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Abstract

Within dynamic games we are interested in conditions on the players’preferences that
imply dynamic consistency and the existence of sequentially optimal strategies. The latter
means that the strategy is optimal at each of the player’s information sets, given his beliefs
there. These two properties are needed to undertake a meaningful game-theoretic analysis in
dynamic games. To explore this we assume that every player holds a conditional preference
relation —a mapping that assigns to every probabilistic belief about the opponents’strategies
a preference relation over his own strategies. We identify sets of very basic conditions on
the conditional preference relations that guarantee dynamic consistency and the existence of
sequentially optimal strategies, respectively. These conditions are implied by, but are much
weaker than, assuming expected utility. That is, to undertake a meaningful game-theoretic
analysis in dynamic games we can do with much less than expected utility.
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1 Introduction

The principle of dynamic consistency plays a central role in one-person decision theory. It states
that the decision maker’s preferences at different points in time must be suffi ciently aligned.
More precisely, if the decision maker ex-ante ranks two acts that only differ conditional on an
event E, then the ranking should not change upon observing that E has been realized. For a
detailed account, the reader may consult Machina (1989) and the references therein.

Dynamic consistency is also of key importance to dynamic games, although on a somewhat
more implicit basis. In most equilibrium and non-equilibrium concepts for dynamic games,
such as sequential equilibrium (Kreps and Wilson (1982)), sequential rationalizability (Dekel,
Fudenberg and Levine (1999, 2002) and Asheim and Perea (2005)), backwards rationalizability
(Perea (2014) and Penta (2015)) and extensive-form rationalizability (Pearce (1984), Battigalli
(1997)), it is assumed that every player possesses strategies that are sequentially optimal, that
is, optimal at each of his information sets given his conditional beliefs there. The existence of
such sequentially optimal strategies relies, in turn, on the dynamic consistency that the players
exhibit in the game: If at a certain information set h the player ranks two strategies that only
differ conditional on reaching a future information set h′, and the player expects h′ to be reached
with positive probability, then his ranking should not change upon reaching h′.

In one-person decision theory, dynamic consistency has also been explored for preferences
that do not conform to expected utility (see, again, Machina (1989) for an overview). This
is important because experimental evidence shows that many decision makes deviate from the
assumptions of expected utility.

This raises the question: What about dynamic games? If the players are not necessarily
assumed to be expected utility maximizers, how much should we pre-suppose so that we can
still perform a meaningful game-theoretic analysis? This is the question we wish to explore in
this paper.

It is fair to say that such a meaningful analysis is only possible if both dynamic consistency
and the existence of sequentially optimal strategies are guaranteed to hold. In this paper we
therefore aim for some mild conditions on the players’ preferences that imply both of these
properties.

Towards this goal we assume that every player in the dynamic game holds a conditional
preference relation (Gilboa and Schmeidler (2003), Perea (2023)) —a mapping that assigns to
every possible probabilistic belief about the opponents’strategies a preference relation over his
own strategies. We choose this model because it nicely reflects the game-theoretic principle
that the ranking over your own strategies crucially depends on your belief about the behavior
of others. And it does so without assuming expected utility. At the same time, it is flexible
enough to induce a preference relation for a player at each of his information sets: Simply take
his conditional preference relation, take the conditional belief he holds at that information set,
and see what preference relation it induces over his own strategies.

One key difference with the more traditional models of Savage (1954) and Anscombe and
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Aumann (1963) is that we assume that the players are Bayesian, by holding probabilistic beliefs
about the opponents’ strategies. On the other hand, we do not assume a unique belief for
the players, as a conditional preference relation specifies a preference relation over strategies
for every possible belief. The rationale is that in a dynamic game, a player may change his
belief throughout his reasoning process, or upon observing new information, and he is typically
uncertain about the beliefs held by his opponents.

Within this decision-theoretic framework we identify a set of very basic conditions on con-
ditional preference relations which guarantee dynamic consistency: preservation of indifference,
preservation of strict preference, and respect of outcome-equivalent strategies. The first condi-
tion states that for every two beliefs where the player is indifferent between two strategies, he
will remain indifferent if he uses any belief on the line segment between these two beliefs. The
second condition is similar, but applies to strict preference. The third condition states that if two
strategies lead to the same outcome under the opponents’strategy combination s−i, then player
i must be indifferent between the two strategies if he assigns probability 1 to s−i. Moreover,
to guarantee the existence of sequentially optimal strategies we find that the basic conditions
above, together with transitivity, are suffi cient.

These conditions are implied by, but are much weaker than, expected utility. This is im-
portant, since it follows by the axiomatic treatments in Gilboa and Schmeidler (2003) and
Perea (2023) that assuming expected utility may be very demanding. In particular, the condi-
tions three-choice linear preference intensity and four-choice linear preference intensity in Perea
(2023), which are needed for expected utility, impose a substantial cognitive burden on behalf
of the decision maker. In contrast, the suffi cient conditions above are very basic and mild. This
paper thus shows that these basic conditions are already enough to undertake a meaningful
game-theoretic analysis.

The paper is organized as follows: In Section 2 we lay out the model of a dynamic game,
on the basis of which we define strategies and conditional beliefs. In Section 3 we present the
decision-theoretic framework based on conditional preference relations. In Section 4 we define
dynamic consistency and provide some basic suffi cient conditions on the players’ conditional
preference relations that imply it. In Section 5 we do the same for the existence of sequentially
optimal strategies. In Section 6 we provide some concluding remarks. The appendix contains
all the proofs.

2 Games, Strategies and Beliefs

2.1 Dynamic Game Forms

In this paper we consider finite dynamic games that allow for simultaneous moves and imperfect
information. Formally, a dynamic game form is a tuple D = (I, P, Ia, (Ai, Hi)i∈I , Z), where

(a) I is the finite set of players;
(b) P is the finite set of past action profiles, or histories;
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(c) the mapping Ia assigns to every history p ∈ P the (possibly empty) set of active players
Ia(p) ⊆ I who must choose after history p. If Ia(p) contains more than one player, there are
simultaneous moves after p. If Ia(p) is empty, the game terminates after p. By Pi we denote the
set of histories p ∈ P with i ∈ Ia(p);

(d) for every player i, the mapping Ai assigns to every history p ∈ Pi the finite set of actions
Ai(p) from which player i can choose after history p. The objects P, Ia and (Ai)i∈I must be such
that the empty history ∅ is in P, representing the beginning of the game, and the non-empty
histories in P are precisely those objects (p, (ai)i∈Ia(p)) where p is a history in P and ai ∈ Ai(p)
for every i ∈ Ia(p);

(e) for every player i there is a partition Hi of the set of histories Pi where i is active. Every
partition element hi ∈ Hi is called an information set for player i. In case hi contains more
than one history, the interpretation is that player i does not know at hi which history in hi has
been reached. The objects Ai and Hi must be such that for every information set hi ∈ Hi and
every two histories p, p′ in hi, we have that Ai(p) = Ai(p

′). We can thus write Ai(hi) for the
unique set of available actions at hi. Moreover, it must be that Ai(hi)∩Ai(h′i) = ∅ for every two
distinct information sets hi, h′i ∈ Hi;

(f) Z ⊆ P is the collection of histories p where the set of active players Ia(p) is empty. Such
histories are called terminal histories, or consequences.

This definition follows Osborne and Rubinstein (1994), with the difference that we do not
specify utilities at the consequences. This is why we call it a dynamic game form and not a
dynamic game.

Based on this model we can derive the following definitions: We say that a history p precedes
a history p′ (or p′ follows p) if p′ results by adding some action profiles after p. Let H := ∪i∈IHi

be the collection of all information sets for all players. For every two information sets h, h′ ∈ H,
we say that h precedes h′ (or h′ follows h) if there is a history p ∈ h and a history p′ ∈ h′ such
that p precedes p′. Two information sets h, h′ are simultaneous if there is some history p which
belongs to both h and h′. We say that h weakly precedes h′ (or h′ weakly follows h) if either h
precedes h′, or h, h′ are simultaneous.

The dynamic game form satisfies perfect recall (Kuhn (1953)) if every player always remem-
bers which actions he chose in the past, and which information he had about the opponents’
past actions. Formally, for every player i, every information set hi ∈ Hi, and every two histories
p, p′ ∈ hi, the sequences of player i actions in p and p′ must be the same (and consequently, the
collection of player i information sets that p and p′ cross must be the same). For the remainder
of this paper we will always assume that the dynamic game form satisfies perfect recall.

2.2 Strategies

A strategy for player i assigns an available action to every information set at which player i is
active, and that is not excluded by earlier actions in the strategy. Formally, let s̃i be a mapping
that assigns to every information set hi ∈ Hi some action s̃i(h) ∈ Ai(h). We call s̃i a complete
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strategy. Then, a history p ∈ P is excluded by s̃i if there is some information set hi ∈ Hi, with
some history p′ ∈ hi preceding p, such that s̃i(hi) is different from the unique player i action at
p′ leading to p. An information set h ∈ H is excluded by s̃i if all histories in h are excluded by
s̃i. The strategy induced by s̃i is the restriction of s̃i to those information sets in Hi that are
not excluded by s̃i. A mapping si : H̃i → ∪hi∈H̃iAi(hi), where H̃i ⊆ Hi, is a strategy for player
i if it is the strategy induced by a complete strategy.1 By Si we denote the set of strategies for
player i, and by S−i := ×j 6=iSj the set of strategy combinations for i’s opponents.

Consider a strategy profile s = (si)i∈I in ×i∈ISi. Then, s induces a unique consequence z(s).
We say that the strategy profile s reaches a history p if p precedes z(s). Similarly, the strategy
profile s is said to reach an information set h if s reaches a history in h.

For a given information set h ∈ H and player i we define the sets

S(h) := {s ∈ ×i∈ISi | s reaches h},
Si(h) := {si ∈ Si | there is some s−i ∈ S−i such that (si, s−i) ∈ S(h)}, and
S−i(h) := {s−i ∈ S−i | there is some si ∈ Si such that (si, s−i) ∈ S(h)}.

Intuively, Si(h) is the set of strategies for player i that allow for information set h to be reached,
whereas S−i(h) is the set of opponents’strategy combinations that allow for h to be reached.

2.3 Beliefs

In a dynamic game form, a player holds a belief about the opponents’strategies at every infor-
mation set where he is active. More precisely, a conditional belief vector bi for player i assigns
to every information set hi ∈ Hi a conditional probabilistic belief bi(hi) ∈ ∆(S−i(hi)) about the
opponents’strategy combinations that are still possible when hi is reached. Here we denote, for
a finite set X, by ∆(X) the set of probability distributions on X.

Many concepts for dynamic games require the conditional belief vector to satisfy Bayesian
updating. Formally, the conditional belief vector bi satisfies Bayesian updating if for every two
information sets hi, h′i ∈ Hi where hi precedes h′i and bi(hi)(S−i(h

′
i)) > 0, it holds that

bi(h
′
i)(s−i) =

bi(hi)(s−i)

bi(hi)(S−i(h′i))

for all opponents’strategy combination s−i ∈ S−i(h′i).

3 Conditional Preference Relations

The ultimate question is: What strategy, or strategies, can a player in a dynamic game plausibly
choose? This will depend crucially on the beliefs that the player holds about the opponents’

1What we call a “strategy” is sometimes called a “plan of action” in the literature (Rubinstein (1991)), and
what we call a “complete strategy” is often called a “strategy”.
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Figure 1: A dynamic game form

strategies: For different beliefs, the player may opt for different strategies. To capture this
phenomenon most generally, we assume that the player holds, for every possible belief about
the opponents’strategies, a preference relation over his own strategies. This is modelled by a
conditional preference relation (Gilboa and Schmeidler (2003), Perea (2023)), and we take this
as the primitive object for our analysis.

Definition 3.1 (Conditional preference relation) A conditional preference relation%i
for player i specifies for every belief βi ∈ ∆(S−i) about the opponents’strategy combinations a
complete and reflexive preference relation %i,βi over his strategies.

As an illustration, consider the dynamic game form in Figure 1. Here, h′ denotes an informa-
tion set where players 1 and 2 choose simultaneously. A possible conditional preference relation
%1 for player 1 has been depicted in Figure 2. The picture should be read as follows: Every
belief for player 1 is a probability distribution over player 2’s strategies (c, g), (c, h) and d, and
can thus be identified with a point in the triangle. The corner points of the triangle are thus
the “opinionated”beliefs that assign probability 1 to one of the three strategies. The picture
reveals that for every belief to the left of the curve, player 1 prefers the strategy (a, e) to the
strategy (a, f), and the strategy (a, f) to b. For every belief to the right of the curve he prefers
(a, f) to (a, e) and (a, e) to b. For every belief on the curve he is indifferent between (a, e) and
(a, f), and prefers both strategies to b.

The conditional preference relation %1 above also specifies how player 1 would change the
ranking of his strategies when he revises his belief upon reaching a new information set. Suppose,
for instance, that player 1 initially holds the belief (0.5) · (c, g) + (0.5) · d, where he assigns equal
probability to player 2 choosing the strategies (c, g) and d. Figure 2 then tells us that player 1
will initially prefer his strategy (a, e) to (a, f), and his strategy (a, f) to b. Suppose now that,
upon reaching his second information set h′, he revises his belief by Bayesian updating to (c, g).
From Figure 2 we learn that at h′ player 1 would prefer (a, f) to (a, e), and (a, e) to b.
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Figure 2: A conditional preference relation for the dynamic game form in Figure 1

This holds in general: If we fix a conditional preference relation %i for player i, and specify a
conditional belief vector bi, describing what belief player i would have at each of his information
sets, then we know for every information set what his preferences over his strategies would be.
Indeed, at a given information set hi ∈ Hi player i would have the belief bi(hi), which in turn
induces the preference relation %i,bi(hi) over his own strategies.

4 Dynamic Consistency

In this section we first provide a definition of dynamic concistency in the context of conditional
preference relations, and subsequently lay out some intuitive properties that imply dynamic
consistency. At the end we illustrate, by means of an example, that these properties do not
require the conditional preference relation to have an expected utility representation.

4.1 Definition

In dynamic decision problems, the term dynamic consistency refers to the general idea that the
decision maker, as time passes by, should not reverse the ranking between two options “without
good reason”. More precisely, if the decision maker initially ranks two acts that only differ
conditional on an event E, then the decision maker should not change his ranking if he learns
that the event E obtains.

Within the context of a conditional preference relation, this idea can be translated as follows:
Suppose player i compares two strategies, si and ti, that both can possibly reach an information
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set h′i ∈ Hi, and that only differ at information sets that weakly follow h′i. Now consider an
information set hi ∈ Hi that precedes h′, such that player i believes at hi that h′i may be
reached with positive probability, and that player i prefers si to ti at hi. Then, under Bayesian
updating player i should still prefer si to ti at h′i.

The intuition is the following: If the player prefers si to ti at hi, then apparently player i
believes at hi that the moves of his opponents after, or at, h′i work in favor of si. If the play
moves from hi to h′i, then under Bayesian updating player i will maintain his belief about the
opponents’moves after, or at, h′i. As such, player i should still believe at h

′
i that the future

moves of his opponents work in favor of si.

Definition 4.1 (Dynamic consistency) A conditional preference relation %i for player i is
dynamically consistent if for every conditional belief vector bi that satisfies Bayesian updat-
ing, every two information sets hi, h′i ∈ Hi where hi precedes h′i and bi(hi)(S−i(h

′
i)) > 0, and

every two strategies si, ti ∈ Si(h′i) that only differ at information sets weakly following h′i, and
for which

si %i,bi(hi) ti,

it holds that
si %i,bi(h′i) ti.

Note that Bayesian updating is assumed in the definition of dynamic consistency. This is in
line with a well-known property in one-person decision theory, stating that dynamic consistency
within a Savage-style model requires the decision maker to update his beliefs using Bayesian
updating.

It may be verified that the conditional preference relation %1 in Figure 2 violates dynamic
consistency. Indeed, consider the conditional belief vector b1 for player 1 where

b1(h1) = (0.5) · (c, g) + (0.5) · d and b1(h′) = (c, g). (4.1)

Then, b1 satisfies Bayesian updating and b1(h1)(S2(h′)) > 0. Moreover, the strategies (a, e) and
(a, f) only differ at h′. However, according to Figure 2 we have that (a, e) �1,b1(h1) (a, f) and
(a, f) �1,b1(h′) (a, e). Hence, dynamic consistency is violated.

4.2 Suffi cient Conditions

Why is it that the conditional preference relation in Figure 2 violates dynamic consistency? We
will show that it violates two intuitive principles, which we call preservation of indifference and
preservation of strict preference.

In Figure 2 we see that player 1 is indifferent between (a, e) and (a, f) for the belief β1
that attaches probability 1 to player 2’s strategy d, and for a belief β′1 that attaches positive
probability to the strategies d and (c, g). But then, it seems reasonable that player 1 will also
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be indifferent between (a, e) and (a, f) for every belief on the line segment between β1 and β
′
1.

This property will be called preservation of indifference. However, this property is violated as
player 1 prefers (a, e) to (a, f) for all beliefs on the line segment strictly between β1 and β

′
1.

From Figure 2 we also conclude that player 1 prefers (a, f) to (a, e) for the belief β′′1 that
assigns probability 1 to the strategy (c, g). As player 1 is indifferent between (a, e) and (a, f)
at the belief β1 above, it seems reasonable that player 1 will prefer (a, f) to (a, e) for all beliefs
on the line segment strictly between β1 and β

′′
1. This property is called preservation of strict

preference. Also this property is violated, as player 1 prefers (a, e) to (a, f) for the belief
(0.5) · (c, g) + (0.5) · d which is on the line segment strictly between β1 and β′′1.

To formally define these two properties, we need some further terminology: Take two beliefs
βi, β

′
i ∈ ∆(S−i) and a number λ ∈ [0, 1]. Then, (1−λ)βi +λβ′i is the belief that assigns to every

opponents’strategy combination s−i ∈ S−i the probability

(1− λ) · βi(s−i) + λ · β′i(s−i).

Geometrically, (1− λ)βi + λβ′i is a belief on the line segment between βi and β
′
i. The following

two definitions are adapted from Gilboa and Schmeidler (2003) and Perea (2023).

Definition 4.2 (Preservation of indifference and strict preference) Consider a conditional
preference relation %i . Then,
(a) %i satisfies preservation of indifference if for every two strategies si, ti ∈ Si, and every
two beliefs βi, β

′
i ∈ ∆(S−i) with si ∼i,βi ti and si ∼i,β′i ti, it holds that si ∼i,(1−λ)βi+λβ′i ti for

every λ ∈ (0, 1), and

(b) %i satisfies preservation of strict preference if for every two strategies si, ti ∈ Si, and
every two beliefs βi, β

′
i ∈ ∆(S−i) with si %i,βi ti and si �i,β′i ti, it holds that si �i,(1−λ)βi+λβ′i ti

for every λ ∈ (0, 1).

A last property we need in order to guarantee dynamic consistency is called respect of
outcome-equivalent strategies. The idea is that if a player believes that two strategies lead
to the same outcome, then he should be indifferent between the two strategies. To formally de-
fine it, we need an additional definition: For an opponents’strategy combination s−i, we denote
by [s−i] the belief that assigns probability 1 to s−i.

Definition 4.3 (Respect of outcome-equivalent strategies) A conditional preference re-
lation %i respects outcome-equivalent strategies if for every two strategies si, ti and every
opponents’strategy combination s−i where (si, s−i) leads to the same consequence as (ti, s−i),
it holds that si ∼i,[s−i] ti.

This property represents a weak version of consequentialism —a condition in philosophy and
decision theory which states that an act should only be evaluated on the basis of its induced
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consequences and nothing else. See, for instance, the overviews by Sinnott-Armstrong (2023)
and Machina (1989, Section 4), and the references therein. For a formulation and discussion of
consequentialism in the framework of conditional preference relations for dynamic game forms,
as we use it here, the reader may consult Perea (2024).

It may be verified that the conditional preference relation in Figure 2 respects outcome-
equivalent strategies. To see this, consider the strategies (a, e) and (a, f), and the opponent’s
strategy d. Then, ((a, e), d) and ((a, f), d) lead to the same consequence. At the same time,
player 1 is indifferent between (a, e) and (a, f) at the belief [d].

We will now show that the three basic properties above are suffi cient to guarantee dynamic
consistency.

Theorem 4.1 (Suffi cient conditions for dynamic consistency) Every conditional prefer-
ence relation that satisfies preservation of indifference, preservation of strict preference and
respect of outcome-equivalent strategies is dynamically consistent.

Note that the three conditions above are relatively basic and mild. As such, this result shows
that a collection of weak conditions is enough to guarantee dynamic consistency.

4.3 Expected Utility

In Theorem 4.1 we do not require the conditional preference relation to be induced by a utility
function on consequences, as is typically assumed in dynamic games. As an illustration, consider
the conditional preference relation %1 for player 1 in Figure 3 for the dynamic game form in
Figure 1. It may be verified that this conditional preference relation %1 satisfies preservation
of indifference and preservation of strict preference, and that it respects outcome-equivalent
strategies. Hence, we conclude in view of Theorem 4.1 that %1 is dynamically consistent.

At the same time, it can be shown that %1 does not have an expected utility representation.
Formally, we say that a conditional preference relation %i has an expected utility representation
if there is a utility function ui : Si × S−i → R such that si %i,βi ti if and only if∑

s−i∈S−i

βi(s−i) · ui(si, s−i) ≥
∑

s−i∈S−i

βi(s−i) · ui(ti, s−i)

for all strategies si, ti and every belief βi.
To see why %1 in Figure 3 does not have an expected utility representation suppose, on the

contrary, that there would be an expected utility representation u1. Consider the vector v in
Figure 3 which is outside the belief simplex. Since the vector v is on the line through the beliefs
that yield the same expected utility for the strategies (a, e) and b, we conclude that at the vector
v the “expected utility”of (a, e) and b would also be the same. Here, by the “expected utility”
of the strategy (a, e) at the vector v we mean∑

s2∈S2

v(s2) · u1((a, e), s2),
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Figure 3: Conditional preference relation that is dynamically consistent, but does not have
expected utility representation

where v(s2) may take negative values. Similarly for the “expected utility”of the strategy b at
the vector v.

The vector v is also on the line through the beliefs that yield the same expected utility for
the strategies (a, e) and (a, f), which implies that the “expected utility”of (a, e) and (a, f) will
also be the same at v. We thus see that at the vector v, the “expected utilities”of (a, e), (a, f)
and b are all the same. However, it can be seen from Figure 3 that v is not on the line of beliefs
where the expected utility of (a, f) and b are the same, which implies that the “expected utility”
of (a, f) and b will not be the same at v. We thus obtain a contradiction. Hence, we conclude
that there is no expected utility representation for %1 .

It may be verified that the conditional preference relation %1 violates the axiom of three
choice linear preference intensity in Perea (2023), which is necessary for an expected utility
representation. Geometrically, this axiom states the following: Consider three strategies, and
for each of the three pairs of strategies consider the corresponding indifference set —the set of
beliefs where the player is indifferent between the two strategies involved. If we extend these
three indifference sets linearly outside the belief simplex, then three choice linear preference
intensity requires that these three sets have a common intersection, possibly outside the belief
simplex. In Figure 3, these linear extensions are depicted by the dashed lines. Admittedly,
three choice linear preference intensity is a rather demanding property, but it is needed for an
expected utility representation. At the same time, Theorem 4.1 shows that this property is not
required for establishing dynamic consistency.

If, on the other hand, we assume that the conditional preference relation %i does have an
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Figure 4: Dynamically consistent conditional preference relation with non-consequentialist ex-
pected utility representation

(c, g) (c, h) d

(a, e) 2 0 1
(a, f) 0 3 1

b 3 1 0
i 1 2 2

Table 1: Dynamically consistent conditional preference relation with non-consequentialist ex-
pected utility representation

expected utility representation ui : Si × S−i → R, then it follows from Gilboa and Schmeidler
(2003) and Perea (2023) that %i satisfies preservation of indifference and preservation of strict
preference. If we require, in addition, that %i respects outcome-equivalent strategies, then we
conclude on the basis of Theorem 4.1 that %i is dynamically consistent. We thus conclude, as
a special case, that every conditional preference relation %i that respects outcome-equivalent
strategies and has an expected utility representation ui, is dynamically consistent.

But even in this case, the conditional preference relation %i need not be consequentialist.
In particular, %i need not be induced by a utility function on consequences. As an illustration,
consider the dynamic game form in Figure 4. The only difference with Figure 1 is that player
1 now has three choices at the beginning. Consider the conditional preference relation %1 for
player 1 with the expected utility representation u1 given by Table 1.

Note that %1 respects outcome-equivalent strategies, because ((a, e), d) and ((a, f), d) lead
to the same consequence whereas, at the same time, (a, e) ∼1,[d] (a, f). As such, Theorem 4.1
guarantees that %1 is dynamically consistent.

However, %1 is non-consequentialist. Indeed, since the consequences induced by strategies
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b and i do not depend on player 2’s choice, consequentialism implies that player 1’s ranking of
his strategies b and i should be independent of player 2’s choice. But this is not the case, since
player 1 prefers b to i if he believes player 2 to choose (c, g), whereas he prefers i to b if he
believes player 2 to choose (c, h).

If we assume, on the other hand, that the conditional preference relation %i has a conse-
quentialist expected utility representation ui which only depends on consequences, as is the case
for “traditional”dynamic games, then %i will always satisfy dynamic consistency. The reason
is that in such a case, the conditional preference relation will automatically satisfy respect of
outcome-equivalent strategies. Hence, our Theorem 4.1 implies that dynamic consistency will
always hold for traditional dynamic games where the players’conditional preference relations
are given by utility functions at the consequences.

5 Sequentially Optimal Strategies

In this section we show that every conditional preference relation which is dynamically consis-
tent and transitive allows for a strategy that is optimal at every information set, provided the
player updates his beliefs by Bayesian updating. Such strategies are called sequentially opti-
mal. We start by defining sequentially optimal strategies, after which we state and prove the
abovementioned result.

5.1 Definition

We start by defining what it means for a strategy to be optimal at a given information set for a
specific conditional belief. Recall that, for a given information set hi ∈ Hi, we denote by Si(hi)
the set of strategies that can possibly reach hi.

Definition 5.1 (Optimal strategy) Consider a conditional preference relation %i, an infor-
mation set hi ∈ Hi, a strategy si ∈ Si(hi) that can possibly reach hi, and a conditional belief
βi ∈ ∆(S−i(hi)) for player i at h. Then, the strategy si is optimal for the conditional preference
relation %i at hi under the conditional belief βi if

si %i,βi s
′
i for every strategy s

′
i ∈ Si(h).

Next, consider a conditional belief vector bi that assigns to every information set hi ∈ Hi

a conditional belief bi(hi) ∈ ∆(S−i(hi)). Then, a strategy is called sequentially optimal for this
conditional belief vector if it is optimal at every information set that can possibly by reached
under the strategy.

Definition 5.2 (Sequentially optimal strategy) Consider a conditional preference relation
%i and a conditional belief vector bi. Then, a strategy si is sequentially optimal for the
conditional preference relation %i under the conditional belief vector bi if for every information
set hi ∈ Hi with si ∈ Si(hi), the strategy si is optimal for %i under the belief bi(hi).
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In general, a sequentially optimal strategy need not exist for a given conditional belief vector
that satisfies Bayesian updating. As an illustration, consider the dynamic game form from Figure
1 and the associated conditional preference relation %1 in Figure 2. Consider the conditional
belief vector b1 given by (4.1) which satisfies Bayesian updating. Then, according to Figure 2,
only the strategy (a, e) is optimal at h1, whereas only the strategy (a, f) is optimal at h′ under
the conditional belief vector b1. Hence, there is no strategy that is sequentially optimal under
the conditional belief vector b1.

5.2 Suffi cient Conditions

For a meaningful analysis it seems necessary that, for every conditional belief vector that satisfies
Bayesian updating, there will always be a strategy that is sequentially optimal. As we have seen,
this property fails for the conditional preference relation in Figure 2. The question now is: What
conditions need to be imposed such that they guarantee the existence of sequentially optimal
strategies for all conditional belief vectors satisfying Bayesian updating? The answer is quite
simple: The conditions that imply dynamic consistency, together with transitivity, are suffi cient
here.

Definition 5.3 (Transitivity) A conditional preference relation %i is transitive if the pref-
erence relation %i,βi over strategies is transitive for all beliefs βi ∈ ∆(S−i).

If we combine this property with the conditions in Theorem 4.1 that imply dynamic consis-
tency, then this will guarantee the existence of sequentially optimal strategies for all conditional
belief vectors satisfying Bayesian updating.

Theorem 5.1 (Existence of sequentially optimal strategies) Consider a conditional pref-
erence relation %i that satisfies preservation of indifference, preservation of strict preference, re-
spects outcome-equivalent strategies and is transitive. Then, for every conditional belief vector
bi that satisfies Bayesian updating there is a strategy which is sequentially optimal for %i under
bi.

As an illustration, consider the conditional preference relation %1 in Figure 3 for the dy-
namic game form in Figure 1. It may be verified that %1 satisfies preservation of indifference
and preservation of strict preference, respects outcome-equivalent strategies and is transitive.
Therefore, we conclude on the basis of Theorem 5.1 that every conditional belief vector which
satisfies Bayesian updating allows for a sequentially optimal strategy.

At the same time, we have seen earlier that %1 does not have an expected utility repre-
sentation. This shows that expected utility is not a necessary requirement for the existence
of sequentially optimal strategies. It is suffi cient, though, when taken together with respect of
outcome-equivalent strategies. To see this, take a conditional preference relation that has an
expected utility representation and respects outcome-equivalent strategies. Then, it follows from
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Gilboa and Schmeidler (2003) and Perea (2023) that it satisfies preservation of indifference and
preservation of strict preference, and that it is transitive. Hence, it follows from Theorem 5.1
that every conditional belief vector which satisfies Bayesian updating allows for a sequentially
optimal strategy. We thus obtain the following result.

Corollary 5.1 (Expected utility implies existence of sequentially optimal strategies)
Consider a conditional preference relation %i that has an expected utility representation and
respects outcome-equivalent strategies. Then, for every conditional belief vector bi that satisfies
Bayesian updating there is a strategy which is sequentially optimal for %i under bi.

This result is known in the decision theoretic and game theoretic literature (see, for instance,
Lemma 8.14.1 in Perea (2012)), but the interesting feature is that it follows from a more general
result in Theorem 5.1. In particular, expected utility is not needed to guarantee the existence of
sequentially optimal strategies —the much more basic conditions in Theorem 5.1 are suffi cient
to ensure it.

6 Concluding Remarks

Differences with Savage-style framework. The model of conditional preference relations
by Gilboa and Schmeidler (2003) employed in this paper assumes that the players are Bayesian,
as we define a preference relation over the player’s strategies for every possible probabilistic
belief that he could hold over the opponents’ strategies. This is in sharp contrast with the
expected utility model of Savage (1954) where the axioms imply Bayesianism. Indeed, Savage’s
axiom system allows us to derive a unique probability measure over states. Other investigations,
like Machina and Schmeidler (1992) and Epstein and Le Breton (1993), show that Bayesianism
may even be derived from an appropriate set of axioms for scenarios where the expected utility
hypothesis is not fulfilled.

On the other hand, we do not consider a unique belief for a decision maker in our model,
whereas the Savage-style models above typically do. We find this important, as a player in a
dynamic game may change his belief upon observing new information, and will in general be
inherently uncertain about the beliefs held by his opponents. For a game-theoretic analysis it is
therefore important for a player to reason about several possible beliefs for his opponents, and
our model is flexible enough to allow for this. Moreover, the notion of a conditional preference
relation is capable of describing how the player’s preference relation changes when the game
moves from one information to another. It can thus be used as a dynamic decision theoretic
model.

In a game-theoretic setting, one drawback of the Savage-style models is that many acts
(mappings from states to consequences) do not correspond to real choice options of the player,
but the model assumes that the player nevertheless ranks all of these acts. The concept of a
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conditional preference relation circumvents this problem by assuming that for every belief, the
player only ranks his strategies in the dynamic game, and nothing else.

In view of the above, we feel that the concept of a conditional preference relation provides a
natural decision-theoretic framework for analyzing the behavior of players in a dynamic game.
Important is also that it allows for scenarios where the expected utility hypothesis is violated.

Does dynamic consistency imply expected utility? Dynamic consistency is, by its very
nature, a notion that applies to dynamic scenarios, where the decision maker updates his pref-
erences upon receiving new information. The general idea is that the decision maker’s updated
preferences should be suffi ciently aligned with his ex-ante preferences. Our version of dynamic
consistency has also been defined along those lines: For a given conditional preference relation,
the player’s updated preference relation upon reaching a new information set must be in line
with his preference relation held at the previous information set.

The idea of dynamic consistency has also been explored in static Savage-style scenarios,
however. Machina and Schmeidler (1992) and Epstein and Le Breton (1993), for instance, derive
for a given event E and sub-act h on the complement of E, an updated preference relation %E,h
over sub-acts on E as follows:

f %E,h g if and only if
[
f(s), if s ∈ E
h(s), if s /∈ E

]
%
[
g(s), if s ∈ E
h(s), if s /∈ E

]
.

Then, by construction, the updated preference relation f %E,h g is dynamically consistent with
the ex-ante preference relation % .

But suppose we would only allow for conditioning events that are observable, like the events
E above, but without the sub-act h. In that case, the updated preference relation %E,h should
be independent of the sub-act h, which amounts to imposing the Sure-Thing Principle. Together
with the other Savage axioms, this would lead us to expected utility. In that sense, this version
of dynamic consistency would imply expected utility.

Note that this is not true for our analysis in this paper: Our suffi cient conditions for dynamic
consistency do not imply expected utility, as has been shown by the example of Figure 3.
Moreover, our notion of dynamic consistency assumes that updated preferences are defined
conditional on observable events only. Indeed, the updated preferences are the preferences that
a player i holds at each of his information sets hi, which in turn correspond to the observable
events S−i(hi) where the opponents have made choices that allow hi to be reached.

Where does this difference come from? First, our decision-theoretic framework is fundamen-
tally different from the Savage-style frameworks, as already discussed above. Hence, assumptions
that seem similar at first sight may lead to different conclusions. Moreover, our suffi cient con-
ditions that imply dynamic consistency are very basic, and far from yielding expected utility.
In turn, the notion of dynamic consistency for Savage-style models as discussed above, where
updated preferences are only defined for observable conditioning events, implies the Sure-Thing
Principle, which already brings us very close to expected utility.
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7 Appendix

7.1 Proof of Section 4

Proof of Theorem 4.1. Consider a conditional preference relation%i that satisfies preservation
of indifference, preservation of strict preference and respect of outcome-equivalent strategies. We
will show that %i is dynamically consistent.

Consider a conditional belief vector bi that satisfies Bayesian updating, two information sets
hi, h

′
i ∈ Hi where hi precedes h′i and bi(hi)(S−i(h

′
i)) > 0, and two strategies si, ti ∈ Si(h′i) that

only differ at information sets weakly following h′i, and where si %i,bi(hi) ti.
By definition of Bayesian updating, the conditional belief bi(h′i) ∈ ∆(S−i(h′i)) at h

′
i is given

by

bi(h
′
i)(s−i) :=

bi(hi)(s−i)

bi(hi)(S−i(h′i))
for every s−i ∈ S−i(h′i). (7.1)

We will show that si %i,bi(h′i) ti.
We distinguish two cases: (1) bi(hi)(S−i(h′i)) = 1, and (2) bi(hi)(S−i(h′i)) < 1.

Case 1. Suppose that bi(hi)(S−i(h′i)) = 1. Then, bi(hi) = bi(h
′
i), and it trivially follows that

si %i,bi(h′i) ti since si %i,bi(hi) ti.
Case 2. Suppose that bi(hi)(S−i(h′i)) < 1. Then, bi(hi)(S−i\S−i(h′i)) > 0. Let βi ∈ ∆(S−i\S−i(h′i))
be the belief given by

βi(s−i) :=
bi(hi)(s−i)

bi(hi)(S−i\S−i(h′i))
for every s−i ∈ S−i\S−i(h′i). (7.2)

Then, in view of (7.1) and (7.2), the belief bi(hi) can be written as

bi(hi) = bi(hi)(S−i(h
′
i)) · bi(h′i) + bi(hi)(S−i\S−i(h′i)) · βi

= bi(hi)(S−i(h
′
i)) · bi(h′i) + (1− bi(hi)(S−i(h′i))) · βi. (7.3)

By construction, the belief βi only assigns positive probability to strategy combinations outside
S−i(h′i), and hence we have that

βi =
∑

s−i∈S−i\S−i(h′i)
βi(s−i) · [s−i]. (7.4)

Now, take some s−i ∈ S−i\S−i(h′i). Then, for every history p ∈ h′i, the strategy combination
s−i does not select some of the actions that lead to p. As si and ti only differ at information
sets weakly following h′i, we conclude that (si, s−i) and (ti, s−i) lead to the same consequence z
which does not follow h′i. Since %i respects outcome-equivalent strategies, we conclude that

si ∼i,[s−i] ti for every s−i ∈ S−i\S−i(h
′
i). (7.5)
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As %i satisfies preservation of indifference, it follows by (7.4) and (7.5) that

si ∼i,βi ti. (7.6)

Now assume, contrary to what we want to show, that ti �i,bi(h′i) si. Since %i satisfies preser-
vation of strict preference, and bi(hi)(S−i(h′)) > 0, we conclude on the basis of (7.3) and (7.6)
that ti �i,bi(hi) si. This, however, is a contradiction to our assumption that si %i,bi(hi) ti. Hence,
ti �i,bi(h′i) si cannot be true, which implies that si %i,bi(h′i) ti. Thus, %i is dynamically consistent.
This completes the proof. �

7.2 Proof of Section 5

Proof of Theorem 5.1. Consider a conditional belief vector bi that satisfies Bayesian updating.
Let

H1
i = {hi ∈ Hi | hi is not preceded by any h′i ∈ Hi}

be the collection of first information sets for player i. Consider a first information set hi ∈ H1
i ,

and the induced preference relation %i,bi(hi) over strategies there. Since %i is transitive, we
know that the preference relation %i,bi(hi) is transitive, and hence there is a strategy s

1hi
i that

is optimal at hi under the belief bi(hi).
Now, construct a strategy s1i such that, for every hi ∈ H1

i , the strategy s
1
i coincides with s

1hi
i

at all information sets h′i ∈ Hi that weakly follow hi and where s1i ∈ Si(h′i). Such a construction
is possible since, by perfect recall, we have for every two different information sets hi, h′i ∈ H1

i

that every information set that weakly follows hi cannot weakly follow h′i. We will now show,
for every hi ∈ H1

i , that the strategy s
1
i is optimal at hi under the belief bi(hi).

Consider an information set hi ∈ H1
i , and compare the strategies s

1
i and s

1hi
i under the belief

bi(hi). By definition, bi(hi) ∈ ∆(S−i(hi)), and hence bi(hi) can be written as

bi(hi) =
∑

s−i∈S−i(hi)
bi(hi)(s−i) · [s−i]. (7.7)

Take some s−i ∈ S−i(h). Then, there is some history p ∈ hi such that s−i selects all the actions
that lead to p. Since s1i and s

1hi
i coincide at all information sets for player i weakly following hi,

and since there are no choices for player i before hi, we conclude that (s1i , s−i) and (s1hii , s−i) lead
to the same consequence following p. As %i respects outcome-equivalent strategies, we conclude
that

s1i ∼i,[s−i] s
1hi
i for all s−i ∈ S−i(hi). (7.8)

Since %i satisfies preservation of indifference, it follows from (7.7) and (7.8) that

s1i ∼i,bi(hi) s
1hi
i . (7.9)
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Recall that s1hii is optimal at hi under the belief bi(hi), which means that

s1hii %i,bi(hi) si for all si ∈ Si(hi).

Since the preference relation %i,bi(hi) is transitive, we conclude on the basis of (7.9) that

s1i %i,bi(hi) si for all si ∈ Si(hi), (7.10)

and hence s1i is optimal at hi under the belief bi(hi).
For every hi ∈ H1

i , let

H+
i (hi) := {h′i ∈ Hi | h′i follows hi and bi(hi)(S−i(h′i)) > 0}

be the collection of information sets for player i that follow hi and which, according to the
belief at hi, can possibly be reached with some positive probability. By perfect recall, all of
these sets H+

i (hi) are disjoint. For every information set h′i ∈ H+
i (hi), the conditional belief

bi(h
′
i) ∈ ∆(S−i(h′i)) is, by the definition of Bayesian updating, given by

bi(h
′
i)(s−i) :=

bi(hi)(s−i)

bi(hi)(S−i(h′i))
for every s−i ∈ S−i(h′i). (7.11)

Now, take some h′i ∈ H+
i (hi) such that s1i ∈ Si(h′i). We show that s1i is optimal at h′i for bi(h′i).

Take some arbitrary strategy si ∈ Si(h
′
i)\{s1i }. Then, in particular, si ∈ Si(hi) since hi

precedes h′i. Hence, we know by (7.10) that

s1i %i,bi(hi) si. (7.12)

We will show that s1i %i,bi(h′i) si.
Let s̃i be the strategy that coincides with si at all player i information sets that weakly

precede or weakly follow h′i, and that coincides with s
1
i at all other player i information sets h

′′
i

with s1i ∈ Si(h′′i ). Note that the belief bi(h′i) ∈ ∆(S−i(h′)) can be written as

bi(h
′
i) =

∑
s−i∈S−i(h′i)

bi(h
′
i)(s−i) · [s−i]. (7.13)

Take some s−i ∈ S−i(h′i). Then, there is a history p in hi such that s−i selects all the actions
that lead to p. Moreover, as si and s̃i coincide at all player i information sets preceding h′i it
follows by perfect recall that si and s̃i select all the player i actions leading to p. As si and
s̃i also coincide at all player i information sets weakly following h′i we conclude that (si, s−i)
and (s̃i, s−i) lead to the same consequence. By respect of outcome equivalent strategies we then
obtain that

s̃i ∼i,[s−i] si. (7.14)
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As %i satisfies preservation of indifference we conclude from (7.13) and (7.14) that

s̃i ∼i,bi(h′i) si. (7.15)

Remember that s1i , s̃i ∈ Si(h
′
i). Hence, by perfect recall, s

1
i and s̃i coincide at all player i

information sets preceding h′i, which implies that s
1
i , s̃i only differ at player i information sets

weakly following h′i. Since bi(hi)(S−i(h
′
i)) > 0 and the belief bi(h′i) is given by (7.11), it follows

by Theorem 4.1 that
s1i %i,bi(h′i) s̃i. (7.16)

As %i is transitive it follows from (7.15) and (7.16) that s1i %i,bi(h′i) si. Since this holds for
every si ∈ Si(h′i)\{s1i }, we conclude that the strategy s1i is optimal at h′i under the belief bi(h′i).

Let
H1+
i := {h′i ∈ Hi | h′i ∈ H+

i (hi) for some hi ∈ H1
i }

be the collection of information sets for player i which, according to the beliefs at H1
i , can

possibly be reached with positive probability. On the basis of our insights above, we conclude
that the strategy s1i so constructed is optimal at every information set hi in H

1
i ∪ H1+

i with
s1i ∈ Si(hi) under the associated belief bi(hi).

Next, define

H2
i := {hi ∈ Hi\(H1

i ∪H1+
i ) | hi not preceded by any h′i ∈ Hi\(H1

i ∪H1+
i )}

as the collection of first information sets for player i that are not in H1
i ∪ H1+

i . By a similar
argument as above, we know that for every hi ∈ H2

i there is a strategy s
2hi
i that is optimal at

hi under the belief bi(hi).
Now, construct a strategy s2i that coincides with s

1
i at all information sets in H

1
i ∪H1+

i , and
that, for every hi ∈ H2

i , coincides with s
2hi
i at all information sets for player i that weakly follow

hi. In a similar way as above, it can then be shown that for every hi ∈ H2
i with s

2
i ∈ Si(hi), the

strategy s2i is optimal at hi for the belief bi(hi).
We will now show that, for every h′i ∈ H1

i ∪H1+
i with s2i ∈ Si(h′i), the strategy s2i is optimal

at h′i under the belief bi(h
′
i). Take some h

′
i ∈ H1

i ∪H1+
i with s2i ∈ Si(h′i). Then, there is some

hi ∈ H1
i such that h

′
i weakly follows hi, and bi(h

′
i) is given by (7.11).

By construction, under the belief bi(hi) only information sets in H1
i ∪H1+

i can possibly be
reached with positive probability if player i chooses a strategy in Si(hi). But then, it follows by
(7.11) that under the belief bi(h′i), only information sets in H

1
i ∪H1+

i can possibly be reached
with positive probability if player i chooses a strategy in Si(h′i).

Now, consider an opponents’strategy combination s−i ∈ S−i(h′i) such that bi(h′i)(s−i) > 0.
Since s2i ∈ Si(h′i) and s2i coincides with s1i at all information sets in H1

i ∪ H1+
i , we have that

s1i ∈ Si(h′i) also. But then, we know by the insights above that both (s1i , s−i) and (s2i , s−i) only
reach information sets in H1

i ∪H1+
i . As s1i and s

2
i coincide at all information sets in H

1
i ∪H1+

i , we
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conclude that (s1i , s−i) and (s2i , s−i) lead to the same consequence. Since %i respects outcome-
equivalent strategies we conclude that

s2i ∼i,[s−i] s
1
i for all s−i with bi(h

′
i)(s−i) > 0. (7.17)

At the same time, the belief bi(h′i) can be written as

bi(h
′
i) =

∑
s−i∈S−i(h′i):bi(h′i)(s−i)>0

bi(h
′
i)(s−i) · [s−i]. (7.18)

Since %i satisfies preservation of indifference, we conclude on the basis of (7.17) and (7.18) that

s2i ∼i,bi(h′i) s
1
i . (7.19)

Recall that s1i was optimal at h
′
i under the belief bi(h

′
i), which means that

s1i %i,bi(h′i) si for all si ∈ Si(h
′
i). (7.20)

As %i,bi(h′i) is transitive, (7.19) and (7.20) imply that

s2i %i,bi(h′i) si for all si ∈ Si(h
′
i)

and hence s2i is optimal at h
′
i under the belief bi(h

′
i).

We thus conclude that, for every hi ∈ H1
i ∪ H1+

i ∪ H2
i with s

2
i ∈ Si(hi), the strategy s2i is

optimal at hi under the belief bi(hi).
For every hi ∈ H2

i , define the collection of information sets

H+
i (hi) := {h′i ∈ Hi | h′i follows hi and bi(hi)(S−i(h′i)) > 0}.

In the same way as above, it can then be shown that for every h′i ∈ H+
i (hi) with s2i ∈ Si(h′i),

the strategy s2i is optimal at h
′
i under the belief bi(h

′
i).

Let
H2+
i := {h′i ∈ Hi | h′i ∈ H+

i (hi) for some hi ∈ H2
i }.

Then, we conclude that for every hi ∈ H2+
i with s2i ∈ Si(hi), the strategy s2i is optimal at hi

under the belief bi(hi).
Altogether, we see that for every hi ∈ H1

i ∪H1+
i ∪H2

i ∪H2+
i with s2i ∈ Si(hi), the strategy

s2i is optimal at hi under the belief bi(hi).
We can continue in this fashion until, for some K, every information set for player i is in

(H1
i ∪H1+

i ) ∪ (H2
i ∪H2+

i ) ∪ ... ∪ (HK
i ∪HK+

i ).

Then, the strategy sKi so constructed will have the property that, for every hi ∈ Hi with
sKi ∈ Si(hi), the strategy sKi is optimal at hi under the belief bi(hi). That is, sKi is sequentially
optimal for the conditional belief vector bi. This completes the proof. �
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