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Abstract

In philosophy and decision theory, consequentialism reflects the assumption that an act is evaluated
solely on the basis of the consequences it may induce, and nothing else. In this paper we study the
idea of consequentialism in dynamic games by considering two versions: A commonly used utility-based
version stating that the player’s preferences are governed by a utility function on consequences, and a
preference-based version which faithfully translates the original idea of consequentialism to restrictions on
the player’s preferences. Utility-based consequentialism always implies preference-based consequentialism,
but the other direction is not necessarily true, as is shown by means of a counterexample. It turns out
that utility-based consequentialism is equivalent to the assumption that the induced preference intensities
on consequences are additive, whereas preference-based consequentialism only requires this property for
every pair of strategies in isolation. We finally show that if the dynamic game either (i) has two strategies
for the player we consider, or (ii) has observed past choices, or (iii) involves only two players and has
perfect recall, then the two notions of consequentialism are equivalent in the absence of weakly dominated
strategies.
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Figure 1: Illustration of consequentialism

1 Introduction

In philosophy and decision theory, consequentialism reflects the assumption that a person evaluates an act
solely based on the possible consequences that this particular act may induce, and nothing more. For a
detailed account the reader may consult the overviews by Sinnott-Armstrong (2023) and Machina (1989,
Section 4), and the references therein.

In the game theoretic literature the notion of consequentialism has rarely been discussed explicitly.
However, the dynamic games we traditionally use implicitly assume a strong version of consequentialism, by
writing down utilities at the terminal histories, or consequences, and assuming that the player’s preferences
are governed by such utilities. We refer to this assumption as utility-based consequentialism. It is also
assumed in many well-known decision theoretic models such as von Neumann and Morgenstern (1944),
Savage (1954) and Anscombe and Aumann (1963). Indeed, in these models the proposed axioms guarantee
that the decision maker’s preferences can be represented by a utility function on consequences, supplemented
in Savage (1954) and Anscombe and Aumann (1963) by a subjective belief on states.

We argue, however, that there are natural scenarios of dynamic games where utility-based consequen-
tialism is violated. As an illustration, consider the situation where you have a discussion with your friend
Barbara. After a calm start the discussion has entered a stage where you must decide between staying,
leaving the room while slamming the door, and leaving the room calmly. If you stay, Barbara has the option
to either start shouting at you or to teach you a lesson without raising her voice. This leads to the dynamic
game form depicted in Figure 1.

Suppose you are determined to leave, but you still have to decide whether to slam the door or not. If
you are a consequentialist, your preference between these two options should not depend on whether you
believe that Barbara would (counterfactually) start to shout or not if you were to stay, as it does not affect
the consequences (z3 or z4) of the two options mentioned above. However, one could still imagine a scenario
where you would be prone to slam the door if you believe that Barbara would counterfactually start shouting
at you if you were to stay, whereas you would prefer to leave calmly if you believe that Barbara would not
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start shouting at you in that situation. As such, it makes perfect sense not be a consequentialist in this
game.

The question we wish to investigate in this paper is to what extent the notion of utility-based conse-
quentialism faithfully represents the original idea of consequentialism as described at the beginning of the
introduction. Or is this notion too strong in some scenarios? To address this question we use the decision
theoretic framework by Gilboa and Schmeidler (2003) and Perea (2023), which requires the decision maker
to hold a conditional preference relation assigning to every probabilistic belief over the states a preference
relation over his acts. The reason we use this framework is that it naturally fits the analysis of games.
Indeed, if we apply it to dynamic games, then a player is supposed to hold a preference relation over his
own strategies for every possible probabilistic belief about the opponents’strategies. This naturally reflects
the game theoretic element that the ranking of your own strategies crucially depends on what you believe
that others will do.

Within this decision theoretic setting we formulate a preference-based version of consequentialism which
states that the ranking of two strategies under a given belief should only depend on the probability distrib-
utions over consequences induced by these two strategies under the belief, and nothing more. It is therefore
a faithful translation of the original idea of consequentialism to the setting of dynamic games.

It turns out that utility-based consequentialism always implies preference-based consequentialism, but
the other direction may not be true. We offer an example of a three-player game where past choices are
imperfectly observed such that a particular player satisfies preference-based, but not utility-based, conse-
quentialism.

The difference between the two notions in this example is that utility-based consequentialism induces
additive preference intensities on consequences for this player, whereas preference-based consequentialism
does not. By additive preference intensities on consequences we mean that for every three consequences x, y
and z, the sum of the intensity by which you prefer x to y and the intensity by which you prefer y to z equals
the intensity by which you prefer x to z. In fact, we show in Theorem 4.1 that for every dynamic game form,
utility-based consequentialism can be characterized by the condition that the conditional preference relation
at hand induces preference intensities on consequences that are additive. In turn, Theorem 4.2 states that
preference-based consequentialism is equivalent to the weaker requirement that the property above holds for
every pair of strategies in isolation, but not necessarily for all strategies together.

In Theorem 5.1 we identify conditions under which the two notions of consequentialism are equivalent.
More precisely, it is shown that if the dynamic game form either (i) has only two strategies for the player
under consideration, or (ii) has observed past choices, or (iii) has only two players and satisfies perfect recall,
then the two notions of consequentialism are equivalent, provided there is an expected utility representation
for the conditional preference relation and there are no weakly dominated strategies. For such scenarios,
the condition of additive induced preference intensities on consequences is thus implied by preference-based
consequentialism alone. These are precisely the situations where writing down utilities at the terminal
histories faithfully reflects the original idea of consequentialism.

The outline of this paper is as follows: In Section 2 we introduce our model of a dynamic game and the
decision theoretic framework as described above. In Section 3 we lay out the two definitions of consequen-
tialism. In Section 4 we provide an example where the two notions of consequentialism are not equivalent,
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prove that utility-based consequentialism is equivalent to requiring that the induced preference intensities
on consequences are additive, and that preference-based consequentialism is equivalent to requiring that the
induced preference intensities on consequences are additive for every pair of strategies in isolation. In Section
5 we identify a set of suffi cient conditions under which the two notions of consequentialism are equivalent.
In Section 6 we provide some concluding remarks. The appendix contains the proofs of the three theorems,
together with some definitions from graph theory, some preparatory results, and a utility transformation
procedure, which are needed for the proofs.

2 Model

In this section we start by laying out our model of a dynamic game form, followed by the definition of a
strategy and that of a conditional preference relation for a distinguished player.

2.1 Dynamic Game Forms

In this paper we consider finite dynamic games that allow for simultaneous moves and imperfect information.
Formally, a dynamic game form is a tuple D = (I, P, Ia, (Ai, Hi)i∈I , Z), where

(a) I is the finite set of players;
(b) P is the finite set of past action profiles, or histories;
(c) the mapping Ia assigns to every history p ∈ P the (possibly empty) set of active players Ia(p) ⊆ I

who must choose after history p. If Ia(p) contains more than one player, there are simultaneous moves after
p. If Ia(p) is empty, the game terminates after p. By Pi we denote the set of histories p ∈ P with i ∈ Ia(p);

(d) for every player i, the mapping Ai assigns to every history p ∈ Pi the finite set of actions Ai(p)
from which player i can choose after history p. The objects P, Ia and (Ai)i∈I must be such that the empty
history ∅ is in P, representing the beginning of the game, and the non-empty histories in P are precisely
those objects (p, (ai)i∈Ia(p)) where p is a history in P and ai ∈ Ai(p) for every i ∈ Ia(p);

(e) for every player i there is a partition Hi of the set of histories Pi where i is active. Every partition
element hi ∈ Hi is called an information set for player i. In case hi contains more than one history, the
interpretation is that player i does not know at hi which history in hi has been reached. The objects Ai
and Hi must be such that for every information set hi ∈ Hi and every two histories p, p′ in hi, we have that
Ai(p) = Ai(p

′). We can thus write Ai(hi) for the unique set of available actions at hi. Moreover, it must be
that Ai(hi) ∩Ai(h′i) = ∅ for every two distinct information sets hi, h′i ∈ Hi;

(f) Z ⊆ P is the collection of histories p where the set of active players Ia(p) is empty. Such histories
are called terminal histories, or consequences.

This definition follows Osborne and Rubinstein (1994), with the difference that we do not specify utilities
at the consequences. This is why we call it a dynamic game form and not a dynamic game.

Based on this model we can derive the following definitions: We say that a history p precedes a history
p′ (or p′ follows p) if p′ results by adding some action profiles after p. Let H := ∪i∈IHi be the collection
of all information sets for all players. For every two information sets h, h′ ∈ H, we say that h precedes h′

4



(or h′ follows h) if there is a history p ∈ h and a history p′ ∈ h′ such that p precedes p′. Two information
sets h, h′ are simultaneous if there is some history p which belongs to both h and h′. We say that h weakly
precedes h′ (or h′ weakly follows h) if either h precedes h′, or h, h′ are simultaneous.

The dynamic game form satisfies perfect recall (Kuhn (1953)) if every player always remembers which
actions he chose in the past, and which information he had about the opponents’past actions. Formally,
for every player i, every information set h ∈ Hi, and every two histories p, p′ ∈ Hi, the sequence of player
i actions in p and p′ must be the same (and consequently, the collection of player i information sets that p
and p′ cross must be the same).

The dynamic game form has observed past choices, also known as observable actions, if every player
always observes all choices that have been made in the past. Formally, for every player i, every information
set hi ∈ Hi consists of a single history.

2.2 Strategies

A strategy for player i assigns an available action to every information set at which player i is active, and
that is not excluded by earlier actions in the strategy. Formally, let s̃i be a mapping that assigns to every
information set hi ∈ Hi some action s̃i(h) ∈ Ai(h). We call s̃i a complete strategy. Then, a history p ∈ P
is excluded by s̃i if there is some information set hi ∈ Hi, with some history p′ ∈ hi preceding p, such that
s̃i(hi) is different from the unique player i action at p′ leading to p. An information set h ∈ H is excluded
by s̃i if all histories in h are excluded by s̃i. The strategy induced by s̃i is the restriction of s̃i to those
information sets in Hi that are not excluded by s̃i. A mapping si : H̃i → ∪h∈H̃iAi(h), where H̃i ⊆ Hi, is
a strategy for player i if it is the strategy induced by a complete strategy.1 By Si we denote the set of
strategies for player i, and by S−i := ×j 6=iSj the set of strategy combinations for i’s opponents.

Consider a strategy profile s = (si)i∈I in ×i∈ISi. Then, s induces a unique consequence z(s). We say
that the strategy profile s reaches a history p if p precedes z(s). Similarly, the strategy profile s is said to
reach an information set h if s reaches a history in h.

For a given information set h ∈ H and player i we define the sets

S(h) := {s ∈ ×i∈ISi | s reaches h},
Si(h) := {si ∈ Si | there is some s−i ∈ S−i such that (si, s−i) ∈ S(h)}, and
S−i(h) := {s−i ∈ S−i | there is some si ∈ Si such that (si, s−i) ∈ S(h)}.

Intuively, Si(h) is the set of strategies for player i that allow for information set h to be reached, whereas
S−i(h) is the set of opponents’strategy combinations that allow for h to be reached.

It is well-known that under perfect recall we have, for every player i and every information set hi ∈ Hi,
that S(hi) = Si(hi)×S−i(hi), and that under observed past choices it holds that S(h) = ×i∈ISi(h) for every
information set h.

1What we call a “strategy” is sometimes called a “plan of action” in the literature (Rubinstein (1991)), and what we call a
“complete strategy” is often called a “strategy”.
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For a given strategy si ∈ Si, we denote by Hi(si) := {hi ∈ Hi | si ∈ Si(hi)} the collection of information
sets for player i that the strategy si allows to be reached. Similarly, for a given strategy combination
s−i ∈ S−i and a player j, we denote by Hj(s−i) := {hj ∈ Hj | s−i ∈ S−i(hj)} the collection of information
sets for player j that the strategy combination s−i allows to be reached.

2.3 Conditional Preference Relations

Consider a dynamic game form D and a distinguished player i. Then, the acts, or objects of choice, for player
i are his strategies in Si, whereas the states, or the events about which he is uncertain, are the opponents’
strategy combinations in S−i. Following Gilboa and Schmeidler (2003) and Perea (2023), player i holds for
every probabilistic belief about the states a preference relation over his acts. In the definition below we
denote by ∆(S−i) the set of probability distributions over S−i.

Definition 2.1 (Conditional preference relation) For a given dynamic game form D, a conditional
preference relation for player i is a mapping %i which assigns to every belief βi ∈ ∆(S−i) over the
opponents’ strategy combinations a complete, transitive and reflexive preference relation %i,βi over the
strategies in Si.

This concept reflects the crucial game theoretic element that player i’s ranking over his strategies depends
on the belief he holds about the opponents’strategies.

For a given conditional preference relation %i and two strategies si, ti, we say that si weakly dominates
ti under %i if si %i,βi ti for every belief βi, and si �i,βi ti for some belief βi.

3 Two Notions of Consequentialism

In this section we introduce the preference-based and utility-based versions of consequentialism.

3.1 Preference-Based Consequentialism

We call a conditional preference relation preference-based consequentialist if for the ranking of two strategies
under a given belief, the player only pays attention to the probability distributions over consequences induced
by these two strategies under that particular belief. To define it formally we need the following piece of
notation: For a given strategy si and belief βi ∈ ∆(S−i), the induced probability distribution P(si,βi) over
consequences is given by

P(si,βi)(z) :=
∑

s−i∈S−i:z(si,s−i)=z
βi(s−i)

for all consequences z ∈ Z.
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Definition 3.1 (Preference-based consequentialism) A conditional preference relation%i is preference-
based consequentialist if for every four strategies si, s′i, ti, t

′
i (not necessarily pairwise different) and every

two beliefs βi and β
′
i (not necessarily different) with

P(si,βi) = P(s′i,β′i) and P(ti,βi) = P(t′i,β′i)

it holds that
si %i,βi ti if and only if s

′
i %i,β′i t

′
i.

This definition is similar to the notion of probabilistic sophistication in Machina and Schmeidler (1992)
and Grant (1995), which states that within the Savage framework, the decision maker holds a unique proba-
bilistic belief over states, and compares two acts only on the basis of their induced probability distributions
over consequences.

As an illustration, let us go back to the dynamic game form in Figure 1. Suppose you are player 1 and
Barbara is player 2. In the definition above choose the belief β1 for you that assigns probability 1 to Barbara
shouting, the belief β′1 that assigns probability 1 to Barbara not shouting, the strategy s1 = s′1 = (leave, slam
door) and the strategy t1 = t′1 = (leave, don’t slam door). Then, P(s1,β1) = P(s′1,β′1) and P(t1,β1) = P(t′1,β′1).
Hence, if you are a preference-based consequentialist, then s1 %1,β1 t1 if and only if s1 %1,β′1 t1. That is,
your preference between (leave, slam door) and (leave, don’t slam door) should not depend on the belief
you have about Barbara’s counterfactual attitude if you were to stay. This matches precisely the original
idea of consequentialism.

3.2 Utility-Based Consequentialism

Following Gilboa and Schmeidler (2003) and Perea (2023), we say that a conditional preference relation has
an expected utility representation if there is a utility function, assigning to every act-state pair some utility,
such that for every belief the decision maker prefers act a to act b precisely when the first act induces a
higher expected utility than the second.

Definition 3.2 (Expected utility representation) Consider a conditional preference relation %i and a
utility function ui : Si × S−i → R. Then, ui is an expected utility representation for %i if for every
belief βi ∈ ∆(S−i), and every two strategies si, ti, we have that si %i,βi ti if and only if∑

s−i∈S−i

βi(s−i) · ui(si, s−i) ≥
∑

s−i∈S−i

βi(s−i) · ui(ti, s−i).

If this expected utility representation assigns the same utility to any two strategy combinations that
induce the same consequence, then we say that the conditional preference relation is utility-based consequen-
tialist.

Definition 3.3 (Utility-based consequentialism) A conditional preference relation %i is utility-based
consequentialist if it has an expected utility representation ui such that for every two strategies si, ti and
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shout don’t shout
stay 2 0

leave, slam door 3 2
leave, don’t slam door 5 4

Table 1: Expected utility representation in game of Figure 1

every two opponents’strategy combinations s−i, t−i with z(si, s−i) = z(ti, t−i) it holds that ui(si, s−i) =
ui(ti, t−i).

This is the traditional way in which consequentialism in dynamic games is modelled. In the sequel, we
call a utility function ui having the property above a utility function on consequences.

As an illustration, consider the dynamic game form from Figure 1. Consider the conditional preference
relation %1 for you that has the expected utility representation u1 given by Table 1. Note that z((leave,
slam door), shout) = z((leave, slam door), do not shout) but u1((leave, slam door), shout) 6= u1((leave,
slam door), do not shout). Despite this, it can be shown that %1 is utility-based consequentialist. Indeed,
suppose we add the fixed utility 1 to all utilities in the second column, leading to a new utility function v1.
Then, for every belief the expected utility differences between strategies will be the same in u1 as in v1, which
implies that also v1 will be an expected utility representation for %1 . Moreover, it can be verified that the
new utility function v1 is a utility function on consequences. As such, %1 is utility-based consequentialist.

It is easily seen that every conditional preference relation which is utility-based consequentialist is also
preference-based consequentialist. However, as we will see in the following section, the other direction is not
always true.

To close this section, let us go back to the example from Figure 1 with the conditional preference relation
%1 for you given by the utility function u1 in Table 1. Suppose we replace the utility 3 by a utility of 6. Then,
you prefer (leave, slam door) to (leave, don’t slam door) if you believe that Barbara would start shouting
if you were to stay, whereas the ranking would be reversed if you believe that Barbara would not start
shouting in this case. Such a conditional preference relation would not be preference-based consequentialist,
and therefore also not utility-based consequentialist.

4 Difference Between the Two Notions

In this section we first present an example where utility-based consequentialism is more restrictive than
preference-based consequentialism. We will see that utility-based consequentialism requires the decision
maker to hold additive preference intensities on consequences —a property that is not required by preference-
based consequentialism in this example. We proceed by offering a formal definition of additive preference
intensities on consequences and show that, in the absence of weakly dominated strategies, utility-based
consequentialism is equivalent to having additive preference intensities on consequences. Moreover, it is
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Figure 2: Utility-based consequentalism may be stronger than preference-based consequentialism

(e, g) (f, g) (e, h) (f, h)

(a, c) z1 z3 z1 z4
(a, d) z5 z2 z6 z2

b z7 z7 z8 z8

Table 2: Induced consequences for the dynamic game form in Figure 2

shown that, in the absence of weakly dominated strategies, preference-based consequentialism is equivalent
to having additive preference intensities on consequences for every pair of strategies.

4.1 Example

We will now present an example where utility-based consequentialism is more restrictive than preference-
based consequentialism. Consider the dynamic game form in the left-hand panel of Figure 2. Note that
there are three players. The information sets for player 1 are h1 and h′1, whereas h2 and h3 are the unique
information sets for players 2 and 3, respectively. The information sets h′1 and h2 represent a history where
players 1 and 2 choose simultaneously. The possible consequences are z1, ..., z8. At information set h′1, the
action pair (c, e) leads to the consequence z1 whereas (d, f) leads to the consequence z2. The sets of strategies
for the three players are S1 = {(a, c), (a, d), b}, S2 = {e, f} and S3 = {g, h}, respectively.

We view the dynamic game form from the viewpoint of player 1. Table 2 represents, for every strategy for
player 1, and every opponents’strategy combination for players 2 and 3, the induced consequence. It is first
shown that every conditional preference relation %1 for player 1 with an expected utility representation and
without weakly dominated strategies is preference-based consequentialist. In other words, preference-based
consequentialism imposes no additional restrictions.
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To see this, consider a conditional preference relation %1 with an expected utility representation u1 such
that no two strategies weakly dominate one another. To show that %1 is preference-based consequentialist,
consider four strategies s1, s′1, t1, t

′
1 and two beliefs β1, β

′
1 with P(s1,β1) = P(s′1,β′1) and P(t1,β1) = P(t′1,β′1). We

must show that s1 %1,β1 t1 if and only if s′1 %1,β′1 t
′
1.

As different strategies for player 1 lead to different consequences we must have that s1 = s′1 and t1 = t′1.
If s1 = t1 then it trivially holds that s1 %1,β1 t1 if and only if s′1 %1,β′1 t

′
1. Let us therefore assume that

s1 6= t1.
Suppose first that s1 = (a, c) and t1 = (a, d). Since P((a,c),β1) = P((a,c),β′1) it follows from Table 2 that

β1(f, g) = β′1(f, g) and β1(f, h) = β′1(f, h). Similarly, as P((a,d),β1) = P((a,d),β′1) it follows that β1(e, g) =

β′1(e, g) and β1(e, h) = β′1(e, h). We thus conclude that β1 = β′1. But then, it trivially holds that s1 %1,β1 t1
if and only if s′1 %1,β′1 t

′
1 since s1 = s′1 and t1 = t′1.

Suppose next that s1 = (a, c) and t1 = b. Since P((a,c),β1) = P((a,c),β′1) we must have that β1(f, g) =

β′1(f, g) and β1(f, h) = β′1(f, h). Moreover, as P(b,β1) = P(b,β′1) it follows that β1(e, g) + β1(f, g) = β′1(e, g) +

β′1(f, g) and β1(e, h) + β1(f, h) = β′1(e, h) + β′1(f, h). Altogether, we thus conclude that β1 = β′1. But then,
it trivially holds that s1 %1,β1 t1 if and only if s′1 %1,β′1 t

′
1 since s1 = s′1 and t1 = t′1.

Suppose finally that s1 = (a, d) and t1 = b. Since P((a,d),β1) = P((a,d),β′1) we must have that β1(e, g) =

β′1(e, g) and β1(e, h) = β′1(e, h). Moreover, as P(b,β1) = P(b,β′1) it follows that β1(e, g) + β1(f, g) = β′1(e, g) +

β′1(f, g) and β1(e, h)+β1(f, h) = β′1(e, h)+β′1(f, h). Altogether, we thus conclude that β1 = β′1. But then, it
trivially holds that s1 %1,β1 t1 if and only if s′1 %1,β′1 t

′
1 since s1 = s′1 and t1 = t′1. Summarizing, we conclude

that %1 is preference-based consequentialist.
We next show that utility-based consequentialism imposes restrictions that are absent under preference-

based consequentialism. To see this, consider a conditional preference relation %1 without weakly dominated
strategies that is utility-based consequentialist. Then, %1 has an expected utility representation u1 which
is a utility function on consequences. Note from Table 2 that

z(b, (e, g)) = z(b, (f, g)) = z7, z((a, d), (f, g)) = z((a, d), (f, h)) = z2,

z((a, c), (e, g)) = z((a, c), (e, h)) = z1 and z(b, (e, h)) = z(b, (f, h)) = z8,

which is visualized by the graph GD1 in the right-hand panel of Figure 2. As u1 is a utility function on
consequences we must have that

u1(b, (e, g)) = u1(b, (f, g)), u1((a, d), (f, g)) = u1((a, d), (f, h)),

u1((a, c), (e, g)) = u1((a, c), (e, h)) and u1(b, (e, h)) = u1(b, (f, h)),

which implies that

[u1(b, (f, g))− u1((a, d), (f, g))] + [u1((a, d), (f, h))− u1(b, (f, h))]

= [u1(b, (e, g))− u1((a, c), (e, g))] + [u1((a, c), (e, h))− u1(b, (e, h))] . (4.1)

Since there are no weakly dominated strategies under %1, it follows from Perea (2023) that the utility
differences v1(s1, s−1) − v1(t1, s−1) are unique across all expected utility representations v1 for %1, up to
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(e, g) (f, g) (e, h) (f, h)

(a, c) −1 0 1 0
(a, d) 0 0 0 0

b 0 0 0 0

Table 3: Non-transitive preferences on consequences for the dynamic game form in Figure 2

a positive multiplicative constant. This means that (4.1) applies to all expected utility representations
u1 for %1, and is thus a structural property of the conditional preference relation %1 . In fact, it turns
out that the restriction in (4.1) characterizes all conditional preference relations %1 that are utility-based
consequentialist.

But what does (4.1) intuitively mean? In Perea (2023) it is argued that for a conditional preference
relation %1 without weakly dominated strategies, the utility difference v1(s1, s−1) − v1(t1, s−1), which is
unique up to a positive multiplicative constant, can be interpreted as the intensity by which player 1 prefers
s1 to t1 under the belief that the opponents choose s−1. This intensity will be negative if v1(s1, s−1) <
v1(t1, s−1). If we assume consequentialism, as we do in this example, then v1(s1, s−1) − v1(t1, s−1) also
represents the intensity by which player 1 prefers the consequence z(s1, s−1) to the consequence z(t1, s−1),
thus leading to a cardinal interpretation of the utility function.

Consider now the first utility difference in (4.1), which is u1(b, (f, g))−u1((a, d), (f, g)). As z(b, (f, g)) = z7
and z((a, d), (f, g)) = z2, the utility difference represents the intensity by which player 1 prefers consequence
z7 to consequence z2, denoted by intz7�z2 . In a similar way, the second term in (4.1) represents intz2�z8 , the
third term represents intz7�z1 , whereas the last term represents intz1�z8 . Put together, (4.1) can be read as

intz7�z2 + intz2�z8 = intz7�z1 + intz1�z8 . (4.2)

If we assume that preference intensity between consequences is an additive notion, then both intz7�z2 +
intz2�z8 and intz7�z1 + intz1�z8 represent the intensity by which player 1 prefers consequence z7 over con-
sequence z8. As such, condition (4.2), as well as condition (4.1), reflect the assumption that the player’s
preference intensities on consequences are additive.

Summarizing, we see that utility-based consequentialism requires player 1’s preference intensities on
consequences to be additive, whereas preference-based consequentialism does not impose such condition in
this particular example.

It may even happen in this example that preference-based consequentialism allows for non-transitive
preferences on consequences. To see this, consider the conditional preference relation %1 given by the
expected utility representation u1 in Table 3. It follows from our findings above that %1 is preference-based
consequentialist.

The facts that u1(b, (f, g)) = u1((a, d), (f, g)) and u1((a, d), (f, h)) = u1(b, (f, h)) seem to suggest that
player 1 is indifferent between consequences z7 and z2, and is indifferent between z2 and z8. On the other
hand, u1(b, (e, g)) > u1((a, c), (e, g)) and u1((a, c), (e, h)) > u1(b, (e, h)) seem to indicate that player 1 prefers
z7 to z1, and prefers z1 to z8. This can only be if player 1’s preferences over consequences are non-transitive.
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4.2 Additive Preference Intensities on Consequences

Based on the example above we will now give a formal expression of additive preference intensities on
consequences, which is implied by utility-based consequentialism. To this purpose we need the following
piece of notation: For a strategy si, a pair of opponents’strategy combinations s−i, t−i and a consequence

z we write s−i
si,z
− t−i if z(si, s−i) = z(si, t−i) = z.

Definition 4.1 (Additive preference intensities on consequences) Consider a conditional preference
relation %i with an expected utility representation ui and without weakly dominated strategies. Then, %i
induces additive preference intensities on consequences if for every two opponents’strategy combi-
nations s∗−i, t

∗
−i, and every two paths

s∗−i
s1i ,z

1

− s2−i
s2i ,z

2

− s3−i...
sK−1i ,zK−1

− sK−i
sKi ,z

K

− t∗−i

and

s∗−i
t1i ,y

1

− t2−i
t2i ,y

2

− t3−i...
tL−1i ,yL−1

− tL−i
tLi ,y

L

− t∗−i

from s∗−i to t
∗
−i it holds that[

ui(s
1
i , s

2
−i)− ui(s2i , s2−i)

]
+
[
ui(s

2
i , s

3
−i)− ui(s3i , s3−i)

]
+ ...

...+
[
ui(s

K−1
i , sK−i)− ui(sKi , sK−i)

]
+
[
ui(s

K
i , t

∗
−i)− ui(tLi , t∗−i)

]
=

[
ui(s

1
i , s
∗
−i)− ui(t1i , s∗−i)

]
+
[
ui(t

1
i , t

2
−i)− ui(t2i , t2−i)

]
+

+
[
ui(t

2
i , t

3
−i)− ui(t3i , t3−i)

]
+ ...+

[
ui(t

L−1
i , tL−i)− ui(tLi , tL−i)

]
.

As there are no weakly dominated strategies under %i, it follows by Perea (2023) that the sums of
the utility differences on the left-hand side and right-hand side are unique up to a (common) positive
multiplicative constant. Therefore, the equality is a structural property of %i that holds for all expected
utility representations ui for %i .

Note that the sum of the utility differences on the left-hand side represents

intz1�z2 + intz2�z3 + ...+ intzK−1�zK + intzK�yL (4.3)

whereas the sum of the utility differences on the right-hand side amounts to

intz1�y1 + inty1�y2 + inty2�y3 + ...+ intyL−1�yL . (4.4)

The condition in the definition thus states that the sums of the preference intensities in (4.3) and (4.4) must
be equal. As, under additivity, both sums represent the intensity by which player 1 prefers consequence
z1 to consequence yL, the condition in the definition reflects the assumption that the player’s preference
intensities on consequences are additive.
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(e, g) (f, g) (e, h) (f, h)

(a, c) z1 z3 z1 z4
(a, d) z5 z2 z6 z2

b z7 z7 z8 z8

u1 (e, g) (f, g) (e, h) (f, h)

(a, c) x1 x4 x7 x10
(a, d) x2 x5 x8 x11

b x3 x6 x9 x12

Table 4: Consequence mapping and expected utility representation in the dynamic game form of Figure 2

4.3 Characterization of Utility-Based Consequentialism

It turns out that the condition of additive preference intensities on consequences characterizes precisely
those conditional preference relations that are utility-based consequentialist.

Theorem 4.1 (Characterization of utility-based consequentialism) Consider a dynamic game form
D, a player i and a conditional preference relation %i for player i that has an expected utility representation
and under which there are no weakly dominated strategies. Then, %i is utility-based consequentialist, if
and only if, %i induces additive preference intensities on consequences.

It is relatively easy to show that under the conditions in the theorem, utility-based consequentialism
implies that the conditional preference relation induces additive preference intensities on consequences. We
basically follow the steps we have performed in the example of Figure 2 above.

Showing the other direction is more diffi cult: Under the conditions in the theorem, and assuming that
%i induces additive preference intensities on consequences, we explicitly show how to transform an arbitrary
expected utility representation ui into a new expected utility representation vi that is a utility function on
consequences. We will now illustrate this direction of the proof by means of the example of Figure 2.

We will again view the situation from player 1’s perspective. The induced consequences are repeated in
the left-hand panel of Table 4. Suppose that the conditional preference relation %1 is given by the expected
utility representation u1 in the right-hand panel of Table 4, where x1, ..., x12 represent the 12 utilities.
Assume that the utility function u1 is such that %1 induces additive preference intensities on consequences,
and that there are no weakly dominated strategies for player 1.

We now transform u1, in a step-by-step fashion, into a new expected utility representation v1 that is a
utility function on consequences, as follows. We keep the utilities x1, x2 and x3 in column (e, g) as they are.

We then move to column (f, g). Note that z(b, (e, g)) = z(b, (f, g)). At column (f, g) we therefore add a
constant utility x3 − x6 to the entries in that column such that v1(b, (e, g)) = v1(b, (f, g)).

Also, z((a, c), (e, g)) = z((a, c), (e, h)). Similarly, we then add a constant utility x1 − x7 to the entries in
column (e, h) such that v1((a, c), (e, g)) = v1((a, c), (e, h)). This leads to the utility function in the left-hand
panel of Table 5 . Here, the numbers y4, y5, x3, x1, y8 and y9 in the second and third column denote the new
utilities for v1 in those columns.

Finally, we move to the remaining column (f, h). Note that z((a, d), (f, g)) = z((a, d), (f, h)) and
z(b, (e, h)) = z(b, (f, h)). At column (f, h) we add a constant utility y5 − x11 to the entries in that col-
umn such that v1((a, d), (f, g)) = v1((a, d), (f, h)). This leads to the utility function v1 in the right-hand
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(e, g) (f, g) (e, h) (f, h)

(a, c) x1 y4 x1 x10
(a, d) x2 y5 y8 x11

b x3 x3 y9 x12

(e, g) (f, g) (e, h) (f, h)

(a, c) x1 y4 x1 y10
(a, d) x2 y5 y8 y5

b x3 x3 y9 y12

Table 5: Construction of utility function v1 in the dynamic game form of Figure 2

panel of Table 5. As v1 has been obtained from u1 by adding a constant utility to each of the columns, it
follows that v1 is also an expected utility representation of %1 . The procedure we have used here is called
the utility transformation procedure, and is described formally in the appendix.

We will now show that v1 is a utility function on consequences, by proving that y9 = y12. Our construction
above guarantees that

v1(b, (e, g)) = v1(b, (f, g)), v1((a, c), (e, g)) = v1((a, c), (e, h))

and v1((a, d), (f, g)) = v1((a, d), (f, h)). (4.5)

Consider the graph GD1 in the right-hand panel of Figure 2. Note that this graph contains two alternative
paths from (e, g) to (f, h). As %1 induces additive preference intensities on consequences, we conclude that

[v1(b, (f, g))− v1((a, d), (f, g))] + [v1((a, d), (f, h))− v1(b, (f, h))]

= [v1(b, (e, g))− v1((a, c), (e, g))] + [v1((a, c), (e, h))− v1(b, (e, h))] . (4.6)

By combining (4.5) and (4.6) we conclude that v1(b, (f, h)) = v1(b, (e, h)), and hence y9 = y12. Therefore, v1
is a utility function on consequences. As v1 is an expected utility representation for %1, it follows that %1
is utility-based consequentialist.

4.4 Characterization of Preference-Based Consequentialism

Above we have seen that utility-based consequentialism can be characterized by requiring that the induced
preference intensities on consequences are additive. This raises the question: How does preference-based
consequentialism relate to additive preference intensities on consequences? The following result shows that
this weaker version of consequentialism is equivalent to demanding that every pair of strategies induces
additive preference intensities on consequences.

To formally state this result we need the following piece of notation. For a given conditional preference
relation %i and pair of strategies {si, ti}, we denote by %{si,ti}i the restriction of %i to the strategies si and
ti. That is, %{si,ti}i ranks, for every belief, only the strategies si and ti, and for every belief βi we have that

si %{si,ti}i,βi
ti if and only if si %i,βi ti and ti %

{si,ti}
i,βi

si if and only if ti %i,βi si.
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Theorem 4.2 (Characterization of preference-based consequentialism) Consider a dynamic game
form D, a player i and a conditional preference relation %i for player i that has an expected utility represen-
tation and under which there are no weakly dominated strategies. Then, %i is preference-based consequen-
tialist, if and only if, for every pair of strategies si, ti the restricted conditional preference relation %{si,ti}i

induces additive preference intensities on consequences.

In view of the Theorems 4.1 and 4.2, the difference between utility-based and preference-based con-
sequentialism can be characterized by the induced preference intensities on consequences: Utility-based
consequentialism requires these preference intensities to be additive for the set of all strategies, whereas
preference-based consequentialism only demands this property for every pair of strategies in isolation.

5 When the Two Notions are Equivalent

As the example in Figure 2 has shown, there are dynamic game forms where preference-based and utility-
based consequentialism are different. The reason is that utility-based consequentialism implies additive
preference intensities over consequences, whereas preference-based consequentialism only implies this prop-
erty for every pair of strategies. The example in Figure 2 shows that the first condition may be more
demanding than the second. It may thus be argued that for these scenarios, the notion of utility-based
consequentialism imposes more than what is required by the original idea of consequentialism.

We will now provide suffi cient conditions under which the two notions of consequentialism are equivalent.

Theorem 5.1 (Equivalence) Consider a dynamic game form D and a player i such that either (i) player i
only has two strategies, (ii) D has observed past choices, or (iii) D only has two players and satisfies perfect
recall. Moreover, consider a conditional preference relation %i for player i without weakly dominated
strategies that has an expected utility representation. Then, %i is preference-based consequentialist, if and
only if, %i is utility-based consequentialist.

Note that the example from the previous section, where the two notions of consequentialism are not
equivalent, violates the conditions (i), (ii) and (iii) above. Indeed, the dynamic game form in the example
has more than two strategies for player 1, violates observed past choices and has more than two players. To
see that it violates observed past choices, note that player 3, at his information set h3, does not perfectly
observe what players 1 and 2 have chosen in the past.

We will now provide a sketch of the proof. The easy direction is to show that utility-based consequen-
tialism implies preference-based consequentialism. The other direction is more challenging: We must show
that, under the conditions of the theorem, every conditional preference relation %i that is prefence-based
consequentialist is also utility-based consequentialist. We do so by transforming the utility function ui that
represents %i into an expected utility representation vi that is a utility function on consequences, in the
same way as we did in the proof of Theorem 4.1.

We illustrate this direction of the proof by a new example. Consider the dynamic game form D between
player 1 and player 2 in the left-hand panel of Figure 3, with the associated consequence mapping in the left-
hand panel of Table 6. We will view the situation from player 1’s perspective. Suppose that the conditional
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Figure 3: Proof sketch of Theorem 5.1

(c, e) (c, f) (d, e) (d, f)

a z1 z1 z2 z2
b z3 z4 z3 z4

u1 (c, e) (c, f) (d, e) (d, f)

a x1 x3 x5 x7
b x2 x4 x6 x8

Table 6: Consequence mapping and expected utility representation in the dynamic game form of Figure 3
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(c, e) (c, f) (d, e) (d, f)

a x1 x1 y5 x7
b x2 y4 x2 x8

(c, e) (c, f) (d, e) (d, f)

a x1 x1 y5 y7
b x2 y4 x2 y4

Table 7: Construction of utility function v1 in the dynamic game form of Figure 3

preference relation %1 is given by the expected utility representation u1 in the right-hand panel of Table 6.
Assume that the utility function u1 is such that %1 is preference-based consequentialist, and that there are
no weakly dominated strategies for player 1.

We now transform u1, in a step-by-step fashion, into a new expected utility representation v1 that is a
utility function on consequences, as follows. We keep the utilities x1 and x2 in column (c, e) as they are.

We then move to column (c, f). Note that z(a, (c, e)) = z(a, (c, f)). At column (c, f) we therefore add a
constant utility x1 − x3 to the entries in that column such that v1(a, (c, e)) = v1(a, (c, f)).

Also, z(b, (c, e)) = z(b, (d, e)). Similarly, we then add a constant utility x2 − x6 to the entries in column
(d, e) such that v1(b, (c, e)) = v1(b, (d, e)). This leads to the utility function in the left-hand panel of Table 7.
Here, the numbers x1, y4, y5 and x2 in the second and third column denote the new utilities for v1 in those
columns.

Finally, we move to the remaining column (d, f). Note that z(a, (d, e)) = z(a, (d, f)) and z(b, (c, f)) =
z(b, (d, f)). At column (d, f) we add a constant utility y4 − x8 to the entries in that column such that
v1(b, (c, f)) = v1(b, (d, f)). This leads to the utility function v1 in the right-hand panel of Table 7.

We will now show that v1 is a utility function on consequences, by proving that y5 = y7. Our construction
above guarantees that

v1(a, (c, e)) = v1(a, (c, f)), v1(b, (c, e)) = v1(b, (d, e)) and v1(b, (c, f)) = v1(b, (d, f)). (5.1)

Consider the beliefs β1 := 1
2 [(c, e)] + 1

2 [(d, f)] and β′1 := 1
2 [(c, f)] + 1

2 [(d, e)], where [s2] is the probability
distribution that assigns probability 1 to player 2’s strategy s2. Then, we conclude from the consequence
mapping in Table 6 that

P(a,β1) = P(a,β′1) = 1
2 [z1] + 1

2 [z2] and P(b,β1) = P(b,β′1) = 1
2 [z3] + 1

2 [z4].

Since %1 is assumed to be preference-based consequentialist, we know that a %1,β1 b if and only if a %1,β′1 b.
As there are no weakly dominated strategies for player 1, it can be shown that this implies that v1(a, β1)−
v1(b, β1) = v1(a, β

′
1)− v1(b, β′1), which means that

1
2v1(a, (c, e)) + 1

2v1(a, (d, f))− 1
2v1(b, (c, e))−

1
2v1(b, (d, f))

= 1
2v1(a, (c, f)) + 1

2v1(a, (d, e))−
1
2v1(b, (c, f))− 1

2v1(b, (d, e)). (5.2)

By combining (5.1) and (5.2) it then follows that v1(a, (d, f)) = v1(a, (d, e)). That is, y5 = y7, which was to
show. We thus obtain an expected utility representation v1 for %1 which is a utility function on consequences.
As such, %1 is utility-based consequentialist.
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In the proof of Theorem 5.1 the construction of the new utility function vi proceeds along the same lines.
The construction is based on a graph GDi where two columns (opponents’strategy combinations) s−i and t−i
are “connected”by a strategy si if s−i and t−i only differ at one information set2 and z(si, s−i) = z(si, t−i).
Such a connection means that the utilities at s−i and t−i are interrelated, since we must make sure that
vi(si, s−i) = vi(si, t−i). For every connected component in the graph GDi we start by copying the utilities of
ui at a distinguished column s0−i, and step by step we construct the new utilities of vi at the other columns
by following sequences of connected columns, in the same way as we have done for the example above. The
graph GD1 for the example above can be found in the right-hand panel of Figure 3. The label a at the edge
between (c, e) and (c, f) indicates that z(a, (c, e)) = z(a, (c, f)), and similarly for the other edges.

Showing that vi is a utility function on consequences only poses problems if there is a column s−i that can
be reached through two different paths of connected columns from s0−i, thus yielding a cycle. This was the
case in the graphGD1 above, since the column (d, f) could be reached through the path (c, e)→ (c, f)→ (d, f)
but also through the path (c, e)→ (d, e)→ (d, f), yielding the cycle (c, e)→ (c, f)→ (d, f)→ (d, e)→ (c, e).
In the proof of Theorem 5.1 we show that the conditions (i), (ii) or (iii) on the dynamic game form in the
theorem guarantee that there are at most two strategies, si and ti, that connect all the columns in the cycle.
Similarly to the example above, such a cycle then induces two beliefs βi and β

′
i such that P(si,βi) = P(si,β′i)

and P(ti,βi) = P(ti,β′i). As %i satisfies preference-based consequentialism, we can derive equalities like (5.2)
to show that vi is a utility function on consequences.

6 Concluding Remarks

Observable versus non-onbservable consequences. Throughout this paper we have assumed that the
consequences are observable, by identifying these with sequences of realized action profiles that lead to a
terminal history in the game. Our notion of consequentialism relies on this assumption. Alternatively, one
may extend the set of consequences to collections of realized and non-realized (hypothetical) actions. As
an illustration, consider the example from Figure 1 in the introduction. We argued that it is reasonable
not to be a consequentialist in this game, by preferring to slam the door if you believe that Barbara would
conterfactually have started to shout if you had decided to stay, and preferring to leave calmly if you believe
that Barbara would have remained friendly in this case.

Some people may object to this conclusion, because slamming the door while believing that Barbara
would have started to shout may be viewed as a different (partially non-observable) consequence than
slamming door while believing that she would not have started to shout. Indeed, by choosing this avenue
the set of consequences could be extended to

(stay, shout), (stay, don’t shout), ((leave, slam door), shout), ((leave, slam door), don’t shout),

((leave, don’t slam door), shout), ((leave, don’t slam door), don’t shout),

2More precisely, if (s−i) = (sj)j 6=i and t−i = (tj)j 6=i then there is an opponent j and an information set hj such that sj and
tj only differ at hj and the information sets that follow, whereas sk = tk for all other opponents k. See the appendix for more
details.
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where the last four consequences are partially unobservable because they involve a non-realized, hypothetical
action by Barbara.

Still, the preferences described above could be summarized by

((leave, slam door), shout) � ((leave, don’t slam door), shout)

and
((leave, don’t slam door), don’t shout) � ((leave, slam door), don’t shout).

Hence, according to the new, extended set of partially unobservable consequences, the preferences above
would be consistent with consequentialism.

As such, the notion of consequentialism crucially depends on how one defines the set of consequences.
In this paper, we have made the choice of identifying consequences with sequences of realized actions. In
particular, we restrict to consequences that are fully observable.

Writing down utilities at consequences may imply more than consequentialism. The analysis
in this paper has shown that writing down utilities at the terminal nodes in a dynamic game, resulting
in utility-based consequentialism, may imply conditions that go beyond preference-based consequentialism.
Indeed, we have characterized utility-based consequentialism by the condition that the induced preference
intensities on consequences are additive, and the example from Figure 2 indicates that this condition need not
follow from preference-based consequentialism. For such situations it may thus be argued that utility-based
consequentialism is more restrictive than the original idea of consequentialism.

Possible extensions of our results. We have identified conditions on dynamic game forms under which
preference-based consequentialism is equivalent to utility-based consequentialism, and where the condition
of additive preference intensities on consequences is thus implied by preference-based consequentialism alone.
An open question is whether these conditions on the dynamic game form can be sharpened to conditions
that are both suffi cient and necessary for the equivalence. That is, if the conditions are violated, then we
can find a conditional preference relation that is preference-based, but not utility-based, consequentialist.

Also, the main results in the paper rely on the assumption that there are no weakly dominated strategies
under the conditional preference relation we consider. It is currently unclear whether, and if so how, these
results can be extended to situations that allow for weakly dominated strategies.

7 Appendix

7.1 Definitions from Graph Theory

An undirected graph G = (N,E) consists of a set of nodes N, and a set of edges E, where every edge e ∈ E
is an unordered pair (n, n′) ∈ N × N with n 6= n′. A graph G′ = (N ′, E′) is a subgraph of G = (N,E) if
N ′ ⊆ N, E′ ⊆ E and every edge (n, n′) ∈ E′ is such that n, n′ ∈ N ′.

In a graph G = (N,E), a path from n ∈ N to n′ ∈ N is a sequence (n0, n1, ..., nK ) with n0 = n and
nK = n′ such that (nk, nk+1) ∈ E for every k ∈ {0, ...,K − 1}. A cycle is a path (n0, n1, ..., nK ) where
nK = n0.
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A subgraph C = (N ′, E′) of G = (N,E) is a connected component of G if (i) E′ = {(n, n′) ∈ E |
n, n′ ∈ N ′}, (ii) for every two nodes n, n′ ∈ N ′ there is a path from n to n′ in G, and (iii) for every n ∈ N ′,
n′ ∈ N\N ′ there is no path from n to n′ in G.

A graph T = (N,E) is a tree if there is some n0 ∈ N such that for every n ∈ N\{n0} there is a unique
path in T from n0 to n. In this case, we call T a tree with root n0. A subgraph T = (N ′, E′) of G = (N,E)
is a spanning tree for G if N ′ = N and T is a tree. For a given graph G, it is well-known that for every
connected component C of G there is a spanning tree for C.

7.2 Preparatory Results

To prove the theorems in this paper we need some preparatory results.

Lemma 7.1 (Implication of preference-based consequentialism) Consider a conditional preference
relation %i that is preference-based consequentialist, two strategies si, ti that do not weakly dominate one
another under %i, and an expected utility representation ui for %i . Then, for all beliefs βi, β′i ∈ ∆(S−i)
such that P(si,βi) = P(si,β′i) and P(ti,βi) = P(ti,β′i) we have that ui(si, βi)− u(ti, βi) = u(si, β

′
i)− ui(ti, β′i).

Proof. Since si and ti do not weakly dominate one another, it follows from Perea (2023) that there is a
belief β∗i with β

∗
i (s−i) > 0 for all s−i ∈ S−i such that si ∼i,β∗i ti. We can choose ε > 0 small enough such

that β
′′
i := β∗i + ε(βi − β′i) is a belief. We show that P(si,β′′i ) = P(si,β∗i ) and P(ti,β′′i ) = P(ti,β∗i ).

Indeed, for every consequence z we have that

P(si,β′′i )(z) = P(si,β∗i )(z) + ε(P(si,βi)(z)− P(si,β′i)(z)) = P(si,β∗i )(z),

since P(si,βi) = P(si,β′i). In a similar way it can be shown that P(ti,β′′i )(z) = P(ti,β∗i )(z) for every consequence
z.

Since si ∼i,β∗i ti and %i is preference-based consequentialist, it follows that si ∼i,β′′i ti also. As ui is an
expected utility representation for %i we know that ui(si, β∗i ) = ui(ti, β

∗
i ) and ui(si, β

′′
i ) = ui(ti, β

′′
i ). Hence,

0 = ui(si, β
′′
i )− ui(ti, β′′i )

= (ui(si, β
∗
i )− ui(ti, β∗i )) + ε((ui(si, βi)− ui(ti, βi))− (ui(si, β

′
i)− ui(ti, β′i)))

= ε((ui(si, βi)− ui(ti, βi))− (ui(si, β
′
i)− ui(ti, β′i))),

where the second equality follows from the definition of β′′i , and the third equality follows from the fact that
ui(si, β

∗
i ) = ui(ti, β

∗
i ). We thus conclude that ui(si, βi)− u(ti, βi) = u(si, β

′
i)− ui(ti, β′i). This completes the

proof. �

Lemma 7.2 (Constant utility carries over) Consider a conditional preference relation %i that is
preference-based consequentialist, two strategies si, ti that do not weakly dominate one another, and an ex-
pected utility representation ui for %i . Take two opponents’strategy combinations s−i, t−i with z(si, s−i) =
z(s−i, t−i), z(ti, s−i) = z(ti, t−i) and ui(si, s−i) = ui(si, t−i). Then, ui(ti, s−i) = ui(ti, t−i).
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Proof. If we define the beliefs βi := [s−i] and β′i := [t−i] it follows that P(si,βi) = P(si,β′i) and P(ti,βi) =

P(ti,β′i). By Lemma 7.1 we conclude that ui(si, βi)− u(ti, βi) = u(si, β
′
i)− ui(ti, β′i), and hence ui(si, s−i)−

u(ti, s−i) = u(si, t−i)− ui(ti, t−i). Since ui(si, s−i) = ui(si, t−i) it follows that ui(ti, s−i) = ui(ti, t−i), which
completes the proof. �

For the following result we need some additional definitions. We say that two strategies si, ti ∈ Si are
minimally different if there is an information set hi ∈ Hi(si) ∩Hi(ti) such that (i) si(hi) 6= ti(hi), and (ii)
si(h

′
i) = ti(h

′
i) for all h

′
i ∈ (Hi(si) ∩Hi(ti))\{hi}. In this case, we call si, ti minimally different at hi. Two

strategy combinations s−i = (sj)j 6=i and t−i = (tj)j 6=i in S−i are called minimally different if there is some
j 6= i such that sj , tj are minimally different at some hj ∈ Hj(sj) ∩Hj(tj), and sk = tk for all k 6= i, j. In
this case, we say that s−i, t−i are minimally different at hj .

Lemma 7.3 (Equal consequences) Consider a dynamic game form D with two players, i and j, that
satisfies perfect recall. Let the strategies sj , tj be minimally different at the information set hj ∈ Hj(sj) ∩
Hj(tj). Then, for every strategy si we have that z(si, sj) = z(si, tj) if and only if si /∈ Si(hj).

Proof. (a) Suppose first that z(si, sj) = z(si, tj). Then, (si, sj) /∈ S(hj). By perfect recall we have that
S(hj) = Si(hj)× Sj(hj). Since sj ∈ Sj(hj) we conclude that si /∈ Si(hj).

(b) Suppose next that si /∈ Si(hj). Then, by definition, (si, sj) /∈ S(hj). But then, z(si, sj) = z(si, tj). The
proof is hereby complete. �

To formally express the condition of two strategies per connected component, which plays an important
role in the proof of Theorem 5.1, we need the following definition. For a dynamic game form D with
distinguished player i, consider the undirected graph GDi = (N,E) where (i) the set of nodes N is the set of
all strategy combinations in S−i, and (ii) the set of edges E contains exactly those pairs (s−i, t−i) ∈ N ×N
where s−i, t−i are minimally different and there is some strategy si ∈ Si with z(si, s−i) = z(si, t−i). In this

case, we also denote this edge by s−i
si,z
− t−i, where z = z(si, s−i) = z(si, t−i).

Definition 7.1 (Two strategies per connected component) The graph GDi satisfies two strategies
per connected component if for every connected component C there are two strategies si, ti ∈ Si such
that for every edge (s−i, t−i) in C either z(si, s−i) = z(si, t−i) or z(ti, s−i) = z(ti, t−i).

The following result states that the condition of two strategies per connected component is always
satisfied under the conditions on the dynamic game form in Theorem 5.1.

Lemma 7.4 (Two strategies per connected component) Consider a dynamic game form D and a
player i such that either (i) player i only has two strategies, or (ii) there are observed past choices, or (iii)
there are only two players and perfect recall is satisfied. Then, the induced graph GDi satisfies two strategies
per connected component.
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Proof. (i) If player i only has two strategies, it trivially follows that GDi satisfies two strategies per
connected component.

(ii) Assume next that the dynamic game D is with observed past choices. Let Hfirst
i be the collection of

information sets in Hi that are not preceded by any other information in Hi. For every hi ∈ Hfirst
i select

two different actions ai(hi), bi(hi) ∈ Ai(hi). Let s∗i be a strategy with s∗i (hi) = ai(hi) for all hi ∈ Hfirst
i , and

t∗i a strategy with t
∗
i (hi) = bi(hi) for all hi ∈ Hfirst

i .
Now, consider an edge (s−i, t−i) in GDi with (s−i) = (sj)j 6=i and (t−i) = (tj)j 6=i. Then, s−i, t−i are

minimally different at some hj ∈ Hj(sj) ∩Hj(tj), and there is some strategy si with z(si, s−i) = z(si, t−i).
We distinguish two cases: (1) hj ∈ Hj(s−i) ∩Hj(t−i), and (2) hj /∈ Hj(s−i) ∩Hj(t−i).

Case 1. Suppose that hj ∈ Hj(s−i) ∩ Hj(t−i). As z(si, s−i) = z(si, t−i) and (s−i, t−i) are minimally
different at hj , it must be that (si, s−i) /∈ S(hj). Since the game is with observed past choices we know that
S(hj) = Si(hj)× S−i(hj). Note that s−i ∈ S−i(hj) as hj ∈ Hj(s−i). But then, (si, s−i) /∈ S(hj) implies that
si /∈ Si(hj). This can only be if hj is preceded by some hi ∈ Hfirst

i .
As the game is with observed past choices, there is a unique action a∗i (hi) ∈ Ai(hi) that leads to hj .

By construction, either s∗i (hi) 6= a∗i (hi) or t
∗
i (hi) 6= a∗i (hi). This means that either (s∗i , s−i) /∈ S(hj) or

(t∗i , s−i) /∈ S(hj). As s−i, t−i are minimally different at hj we conclude that either z(s∗i , s−i) = z(s∗i , t−i) or
z(t∗i , s−i) = z(t∗i , t−i).

Case 2. Suppose that hj /∈ Hj(s−i)∩Hj(t−i). Since s−i and t−i only differ at hj and afterwards, it follows
that hj /∈ Hj(s−i), which implies that (si, s−i) /∈ S(hj) for every strategy si. But then, z(si, s−i) = z(si, t−i)
for every strategy si. In particular, z(s∗i , s−i) = z(s∗i , t−i).

In view of Cases 1 and 2, two strategies per connected component holds.

(iii) Suppose finally that the dynamic game form D is with two players, i and j, and that it satisfies perfect
recall. Take a connected component C in the induced graph GDi , and let

Hj(C) := {hj ∈ Hj | there is an edge (sj , tj) in C such that sj , tj minimally different at hj}.

Let Hfirst
j (C) be the collection of information sets in Hj(C) that are not preceded by any other information

set in Hj(C).

Claim 1. For every hj , h′j ∈ H
first
j (C) there is a strategy sj in C with sj ∈ Sj(hj) ∩ Sj(h′j).

Proof of claim 1. Take two different hj , h′j ∈ H
first
j (C). Then, by definition, there are edges (sj , tj) and

(s′j , t
′
j) in C such that sj , tj are minimally different at hj and s

′
j , t
′
j are minimally different at h

′
j . In particular,

sj ∈ Sj(hj) and t′j ∈ Sj(h′j). Since tj , s′j ∈ C, there is a path (s1j , ..., s
K
j ) in C from tj to s′j . Hence, there

are information sets h1j , ..., h
K−1
j ∈ Hj(C), such that for every k ∈ {1, ...,K − 1} the strategies skj , sk+1j are

minimally different at hkj ∈ Hj(C). This implies that s1j and s
K
j only differ at information sets in Hj(C).

Recall that s1j = tj and sKj = s′j . As sj , tj are minimally different at hj ∈ Hj(C) and s′j , t
′
j are minimally

different at h′j ∈ Hj(C), it follows that sj and t′j only differ at information sets in Hj(C).
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Hence, sj and t′j coincide at information sets in Hj that precede information sets in Hfirst
j (C). As

h′j ∈ Hfirst
j (C), this implies that sj and t′j coincide at information sets in Hj that precede h′j . Since

t′j ∈ Sj(h
′
j) we conclude that sj ∈ Sj(h

′
j) as well. Recall that sj ∈ Sj(hj). Therefore, sj is in C and

sj ∈ Sj(hj) ∩ Sj(h′j). This completes the proof of Claim 1.

Claim 2. Every two hj , h′j ∈ H
first
j (C) are preceded by the same sequence of player j actions.

Proof of claim 2. If hj and h′j are not preceded by any player j actions, the statement is trivially true.
Suppose now that hj is preceded by a at least one player j action. Let a1j , ..., a

K
j be the player j actions that

precede hj . We show that a1j , ..., a
K
j also precede h′j .

Suppose not. Then, there is some action akj ∈ Aj(hkj ) that precedes hj but not h′j . We distinguish two
cases: (1) hkj precedes h

′
j , and (2) h

k
j does not precede h

′
j .

Case 1. Suppose that hkj precedes h
′
j . By Claim 1 there is some s∗j ∈ Sj(hj) ∩ Sj(h′j). Since s∗j ∈ Sj(hj)

and akj is the unique action at h
k
j that precedes hj , we have that s

∗
j (h

k
j ) = akj . Since s

∗
j ∈ Sj(h′j) and hkj

precedes h′j it would follow that a
k
j precedes h

′
j as well, which is a contradiction.

Case 2. Suppose that hkj does not precede h
′
j . By Claim 1 there is some s

∗
j in C with s

∗
j ∈ Sj(hj)∩Sj(h′j).

Take some si ∈ Si(h′j). As s∗j ∈ Sj(h′j) and, by perfect recall, S(h′j) = Si(h
′
j) × Sj(h′j), we conclude that

(si, s
∗
j ) ∈ S(h′j). Since h

k
j does not precede h

′
j it must be that (si, s

∗
j ) /∈ S(hkj ). Recall that a

k
j ∈ Aj(h

k
j )

precedes hj , which implies that hkj precedes hj . Since s
∗
j ∈ Sj(hj) it follows that s∗j ∈ Sj(hkj ). As (si, s

∗
j ) /∈

S(hkj ) and, by perfect recall, S(hkj ) = Si(h
k
j )× Sj(hkj ), we conclude that si /∈ Si(hkj ).

Now, let tj be a strategy that is minimally different from s∗j at h
k
j . Since si /∈ Si(hkj ), it follows from

Lemma 7.3 that z(si, s∗j ) = z(si, tj). Since s∗j ∈ C this would imply that tj ∈ C and hkj ∈ Hj(C). However,

this is a contradiction since hkj precedes H
first
j (C), and can therefore not be in Hj(C). We thus obtain a

contradiction.
By Cases 1 and 2 we conclude that the actions a1j , ..., a

K
j preceding hj also precede h′j . Hence, all player

j actions that precede hj also precede h′j . In a similar fashion, it follows that all player j actions preceding
h′j also precede hj . Thus, hj and h

′
j are preceded by the same player j actions. This completes the proof of

Claim 2.

Claim 3. For every two hj , h′j ∈ H
first
j (C) we have that Sj(hj) = Sj(h

′
j).

Proof of Claim 3. By Claim 2, hj and h′j are preceded by the same player j actions a
1
j , ..., a

K
j at the

information sets h1j , ..., h
K
j . But then, by construction,

Sj(hj) = {sj ∈ Sj | sj(hkj ) = akj for all k ∈ {1, ...,K}} = Sj(h
′
j).

This completes the proof of Claim 3.

We will now show that the induced graph GDi satisfies two strategies per connected component. Take
a connected component C. We distinguish two cases: (1) Hfirst

j (C) contains only one information set, and

(2) Hfirst
j (C) contains at least two information sets.
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Case 1. Suppose that Hfirst
j (C) contains a single information set h∗j . As h

∗
j ∈ Hj(C) there are strategies

s∗j , t
∗
j in C that are minimally different at h∗j and a strategy s

∗
i with z(s

∗
i , s
∗
j ) = z(s∗i , t

∗
j ). By Lemma 7.3 we

know that s∗i /∈ Si(h∗j ). As all other information sets in Hj(C) follow h∗j we conclude that s
∗
i /∈ Si(hj) for

every hj ∈ Hj(C).
Take an edge (sj , tj) in C. Hence, sj and tj are minimally different at some hj ∈ Hj(C) and there is

some si with z(si, sj) = z(si, tj). As we have seen above that s∗i /∈ Si(hj), it follows by Lemma 7.3 that
z(s∗i , sj) = z(s∗i , tj). Thus, two strategies per connected component is satisfied. In fact, one strategy s

∗
i

turned out to be suffi cient for the connected component C.

Case 2. Suppose that Hfirst
j (C) contains at least two information sets h1j and h2j . Choose a strategy

s1i ∈ Si(h1j ) and a strategy s2i ∈ Si(h2j ).
Now, take an edge (s∗j , t

∗
j ) in C. Then, s

∗
j , t
∗
j are minimally different at some h

∗
j ∈ Hj(C) and there is

some strategy si with z(si, s∗j ) = z(si, t
∗
j ). By definition of H

first
j (C), information set h∗j weakly follows some

hj ∈ Hfirst
j (C). In fact, by perfect recall, h∗j weakly follows exactly one information set in H

first
j (C). We

distinguish two cases: (2.1) h∗j does not weakly follow h1j , and (2.2) h
∗
j does not weakly follow h2j .

Case 2.1. Assume that h∗j does not weakly follow h1j . Then, we show that z(s
1
i , s
∗
j ) = z(s1i , t

∗
j ). Suppose

that h∗j weakly follows hj ∈ Hfirst
j (C)\{h1j}. As s∗j ∈ Sj(h

∗
j ) and h

∗
j weakly follows hj we conclude that

s∗j ∈ Sj(hj). Since we know, by Claim 3, that Sj(hj) = Sj(h
1
j ) it follows that s

∗
j ∈ Sj(h1j ). Recall from above

that s1i ∈ Si(h1j ). Since, by perfect recall, S(h1j ) = Si(h
1
j )× Sj(h1j ), we conclude that (s1i , s

∗
j ) ∈ S(h1j ). Since

h∗j does not weakly follow h1j we conclude that (s1i , s
∗
j ) /∈ S(h∗j ). As s

∗
j , t
∗
j are minimally different at h

∗
j it

follows that z(s1i , s
∗
j ) = z(s1i , t

∗
j ).

Case 2.2. Assume that h∗j does not weakly follow h2j . Then, it can be shown in a similar fashion as above
that z(s2i , s

∗
j ) = z(s2i , t

∗
j ).

By Cases 2.1 and 2.2, the condition of two strategies per connected component is satisfied. Together
with Case 1, we see that two strategies per connected component is satisfied whenever the game has two
players and satisfies perfect recall. This completes the proof. �

Lemma 7.5 (Strategy combinations leading to same consequence) Consider a strategy si and two
opponents’strategy combinations s−i, t−i with z(si, s−i) = z(si, t−i). Then, there are opponents’strategy
combinations s0−i, s

1
−i, ..., s

K
−i such that (i) s

0
−i = s−i, (ii) sK−i = t−i, (iii) sk−i, s

k+1
−i minimally different for

every k ∈ {0, ...,K − 1}, and (iv) z(si, sk−i) = z(si, s
k+1
−i ) for all k ∈ {0, ...,K − 1}.

Proof. Let the set of players be I = {1, ..., n} and assume, without loss of generality, that i = 1. Let
s−i = (s2, ..., sn) and t−i = (t2, ..., tn). For every opponent j let

Hdif
j (sj , tj) := {hj ∈ Hj(sj) ∩Hj(tj) | sj(hj) 6= tj(hj)}

be the collection of information sets where sj , tj differ.
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Take an opponent j ∈ {2, ..., n}, and suppose thatHdif
j (sj , tj) consists ofKj information sets {h1j , ..., h

Kj

j }.
We define strategies s0j , ..., s

Kj

j as follows: Set s0j := sj , and for every k ∈ {1, ...,Kj} let skj be the unique
strategy that (i) coincides with tj at all information sets hj ∈ {h1j , ..., hkj }, (ii) coincides with tj at all infor-
mation sets hj ∈ Hj(tj) that follow an information set in {h1j , ..., hkj }, and (iii) coincides with sj at all other
information sets in Hj(s

k
j ). Then, by construction, s

Kj

j = tj , and sk−1j , skj are minimally different at h
k
j for

every k ∈ {1, ...,Kj}.
For every j ∈ {2, ..., n} and k ∈ {1, ...,Kj} let

sj.k−i := (t2, ..., tj−1, s
k
j , sj+1, ..., sn).

Then, we define the sequence of opponents’strategy combinations s0−i, s
1
−i, ..., s

K
−i by

s0−i, s
1
−i...., s

K
−i := s−i, s

2.1
−i , ..., s

2.K2
−i , s3.1−i , ..., s

3.K3
−i , ..., sn.1−i , ..., s

n.Kn
−i .

By construction, s0−i = s−i, sK−i = t−i and sk−i, s
k+1
−i are minimally different for every k ∈ {0, ...,K − 1}.

It remains to show that z(si, sk−i) = z(si, s
k+1
−i ) for every k ∈ {0, ...,K − 1}.

Recall that z(si, s−i) = z(si, t−i). Let z := z(si, s−i) = z(si, t−i). Then, (si, s−i) and (si, t−i) select all
the actions on the path to z. Now, take some k ∈ {0, ...,K − 1}, and suppose that sk−i, sk+1−i minimally
differ at some hj ∈ Hj . Then, by construction, s−i, t−i also differ at hj . Since (si, s−i) and (si, t−i) select
all the actions on the path to z, it must be that hj is not on the path to z. Hence, we conclude that
z(si, s

k
−i) = z(si, s

k+1
−i ) = z also. Thus, z(si, sk−i) = z(si, s

k+1
−i ) for every k ∈ {0, ...,K − 1}. This completes

the proof. �

Lemma 7.6 (Induced probability distributions on consequences) Consider two strategies si, s′i ∈
Si and two beliefs βi, β

′
i with P(si,βi) = P(s′i,β′i). Then, P(si,βi) = P(s′i,βi) = P(si,β′i).

Proof. For every consequence z, let Si(z) be the set of strategies si ∈ Si that select all player i actions
on the path to z, and let S−i(z) be the set of opponents’strategy combinations s−i ∈ S−i that select all
opponents’actions on the path to z. Take some consequence z with P(si,βi)(z) > 0. Then, si ∈ Si(z) and
P(si,βi)(z) = βi(S−i(z)). As P(s′i,β′i)(z) = P(si,βi)(z) > 0 we have that s′i ∈ Si(z) and P(s′i,β′i)(z) = β′i(S−i(z)).

Since P(s′i,β′i)(z) = P(si,βi)(z) it follows that βi(S−i(z)) = β′i(S−i(z)). But then, we conclude that

P(s′i,βi)(z) = βi(S−i(z)) = P(si,βi)(z) and P(si,β′i)(z) = β′i(S−i(z)) = βi(S−i(z)) = P(si,βi)(z).

As this holds for every z with P(si,βi)(z) > 0, it follows that P(si,βi) = P(s′i,βi) = P(si,β′i). This completes the
proof. �
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7.3 Utility Transformation Procedure

Consider a conditional preference relation %i with an expected utility representation ui. The following
procedure, which we call the utility transformation procedure, transforms the utility function ui into a new
utility function vi which is still an expected utility representation for %i and that, under certain conditions,
is a utility function on consequences. This procedure is used in the proofs of Theorems 4.1 and 5.1.

Take a dynamic game form D, a player i, and a conditional preference relation %i for player i with
an expected utility representation ui. Recall from above the definition of the graph GDi induced by the
dynamic game form D for player i, and fix a connected component C. Then, there is a spanning tree T for
C with root s0−i in C. If there are K nodes in C, choose a bijective numbering m : C → {1, ...,K} such
that m(s−i) > m(t−i) whenever s−i 6= t−i and t−i lies on the unique path in T from s0−i to s−i. Hence,
m(s0−i) = 1.We define the new utilities vi(si, s−i) for the nodes s−i in C by induction on m(s−i), as follows:
For the node s0−i with m(s0−i) = 1, set

vi(si, s
0
−i) := ui(si, s

0
−i) (7.1)

for every strategy si.
Now, consider a node s−i 6= s0−i in C, and suppose that vi(si, t−i) has been defined for all strategies si

and all nodes t−i in C with m(t−i) < m(s−i). Consider the unique path in T from s0−i to s−i, and let p(s−i)
be the predecessor to s−i on this path. Then, m(p(s−i)) < m(s−i) which implies that vi(si, p(s−i)) has been
defined for all strategies si. Moreover, let strategy ti(s−i) be such that z(ti(s−i), p(s−i)) = z(ti(s−i), s−i).
Define

vi(si, s−i) := ui(si, s−i) + vi(ti(s−i), p(s−i))− ui(ti(s−i), s−i) (7.2)

for every strategy si. Then, by construction, vi(ti(s−i), s−i) = vi(ti(s−i), p(s−i)).
In this way we define the new utility vi(si, s−i) for every strategy si and every node s−i in C. If we

do so for every connected component C we define the new utility vi(si, s−i) for every strategy si and every
opponents’strategy combination s−i ∈ S−i. The description of the new utility function vi is hereby complete.

We will now show that the new utility function vi still represents the conditional preference relation %i .
On the basis of (7.1) and (7.2) we conclude that

vi(si, s−i)− vi(ti, s−i) = ui(si, s−i)− ui(ti, s−i)

for every two strategies si, ti and every node s−i. As such, for every belief the expected utility difference
between any two strategies will be the same under ui as under vi, which implies that vi represents the same
conditional preference relation as ui. Since ui represents the conditional preference relation %i, it follows
that vi represents %i also.
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7.4 Proof of Theorem 4.1

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. (a) Suppose first that %i is utility-based consequentialist. Then, %i has an
expected utility representation ui on consequences. To show that %i induces additive preference intensities
on consequences, take two opponents’strategy combinations s∗−i, t

∗
−i, and two paths

s∗−i
s1i ,z

1

− s2−i
s2i ,z

2

− s3−i...
sK−1i ,zK−1

− sK−i
sKi ,z

K

− t∗−i

and

s∗−i
t1i ,y

1

− t2−i
t2i ,y

2

− t3−i...
tL−1i ,yL−1

− tL−i
tLi ,y

L

− t∗−i

from s∗−i to t
∗
−i. Then, [

ui(s
1
i , s

2
−i)− ui(s2i , s2−i)

]
+
[
ui(s

2
i , s

3
−i)− ui(s3i , s3−i)

]
+ ...

...+
[
ui(s

K−1
i , sK−i)− ui(sKi , sK−i)

]
+
[
ui(s

K
i , t

∗
−i)− ui(tLi , t∗−i)

]
= ui(s

1
i , s

2
−i)− ui(tLi , t∗−i). (7.3)

Indeed, since z(ski , s
k
−i) = z(ski , s

k+1
−i ) for all k ∈ {2, ...,K − 1} and z(sKi , sK−i) = z(sKi , t

∗
−i), and ui is a

utility function on consequences, we have that ui(ski , s
k
−i) = ui(s

k
i , s

k+1
−i ) for all k ∈ {2, ...,K − 1} and

ui(s
K
i , s

K
−i) = ui(s

K
i , t

∗
−i).

In a similar fashion it follows that[
ui(s

1
i , s
∗
−i)− ui(t1i , s∗−i)

]
+
[
ui(t

1
i , t

2
−i)− ui(t2i , t2−i)

]
+

+
[
ui(t

2
i , t

3
−i)− ui(t3i , t3−i)

]
+ ...+

[
ui(t

L−1
i , tL−i)− ui(tLi , tL−i)

]
= ui(s

1
i , s
∗
−i)− ui(tLi , tL−i). (7.4)

Since z(s1i , s
2
−i) = z(s1i , s

∗
−i) and z(t

L
i , t
∗
−i) = z(tLi , t

L
−i), and ui is a utility function on consequences, it

follows that ui(s1i , s
2
−i) = ui(s

1
i , s
∗
−i) and ui(t

L
i , t
∗
−i) = ui(t

L
i , t

L
−i). If we combine this with (7.3) and (7.4) we

conclude that [
ui(s

1
i , s

2
−i)− ui(s2i , s2−i)

]
+
[
ui(s

2
i , s

3
−i)− ui(s3i , s3−i)

]
+ ...

...+
[
ui(s

K−1
i , sK−i)− ui(sKi , sK−i)

]
+
[
ui(s

K
i , t

∗
−i)− ui(tLi , t∗−i)

]
=

[
ui(s

1
i , s
∗
−i)− ui(t1i , s∗−i)

]
+
[
ui(t

1
i , t

2
−i)− ui(t2i , t2−i)

]
+

+
[
ui(t

2
i , t

3
−i)− ui(t3i , t3−i)

]
+ ...+

[
ui(t

L−1
i , tL−i)− ui(tLi , tL−i)

]
.

Hence, %i induces additive preference intensities on consequences.

27



(b) Assume next that %i has an expected utility representation ui, induces additive preference intensities on
consequences and has no weakly dominated strategies. Use the utility transformation procedure presented
above to transform ui into a new expected utility representation vi. We will now show that vi is a utility
function on consequences.

Within the graph GDi , consider a connected component C and the associated spanning tree T with root
s0−i chosen in the utility transformation procedure. We prove, for every strategy si and every edge (s∗−i, t

∗
−i)

in C that
vi(si, s

∗
−i) = vi(si, t

∗
−i) whenever z(si, s

∗
−i) = z(si, t

∗
−i). (7.5)

We distinguish two cases: (1) the edge (s∗−i, t
∗
−i) is in the spanning tree T, and (2) the edge (s∗−i, t

∗
−i) is not

in the spanning tree T.

Case 1. Suppose that the edge (s∗−i, t
∗
−i) is in the spanning tree T with t∗−i = p(s∗−i), where p(s

∗
−i) is

the predecessor to s∗−i in the utility transformation procedure. Take any strategy si with z(si, s
∗
−i) =

z(si, t
∗
−i). Since t

∗
−i = p(s∗−i) we know by (7.2) in the utility transformation procedure that vi(ti(s

∗
−i), s

∗
−i) =

vi(ti(s
∗
−i), t

∗
−i). As z(ti(s

∗
−i), s

∗
−i) = z(ti(s

∗
−i), t

∗
−i) and z(si, s

∗
−i) = z(si, t

∗
−i), it follows by Lemma 7.2 that

vi(si, s
∗
−i) = vi(si, t

∗
−i), and hence (7.5) holds.

Case 2. Suppose that the edge (s∗−i, t
∗
−i) is not in the spanning tree T. Let

s0−i
s0i ,z

0

− s1−i
s1i ,z

1

− s2−i...
sL−1i ,zL−1

− sL−i
sLi ,z

L

− s∗−i (7.6)

be the unique path in T from s0−i to s
∗
−i. Moreover, let

s0−i
t0i ,y

0

− t1−i
t1i ,y

1

− t2−i...
tM−1i ,yM−1

− tM−i
tMi ,yM

− t∗−i

be the unique path in T from s0−i to t
∗
−i.

As (s∗−i, t
∗
−i) is an edge, there is a strategy ti such that z(ti, t

∗
−i) = z(ti, s

∗
−i) =: y. Then,

s0−i
t0i ,y

0

− t1−i
t1i ,y

1

− t2−i...
tM−1i ,yM−1

− tM−i
tMi ,yM

− t∗−i
ti,y
− s∗−i (7.7)

is an alternative path from s0−i to s
∗
−i. Since %i induces additive preference intensities on consequences, and

vi is an expected utility representation for %i, it follows from (7.6) and (7.7) that[
vi(s

0
i , s

1
−i)− vi(s1i , s1−i)

]
+
[
vi(s

1
i , s

2
−i)− vi(s2i , s2−i)

]
+ ...

...+
[
vi(s

L−1
i , sL−i)− vi(sLi , sL−i)

]
+
[
vi(s

L
i , s
∗
−i)− vi(ti, s∗−i)

]
=

[
vi(s

0
i , s

0
−i)− vi(t0i , s0−i)

]
+
[
vi(t

0
i , t

1
−i)− vi(t1i , t1−i)

]
+

+
[
vi(t

1
i , t

2
−i)− vi(t2i , t2−i)

]
+ ...+

[
vi(t

M−1
i , tM−i)− vi(tMi , tM−i)

]
+
[
vi(t

M
i , t

∗
−i)− vi(ti, t∗−i)

]
. (7.8)
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Note that all edges in (7.6) and (7.7), except t∗−i
ti,y
− s∗−i, are in T. By Case 1 it therefore follows that

vi(s
k
i , s

k
−i) = vi(s

k
i , s

k+1
−i ) for all k ∈ {0, ..., L− 1}, vi(sLi , sL−i) = vi(s

L
i , s
∗
−i),

vi(t
0
i , s

0
−i) = vi(t

0
i , t

1
−i), vi(t

k
i , t

k
−i) = vi(t

k
i , t

k+1
−i ) for all k ∈ {1, ...,M − 1} and

vi(t
M
i , t

M
−i) = vi(t

M
i , t

∗
−i). (7.9)

Combining (7.8) and (7.9) then yields vi(ti, s∗−i) = vi(ti, t
∗
−i).

Now, take an arbitrary si with z(si, s∗−i) = z(si, t
∗
−i). As we have seen above that z(ti, s

∗
−i) = z(ti, t

∗
−i)

and vi(ti, s∗−i) = vi(ti, t
∗
−i), it follows by Lemma 7.2 that vi(si, s

∗
−i) = vi(si, t

∗
−i), and hence (7.5) holds. By

Cases 1 and 2 we conclude that (7.5) holds for every edge (s∗−i, t
∗
−i) in the connected component C.

We finally show that the utility function vi so constructed is a utility function on consequences. Take
strategies si, ti and opponents’strategy combinations s−i, t−i with z(si, s−i) = z(ti, t−i). We will show that
vi(si, s−i) = vi(ti, t−i).

As z(si, s−i) = z(ti, t−i) =: z, strategies si, ti select all player i actions on the path to z, and s−i, t−i
select all opponents’actions on the path to z. But then, z(si, s−i) = z(si, t−i) and z(si, t−i) = z(ti, t−i).

As z(si, s−i) = z(si, t−i), it follows by Lemma 7.5 that we can choose opponents’strategy combinations
s0−i, s

1
−i, ..., s

M
−i such that (i) s

0
−i = s−i, (ii) sM−i = t−i, (iii) sk−i, s

k+1
−i are minimally different for every

k ∈ {0, ...,M − 1}, and (iv) z(si, sk−i) = z(si, s
k+1
−i ) for all k ∈ {0, ...,M − 1}. By (7.5) it then follows that

vi(si, s
k
−i) = vi(si, s

k+1
−i ) for all k ∈ {0, ...,M − 1}, which implies that vi(si, s−i) = vi(si, t−i).

Moreover, as z(si, t−i) = z(ti, t−i) it follows that P(si,[t−i]) = P(ti,[t−i]). Moreover, it trivially holds that
P(si,[t−i]) = P(si,[t−i]). Since %i is preference-based consequentialist we know that

si %i,[t−i] ti if and only if si %i,[t−i] si.

Clearly, si ∼i,[t−i] si, and therefore si ∼i,[t−i] ti. Since the utility function vi represents %i we must have that
vi(si, t−i) = v(ti, t−i).

Together with the insight above that vi(si, s−i) = vi(si, t−i) we conclude that vi(si, s−i) = vi(ti, t−i).
As such, the utility function vi is a utility function on consequences. Altogether, we have constructed an
expected utility representation vi for %i that is a utility function on consequences. Hence, %i is utility-based
consequentialist. This completes the proof. �

7.5 Proof of Theorem 5.1

Proof of Theorem 5.1. (a) Suppose first that %i is utility-based consequentialist. Then, %i has an
expected utility representation ui on consequences. Hence, for every consequence z there is a unique utility
ûi(z) such that

ui(si, s−i) = ûi(z) for all (si, s−i) ∈ Si × S−i with z(si, s−i) = z.
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For every strategy si and belief βi we then have that

ui(si, βi) =
∑

s−i∈S−i

βi(s−i) · ui(si, s−i) =
∑
z∈Z

[
∑

s−i∈S−i:z(si,s−i)=z
βi(s−i)] · ûi(z)

=
∑
z∈Z

P(si,βi)(z) · ûi(z). (7.10)

To show that %i is preference-based consequentialist, consider four strategies si, s′i, ti, t′i and two beliefs
βi, β

′
i with

P(si,βi) = P(s′i,β′i) and P(ti,βi) = P(t′i,β′i).

Then, in view of (7.10), ui(si, βi) = ui(s
′
i, β
′
i) and ui(ti, βi) = ui(t

′
i, β
′
i), which implies that

ui(si, βi)− ui(ti, βi) = ui(s
′
i, β
′
i)− ui(t′i, β′i).

Hence, si %i,βi ti if and only if s′i %i,β′i t
′
i. As such, %i is preference-based consequentialist.

(b) Assume next that %i has an expected utility representation ui and is preference-based consequentialist.
Use the utility transformation procedure to transform ui into a new expected utility representation vi for
%i . We will now show that vi is a utility function on consequences.

Within the graph GDi , consider a connected component C and the associated spanning tree T with root
s0−i chosen in the utility transformation procedure. We prove, for every strategy si and every edge (s∗−i, t

∗
−i)

in C that
vi(si, s

∗
−i) = vi(si, t

∗
−i) whenever z(si, s

∗
−i) = z(si, t

∗
−i). (7.11)

We distinguish two cases: (1) the edge (s∗−i, t
∗
−i) is in the spanning tree T, and (2) the edge (s∗−i, t

∗
−i) is not

in the spanning tree T.

Case 1. Suppose that the edge (s∗−i, t
∗
−i) is in the spanning tree T with t

∗
−i = p(s∗−i), where p(s

∗
−i) is the

predecessor to s∗−i in the utility transformation procedure. Take any strategy si with z(si, s
∗
−i) = z(si, t

∗
−i).

Then, it can be shown in the same way as in the proof of Theorem 4.1, Case 1, that vi(si, s∗−i) = vi(si, t
∗
−i),

and hence (7.11) holds.

Case 2. Suppose that the edge (s∗−i, t
∗
−i) is not in the spanning tree T. Let (s0−i, ..., s

L
−i) be the unique path

in T from s0−i to s
∗
−i, where s

L
−i = s∗−i. Moreover, let (sL+1−i , ..., sL+M−i ) be the unique path in T from t∗−i to

s0−i, where s
L+1
−i = t∗−i and s

L+M
−i = s0−i. Then, c := (s0−i, ..., s

L
−i, s

L+1
−i , ..., sL+M−i ) is a cycle in C.

By Lemma 7.4 we know that the graph GDi satisfies two strategies per connected component. Hence,
there are two strategies s∗i , t

∗
i such that for every edge (sk−i, s

k+1
−i ) in the cycle c either

z(s∗i , s
k
−i) = z(s∗i , s

k+1
−i ) or z(t∗i , s

k
−i) = z(t∗i , s

k+1
−i ).

We distinguish three cases: (2.1) z(s∗i , s
k
−i) = z(s∗i , s

k+1
−i ) for all edges (sk−i, s

k+1
−i ) in the cycle c, (2.2)

z(t∗i , s
k
−i) = z(t∗i , s

k+1
−i ) for all edges (sk−i, s

k+1
−i ) in the cycle c, and (2.3) conditions (2.1) and (2.2) do not

hold.

30



Case 2.1. Suppose that z(s∗i , s
k
−i) = z(s∗i , s

k+1
−i ) for all edges (sk−i, s

k+1
−i ) in the cycle c. As the edges

(s0−i, s
1
−i), ..., (s

L−1
−i , sL−i) and the edges (sL+1−i , sL+2−i ), ..., (sL+M−1−i , sL+M−i ) are all in the spanning tree T, we

know from Case 1 that

vi(s
∗
i , s
∗
−i) = vi(s

∗
i , s

L
−i) = vi(s

∗
i , s

L−1
−i ) = ... = vi(s

∗
i , s

0
−i)

= vi(s
∗
i , s

L+M
−i ) = vi(s

∗
i , s

L+M−1
−i ) = ... = vi(s

∗
i , s

L+1
−i ) = vi(s

∗
i , t
∗
−i).

Hence, vi(s∗i , s
∗
−i) = vi(s

∗
i , t
∗
−i).

Now, take an arbitrary si with z(si, s
∗
−i) = z(si, t

∗
−i). As z(s

∗
i , s
∗
−i) = z(s∗i , t

∗
−i) and vi(s

∗
i , s
∗
−i) =

vi(s
∗
i , t
∗
−i), it follows by Lemma 7.2 that vi(si, s

∗
−i) = vi(si, t

∗
−i), and hence (7.11) holds.

Case 2.2. Suppose that z(t∗i , s
k
−i) = z(t∗i , s

k+1
−i ) for all edges (sk−i, s

k+1
−i ) in the cycle c. Then, it can be

shown in the same way as in Case 2.1 that (7.11) holds for (s∗−i, t
∗
−i).

Case 2.3. Suppose that conditions (2.1) and (2.2) do not hold. Then, there is an edge (sk−i, s
k+1
−i ) in the

cycle c with z(s∗i , s
k
−i) 6= z(s∗i , s

k+1
−i ) and an edge (sm−i, s

m+1
−i ) with z(t∗i , s

m
−i) 6= z(t∗i , s

m+1
−i ). Let

S+−i := {sk−i in c | z(s∗i , sk−1−i ) 6= z(s∗i , s
k
−i) and z(s

∗
i , s

k
−i) = z(s∗i , s

k+1
−i )}

and
S−−i := {sk−i in c | z(s∗i , sk−1−i ) = z(s∗i , s

k
−i) and z(s

∗
i , s

k
−i) 6= z(s∗i , s

k+1
−i )},

where s−1−i := sM+L−1
−i and sM+L+1

−i := s1−i. Then, S
+
−i and S

−
−i are both non-empty, and have the same

number of nodes, say n.
Define the beliefs

β+i :=
1

n

∑
s+−i∈S

+
−i

[s+−i] and β
−
i :=

1

n

∑
s−−i∈S

−
−i

[s−−i].

Hence, β+i assigns equal probability to all opponents’ strategy combinations in S+−i, whereas β
−
i assigns

equal probability to all opponents’strategy combinations in S−−i. We will show that

P(s∗i ,β+i ) = P(s∗i ,β−i ) and P(t∗i ,β+i ) = P(t∗i ,β−i ). (7.12)

To prove this we introduce some additional notation. Fix the direction (s0−i, ..., s
L
−i, s

L+1
−i , ..., sL+M−i ) of

the cycle c. For every node s+−i ∈ S
+
−i, let fol(s

+
−i) be the first node in S

−
−i (given this direction) that follows

s+−i, and let pre(s
+
−i) be the last node in S

−
−i (given this direction) that precedes s

+
−i.

Now, consider some node s+−i ∈ S+−i, and let s
k
−i, s

k+1
−i , ..., s

l
−i be the sequence of nodes in c (if any)

between s+−i and fol(s
+
−i) (given this direction). Then, by construction,

z(s∗i , s
+
−i) = z(s∗i , s

k
−i) = z(s∗i , s

k+1
−i ) = ... = z(s∗i , s

l
−i) = z(s∗i , fol(s

+
−i)). (7.13)

Similarly, let sm−i, s
m+1
−i , ..., sr−i be the sequence of nodes in c (if any) between pre(s

+
−i) and s

+
−i (given this

direction). Then, by construction, z(s∗i , s−i) 6= z(s∗i , t−i) for every edge (s−i, t−i) on the path
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(pre(s+−i), s
m
−i, s

m+1
−i , ..., sr−i, s

+
−i), and hence z(t

∗
i , s−i) = z(t∗i , t−i) for every edge (s−i, t−i) on the path

(pre(s+−i), s
m
−i, s

m+1
−i , ..., sr−i, s

+
−i). As such,

z(t∗i , pre(s
+
−i)) = z(t∗i , s

m
−i) = z(t∗i , s

m+1
−i ) = ... = z(t∗i , s

r
−i) = z(t∗i , s

+
−i). (7.14)

We can then conclude that

P(s∗i ,β+i ) =
1

n

∑
s+−i∈S

+
−i

[z(s∗i , s
+
−i)] =

1

n

∑
s+−i∈S

+
−i

[z(s∗i , fol(s
+
−i))]

=
1

n

∑
s−−i∈S

−
−i

[z(s∗i , s
−
−i)] = P(s∗i ,β−i ). (7.15)

Here, the first equality follows from the definition of β+i , the second equality follows from (7.13), the third
equality follows from the fact that

S−−i = {fol(s+−i) | s
+
−i ∈ S

+
−i},

whereas the last equality follows from the definition of β−i .
Similarly, it follows that

P(t∗i ,β+i ) =
1

n

∑
s+−i∈S

+
−i

[z(t∗i , s
+
−i)] =

1

n

∑
s+−i∈S

+
−i

[z(t∗i , pre(s
+
−i))]

=
1

n

∑
s−−i∈S

−
−i

[z(t∗i , s
−
−i)] = P(t∗i ,β−i ). (7.16)

Here, the first equality follows from the definition of β+i , the second equality follows from (7.14), the third
equality follows from the fact that

S−−i = {pre(s+−i) | s
+
−i ∈ S

+
−i},

whereas the last equality follows from the definition of β−i . By (7.15) and (7.16) we thus conclude that (7.12)
holds.

Since (i) (7.12) holds, (ii) the conditional preference relation %i is preference-based consequentialist with
expected utility representation vi, and (iii) the two strategies s∗i , t

∗
i do not weakly dominate one another, we

conclude on the basis of Lemma 7.1 that

vi(s
∗
i , β

+
i )− vi(t∗i , β+i ) = vi(s

∗
i , β
−
i )− vi(t∗i , β−i ). (7.17)

By definition of the belief β+i we have that

vi(s
∗
i , β

+
i ) =

1

n

∑
s+−i∈S

+
−i

vi(s
∗
i , s

+
−i),
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and similarly for vi(t∗i , β
+
i ), vi(s

∗
i , β
−
i ) and vi(t∗i , β

−
i ). Substituting this into (7.17) yields

1

n

∑
s+−i∈S

+
−i

vi(s
∗
i , s

+
−i)−

1

n

∑
s+−i∈S

+
−i

vi(t
∗
i , s

+
−i) =

1

n

∑
s−−i∈S

−
−i

vi(s
∗
i , s
−
−i)−

1

n

∑
s−−i∈S

−
−i

vi(t
∗
i , s
−
−i).

Since S−−i = {fol(s+−i) | s
+
−i ∈ S

+
−i} and S

−
−i = {pre(s+−i) | s

+
−i ∈ S

+
−i}, this implies that∑

s+−i∈S
+
−i

vi(s
∗
i , s

+
−i)−

∑
s+−i∈S

+
−i

vi(t
∗
i , s

+
−i) =

∑
s+−i∈S

+
−i

vi(s
∗
i , fol(s

+
−i))−

∑
s+−i∈S

+
−i

vi(t
∗
i , pre(s

+
−i)). (7.18)

For every two nodes s−i, t−i on the cycle c, let [s−i, t−i] be the ordered set of all the nodes on the cycle
(including s−i and t−i ) between s−i and t−i (in the direction of the cycle c). Recall the edge (s∗−i, t

∗
−i)

on the cycle c we consider. Then, there is some node s∗+−i ∈ S
+
−i such that either s

∗
−i, t

∗
−i ∈ [s∗+−i , fol(s

∗+
−i )]

or s∗−i, t
∗
−i ∈ [pre(s∗+−i ), s

∗+
−i ]. We thus distinguish two cases: (2.3.1) s

∗
−i, t

∗
−i ∈ [s∗+−i , fol(s

∗+
−i )] and (2.3.2)

s∗−i, t
∗
−i ∈ [pre(s∗+−i ), s

∗+
−i ].

Case 2.3.1. Assume that s∗−i, t
∗
−i ∈ [s∗+−i , fol(s

∗+
−i )]. Take some s

+
−i ∈ S

+
−i\{s

∗+
−i }, and let

[s+−i, fol(s
+
−i)] = (s+−i, s

1
−i, ..., s

k
−i, fol(s

+
−i)).

Then, by construction,

z(s∗i , s
+
−i) = z(s∗i , s

1
−i) = ... = z(s∗i , s

k
−i) = z(s∗i , fol(s

+
−i)).

As all the edges in [s+−i, fol(s
+
−i)] are in the spanning tree T, it follows by Case 1 that

vi(s
∗
i , s

+
−i) = vi(s

∗
i , s

1
−i) = ... = vi(s

∗
i , s

k
−i) = vi(s

∗
i , fol(s

+
−i)) (7.19)

for all s+−i ∈ S
+
−i\{s

∗+
−i }.

Next, take some s+−i ∈ S
+
−i, possibly equal to s

∗+
−i , and let

[pre(s+−i), s
+
−i] = (pre(s+−i), s

1
−i, ..., s

l
−i, s

+
−i).

Then, by construction,

z(t∗i , pre(s
+
−i)) = z(t∗i , s

1
−i) = ... = z(t∗i , s

l
−i) = z(t∗i , s

+
−i).

As all the edges in [pre(s+−i), s
+
−i] are in the spanning tree T, it follows by Case 1 that

vi(t
∗
i , pre(s

+
−i)) = vi(t

∗
i , s

1
−i) = ... = vi(t

∗
i , s

l
−i) = vi(t

∗
i , s

+
−i) (7.20)

for all s+−i ∈ S
+
−i.
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By (7.19) and (7.20) we then conclude that all terms in (7.18) cancel, except for vi(s∗i , s
∗+
−i ) and

vi(s
∗
i , fol(s

∗+
−i )), which yields

vi(s
∗
i , s
∗+
−i ) = vi(s

∗
i , fol(s

∗+
−i )). (7.21)

Recall that s∗−i, t
∗
−i ∈ [s∗+−i , fol(s

∗+
−i )] where t

∗
−i follows s

∗
−i in the direction of the cycle. Then, every

edge (s−i, t−i) in [s∗+−i , s
∗
−i], if any, is in the spanning tree T. As z(s

∗
i , s−i) = z(s∗i , t−i) for every such edge,

it follows from Case 1 that vi(s∗i , s−i) = vi(s
∗
i , t−i) for every edge (s−i, t−i) in [s∗+−i , s

∗
−i], if any. As such,

vi(s
∗
i , s
∗
−i) = vi(s

∗
i , s

+∗
−i ). (7.22)

Similarly, every edge (s−i, t−i) in [t∗−i, fol(s
∗+
−i )], if any, is in the spanning tree T. As z(s

∗
i , s−i) =

z(s∗i , t−i) for every such edge, it follows from Case 1 that vi(s∗i , s−i) = vi(s
∗
i , t−i) for every edge (s−i, t−i) in

[t∗−i, fol(s
∗+
−i )], if any. As such,

vi(s
∗
i , t
∗
−i) = vi(s

∗
i , fol(s

∗+
−i )). (7.23)

By (7.21), (7.22) and (7.23) it follows that vi(s∗i , s
∗
−i) = vi(s

∗
i , t
∗
−i).

Now, take some arbitrary si with z(si, s
∗
−i) = z(si, t

∗
−i). As z(s

∗
i , s
∗
−i) = z(s∗i , t

∗
−i) and vi(s

∗
i , s
∗
−i) =

vi(s
∗
i , t
∗
−i), it follows from Lemma 7.2 that vi(si, s∗−i) = vi(si, t

∗
−i). Hence, (7.11) holds.

Case 2.3.2. Assume that s∗−i, t
∗
−i ∈ [pre(s∗+−i ), s

∗+
−i ]. Then, it can be shown in a similar fashion as in Case

2.3.1 that (7.11) holds.

As we have exhausted all cases, we conclude that (7.11) holds for every edge (s∗−i, t
∗
−i) in the connected

component C. Moreover, by covering all connected components C, we conclude that (7.11) holds for every
edge (s∗−i, t

∗
−i) in the graph G

D
i .

In the same way as in the proof of Theorem 4.1 it can then be shown that the utility function vi so
constructed is a utility function on consequences. Hence, %i is utility-based consequentialist. This completes
the proof. �

7.6 Proof of Theorem 4.2

Proof of Theorem 4.2. (a) Suppose first that %i is preference-based consequentialist. Take two strategies
si, ti, and consider the restricted conditional preference relation %{si,ti}i . Then, %{si,ti}i is preference-based

consequentialist also. As %{si,ti}i only involves two strategies, it follows from the proof of Theorem 5.1, part

(b), that %{si,ti}i is utility-based consequentialist. By Theorem 4.1 we then conclude that %{si,ti}i induces
additive preference intensities on consequences.

(b) Suppose next that for every pair of strategies si, ti, the restricted conditional preference relation %{si,ti}i

induces additive preference intensities on consequences. Let ui be an expected utility representation of %i .
Take a pair of strategies si, ti. As %{si,ti}i induces additive preference intensities on consequences, it follows

from Theorem 4.1 that %{si,ti}i is utility-based consequentialist. By the proof of Theorem 5.1, part (a), it
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follows that %{si,ti}i is preference-based consequentialist. Thus, %{si,ti}i is preference-based consequentialist
for every two strategies si, ti.

We will now show that %i is preference-based consequentialist. Take four strategies si, s′i, ti, t′i and two
beliefs βi, β

′
i with P(si,βi) = P(s′i,β′i) and P(ti,βi) = P(t′i,β′i). Then, it follows from Lemma 7.6 that P(si,βi) =

P(si,β′i) and P(ti,βi) = P(ti,β′i). Since %
{si,ti}
i is preference-based consequentialist, it follows from Lemma 7.1

that
ui(si, βi)− u(ti, βi) = ui(si, β

′
i)− ui(ti, β′i). (7.24)

Moreover, as P(si,βi) = P(s′i,β′i) we know from Lemma 7.6 that P(si,β′i) = P(s′i,β′i). As, trivially, P(si,β′i) =

P(si,β′i), and %
{si,s′i}
i is preference-based consequentialist, it follows from Lemma 7.1 that

ui(si, β
′
i)− ui(s′i, β′i) = ui(si, β

′
i)− ui(si, β′i) = 0,

which implies that ui(si, β′i) = ui(s
′
i, β
′
i). Similarly, it can be shown that ui(ti, β

′
i) = ui(t

′
i, β
′
i). Combining

the latter two insights with (7.24) yields ui(si, βi)−ui(ti, βi) = ui(s
′
i, β
′
i)−ui(t′i, β′i). Hence, si %i,βi ti if and

only if s′i %i,β′i t
′
i. We thus conclude that %i is preference-based consequentialist. This completes the proof.

�
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