Existence

Lexicographic Beliefs Part III: Assumption of Rationality

Christian W. Bach

EPICENTER & University of Liverpool

EPICENTER Summer Course 2022: Assumption of Rationality

http://www.epicenter.name/bach

A (B) + A (B) + A (B) +

Introduction

- Two ways of cautious reasoning have been presented so far:
 - Common Primary Belief in (Caution & Rationality)
 - Common Full Belief in (Caution & Respect of Preferences)
- Respect of preferences imposes restrictions not only on the primary but also on deeper lexicographic levels!
- However, there are other reasonable conditions that could be put on the various lexicographic levels.

Assumption of Rationality

Common Assumption of Rationality

Algorithm

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Assumption of Rationality

Common Assumption of Rationality

Algorithm

EPICENTER Summer Course 2022: Assumption of Rationality

http://www.epicenter.name/bach

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Existence

Example: Spy Game

Story

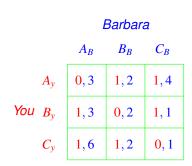
- *You* would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- The only objective for you is to avoid Barbara, since you would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, Barbara suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from *Pub A* to *Pub C*, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

э.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Existence

Example: Spy Game



EPICENTER Summer Course 2022: Assumption of Rationality

http://www.epicenter.name/bach

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example: Spy Game

			Barbara		
		A_B	BB	C_B	
	A_y	0, 3	1,2	1,4	
You	B_y	1,3	0, 2	1,1	
	C_y	1,6	1, 2	0, 1	

Under common full belief in (caution & respect of preferences), you go to Pub C:

- As Barbara prefers A_B to B_B and you respect her preferences, you must deem her choice A_B infinitely more likely than B_B.
- Then, you prefer B_y to A_y.
- Hence, you believe that Barbara deems your choice B_{y} infinitely more likely than A_{y} .
- Consequently, you believe that Barbara prefers *B_B* to *C_B*, and you must deem *B_B* infinitely more likely than *C_B*.
- But then the unique optimal choice for you is C_y.
- However, this is not the only plausible way to reason about Barbara!

э

(日)

Existence

Example: Spy Game

		Barbara		
		A_B	B_B	C_B
	A_y	0,3	1, 2	1,4
You	B_y	1,3	0, 2	1,1
	C_y	1,6	1, 2	0,1

An alternative way of reasoning:

- For Barbara, both A_B and C_B can be optimal for some cautious lexicographic belief, but B_B can never be optimal.
- Therefore, you deem Barbara's choice A_B and C_B infinitely more likely than B_B .
- But then, your unique optimal choice is By!

(日)

The Underlying Intuition

- If player j's choice c_j is optimal for some cautious lexicographic belief, while his choice c'_j is not optimal for any cautious lexicographic belief, then player i must deem c_j infinitely more likely than c'_j.
- Player i is then said to assume rationality.
- In other words, player *i* deems his opponent *j*'s good choices infinitely more likely than *j*'s bad choices.

9/58

Existence

How Can this Intuition Be Formalized?

- How can the idea of assuming rationality be formalized in an epistemic model?
- Attempt: Type *t_i* must deem all choice-type pairs (*c_j*, *t_j*), where *c_j* is optimal for *t_j* and *t_j* is cautious, infinitely more likely than all choice-type pairs (*c'_i*, *t'_j*) that do not have this property.

・ロト ・四ト ・ヨト ・ヨト

э.

The Attempt Does Not Work!

			Barbara		
		A_B	BB	C_B	
	A_y	0, 3	1, 2	1,4	
You	B_y	1,3	0, 2	1,1	
	C_y	1,6	1, 2	0,1	

- **Attempt:** Type t_i must deem all choice-type pairs (c_j, t_j) , where c_j is optimal for t_j and t_j is cautious, infinitely more likely than all choice-type pairs (c'_i, t'_j) that do not have this property.
- Consider the following lexicographic epistemic model:

Types: $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B\}$ Beliefs: $b_y(t_y) = ((A_B, t_B); (B_B, t_B); (C_B, t_B))$ and $b_B(t_B) = ((C_y, t_y); (B_y, t_y); (A_y, t_y))$

- Your type ty satisfies the condition, but does not assume rationality in the intended way.
- Problem: Choice C_B can be optimal for Barbara for some cautious type, but your type t_y does not deem possible any type for Barbara for which C_B is indeed optimal.
- Remedy: it is additionally required that you must deem possible a cautious type for Barbara for which C_B is optimal!

Existence

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

More Types Are Needed

		Barbara		
		A_B	BB	C_B
	A_y	0,3	1,2	1,4
You	B_y	1,3	0, 2	1,1
	C_y	1,6	1, 2	0,1

- Consider the following lexicographic epistemic model: Types: $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B, t'_B\}$ Beliefs: $b_y(t_y) = ((A_B, t_B); (C_B, t'_B); (C_B, t_B); (A_B, t'_B); (B_B, t'_B)),$ $b_B(t_B) = ((B_y, t_y); (C_y, t_y); (A_y, t_y)),$ and $b_B(t'_B) = ((A_y, t_y); (B_y, t_y); (C_y, t_y))$
- For Barbara choices A_B and C_B can be optimal for some cautious type.
- Your type t_y deems possible the cautious type t_B for which A_B is optimal as well as the cautious type t'_B for which C_B is optimal.
- Your type ty deems all choice-type pairs where the type is cautious and the choice is optimal for the type infinitely more likely than all choice-type pairs that do not have this property.
- Indeed, type t_y assumes rationality in the intended way!

Assumption of Rationality

Definition

A cautious type t_i assumes rationality, whenever

- for every choice c_j that is optimal for some cautious type, t_i deems possible a cautious type t_j for which c_j is indeed optimal,
- t_i deems all choice-type pairs (c_j, t_j), where t_j is cautious and c_j optimal for t_j, infinitely more likely than all choice-type pairs not satisfying this property.

Intuition:

A player deems good choices infinitely more likely than bad choices.

Remark:

Assumption of rationality can only be defined for cautious types.

EPICENTER Summer Course 2022: Assumption of Rationality

Assumption and Primary Belief in Rationality

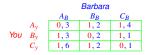
Observation. If *Alice* is cautious and assumes *Bob*'s rationality, then she also primarily believes in *Bob*'s rationality.

- Suppose that *t*_{Alice} is cautious and assumes *Bob*'s rationality.
- Then, t_{Alice} considers all choice-type pairs where the choice is optimal for the type infinitely more likely than other choice-type pairs.
- In particular, the support of t_{Alice}'s primary belief can then only contain choice-type pairs such that the choice is optimal for the type.

14/58

Assumption and Respect of Preferences

Observation. There is no general relationship between assuming rationality and respecting preferences.



- Consider the following lexicographic epistemic model: Types: $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B\}$ Beliefs: $b_y(t_y) = ((A_B, t_B); (B_B, t_B); (C_B, t_B))$ and $b_B(t_B) = ((B_y, t_y); (C_y, t_y); (A_y, t_y))$
- Your type ty respects Barbara's preferences, but does not assume her rationality.

- Consider the following lexicographic epistemic model: Types: $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B, t'_B\}$ Beliefs: $b_y(t_y) = ((A_B, t_B); (C_B, t'_B); (C_B, t_B); (A_B, t'_B); (B_B, t'_B)),$ $b_B(t_B) = ((B_y, t_y); (C_y, t_y); (A_y, t_y)),$ and $b_B(t'_B) = ((A_y, t_y); (B_y, t_y); (C_y, t_y))$
- Your type ty assumes Barbara's rationality, but does not respect her preferences.
- Indeed, for t_B choice B_B is better than C_B , yet t_y deems (C_B, t_B) infinitely more likely than (B_B, t_B) .

Remark

It is always possible to satisfy respect of preferences and assumption of rationality.

Intuition: A type's lexicographic belief deems optimal choices infinitely more likely than the non-optimal choices, yet orders the non-optimal choices as required by respect of preference.

Assumption of Rationality

Common Assumption of Rationality

Algorithm

(日)

Existence

Assuming (Rationality & Assumption of Rationality)

Definition

A cautious type *t_i* **assumes** (*rationality & assumption of rationality*), whenever

- for every choice c_j that is optimal for some cautious type that assumes i's rationality, type t_i deems possible a cautious type t_j that assumes i's rationality and for which c_j is indeed optimal;
- type t_i deems all choice-type pairs (c_j, t_j), where t_j is cautious, assumes i's rationality, and c_j is optimal for t_j, infinitely more likely than all choice-type pairs not satisfying this property.

18/58

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

3

Common Assumption of Rationality

Definition

- A cautious type t_i expresses 1-fold assumption of rationality, whenever t_i assumes rationality.
- For all $k \ge 2$, a cautious type t_i expresses k-fold assumption of rationality, whenever
 - for every choice c_i that is optimal for some cautious type that expresses up to (k 1)-fold assumption of rationality, type t_i deems possible a cautious type t_j that expresses up to (k 1)-fold assumption of rationality and for which c_i is indeed optimal;
 - type t_i deems all choice-type pairs (c_i, t_j) where t_j is cautious, expresses up to (k 1)-fold assumption of rationality, and c_j is optimal for t_j , infinitely more likely than all choice-type pairs not satisfying this property.
- A cautious type t_i expresses common assumption of rationality, whenever t_i expresses k-fold assumption of rationality for all k ≥ 1.

EPICENTER Summer Course 2022: Assumption of Rationality 19/58 http://www.epicenter.name/bach

Example: Spy Game

Story

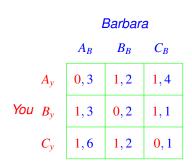
- *You* would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- The only objective for you is to avoid Barbara, since you would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, Barbara suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from *Pub A* to *Pub C*, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

э.

(日)

Existence

Example: Spy Game



EPICENTER Summer Course 2022: Assumption of Rationality

http://www.epicenter.name/bach

æ

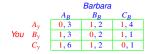
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Existence

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

э.

Example: Spy Game



- Consider the following lexicographic epistemic model: Types: $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B, t'_B\}$ Beliefs: $b_y(t_y) = ((A_B, t_B); (C_B, t'_B); (C_B, t_B); (A_B, t'_B); (B_B, t'_B)),$ $b_B(t_B) = ((B_y, t_y); (C_y, t_y); (A_y, t_y)),$ and $b_B(t'_B) = ((A_y, t_y); (B_y, t_y); (C_y, t_y))$
- Your type t_v assumes Barbara's rationality.
- Barbara's type t_B does not assume your rationality: although your choices A_y and C_y are optimal for some cautious belief, t_B does not deem possible types for you for which A_y and C_y are optimal. (analogous for type t'_B)
- Thus, type ty only deems possible types for Barbara that do not assume rationality.
- However, Barbara's choice A_B is optimal for some type that is cautious and assumes your rationality.

EPICENTER Summer Course 2022: Assumption of Rationality 22/58 http://www.epicenter.name/bach

Example: Spy Game

		Barbara		
		A_B	BB	C_B
	A_y	0,3	1,2	1,4
You	B_{y}	1,3	0, 2	1,1
	$\dot{C_y}$	1,6	1, 2	0,1

Indeed, consider the following lexicographic epistemic model:

$$\begin{split} & \text{Types:} \ T_{yout} = \{f_y^A, t_g^B, t_y^C\} \text{ and } T_{Barbara} = \{t_B^A, t_B^C\} \\ & \text{Beliefs for you:} \ b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, A_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots), \\ & \text{and } b_y(t_y^C) = ((A_B, A_B^A); (B_B, A_B^A); (C_B, t_B^C); \ldots) \\ & \text{Beliefs for Barbara:} \ b_B(t_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots) \text{ and } \\ & b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^B); (C_y, t_y^C); \ldots) \end{split}$$

- Type t_B^A does assume your rationality, and Barbara's choice A_B is optimal for t_B^A .
- Thus, Barbara's choice A_B is optimal for some cautious type that assumes your rationality.
- Note that type t^C_B also assumes your rationality.
- Observe that your type t_y^B assumes Barbara's rationality, but your types t_y^A and t_y^C do not assume her rationality.

EPICENTER Summer Course 2022: Assumption of Rationality

23/58

http://www.epicenter.name/bach

Existence

Example: Spy Game

		Barbara		
		A_B	BB	C_B
	A_y	0,3	1, 2	1,4
You	B_y	1,3	0, 2	1, 1
	C_y	1,6	1, 2	0, 1

Indeed, consider the following lexicographic epistemic model:

$$\begin{split} & \text{Types:} \ T_{you} = \{f_y^A, t_y^B, t_y^C\} \text{ and } T_{Barbara} = \{t_B^A, t_B^C\} \\ & \text{Beliefs for you:} \ b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, t_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots), \\ & \text{and } b_y(t_y^C) = ((A_B, A_B^A); (B_B, A_B^A); (C_B, t_B^C); \ldots) \\ & \text{Beliefs for Barbara:} \ b_B(t_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots) \text{ and } \\ & b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^B); (C_y, t_y^C); \ldots) \end{split}$$

- It is now shown that type t^B_v expresses common assumption of rationality.
- Type t^B_v expresses 1-fold assumption of rationality:
 - Only Barbara's choices A_B and C_B can be optimal for a cautious belief: type t_y^B deems possible cautious types t_B^A and t_C^C for which A_B and C_B , respectively, are optimal.
 - Type t_{y}^{B} deems (A_{B}, t_{R}^{A}) and (C_{B}, t_{R}^{C}) infinitely more likely than the rest.
- Note that only choice B_y can be optimal for you, if you express 1-fold assumption of rationality.

EPICENTER Summer Course 2022: Assumption of Rationality 24/58 http://www.epicenter.name/bach

Existence

Example: Spy Game

			Barbara		
		A_B	BB	C_B	
	A_y	0, 3	1, 2	1,4	
You	B_{y}	1,3	0, 2	1,1	
	$\dot{C_y}$	1,6	1, 2	0,1	

Indeed, consider the following lexicographic epistemic model:

$$\begin{split} & \text{Types: } T_{you} = \{f_y^A, t_y^B, t_y^C\} \text{ and } T_{Barbara} = \{t_B^A, t_B^C\} \\ & \text{Beliefs for you: } b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, A_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots), \\ & \text{and } b_y(t_y^C) = ((A_B, A_B^A); (B_B, A_B^A); (C_B, t_B^C); \ldots) \\ & \text{Beliefs for Barbara: } b_B(t_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots) \text{ and } \\ & b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^B); (C_y, t_y^C); \ldots) \end{split}$$

- Type t_v^B expresses 2-fold assumption of rationality:
 - Barbara's types t_B^A and t_B^C express 1-fold assumption of rationality
 - Thus, Barbara's choices A_B and C_B are optimal for cautious types that express 1-fold assumption of rationality.

25/58

- Type t_v^B deems possible these types t_B^A and t_B^C .
- Type t_y^B deems (A_B, t_B^A) and (C_B, t_B^C) infinitely more likely than the rest.

Existence

Example: Spy Game

		Barbara		
		A_B	BB	C_B
	A_y	0, 3	1,2	1,4
You	B_y	1,3	0, 2	1,1
	C_y	1,6	1, 2	0,1

Indeed, consider the following lexicographic epistemic model:

$$\begin{split} & \text{Types:} \ T_{yout} = \{ f_y^A, t_y^B, t_y^C \} \text{ and } T_{Barbara} = \{ r_B^A, t_B^C \} \\ & \text{Beliefs for you:} \ b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, t_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots), \\ & \text{and } b_y(t_y^C) = ((A_B, A_B^A); (B_B, A_B^A); (C_B, t_B^C); \ldots) \\ & \text{Beliefs for Barbara:} \ b_B(t_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots) \text{ and } \\ & b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^B); (C_y, t_C^C); \ldots) \end{split}$$

- Note that in order to express 2-fold assumption of rationality Barbara must deem your choice B_y infinitely more likely than your other choices.
- Barbara's type t^A_B expresses 2-fold assumption of rationality:

Only your choice *B_y* is optimal for a cautious type that expresses 1-fold assumption of rationality.

- Type t_B^A deems possible your type t_y^B that is cautious, expresses 1-fold assumption of rationality, and for which your choice B_y is optimal.
- Type t_B^A deems (B_y, t_y^B) infinitely more likely than the rest.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Example: Spy Game

		Barbara		
		A_B	BB	C_B
	A_y	0, 3	1, 2	1,4
You	B_y	1,3	0, 2	1,1
	C_y	1,6	1,2	0,1

- Indeed, consider the following lexicographic epistemic model: Types: $T_{you} = \{t_y^A, t_y^B, t_y^C\}$ and $T_{Barbara} = \{t_B^A, t_B^C\}$ Beliefs for you: $b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, t_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots),$ and $b_y(t_y^C) = ((A_B, t_B^A); (B_B, t_B^A); (C_B, t_B^C); \ldots)$ Beliefs for Barbara: $b_B(t_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots)$ and $b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^B); (C_y, t_y^C); \ldots)$
- Type t_v^B expresses 3-fold assumption of rationality:
 - Barbara can only rationally make choice A_B under up to 2-fold assumption of rationality.
 - Type t_y^B deems possible Barbara's type t_B^A that is cautious, expresses up to 2-fold assumption of rationality, and for which A_B is optimal.
 - **Type** t_{v}^{B} deems (A_{B}, t_{B}^{A}) infinitely more likely than the rest.
- By continuing in this fashion, it can be concluded that your type t_y^B expresses *k*-fold assumption of rationality for every $k \ge 1$: hence, t_y^B entertains common assumption of rationality.
- Consequently, you can rationally and cautiously only go to Pub B.

EPICENTER Summer Course 2022: Assumption of Rationality

27/58

http://www.epicenter.name/bach

3

・ロット (母) ・ ヨ) ・ コ)

Assumption of Rationality

Common Assumption of Rationality

Algorithm

EPICENTER Summer Course 2022: Assumption of Rationality

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Existence

Assumption of Rationality

Definition

A cautious type t_i assumes rationality, whenever

- for every choice c_j that is optimal for some cautious type, t_i deems possible a cautious type t_j for which c_j is indeed optimal,
- t_i deems all choice-type pairs (c_j, t_j), where t_j is cautious and c_j optimal for t_j, infinitely more likely than all choice-type pairs not satisfying this property.

A (10) A (10) A (10)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

3

Common Assumption of Rationality

Definition

- A cautious type t_i expresses 1-fold assumption of rationality, whenever t_i assumes rationality.
- For all $k \ge 2$, a cautious type t_i expresses k-fold assumption of rationality, whenever
 - for every choice c_i that is optimal for some cautious type that expresses up to (k 1)-fold assumption of rationality, type t_i deems possible a cautious type t_j that expresses up to (k 1)-fold assumption of rationality and for which c_i is indeed optimal;
 - type t_i deems all choice-type pairs (c_i, t_i) where t_j is cautious, expresses up to (k 1)-fold assumption of rationality, and c_j is optimal for t_j , infinitely more likely than all choice-type pairs not satisfying this property.
- A cautious type t_i expresses common assumption of rationality, whenever t_i expresses k-fold assumption of rationality for all k ≥ 1.

EPICENTER Summer Course 2022: Assumption of Rationality 30/58 http://www.epicenter.name/bach

Towards an Algorithm

Step 1. 1-fold assumption of rationality: What choices can *i* rationally and cautiously make when assuming rationality?

- First, note that i does not choose by Lexicographic Pearce's Lemma a weakly dominated choice due to caution.
- If i assumes j's rationality, then i deems all choices that are optimal for some cautious belief infinitely more likely than all choices that are not optimal for any cautious belief.
- Again by Lexicographic Pearce's Lemma optimal choices under caution are equivalent with non-weakly-dominated choices.
- Hence, if i assumes j's rationality, then i deems all non-weakly-dominated choices of j infinitely more likely than all weakly dominated choices of j.
- Let C¹_j be the set of non-weakly-dominated choices for j: Then, i deems all choices inside C¹_j infinitely more likely than all choices outside C¹_i
- Let $b_i^{lex} = (b_i^1; b_i^2 \dots; b_i^K)$ be *i*'s lexicographic belief.
- Then, there exists some level *L* < *K* such that
 - 1 the beliefs b_i^1, \ldots, b_i^L only assign positive probability to choices in C_i^1
 - 2 all

all choices in C_i^1 receive positive probability in some belief from b_i^1, \ldots, b_i^L

- Consequently, (*b*¹_{*i*}; . . . ; *b*^L_{*i*}) forms a cautious lexicographic belief on *C*¹_{*i*}.
- Moreover, every choice c_i which is optimal under b_i^{lex} must also be optimal under the truncated cautious belief $(b_i^1; \ldots; b_i^L)$ on C_j^1 , i.e. must not be weakly dominated on C_j^1 !

< 同 > < 三 > < 三 >

Towards an Algorithm

Conclusion: If *i* is cautious and assumes *j*'s rationality, then every optimal choice c_i

- must not be weakly dominated in the original game
- must not be weakly dominated in the reduced game, obtained after 1 round of weak dominance
- i.e. every optimal choice c_i survives 2 rounds of weak dominance!

Towards an Algorithm

Step 2. up to 2-fold assumption of rationality: What choices can *i* rationally and cautiously make under up to 2-fold assumption of rationality?

- If c_j is optimal for some cautious belief b^{lex}_j that assumes is rationality, while c'_j is not, then i deems c_j infinitely more likely than c'_i.
- Let C_j² be the set of j's choices that are optimal for some cautious belief that assumes i's rationality: Then, i deems all choices inside C_j² infinitely more likely than all choices outside C_j²
- Then, by Lexicographic Pearce's Lemma, every optimal choice for *i* must not be weakly dominated on C_i^2 .
- By Step 1 C_i^2 contains precisely those choices that survive 2 rounds of weak dominance.
- Therefore, every optimal choice for *i* must not be weakly dominated within the reduced game obtained after 2 rounds of weak dominance, i.e. must survive 3 rounds of weak dominance.

EPICENTER Summer Course 2022: Assumption of Rationality 33/58

http://www.epicenter.name/bach

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Existence

A (10) A (10)

Towards an Algorithm

In general: If *i* is cautious and expresses up to k-fold assumption of rationality, then every optimal choice for *i* must survive (k+1) rounds of weak dominance.

Iterated Weak Dominance

- Step 1. Within the original game, eliminate all choices that are weakly dominated.
- **Step 2.** Within the reduced game obtained after step 1, eliminate all choices that are weakly dominated.
- etc, until no further choices can be eliminated.

Algorithmic Characterization

Theorem

For all $k \ge 1$, the choices that can rationally be made by a cautious type that expresses up to *k*-fold assumption of rationality are exactly those choices that survive the first k + 1 rounds of Iterated Weak Dominance.

Corollary

The choices that can rationally be made by a cautious type that expresses common assumption of rationality are exactly those choices that survive Iterated Weak Dominance.

Properties of the Algorithm

- Iterated Weak Dominance stops after finitely many rounds.
- Iterated Weak Dominance always yields a non-empty set of choices for both players.
- The order and speed of elimination crucially matter for the eventual output of the algorithm!

A (B) + A (B) + A (B) +

Example: Spy Game

Story

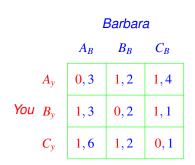
- *You* would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- The only objective for you is to avoid Barbara, since you would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, Barbara suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from *Pub A* to *Pub C*, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

э.

(日)

Existence

Example: Spy Game



EPICENTER Summer Course 2022: Assumption of Rationality

http://www.epicenter.name/bach

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Existence

Example: Spy Game

		Barbara			
		A_B	B_B	CB	
	A_y	0, 3	1, 2	1,4	
You	B_y	1,3	0, 2	1, 1	
	Cy	1,6	1, 2	0, 1	

First Order of Elimination

Step 1. Eliminate B_B

Existence

Example: Spy Game

		Daibaia		
		A _B	C_B	
	A_y	0, 3	1,4	
You	B_y	1,3	1, 1	
	Cy	1,6	0, 1	

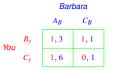
Rarbara

First Order of Elimination

Step 2. Only eliminate A_v

Existence

Example: Spy Game



First Order of Elimination

Step 3. Eliminate CB

EPICENTER Summer Course 2022: Assumption of Rationality

http://www.epicenter.name/bach

æ

Existence

æ

Example: Spy Game

43/58

First Order of Elimination

 B_{y} and C_{y} survive for you!

44/58

Existence

Example: Spy Game

		Barbara			
		A_B	BB	C_B	
	A_y	0, 3	1, 2	1,4	
You	B_y	1,3	0, 2	1, 1	
	C_y	1,6	1, 2	0 , 1	

Second Order of Elimination

Step 1. Eliminate B_B

Existence

Example: Spy Game

		Barbara			
		A_B	C_B		
	A_y	0, 3	1,4		
You	B_y	1,3	1, 1		
	Cy	1,6	0, 1		

D - de - un

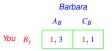
Second Order of Elimination

Step 2. Eliminate A_y and C_y

э

Existence

Example: Spy Game



Second Order of Elimination

Step 3. Eliminate CB

EPICENTER Summer Course 2022: Assumption of Rationality

46/58

http://www.epicenter.name/bach

æ

Existence

Example: Spy Game

Second Order of Elimination

Only By survives for you!

EPICENTER Summer Course 2022: Assumption of Rationality

47/58

http://www.epicenter.name/bach

크

48/58

Existence

Assumption of Rationality

Cautious Reasoning

Algorithm

Existence

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Existence

Existence

- There is no easy iterative procedure delivering a type that expresses common assumption of rationality.
- Since the non-emptyness of the algorithm ensures the existence of a choice surviving it which in turn can be made under common assumption of rationality by the preceding theorem, it is always possible to construct an epistemic model containing a type that expresses common assumption of rationality!

Theorem

Let Γ be some finite two player game. Then, there exists a lexicographic epistemic model which contains a type t_i that expresses common assumption of rationality.

Existence

A (10) A (10) A (10)

Example: Take a Seat

Story

- Barbara and you are the only ones to take an exam.
- Both must choose a seat.
- If both choose the same seat, then with probability 0.5 you get the seat you want, and with probability 0.5 you get the one horizontally next to it.
- In order to pass the exam you must be able copy from Barbara, and the same applies to her.
- A person can only copy from the other person if seated horizontally next or diagonally behind the latter.

Existence

A D > A B > A B > A B >

э.

Example: Take a Seat

Story (continued)

The probabilities of successful copying for the respective seats are given in percentages:

a = 0, b = 10, c = d = 20, e = f = 45, g = h = 95

- The objective is to maximize the expected percentage of successful copying.
- Question: What seats can you rationally and cautiously choose under common assumption of rationality?

Existence

Example: Take a Seat

		Barbara							
		a_B	b_B	c_B	d_B	e_B	f _B	8B	h _B
	a _Y	5, 5	<mark>0</mark> , 10	0,0	<mark>0</mark> , 20	0, 0	0, 0	0 , 0	0,0
	b_Y	10, 0	5, 5	<mark>0</mark> , 20	0, 0	0 , 0	0, 0	0 , 0	0,0
	cy	<mark>0</mark> , 0	20, 0	20, 20	20, 20	0, 0	0 , 45	0 , 0	0,0
You	d_Y	20, 0	<mark>0</mark> , 0	20, 20	20, 20	<mark>0</mark> , 45	0, 0	0 , 0	0,0
100	ey	0 , 0	0, 0	0,0	45,0	45, 45	45, 45	0, 0	0 , 95
	f_Y	<mark>0, 0</mark>	<mark>0</mark> , 0	45, <mark>0</mark>	0, 0	45, 45	45, 45	<mark>0</mark> , 95	0,0
	g _Y	<mark>0</mark> , 0	<mark>0</mark> , 0	0,0	0, 0	0, 0	95, <mark>0</mark>	95, 95	95, 95
	h_Y	0, 0	0, 0	0,0	0, 0	95,0	0, 0	95, 95	95, 95

Barbara

EPICENTER Summer Course 2022: Assumption of Rationality

52/58

(4) (3) (4) (4) (3) http://www.epicenter.name/bach

< 172 ▶

		Barbara							
		a_B	b_B	c_B	d_B	e_B	f _B	8B	hB
	ay	5,5	<mark>0</mark> , 10	0,0	<mark>0</mark> , 20	0, 0	0, 0	<mark>0, 0</mark>	0,0
	b_Y	10, <mark>0</mark>	5, 5	<mark>0</mark> , 20	0, 0	0, 0	0, 0	<mark>0, 0</mark>	0,0
	cy	0,0	20, 0	20, 20	20, 20	0, 0	<mark>0</mark> , 45	<mark>0, 0</mark>	0,0
You	d_Y	20, 0	<mark>0</mark> , 0	20, 20	20, 20	<mark>0</mark> , 45	0, 0	<mark>0, 0</mark>	0,0
100	ey	0,0	<mark>0</mark> , 0	0,0	45, <mark>0</mark>	45, 45	45, 45	<mark>0</mark> , 0	0 , 95
	f_Y	0,0	0 , 0	45, <mark>0</mark>	0 , 0	45, 45	45, 45	<mark>0</mark> , 95	0,0
	gy	0,0	0 , 0	0,0	0, 0	0 , 0	95, <mark>0</mark>	95, 95	95, 95
	h_Y	0, 0	<mark>0</mark> , 0	0,0	0, 0	95, 0	0, 0	95, 95	95, 95

Darkare

Round 1.

- In the full game a_Y and b_Y are weakly dominated by $\frac{1}{2}c_Y + \frac{1}{2}d_Y$.
- Eliminate a_Y and b_Y , as well as a_B and b_B by symmetry.

		c_B	d_B	e_B	f_B	g_B	h _B
	cy	20, 20	20, 20	0, 0	0 , 45	0, 0	0, 0
	d_Y	20, 20	20, 20	0, 45	0, 0	0, 0	0, 0
You	ey	0,0	45,0	45, 45	45, 45	0, 0	0,95
100	f_Y	45,0	0,0	45, 45	45, 45	<mark>0</mark> , 95	0, 0
	g_Y	0,0	0,0	0, 0	95,0	95, 95	95, 95
	h_Y	0,0	0,0	95,0	0, 0	95, 95	95, 95

Barbara

Round 2.

- In the reduced game c_Y and d_Y are weakly dominated by $\frac{1}{2}e_Y + \frac{1}{2}f_Y$.
- Eliminate c_Y and d_Y , as well as c_B and d_B by symmetry.

э

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

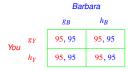
		Barbara				
		eB	f _B	8B	h _B	
	e_Y	45, 45	45, 45	0 , 0	<mark>0</mark> , 95	
You	f_Y	45, 45	45, 45	<mark>0</mark> , 95	0, 0	
	g _Y	0, 0	95, <mark>0</mark>	95, 95	95, 95	
	h_Y	95,0	0 , 0	95, 95	95, 95	

Round 3.

- In the reduced game e_Y and f_Y are weakly dominated by $\frac{1}{2}g_Y + \frac{1}{2}h_Y$.
- Eliminate e_Y and f_Y, as well as e_B and f_B by symmetry.

Existence

Example: Take a Seat



Round 4.

- No more choices can be eliminated.
- Vou can rationally and cautiously choose seats g and h under common assumption of rationality.

EPICENTER Summer Course 2022: Assumption of Rationality

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Intuition: Why does common assumption of rationality lead to a different conclusion as common full belief in (caution & respect of preferences)?

First step of reasoning

Not that both choices a and b are irrational, yet b is better than a.

Under common assumption of rationality it is thus not distinguished between a and b, however under common full belief in (caution & respect of preferences) it is.

Second step of reasoning

If you believe Barbara to reason in line with the first step, then c and d can no longer be optimal, yet c is better than d.

Under common assumption of rationality it is not distinguished between c and d, however under common full belief in (caution & respect of preferences) it is.

Third step of reasoning

- If you believe Barbara to reason in line with the first and the second step, then e and f can no longer be optimal, yet f is better than e.
- Under common assumption of rationality it is not distinguished between e and f, however under common full belief in (caution & respect of preferences) it is.

Fourth step of reasoning

- If you believe Barbara to reason in line with the first, the second and the fourth step, then g and h can no longer be optimal, yet g is better than h.
- Under common assumption of rationality g and h are both optimal, while under common full belief in (caution & respect of preferences) only g remains optimal.

(日)

There Exists No Related Equilibrium Notion

- The correct beliefs assumption implicit in any equilibrium notion seems to be at odds with common assumption of rationality.
- As illustration consider the lexicographic epistemic model of the Spy Game again.

			Barbara	
		A_B	BB	C_B
	A_{y}	0, 3	1, 2	1,4
You	$\dot{B_y}$	1,3	0, 2	1,1
	C_y	1,6	1, 2	0,1

- Types: $T_{you} = \{t_y^A, t_y^B, t_y^C\}$ and $T_{Barbara} = \{t_B^A, t_B^C\}$ Beliefs for you: $b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, t_B^A); ...), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); ...),$ and $b_y(t_y^C) = ((A_B, t_B^A); (B_B, t_B^A); (C_B, t_B^C); ...)$ Beliefs for Barbara: $b_B(t_B^A) = ((B_y, t_y^P); (C_y, t_y^C); (A_y, t_y^A); ...)$ and $b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^P); (C_y, t_y^C); ...)$
- Recall that t_y^B express common assumption of rationality.
- However, t_v^B deems it possible that Barbara is **not correct** about the his type!
- Bach & Jagau (2022) generalize such insights to an incompatibility theorem about equilibrium and IWD: "compatibility implies one round of weak dominance only".

EPICENTER Summer Course 2022: Assumption of Rationality

58/58

http://www.epicenter.name/bach