns positive probability to your choice bomb at any of its levels.

Hence, the fact that your choice bomb does not figure in any correlated equilibrium (or symmetric
belief hierarchy that expresses common belief in rationality) does not mean that your choice bomb
is not optimal in a correlated equilibrium (or optimal in a symmetric belief hierarchy that expresses
common belief in rationality). It is thus of great importance to clearly distinguish between choices
and beliefs about choices here.

A similar warning applies to the concept of Nash equilibrium. There are games in which a choice
is optimal in a Nash equilibrium, but never receives positive probability by any Nash equilibrium.
Or, equivalently, a choice may be optimal for a simple belief hierarchy that expresses common belief
in rationality, while never appearing in any simple belief hierarchy that expresses common belief in
rationality. Consider, for instance, the game in Table 4.5.2 between you and Barbara. It may be
verified that the belief combination (σ1 = b, σ2 = 1

2c+ 1
2d) is a Nash equilibrium. Since your choice a

is optimal (together with b) under the belief σ2 about Barbara’s choice, we conclude that a is optimal
in a Nash equilibrium.

However, there is no Nash equilibrium that assigns a positive probability to your choice a. Suppose,
on the contrary, that (σ1, σ2) is a Nash equilibrium with σ1(a) > 0. Then, only d is optimal for Barbara
under the belief σ1, and hence σ2 must assign probability 1 to d. But then, only b is optimal for you
under the belief σ2, which implies that σ1 must assign probability 1 to your choice b. This is a
contradiction, as we assumed that σ1(a) > 0. Hence, we conclude that there is no Nash equilibrium
that assigns positive probability to a. This despite the fact that a is optimal in a Nash equilibrium.


