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Abstract

In a decision problem or game we typically fix the person’s utilities but not his beliefs. What, then,
do these utilities represent? To explore this question we assume, like Gilboa and Schmeidler (2003), that
the decision maker holds a conditional preference relation — a mapping that assigns to every possible
probabilistic belief a preference relation over his choices. We impose a list of axioms on such conditional
preference relations, and show that it singles out precisely those conditional preference relations that
admit an expected utility representation. The key axiom is the existence of a uniform preference increase,
stating that there must be an alternative conditional preference relation that, for a given choice, uniformly
increases the preference for that choice by a constant degree. We also present a procedure that can be
used to construct, for a given conditional preference relation satisfying the axioms, a utility function that
represents it. If there are no weakly dominated choices, the existence of a uniform preference increase is
equivalent to two easily verifiable conditions: strong transitivity and the line property.
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1 Introduction

What do the utilities in a decision problem or game represent? That is the key question we wish to explore
in this paper. It is often argued that such utilities may be derived from the frameworks developed by
Savage (1954) and Anscombe and Aumann (1963). Indeed, from a particular player’s point of view in
a game, his opponents’ choice combinations may be viewed as the set of states about which this player
is uncertain, whereas his own choices correspond to acts that assign to every state (i.e., opponents’choice
combination) some consequence. In that sense, a game can be embedded into the models proposed by Savage
and Anscombe and Aumann. Both frameworks provide axiomatic foundations for subjective expected utility
maximization, by imposing axioms on the decision maker’s preference relation over acts, and showing that the
preference relations satisfying these axioms are precisely those that admit an expected utility representation.
Such an expected utility representation consists of a subjective probabilistic belief about the set of states,
together with a utility function assigning to every possible consequence some utility. In view of these
theorems, one could thus argue that the utilities in a game, or a decision problem in general, may be derived
from the player’s preferences over acts, provided they satisfy the axioms as proposed by Savage or Anscombe
and Aumann.

In my view there are at least two problems with this approach. First, both Savage and Anscombe and
Aumann assume that the decision maker holds preferences over all possible acts, that is, over all possible
functions from the set of states to the set of consequences. In a decision problem or game, however, many of
these acts will not correspond to choices, and will therefore be unrelated to the decision problem or game at
hand. It thus seems problematic to assume that the decision maker holds preferences even over these acts.

A second problem is that the axioms provided by Savage and Anscombe and Aumann yield a unique
subjective probabilistic belief for the decision maker about the set of states. In a game, therefore, these
axioms lead, for a given player, to a unique probabilistic belief about the opponents’choices. At the same
time, most game theory concepts select, for every player, several possible beliefs. Consider, for instance,
the concepts of Nash equilibrium (Nash (1950, 1951)) and rationalizability (Bernheim (1984) and Pearce
(1984)). In the spirit of Aumann and Brandenburger (1995), a mixed strategy in a Nash equilibrium may be
interpreted as the belief that the other players have about this player’s pure strategy. As a game typically
has several Nash equilibria, the concept selects several possible beliefs for the same player. Analogously, a
game typically has several rationalizable pure strategies for the same player. Therefore, also rationalizability
typically selects multiple beliefs for a given player in the game. But also in one-person decision problems it
may be natural to allow for several different beliefs. Consider, for instance, a decision problem where the
consequence of a choice depends on the state of the weather. Then, we may naturally be interested in how
the decision maker would rank his choices under several different weather forecasts.

Despite the multiplicity of beliefs, decision problems and games typically view the utility function of a
person as given. This, however, seems to be at odds with the models of Savage and Anscombe and Aumann,
where the axioms on the decision maker’s preferences over acts do not only lead to a utility function which
is unique up to positive affi ne transformations, but also to a unique belief. What does it mean, then, that
a decion problem or game specifies the person’s utilities but not his belief?

As a possible answer to this question, this paper adopts a decision theoretic view on games which
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resembles Gilboa and Schmeidler’s (2003), and which is fundamentally different from Savage and Anscombe
and Aumann. Instead of assuming that a person holds preferences over all possible acts that can be derived
from the decision problem or game, we suppose that the person’s probabilistic belief is variable, and that he
holds, for every possible belief, a preference relation over his own choices in the decision problem or game.
The primitive object in our setup is thus a mapping which assigns to every probabilistic belief about the
states a preference relation over his own choices. Such mappings are called conditional preference relations,
and these are precisely the mappings used by Gilboa and Schmeidler (2003) for their foundation of expected
utility in games. By adopting this approach we thus no longer fix the probabilistic belief of a decision maker,
yet at the same time we make sure that the preferences of a decision maker only concern those acts that
correspond to his actual choices in the decision problem or game.

We then ask: When does such a conditional preference relation have an expected utility representation?
In other words, when can we find a utility function, assigning a utility index to every combination of a choice
and a state, such that for every belief p and every two choices a and b, the decision maker prefers a to b
exactly when the expected utility of a under p is larger than that of b under p ? We impose six axioms on
conditional preference relations, and prove in Theorem 5.1 that the conditional preference relations satisfying
the axioms are precisely those that admit an expected utility representation. This result can thus be viewed
as a possible answer to the question what it means, in a decision problem or game, to specify the person’s
utilities but not his belief. Importantly, the proof of Theorem 5.1 is constructive and procedural: For a given
conditional preference relation satisfying the axioms, we explictly show how to construct a utility function
that represents it, by means of an easy and intuitive procedure.

The first five axioms, completeness, transitivity, continuity, preservation of indifference and preservation
of strict preference, which also appear in Gilboa and Schmeidler (2003), may be viewed as basic regularity
conditions. The last axiom, existence of a uniform preference increase, is new. It states that from a given
conditional preference relation, one should always be able to uniformly increase the “degree of preference”
for at least one of the choices by a fixed amount. This axiom substitutes, in a sense, the diversity axiom in
Gilboa and Schmeidler (2003), which states that for every strict ordering of at most four choices, there must
be a belief that induces precisely that ordering. Gilboa and Schmeidler show that diversity, together with
the regularity axioms, singles out precisely those conditional preference relations that can be represented
by a diversified utility matrix, that is, a utility matrix where no row is weakly dominated by, or equivalent
to, an affi ne combination of at most three other rows. Our characterization result in Theorem 5.1, in turn,
applies to all possible utility representations, also those that violate diversity.

We subsequently zoom in on an important special case: the scenario when no choice is weakly dominated
by another choice. In fact, every decision problem can be reduced to a problem in this category by eliminating
all choices that are weakly dominated. As we may reasonably expect a rational decision maker not to make
weakly dominated choices, this class of decision problems may be viewed as “canonical”. For this class
we show that the existence of a uniform preference increase is equivalent to checking two easily verifiable
conditions: strong transitivity and the line property. The first condition states that for every three choices
a, b and c, the linear extensions of the sets of beliefs where the decision maker is indifferent between a and
b, between b and c, and between a and c, respectively, must have a common intersection, possibly outside
the belief simplex. See Figure 9 for an illustration. The second condition states that for four choices a, b, c
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and d and a line L, if we know for which beliefs on the line L the decision maker is indifferent between e
and f, for any {e, f} 6= {a, b}, then we also know for which belief on the line he will be indifferent between
a and b.

This paper is organized as follows. In Section 2 we present the mathematical definitions and results
that are required for our analysis. In Section 3 we introduce the notion of a conditional preference relation,
present the regularity axioms, and show that for the case of two choices these are suffi cient to characterize
the conditional preference relations that admit an expected utility representation. In Section 4 we show that
the regularity axioms will no longer suffi ce if we have more than two choices, and lay out the key axiom of
this paper: existence of a uniform preference increase. In Section 5 we present, and prove, the main result
in this paper, stating that the new axiom, together with the regularity axioms, characterizes precisely those
conditional preference relations that have an expected utility representation. In that section we also describe
a procedure that can be used to construct a utility function for a given conditional preference relation. In
Section 6 we investigate the special case when there are no weakly dominated choices. We conclude by a
discussion in Section 7. All technical and longer proofs can be found in the appendix.

2 Mathematical Tools

In this section we introduce the mathematical definitions and tools needed for this paper, mainly based on
well-known definitions and results from linear algebra.

2.1 Linear Spaces

For a finite set X, we denote by RX the set of all functions v : X → R. Scalar multiplication and addition
on RX are defined in the usual way: For a function v ∈ RX and a number λ ∈ R, the function λ · v is
given by (λ · v)(x) = λ · v(x) for all x ∈ X. Similarly, for functions v, w ∈ RX , the sum v + w is given by
(v+w)(x) = v(x) +w(x) for all x ∈ X. The set RX together with these two operations constitutes a linear
space, and elements in RX are called vectors. By 0 we denote the vector in RX where 0(x) = 0 for all
x ∈ X. For two subsets V,W ⊆ RX and numbers α, β ∈ R, we define the set

αV + βW := {αv + βw | v ∈ V and w ∈W}.

For every two vectors v, w ∈ RX , the vector product is given by v · w :=
∑

x∈X v(x)w(x).
A subset V ⊆ RX is called a linear subspace of RX if for every v, w ∈ V and every α, β ∈ R, we have

that αv + βw ∈ V. For a subset V ⊆ RX , we denote by

〈V 〉 := {
∑K

k=1
αkvk | K ≥ 1, αk ∈ R and vk ∈ V for all k ∈ {1, ...,K}}

the set of all (finite) linear combinations of elements in V, and call it the linear span of V. Here,
∑K

k=1 αkvk
is called a linear combination of the vectors v1, ..., vK . The span 〈V 〉 is always a linear subspace, and if
V itself is a linear subspace then 〈V 〉 = V . Vectors v1, ..., vK ∈ RX are called linearly independent if
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none of the vectors is a linear combination of the other vectors. Consider a linear subspace V of RX , and
vectors v1, ..., vK ∈ V. The set of vectors {v1, ..., vK} is a basis for V if v1, ..., vK are linearly independent,
and 〈{v1, ..., vK}〉 = V. Every basis for V has the same number of vectors, and this number is called the
dimension of V, denoted by dim(V ). If V = {0}, then dim(V ) = 0.

2.2 Affi ne Spaces

A subset V ⊆ RX is called an affi ne subspace of RX if for every v, w ∈ V and every α ∈ R we have that
(1 − α)v + αw ∈ V. It is well-known that for every affi ne subspace V there is a linear subspace V ′ such
that V = V ′ + {v} for every v ∈ V. We call V a hyperplane if dim(V ′) = |X| − 1, and we call V a line if
dim(V ′) = 1. It is well-known that for every hyperplane V there is a vector n 6= 0 and a number α such
that V = {v ∈ RX | v · n = α}. Two hyperplanes V and W are called parallel if there is a linear subspace
V ′ and vectors v, w such that V = V ′ + {v} and W = V ′ + {w}.

For a subset V ⊆ RX we denote by

〈V 〉a := {
∑K

k=1
αkvk | K ≥ 1, αk ∈ R and vk ∈ V for all k ∈ {1, ...,K} and

∑K

k=1
αk = 1}

the set of all (finite) affi ne combinations of elements in V, and call it the affi ne span of V. Here,
∑K

k=1 αkvk
with

∑K
k=1 αk = 1 is called an affi ne combination of the vectors v1, ..., vK . The affi ne span 〈V 〉a is always

an affi ne subspace, and if V itself is an affi ne subspace then 〈V 〉a = V . Vectors v1, ..., vK ∈ RX are called
affi nely independent if none of the vectors is an affi ne combination of the other vectors. Geometrically,
three vectors are affi nely independent if they are not all situated on the same line, whereas four vectors are
affi nely independent if they are not all situated on the same plane. Consider an affi ne subspace V of RX ,
and vectors v1, ..., vK ∈ V. The set of vectors {v1, ..., vK} is an affi ne basis for V if v1, ..., vK are affi nely
independent, and 〈{v1, ..., vK}〉a = V. It is well-known that if V = V ′ + {v}, where V ′ is a linear subspace,
then every affi ne basis of V will contain dim(V ′) + 1 elements.

A mapping f : RX → R is called affi ne if for every v, w ∈ RX and every α ∈ R it holds that
f((1 − α)v + αw) = (1 − α)f(v) + αf(w). For every affi ne mapping f there are numbers β0 and βx for
every x ∈ X such that f(v) = β0 +

∑
x∈X v(x)βx for all v ∈ RX . The following three results will play an

important role in our analysis later on.

Lemma 2.1 (Hyperplanes and affi ne mappings) (a) For every vector v ∈ RX , and every two different,
parallel hyperplanes V and W, there is a unique number λ such that v ∈ (1− λ)V + λW.

(b) For every two different, parallel hyperplanes V and W we can find vectors v1, ..., v|X| ∈ V and a vector
v|X|+1 ∈W such that v1, ..., v|X|, v|X|+1 are affi nely independent.

(c) For all affi nely independent vectors v1, ..., v|X|+1 ∈ RX and all numbers α1, ..., α|X|+1 there is a unique
affi ne mapping f : RX → R such that f(vk) = αk for all k ∈ {1, ..., |X|+ 1}.

Property (a) thus states that every vector in RX can be written as the affi ne combination of a vector in
V and a vector in W. Property (b), in turn, guarantees that every affi ne basis of V can be extended to an
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affi ne basis of RX by selecting an additional element from W. If X contains n elements then, geometrically
speaking, property (c) states that for every n+ 1 points in Rn+1 there is a unique hyperplane in Rn+1 that
passes through these points.

2.3 Probability Distributions

A probability distribution on X is a vector p ∈ RX such that
∑

x∈X p(x) = 1 and p(x) ≥ 0 for all x ∈ X. The
set of probability distributions on X is denoted by ∆(X). For a given element x ∈ X, we denote by [x] the
probability distribution in ∆(X) where [x](x) = 1 and [x](y) = 0 for all y ∈ X\{x}. By ∆+(X) = {p ∈ ∆(X)
| p(x) > 0 for all x ∈ X} we denote the set of full support probability distributions.

3 Characterization for Two Choices

In this section we formally introduce a conditional preference relation as the primitive notion of our model.
Subsequently, we impose some regularity axioms on conditional preference relations, and show that for the
case of two choices these suffi ce to single out the conditional preference relations that admit an expected
utility representation.

3.1 Conditional Preference Relations

In line with Gilboa and Schmeidler (2003), the primitive object in this paper is that of a conditional preference
relation —a mapping that assigns to every probabilistic belief over the states a preference relation over the
available choices. Consider a decision maker (DM) who must choose from a finite set of choices C. The final
outcome depends not only on the choice c ∈ C, but also on the realization of a state x ∈ X from a finite set
of states X.We assume that the decision maker first forms a probabilistic belief p on X, which then induces
a preference relation <p on C. Formally, a preference relation <p on C is a binary relation <p⊆ C × C. If
(a, b) ∈ <p we write a <p b, and the interpretation is that the DM weakly prefers choice a to choice b if his
belief is p.

Definition 3.1 (Conditional preference relation) Consider a finite set of choices C and a finite set of
states X. A conditional preference relation on (C,X) is a mapping < that assigns to every probabilistic
belief p ∈ ∆(X) a preference relation <p on C.

In a game, the DM would be one of the players, C would be his set of actions in the game, and X the
set of opponents’choice combinations. For two choices a and b, we write that a ∼p b if a <p b and b <p a.
The interpretation is that the DM is indifferent between a and b while having the belief p. Similarly, we
write a �p b if a <p b but not b <p a, representing a case where the DM strictly prefers a to b. For two
choices a, b ∈ C we define the sets of beliefs Pa∼b := {p ∈ ∆(X) | a ∼p b}, Pa�b := {p ∈ ∆(X) | a �p b}
and Pa<b := {p ∈ ∆(X) | a <p b}. Similarly, we define the sets of states Xa∼b := {x ∈ X | a ∼[x] b},
Xa�b := {x ∈ X | a �[x] b} and Xa<b := {x ∈ X | a <[x] b}. We say that (a) a strictly dominates b under
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< if a �p b for all p ∈ ∆(X); (b) a weakly dominates b under < if a <p b for all p ∈ ∆(X), and a �p b for
at least one p ∈ ∆(X); (c) a is equivalent to b under < if a ∼p b for all p ∈ ∆(X); and (d) < has preference
reversals on {a, b} if there is a belief p with a �p b and another belief q with b �q a. Hence, < either exhibits
weak dominance, equivalence, or preference reversals on {a, b}.

3.2 Regularity Axioms

We will now impose some very basic axioms on conditional preference relations, to which we refer as regularity
axioms. Later, we will show that these axioms are suffi cient to characterize, for any decision problem with
two choices, those conditional preference relations that have an expected utility representation. However,
as we will see in the next section, these are not suffi cient for scenarios with more than two choices.

Consider a conditional preference relation < on (C,X). The first axiom, completeness, states that any
two choices can always be ranked for every possible belief.

Axiom 3.1 (Completeness) For every belief p and any two choices a, b ∈ C, either a <p b or b <p a.

The second axiom, transitivity, states that for every three choices a, b and c, the preference between a
and c should not contradict the preference between a and b and the preference between b and c.

Axiom 3.2 (Transitivity) For every belief p ∈ ∆(X) and every three choices a, b, c ∈ C with a <p b and
b <p c, it holds that a <p c..

Of course, this axiom only imposes restrictions if there are more than two choices, and hence it will be
redundant for our characterization theorem for two choices. Nevertheless, we state the axiom already as we
interpret it as a basic regularity axiom. Completeness and transitivity together resemble the ranking axiom
in Gilboa and Scmeidler (2003).

The following three axioms, which also appear in Gilboa and Schmeidler (2003), are all based on the
informal principle that if we move from a belief p to another belief q on a line, then the “degree”by which
the DM prefers a to b (or b to a) will change linearly. Suppose first that p ∈ Pa�b and q ∈ Pb�a. Then, the
degree by which the DM prefers a to b will linearly decrease when moving on a line from p to q. As such,
there must be some belief r on this line where the DM is indifferent between a and b. This property is called
continuity.

Axiom 3.3 (Continuity) For every two different choices a, b ∈ C and every two beliefs p ∈ Pa�b and
q ∈ Pb�a, there is some λ ∈ (0, 1) such that (1− λ)p+ λq ∈ Pa∼b.

Suppose now that p ∈ Pa∼b and q ∈ Pa∼b. Then, by the principle above, the DM must remain indifferent
between a and b when moving from p to q on a line. This property is called preservation of indifference.

Axiom 3.4 (Preservation of indifference) For every two different choices a, b ∈ C and every two beliefs
p ∈ Pa∼b and q ∈ Pa∼b, we have that (1− λ)p+ λq ∈ Pa∼b for all λ ∈ (0, 1).
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Figure 1: A typical regular conditional preference relation

Assume next that p ∈ Pa<b and q ∈ Pa�b. Then, there are two possibilities, p ∈ Pa∼b or p ∈ Pa�b. In the
first case, the degree by the DM prefers a to b will strictly increase when moving from p to q on a line. In
the second case, this degree will either linearly increase or decrease, yet the DM will always strictly prefer
a to b when moving from p to q on a line. This property is called preservation of strict preference.

Axiom 3.5 (Preservation of strict preference) For every two different choices a, b ∈ C and every two
beliefs p ∈ Pa<b and q ∈ Pa�b, we have that (1− λ)p+ λq ∈ Pa�b for all λ ∈ (0, 1).

Our definition of continuity is formally different from Gilboa and Schmeidler’s (2003) version, but reveals
the same idea. When taken together, our axioms of preservation of indifference and preservation of strict
preference correspond precisely to Gilboa and Schmeidler’s (2003) axiom of combination.

In the remainder of the paper, whenever we say that a conditional preference relation is regular, or
satisfies the regularity axioms, we mean that it satisfies completeness, transitivity, continuity, preservation
of indifference and preservation of strict preference. See Figure 1 for a typical regular conditional preference
relation < with two choices a and b, and three states x, y and z. The area within the triangle represents
the set ∆(X) of all probabilistic beliefs on X = {x, y, z}, with the probability 1 beliefs [x], [y] and [z] as
the extreme points. The two-dimensional plane represents all the vectors in RX where the sum of the
coordinates is 1, containing the belief simplex ∆(X) as a subset. Hence, a ∼p b for all beliefs p on the line
segment, a �p b for all beliefs p above the line segment, and b �p a for all beliefs p below the line segment.
It may be verified that < satisfies all the regularity axioms.
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3.3 Characterization Theorem for Two Choices

Before we state our characterization result, we first formally define what it means for a conditional preference
relation to have an expected utility representation.

Definition 3.2 (Expected utility representation) Consider a finite set of choices C and a finite set of
states X. A conditional preference relation < on (C,X) has an expected utility representation if there is a
utility function u : C ×X → R such that for every belief p ∈ ∆(X) and every two choices a, b ∈ C,

a <p b if and only if
∑
x∈X

p(x) · u(a, x) ≥
∑
x∈X

p(x) · u(b, x).

In this case, we say that the conditional preference relation < is represented by the utility function u.
For a given vector v ∈ RX we use the notation u(a, v) :=

∑
x∈X v(x) · u(a, x). Hence, the condition above

can be written as a <p b if and only if u(a, p) ≥ u(b, p) for all a, b ∈ C. The following theorem shows that
a conditional preference relation on two choices has an expected utility representation precisely when it
satisfies the regularity axioms.

Theorem 3.1 (Expected utility representation for two choices) Consider a set C consisting of two
choices, a finite set of states X, and a conditional preference relation < on (C,X). Then, < has an ex-
pected utility representation, if and only if, it satisfies completeness, transitivity, continuity, preservation of
indifference and preservation of strict preference.

In particular, the conditional preference relation < in Figure 1 has an expected utility representation.
One way to generate a utility function u that represents < is as follows: Choose the utilities u(a, x), u(a, y)
and u(a, z) arbitrarily. Then, choose the utilities u(b, x), u(b, y) and u(b, z) such that the expected utility for b
at the beliefs p1 and p2 is equal to the expected utility for a at these beliefs, and such that u(b, z) < u(a, z).
In the following subsection, when proving Theorem 3.1, we provide a general method for constructing a
utility function that represents a regular conditional preference relation.

3.4 Proof

For proving Theorem 3.1 we need the following property which states that, under the regularity axioms, the
indifference sets Pa∼b have a linear structure.

Lemma 3.1 (Linear structure of indifference sets) Suppose that the conditional preference relation
< is regular. Then, the following holds:
(a) for every pair of choices a, b there is a hyperplane Ha∼b such that Pa∼b = Ha∼b ∩∆(X);

(b) if < has preference reversals on {a, b}, then 〈Pa∼b〉 is a hyperplane and Pa∼b = 〈Pa∼b〉 ∩∆(X).
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If there are three states and < has preference reversals on {a, b}, then it follows that the indifference set
Pa∼b must be a line segment. See Figure 1, where Pa∼b is the intersection of the hyperplane Ha∼b with the
belief simplex ∆(X), resulting in a line segment.

Proof of Theorem 3.1. (a) Suppose that C = {a, b} and that < is represented by a utility function u.
We show that < satisfies the five axioms listed above. Clearly, < satisfies completeness and transitivity. To
show continuity, take p ∈ Pa�b and q ∈ Pb�a. Then, u(a, p) > u(b, p) and u(b, q) > u(a, q), and hence there
is some λ ∈ (0, 1) such that u(a, (1 − λ)p + λq) = u(b, (1 − λ)p + λq). Thus, (1 − λ)p + λq ∈ Pa∼b, and we
see that < satisfies continuity. To show preservation of indifference, take p, q ∈ Pa∼b and some λ ∈ (0, 1).
Then, u(a, p) = u(b, p) and u(a, q) = u(b, q), and hence u(a, (1− λ)p+ λq) = u(b, (1− λ)p+ λq). Therefore,
(1− λ)p+ λq ∈ Pa∼b, and we conclude that < satisfies preservation of indifference. To show preservation of
strict preference, take p ∈ Pa<b, q ∈ Pa�b and some λ ∈ (0, 1). Then, u(a, p) ≥ u(b, p) and u(a, q) > u(b, q),
and hence u(a, (1− λ)p+ λq) > u(b, (1− λ)p+ λq). Therefore, (1− λ)p+ λq ∈ Pa�b, and we conclude that
< satisfies preservation of strict preference.
(b) Suppose now that < satisfies the five axioms. We will construct a utility function u that represents < .
If a is equivalent to b then we can choose any utility function u with u(a, x) = u(b, x) for all x ∈ X.

Suppose now that a is not equivalent to b. Then, there is a belief q ∈ ∆(X) with a �q b, say b �q a. By
Lemma 3.1 there is a hyperplane Ha∼b such that Pa∼b = Ha∼b ∩∆(X). Let H ′ be the unique hyperplane
that is parallel to Ha∼b and such that q ∈ H ′. Then, H ′ 6= Ha∼b. By Lemma 2.1 (b) there are vectors
v1, ..., v|X| ∈ Ha∼b and a vector v′ ∈ H ′ such that v1, ..., v|X|, v

′ are affi nely independent.
Now, fix the utilities u(a, x) arbitrarily for all x ∈ X and choose some α > 0. By Lemma 2.1 (c) there is

a unique affi ne mapping ub : RX → R such that

ub(vk) = u(a, vk) for all k ∈ {1, ..., |X|} and ub(v′) = u(a, v′) + α. (3.1)

Set u(b, x) := ub([x]) for all x ∈ X, which completes the utility function u. We show that u represents < .
As Ha∼b is a hyperplane and v1, ..., v|X| ∈ Ha∼b are affi nely independent, the vectors v1, ..., v|X| constitute

an affi ne basis for Ha∼b. By (3.1) we then conclude

ub(v) = u(a, v) for all v ∈ Ha∼b. (3.2)

We now show that
ub(v) = u(a, v) + α for all v ∈ H ′. (3.3)

To see this, take some v ∈ H ′. Since H ′ is parallel to Ha∼b and v′ ∈ H ′, there are some vectors w,w′ ∈ Ha∼b
such that v = v′ + w − w′. As v is an affi ne combination of v′, w and w′, and the mapping ub is affi ne, it
follows that

ub(v) = ub(v
′) + ub(w)− ub(w′) = u(a, v′) + α+ u(a,w)− u(a,w′)

= u(a, v′ + w − w′) + α = u(a, v) + α,

where the second equality follows from (3.1) and the third equality from the fact that u(a, v) is linear in v.
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Take some p ∈ ∆(X). By Lemma 2.1 (a) there is some λ with p ∈ (1− λ)Ha∼b + λH ′. Using (3.2) and
(3.3) it then follows that u(b, p) = ub(p) = u(a, p) + λα. Hence,

u(a, p) > u(b, p) if and only if λ < 0 and u(a, p) < u(b, p) if and only if λ > 0. (3.4)

Recall that Ha∼b ∩∆(X) = Pa∼b. As < is regular, the hyperplane Ha∼b separates Pb�a from Pa�b. Assume
that p ∈ (1− λ)Ha∼b + λH ′. Since q ∈ Pb�a and q ∈ H ′, we conclude that

p ∈ Pa�b if and only λ < 0 and p ∈ Pb�a if and only λ > 0. (3.5)

By (3.4) and (3.5) we see that p ∈ Pa�b if and only u(a, p) > u(b, p), and p ∈ Pb�a if and only if u(a, p) <
u(b, p). Hence, u represents < . �

4 Existence of Uniform Preference Increase

In this section we start by showing that the regularity axioms are no longer suffi cient to guarantee an
expected utility representation if we move to more than two choices. To this purpose, we present an
example of a conditional preference relation that satisfies the regularity axioms, yet lacks an expected utility
representation. The reason for this failure is that, starting from this conditional preference relation, we
cannot uniformly increase the preference for any given choice. In the second part of this section we will
formalize what we mean by a uniform preference increase, and define a new axiom which states that, starting
from the conditional preference relation at hand, we must be able to uniformly increase the preference for
at least one choice.

4.1 Why Regularity Axioms Are Not Suffi cient

Consider the conditional preference relation < represented by Figure 2. It may be verified that < satisfies
all the regularity axioms. Yet, there is no expected utility representation for < . To see why, suppose there
would be a utility function u that represents < . Then, the induced expected utilities of a and b must be
equal on the hyperplane Ha∼b, the expected utilities of b and c must be equal on the hyperplane Hb∼c and
the expected utilities of a and c must be equal on the hyperplane Ha∼c, also at vectors that lie outside the
belief simplex. But then, the expected utilities of a and c must be the same at the vector v where Ha∼b and
Hb∼c intersect, which is impossible since v does not belong to Ha∼c.

This raises the question: What is “wrong”with this conditional preference relation? As it turns out, we
cannot uniformly increase the preference for choice a by a fixed degree without violating transitivity. To see
this, suppose there would be an alternative conditional preference relation <′ that uniformly increases the
preference for choice a by a fixed degree, relative to < . Then, the degree of preference between a and b and
the degree of preference between a and c should both be raised by the same amount. The indifference set
Pb∼c contains precisely those beliefs where the DM is indifferent between b and c. Hence, intuitively, these
are precisely the beliefs where his degree of preference between a and b is equal to his degree of preference
between a and c. If we move from one belief in Pb∼c to another belief in Pb∼c, we thus increase, or decrease,

11



Figure 2: Regularity axioms are not suffi cient for expected utility representation

the preference between a and b and the preference between a and c by the same amount. Therefore, the
new indifference sets Pa∼′b and Pa∼′c must be obtained from the original indifference sets Pa∼b and Pa∼c by
a common parallel shift s that moves from one point in Hb∼c to another point in Hb∼c. See Figure 3 for an
illustration. However, as can be seen from Figure 3, the resulting conditional preference relation <′ is not
transitive: At the belief p, the DM is indifferent between a and b, and indifferent between b and c, but not
indifferent between a and c under <′ .

In fact, starting from the original conditional preference relation <, there is no uniform preference
increase for choice a. The reason is that any uniform preference increase for a must result in shifting the
original indifference sets Pa∼b and Pa∼c along a multiple of the vector s. Hence, if a uniform preference
increase for a would exist then, by scaling this preference increase up or down by an appropriate amount,
there should also be a uniform preference increase for a where Pa∼′b passes through the belief p in Figure 3.
This, as we have seen, is impossible. By a similar reasoning, it can also be verified that there is no uniform
preference increase for choice b or for choice c in this example.

As we will show in this paper, the absence of a uniform preference increase is precisely what prevents
a regular conditional preference relation from having an expected utility representation. In the following
subsection we formally define a uniform preference increase, and use it to introduce a new axiom, “existence
of a uniform preference increase”, which states that a uniform preference increase should exist for at least
one of the choices.

12



Figure 3: When there is no uniform preference increase

4.2 The Axiom “Existence of Uniform Preference Increase”

Imagine the DM holds a conditional preference relation <, and decides to uniformly increase his preference
for choice a by the degree δ. That is, for every belief p, and relative to every other choice b, the preference
for a is increased by the same degree δ. How would the new conditional preference relation <′ compare to
< ?

Our arguments below will be based on two informal principles:

Principle 1: If we move from a belief p to a belief q on a line, then the degree of preference between a
and b will change linearly.

Principle 2: The DM prefers b to c precisely when the degree by which he prefers a to b is less than the
degree by which he prefers a to c.

Here, the degree by which the DM prefers a to b may also be negative, which means that he prefers b to
a.

Consider a belief pab ∈ Pa∼b, a belief p′ab ∈ Pa∼′b and some belief p such that p = (1 − λ)p′ab + λpab.
See Figure 4 for the case where λ > 1. Here, the numbers 1 and λ − 1 indicate the relative lengths of the
corresponding line segments. Recall that the new conditional preference relation <′ increases the degree
of preference for a by the amount δ, relative to < . Hence, dega�′b(p

′
ab) = 0 and dega�′b(pab) = δ, where

dega�′b(q) informally denotes the degree by which the DM prefers a to b at the belief q under <′ . By
principle 1 we then conclude that dega�′b(p) = λδ.

Now consider an alternative belief qab ∈ Pa∼b and some belief q′ such that p = (1 − λ)q′ + λqab. See
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Figure 4: A uniform preference increase generates parallel indifference sets Pa∼b and Pa∼′b

Figure 4. As dega�′b(qab) = δ, it follows by principle 1 that

λδ = dega�′b(p) = (1− λ) dega�′b(q
′) + λδ,

which implies that dega�′b(q
′) = 0, and hence q′ ∈ Pa∼′b. We thus see that, whenever

(1− λ)p′ab + λpab = (1− λ)q′ + λqab

for some pab, qab ∈ Pa∼b and p′ab ∈ Pa∼′b, then the belief q′ must be in Pa∼′b as well. Geometrically speaking,
this means that the hyperplanes Ha∼b and Ha∼′b, which generate the indifference sets Pa∼b and Pa∼′b, must
be parallel. See Figure 4.

Moreover, it can be seen from the figure that

Pa<b = {p ∈ ∆(X) | there is λ ≥ 1 with p ∈ (1− λ)Ha∼′b + λHa∼b} and
Pa<′b = {p ∈ ∆(X) | there is λ ≥ 0 with p ∈ (1− λ)Ha∼′b + λHa∼b}.

That is, the conditional preference relations between a and b in < and <′ are completely determined by the
hyperplanes Ha∼b and Ha∼′b.

Consider now a third choice c. Choose the beliefs p ∈ ∆(X), pab ∈ Pa∼b, p′ab ∈ Pa∼′b, pac ∈ Pa∼c, p′ac ∈
Pa∼′c such that

p = (1− λ)p′ab + λpab and p = (1− µ)p′ac + µpac.
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Figure 5: A uniform preference increase for a with three choices

See Figure 5 for an illustration where λ, µ > 1 but λ < µ. By the same argument as above, we then conclude
that dega�′b(p) = λδ and dega�′c(p) = µδ. By principle 2 it then follows that the DM weakly prefers b to c
precisely when λ ≤ µ. Note that < and <′ hold the same preferences between b and c, as only the preference
for a is altered when moving from < to <′ . Thus, we see that

Pb<c = Pb<′c = {p ∈ ∆(X) | there are λ ≤ µ with
p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c}.

In particular, the indifference set Pb∼c contains precisely those beliefs q for which there is some α with
q ∈ (1− α)Ha∼′b + αHa∼b and q ∈ (1− α)Ha∼′c + αHa∼c. See the belief q in Figure 5.

All these considerations give rise to the following definition.

Definition 4.1 (Uniform preference increase) Consider a conditional preference relation <, a choice
a, and an alternative conditional preference relation <′ . Then, <′ uniformly increases the preference for a
relative to < if <′ is regular, and if for every choice b 6= a there are different, parallel hyperplanes Ha∼b, Ha∼′b
such that

(a) for every choice b 6= a

Pa<b = {p ∈ ∆(X) | there is λ ≥ 1 with p ∈ (1− λ)Ha∼′b + λHa∼b} and
Pa<′b = {p ∈ ∆(X) | there is λ ≥ 0 with p ∈ (1− λ)Ha∼′b + λHa∼b};
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Figure 6: A typical uniform preference increase for a

(b) for every two choices b, c 6= a

Pb<c = Pb<′c = {p ∈ ∆(X) | there are λ ≤ µ with
p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c}.

Figure 6 depicts a typical uniform preference increase for a when there are three choices.
The following axiom, which plays a central role in this paper, states that one should always be able to

find a new conditional preference relation that uniformly increases the preference for one of the choices.

Axiom 4.1 (Existence of a uniform preference increase) There is a choice a and a conditional pref-
erence relation <′ that uniformly increases the preference for a relative to < .

As we will see, this axiom opens the door towards a characterization of those conditional preference
relations that admit an expected utility representation.

5 Characterization for More than Two Choices

In the previous section we have seen that the regularity axioms are no longer suffi cient to guarantee an
expected utility representation if there are more than two choices. We will now show that the new axiom
“existence of a uniform preference increase”, in combination with the regularity axioms, is suffi cient to close
this gap.
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Theorem 5.1 (Expected utility representation for more than two choices) Consider a finite set of
choices C, a finite set of states X, and a conditional preference relation < on (C,X). Then, < has an
expected utility representation, if and only if, it satisfies completeness, transitivity, continuity, preservation
of indifference, preservation of strict preference, and existence of a uniform preference increase.

Before we prove this result, we first present a procedure that can be used to generate a utility function
for a given conditional preference relation that satisfies our axioms. This procedure will be illustrated by
means of a numerical example. Subsequently, we show in the proof of Theorem 5.1 that the utility function
so obtained will always represent the conditional preference relation at hand, provided the latter satisfies all
the axioms above.

5.1 Procedure for Constructing a Utility Function

We now present a procedure that generates a utility function u for a given conditional preference relation
< satisfying our axioms. Importantly, this procedure explicitly uses a conditional preference relation <′
that uniformly increases the preference for some choice a relative to < . Later we will show that the utility
function u so constructed represents <.

Definition 5.1 (Utility design procedure) Consider a regular conditional preference relation < that
satisfies existence of a uniform preference increase. Select a choice a and a conditional preference relation
<′ that uniformly increases the preference for a relative to < . For every choice b 6= a, let Ha∼b, Ha∼′b be
some different, parallel hyperplanes satisfying properties (a) and (b) in Definition 4.1.

Start by choosing the utilities u(a, x) arbitrarily for every x ∈ X, and by selecting a number α > 0.

For every choice b 6= a, find vectors v1, ..., v|X| ∈ Ha∼b and a vector v′ ∈ Ha∼′b such that v1, ..., v|X|, v
′ are

affi nely independent. Find the unique affi ne mapping ub : RX → R such that ub(vk) = u(a, vk) for all
k ∈ {1, ..., |X|} and ub(v′) = u(a, v′) + α. Set u(b, x) := ub([x]) for every x ∈ X.

Note that by Lemma 2.1 (b) we can always find vectors v1, ..., v|X| and a vector v′ ∈ Ha∼′b that are affi nely
independent. Moreover, Lemma 2.1 (c) guarantees that there is a unique affi ne mapping ub : RX → R such
that ub(vk) = u(a, vk) for all k ∈ {1, ..., |X|} and ub(v′) = u(a, v′) + α. Finding this affi ne mapping amounts
to solving a system of linear equations.

The utilities u(a, x), which can be chosen freely, may be viewed as the “baseline utilities”, whereas the
number α > 0 can be interpreted as a numeraire that determines the utility increase for a associated with
the uniform preference increase. We will now illustrate the procedure by a numerical example.

Example. Consider the conditional preference relation < represented by Figure 7, with three choices a, b, c
and three states x, y and z. Note that a is weakly (but not strictly) dominated by c. Here, (2

5 , 0,
3
5) refers to

the vector v with v(x) = 2
5 , v(y) = 0 and v(z) = 3

5 , and similarly for the other points. To show that there is
a uniform preference increase for a, consider Figure 8. Let Ha∼b := 〈Pa∼b〉 be the unique hyperplane that
passes through the points (0, 0, 0), (2

5 , 0,
3
5) and (0, 1

4 ,
3
4), let Ha∼′b be the unique hyperplane that is parallel
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Figure 7: A numerical example for the utility design procedure

Figure 8: Constructing a utility function for a conditional preference relation
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to Ha∼b and passes through the point (1
3 ,

1
6 ,

1
2), let Ha∼c be the unique hyperplane that passes through the

points (0, 0, 0), (2
3 ,−

1
6 ,

1
2) and (1, 0, 0) = [x], and let Ha∼′c be the unique hyperplane that is parallel to Ha∼c

and passes through the point (1
3 ,

1
6 ,

1
2). Note that Ha∼c ∩∆(X) = {[x]} = Pa∼c.

Take the conditional preference relation <′ that coincides with < on {b, c}, and that is otherwise induced
by the hyperplanes Ha∼b, Ha∼′b, Ha∼c, Ha∼′c through property (a) in Definition 4.1. It may be verified that
<′ is regular, and that properties (a) and (b) in Definition 4.1 are satisfied. As such, <′ uniformly increases
the preference for a relative to < .

We will now use the utility design procedure to construct a utility function u that represents <, relying
on <′ . We start by choosing u(a, x) = u(b, x) = u(c, x) = 0 and α = 1.

To construct the utilities for b, recall that Ha∼b is the unique hyperplane that passes through the points
v1 = (0, 0, 0), v2 = (2

5 , 0,
3
5) and v3 = (0, 1

4 ,
3
4), and that Ha∼′b is the unique hyperplane that is parallel to

Ha∼b and passes through v′ = (1
3 ,

1
6 ,

1
2). It may be verified that v1, v2, v3 and v′ are affi nely independent.

Consider a general affi ne mapping ub : RX → R given by ub(v) = ub0 + v(x)ubx + v(y)uby + v(z)ubz. Then,
the conditions ub(v1) = u(a, v1), ub(v2) = u(a, v2), ub(v3) = u(a, v3) and ub(v′) = u(a, v′) +α give rise to the
system of linear equations

ub0 = 0, ub0 + 2
5ubx + 3

5ubz = 0, ub0 + 1
4uby + 3

4ubz = 0, ub0 + 1
3ubx + 1

6uby + 1
2ubz = 1

which has the unique solution ub0 = 0, ubx = 3, uby = 6 and ubz = −2. As such,

u(b, x) = ub([x]) = 3, u(b, y) = ub([y]) = 6 and u(b, z) = ub([z]) = −2.

To construct the utilities for c, recall that Ha∼c is the unique hyperplane that passes through the points
v1 = (0, 0, 0), v2 = (2

3 ,−
1
6 ,

1
2) and v3 = (1, 0, 0), and that Ha∼′c is the unique hyperplane that is parallel

to Ha∼c and passes through the point v′ = (1
3 ,

1
6 ,

1
2). It may be verified that v1, v2, v3 and v′ are affi nely

independent. Consider a general affi ne mapping uc : RX → R given by uc(v) = uc0 + v(x)ucx + v(y)ucy +
v(z)ucz. Then, the conditions uc(v1) = u(a, v1), uc(v2) = u(a, v2), uc(v3) = u(a, v3) and uc(v′) = u(a, v′) + α
give rise to the system of linear equations

uc0 = 0, uc0 + 2
3ucx −

1
6ucy + 1

2ubz = 0, uc0 + ucx = 0, uc0 + 1
3ucx + 1

6ucy + 1
2ucz = 1

which has the unique solution uc0 = 0, ucx = 0, ucy = 3 and ucz = 1. As such,

u(c, x) = uc([x]) = 0, u(c, y) = uc([y]) = 3 and u(c, z) = uc([z]) = 1.

The utility function u may be summarized by the table

u x y z

a 0 0 0
b 3 6 −2
c 0 3 1
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and it may be verified that the utility function u so constructed represents < . The conditional preference
relation <′, which uniformly increases the preference for a relative to <, is represented by the utility function
u′ given by

u′ x y z

a 1 1 1
b 3 6 −2
c 0 3 1

where the utility of choice a is uniformly increased by 1.
The utility function u is only one out of many different utility representations for <. In fact, there

are four degrees of freedom here. The first three degrees of freedom arise because the baseline utilities
u(a, x), u(b, x) and u(c, x) can be chosen completely arbitrarily, whereas the freedom to choose any α > 0
leads to a fourth degree of freedom. Also the conditional preference relation <′ that uniformly increases the
preference for one of the choices is not unique, but it turns out that for any such <′ the hyperplanes that
induce the indifference sets for < and <′ must all be parallel to the ones we have in Figure 8, and hence no
additional degrees of freedom arise from the choice of <′ .

5.2 Proof

We are now ready to prove Theorem 5.1.

(a) Suppose that < is represented by a utility function u. In the proof of Theorem 3.1 we have already shown
that < satisfies the five regularity axioms. To show existence of a uniform preference increase, consider an
arbitrary choice a ∈ C and a number α > 0. Let u′ be the utility function given by u′(a, x) := u(a, x) + α
for every x ∈ X, and u′(b, x) := u(b, x) for every choice b 6= a and every x ∈ X. Let <′ be the conditional
preference relation induced by u′. We show that <′ uniformly increases the preference for a relative to < .

By the proof of Theorem 3.1 we know that <′ is regular. We will now construct, for every b 6= a, different,
parallel hyperplanes Ha∼b, Ha∼′b that satisfy the conditions (a) and (b) in Definition 4.1. We distinguish
two cases: (i) b is not equivalent to a under <, and (ii) b is equivalent to a under < .

(i) Suppose first that b is not equivalent to a under < . That is, there is some x ∈ X with u(a, x) 6= u(b, x).
Then define the sets

Ha∼b := {v ∈ RX | u(a, v) = u(b, v)} and Ha∼′b := {v ∈ RX | u(a, v) + α = u(b, v)}. (5.1)

To see that Ha∼b, Ha∼′b are different, parallel hyperplanes consider the vector n ∈ RX given by n(x) :=
u(a, x) − u(b, x) for all x ∈ X. Then, by our assumption in case (i), n 6= 0. Moreover, by construction,
Ha∼b = {v ∈ RX | v · n = 0} and Ha∼′b = {v ∈ RX | v · n = −α}, which implies that Ha∼b and Ha∼′b are
different and parallel.

(ii) Suppose next that b is equivalent to a under < . In that case we define

Ha∼b := {v ∈ RX |
∑

x∈X
v(x) = 1}, (5.2)

20



which is clearly a hyperplane, and we choose Ha∼′b equal to some arbitrary hyperplane that is different
from, but parallel to, Ha∼b.

It remains to show that properties (a) and (b) in Definition 4.1 are satisfied for all b, c 6= a. To show
property (a), take some b 6= a. We distinguish two cases: (i) b is not equivalent to a under <, and (ii) b is
equivalent to a under < .

(i) Suppose that b is not equivalent to a under < . Then, by (5.1), Lemma 2.1 (a), the fact that u
represents < and the fact that u′ represents <′,

Pa<b = {p ∈ ∆(X) | u(a, p) ≥ u(b, p)}
= {p ∈ ∆(X) | there is λ ≥ 1 with p ∈ (1− λ)Ha∼′b + λHa∼b},

and

Pa<′b = {p ∈ ∆(X) | u′(a, p) ≥ u′(b, p)} = {p ∈ ∆(X) | u(a, p) + α ≥ u(b, p)}
= {p ∈ ∆(X) | there is λ ≥ 0 with p ∈ (1− λ)Ha∼′b + λHa∼b}.

(ii) Suppose next that b is equivalent to a under< . Then, by (5.2) we conclude thatHa∼b∩∆(X) = ∆(X).
Moreover, Pa<′b = ∆(X) as <′ uniformly increases the preference for a relative to < . Hence,

{p ∈ ∆(X) | there is λ ≥ 1 with p ∈ (1− λ)Ha∼′b + λHa∼b} = ∆(X) = Pa<b and

{p ∈ ∆(X) | there is λ ≥ 0 with p ∈ (1− λ)Ha∼′b + λHa∼b} = ∆(X) = Pa<′b.

To show property (b) in Definition 4.1 take some b, c 6= a. We must prove that

Pb<c = Pb<′c = {p ∈ ∆(X) | there are λ ≤ µ with (5.3)

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c}.

We distinguish two cases: (i) b and c are not equivalent to a under <, and (ii) b or c is equivalent to a under
< .

(i) Suppose first that b and c are not equivalent to a under < . Let A be the set on the righthand side
of (5.3). To show that Pb<c ⊆ A, take some p ∈ Pb<c. As Ha∼b, Ha∼′b are different but parallel hyperplanes
and Ha∼c, Ha∼′c are different but parallel hyperplanes, it follows by Lemma 2.1 (a) that there are numbers
λ, µ such that p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c. By (5.1) it then follows that

u(a, p)− u(b, p) = (λ− 1)α and u(a, p)− u(c, p) = (µ− 1)α. (5.4)

As p ∈ Pb<c and u represents < we know that u(b, p) ≥ u(c, p). We thus conclude from (5.4) that λ ≤ µ,
and hence p ∈ A.

To show that A ⊆ Pb<c, take some p ∈ A. Hence, there are numbers λ, µ with λ ≤ µ such that
p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c. Then, by (5.1),

u(a, p)− u(b, p) = (λ− 1)α and u(a, p)− u(c, p) = (µ− 1)α
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which implies that u(b, p) ≥ u(c, p), and hence p ∈ Pb<c. We thus conclude that Pb<c = A.
(ii) Suppose next that b or c is equivalent to a under < . Say b is equivalent to a under < . Then, by

(5.2), Ha∼b ∩∆(X) = ∆(X), and (1− λ)Ha∼′b + λHa∼b has an empty intersection with ∆(X) unless λ = 1.
Hence,

A = {p ∈ ∆(X) | there is µ ≥ 1 with p ∈ (1− µ)Ha∼′c + µHa∼c} = Pa<c = Pb<c,

where the second equality follows from property (a) and the last equality from the facts that b is equivalent
to a under < and < is transitive.

We thus see that Pb<c = A for both cases (i) and (ii). As, by construction, Pb<′c = Pb<c, property (b)
in Definition 4.1 is satisfied.

Summarizing, we conclude that <′ uniformly increases the preference for a relative to < .
(b) Let < be a conditional preference relation on (C,X) that satisfies completeness, transitivity, continuity,
preservation of indifference, preservation of strict preference and existence of a uniform preference increase.
Let u be a utility function that is obtained by the utility design procedure in Definition 5.1, based on the
hyperplanes Ha∼b, Ha∼′b for every choice b 6= a. We show that u represents < .

Take some choice b 6= a. Then, by construction of the utility design procedure, there are vectors
v1, ..., v|X| ∈ Ha∼b, a vector v′ ∈ Ha∼′b such that v1, ..., v|X|, v

′ are affi nely independent, and an affi ne
mapping ub : RX → R such that

ub(vk) = u(a, vk) for all k ∈ {1, ..., |X|}, ub(v′) = u(a, v′) + α and (5.5)

u(b, x) = ub([x]) for all x ∈ X. (5.6)

As v1, ..., v|X| ∈ Ha∼b are affi nely independent, it follows that {v1, ..., v|X|} is an affi ne basis for Ha∼b. As
ub(vk) = u(a, vk) for all k ∈ {1, ..., |X|}, it follows that

ub(v) = u(a, v) for all v ∈ Ha∼b. (5.7)

In a similar way as in the proof of Theorem 3.1 it can be shown that

ub(v) = u(a, v) + α for all v ∈ Ha∼′b. (5.8)

We now show that u represents < on {a, b}. Take some p ∈ ∆(X). By Lemma 2.1 (a) there is some
number λ with p ∈ (1− λ)Ha∼′b + λHa∼b. By (5.6), (5.7) and (5.8),

u(b, p)− u(a, p) = ub(p)− u(a, p) = (1− λ)α. (5.9)

Moreover, by regularity of < and property (a) in Definition 4.1, we see that

p ∈ Pa�b if and only if λ > 1, and p ∈ Pa∼b if and only if λ = 1. (5.10)

By combining (5.9) and (5.10) we conclude that p ∈ Pa�b if and only if u(a, p) > u(b, p) and p ∈ Pa∼b if and
only if u(a, p) = u(b, p). Thus, u represents < on {a, b}.
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Consider now some choices b, c 6= a. We show that u represents < on {a, b}. Take some p ∈ ∆(X). By
Lemma 2.1 (a) there are some numbers λ, µ such that p ∈ (1−λ)Ha∼′b+λHa∼b and p ∈ (1−µ)Ha∼′c+µHa∼c.
By (5.6), (5.7) and (5.8),

u(b, p)− u(a, p) = ub(p)− u(a, p) = (1− λ)α and u(c, p)− u(a, p) = uc(p)− u(a, p) = (1− µ)α. (5.11)

Moreover, by regularity of < and property (b) in Definition 4.1, we see that

p ∈ Pb�c if and only if λ < µ, and p ∈ Pb∼c if and only if λ = µ. (5.12)

By combining (5.11) and (5.12) we conclude that p ∈ Pb�c if and only if u(b, p) > u(c, p) and p ∈ Pb∼c if
and only if u(b, p) = u(c, p). Hence, u represents < on {b, c}.

Since we have shown that u represents < on {a, b} for every b 6= a and u represents < on {b, c} for every
b, c 6= a, it follows that u represents <, which was to show. This completes the proof. �

6 The Case of No Weakly Dominated Choices

In the previous section we have seen that a regular conditional preference relation has an expected utility
representation precisely when there is a uniform preference increase for at least one of the choices. But
is there a way to easily verify whether such a uniform preference increase exists or not? In this section
we provide an affi rmative answer for an important special case: the scenario when there are no weakly
dominated choices. In that case, the existence of a uniform preference increase is equivalent to two easily
verifiable conditions: strong transitivity and the line property. These conditions can be tested directly by
only considering the conditional preference relation < at hand, without having to search for a uniform
preference increase explicitly.

The case of no weakly dominated choices is an important and typical case for a rational DM. The reason
is that a rational DM may be expected to never make a weakly dominated choice. Indeed, if choice a
is weakly dominated by b then, whatever belief the DM holds, he will always weakly prefer b to a, and
sometimes strictly prefer b to a. Hence, there seems to be no good reason to make choice a. But if we
eliminate all weakly dominated choices from the decision problem, then we are left with a reduced decision
problem in which no remaining choice is weakly dominated.

In this section we start by presenting the result that, for the scenario of no weakly dominated choices,
the existence of a uniform preference increase is equivalent to strong transitivity and the line property, and
discuss some important consequences of this result. Subsequently, we provide an intuitive sketch of the
proof. The full proof can be found in the appendix.

6.1 Characterization for the Case of No Weakly Dominated Choices

Suppose there are no choices that are weakly dominated by, or equivalent to, some other choice. The question
whether a uniform preference increase exists or not can then be answered by testing two easily verifiable
conditions.
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Theorem 6.1 (The case of no weakly dominated choices) Let < be a regular conditional preference
relation such that no two choices weakly dominate each other, or are equivalent to each other, under < .
Then, < satisfies existence of a uniform preference increase, if and only if,

(a) (strong transitivity) for every three choices a, b, c ∈ C we have that 〈Pa∼b〉 ∩ 〈Pa∼c〉 ⊆ 〈Pb∼c〉 , and

(b) (line property) there is a line L = {v + λw | λ ∈ R} that intersects each of the hyperplanes 〈Pa∼b〉 at a
single point v + λabw, and where λab 6= λac whenever 〈Pa∼b〉 6= 〈Pa∼c〉 , such that

(λab − λbd)(λac − λbc)(λad − λcd) = (λab − λbc)(λac − λcd)(λad − λbd)

for all a, b, c, d ∈ C.

Strong transitivity thus states that the linear spans of the indifference sets Pa∼b, Pa∼c and Pb∼c must
have a common intersection. See, for instance, Figure 6 where the linear spans of Pa∼b, Pa∼c and Pb∼c, when
restricted to the plane where the sum of the coordinates is 1, all meet at the same point outside the belief
simplex ∆(X). If Pa∼b, Pa∼c and Pb∼c would all meet inside the belief simplex, then property (a) would
correspond to the usual transitivity of the indifference relation between choices. In that sense, property (a)
can be viewed as a strong version of transitivity, where this intersection property is also required outside
the belief simplex.

Note that the conditional preference relation in Figure 2 violates strong transitivity. Recall that we
argued informally that this conditional preference relation could not have a uniform preference increase.
This property now follows formally from Theorem 6.1.

The line property only has bite if there are at least four choices. An important consequence of this
property is that on the line L, whenever we know the five points where the linear spans 〈Pe∼f 〉 intersect the
line L for all e, f ∈ {a, b, c, d}, {e, f} 6= {a, b}, then we also know where 〈Pa∼b〉 intersects the line L.

If we combine Theorem 6.1 with Theorem 3.1, we obtain the following characterization of conditional
preference relations that admit an expected utility representation.

Corollary 6.1 (Characterization for the case of no weakly dominated choices) Let < be a regu-
lar conditional preference relation such that no two choices weakly dominate each other, or are equivalent
to each other, under < . Then, < has an expected utility representation, if and only if, strong transitivity
and the line property hold.

The practical advantage of this result is that strong transitivity and the line property are easily veriable
conditions that only require us to investigate the conditional preference relation < at hand, without having
to look for a uniform preference increase. This result, however, no longer holds if we allow for weakly
dominated choices. Consider, for instance, the conditional preference relation < from Figure 7. It clearly
violates strong transitivity as 〈Pa∼b〉 ∩ 〈Pb∼c〉 is not a subset of 〈Pa∼c〉 = 〈{[x]}〉 . At the same time, <
admits an expected utility representation as we have seen.

Corollary 6.1 also has an interesting consequence for the case of two states, that is, when X = {x, y}. In
that scenario, strong transitivity is equivalent to the usual transitivity of the indifference relation between
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choices, whereas the line property is equivalent to the condition that

(pab(x)− pbd(x))(pac(x)− pbc(x))(pad(x)− pcd(x)) = (pab(x)− pbc(x))(pac(x)− pcd(x))(pad(x)− pbd(x)),

where pef is the unique belief in Pe∼f for every {a, b, c, d}. This leads to the following result.

Corollary 6.2 (Characterization for the case of two states) Let X = {x, y} and < a regular condi-
tional preference relation such that no two choices weakly dominate each other, or are equivalent to each
other, under < . Let Pa∼b = {pab} for all choices a, b ∈ C. Then, < has an expected utility representation,
if and only if,

(pab(x)− pbd(x))(pac(x)− pbc(x))(pad(x)− pcd(x)) = (pab(x)− pbc(x))(pac(x)− pcd(x))(pad(x)− pbd(x))

for all a, b, c, d ∈ C.

Hence, for the case of two states and no weak dominance, checking whether an expected utility represen-
tation exists is particularly easy, as one only needs to verify the regularity axioms and the formula above for
every tuple of choices a, b, c, d. A direct consequence is that for two choices and three states, every regular
conditional preference relation for which there are no weakly dominated choices will have an expected utility
representation. In fact, this property even holds if we would allow for weakly dominated choices.

6.2 Sketch of the Proof

We will now give a sketch of the proof for Theorem 6.1. To start, we explain why the regularity axioms
in combination with the existence of a uniform preference change imply strong transitivity. Consider three
choices a, b and c. Assume there is a conditional preference relation <′ that uniformly increases the preference
for a relative to <, with associated hyperplanes Ha∼′b and Ha∼′c. See Figure 9 for an illustration. Choose
vectors v′ ∈ Ha∼′b ∩Ha∼′c, v ∈ 〈Pa∼b〉 ∩ 〈Pa∼c〉 and two different beliefs p and q on the line through v and
v′, such that p = (1 − λ)v′ + λv and q = (1 − µ)v′ + µv. See Figure 9 for an illustration with λ, µ > 1. By
setting Ha∼b := 〈Pa∼b〉 and Ha∼c := 〈Pa∼c〉 we obtain, by construction, that

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− λ)Ha∼′c + λHa∼c

and
q ∈ (1− µ)Ha∼′b + µHa∼b and q ∈ (1− µ)Ha∼′c + µHa∼c.

Hence, by property (b) in Definition 4.1, p and q are in Pb∼c. As a consequence, v is in 〈Pb∼c〉 and hence
〈Pa∼b〉 ∩ 〈Pa∼c〉 ⊆ 〈Pb∼c〉, establishing strong transitivity.

We next intuitively explain why the line property follows from the existence of a uniform preference
increase in combination with the regularity axioms. Suppose that the conditional preference relation <′
uniformly increases the preference for a relative to < with associated hyperplanes Ha∼′b for every b 6= a.
Consider four choices a, b, c, d and a line L = {v + λw | λ ∈ R} which intersects each of the sets 〈Pe∼f 〉 at
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Figure 9: Why the existence of a uniform preference change implies strong transitivity

a unique point vef = v + λefw for all e, f ∈ {a, b, c, d}, and intersects each of the hyperplanes Ha∼′e at a
unique point v′ae = v + λ′aew for all e ∈ {b, c, d}. Suppose, for the purpose of our argument, that all these
points are different.

Concentrate first on the choices a, b and c. As <′ uniformly increases the preference for a relative to
< there must, intuitively, be some number α > 0 such that dega�′b(p) = dega�b(p) + α and dega�′c(p) =
dega�c(p) + α for all beliefs p. Here, dega�′b(p) denotes the degree by which the DM prefers a to b under
<′ at the belief p, and similarly for dega�b(p). Moreover, dega�′b(p) = dega�′c(p) for all p ∈ Pb∼c. As
the hyperplanes 〈Pa∼b〉 , Ha∼′b, 〈Pa∼c〉 , Ha∼′c and 〈Pb∼c〉 generate the sets Pa∼b, Pa∼′b, Pa∼c, Pa∼′c and Pb∼c,
respectively, we must have that

dega�′b(v
′
ab) = 0, dega�′b(vab) = α, dega�′c(v

′
ac) = 0, dega�′c(vac) = α and

dega�′b(vbc) = dega�′c(vbc).

See Figure 10 for an illustration. It thus follows that

∆ dega�′b
∆ dega�′c

=
λac − λbc
λab − λbc

.

In a similar way we conclude that

∆ dega�′c
∆ dega�′d

=
λad − λcd
λac − λcd

and
∆ dega�′b
∆ dega�′d

=
λad − λbd
λab − λbd

.
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Figure 10: Why the existence of a uniform preference increase implies the line property

As, by the chain rule, ∆ dega�′b
∆ dega�′d

=
∆ dega�′b
∆ dega�′c

· ∆ dega�′c
∆ dega�′d

it follows that

λad − λbd
λab − λbd

=
λac − λbc
λab − λbc

· λad − λcd
λac − λcd

which establishes the line property.

We finally explain how strong transitivity and the line property enable the construction of a uniform
preference increase. Consider the conditional preference relation < in Figure 11. Hence, there are three
states x, y and z, and four choices a, b, c and d. For convenience, we have only indicated the indifference
sets. It may be verified that < satisfies strong transitivity and the line property. To see the latter, consider
the line L in Figure 11 which intersects each set 〈Pe∼f 〉 at a single point vef . It may be verified that this
collection of six points satisfies the formula of the line property.

We construct a conditional preference relation <′ that uniformly increases the preference for a relative
to <, as follows. By the line property, we can find points v′ab, v′ac and v′ad on the line L such that

λ′ab − λab
λbc − λab

=
λ′ac − λac
λbc − λac

,
λ′ac − λac
λcd − λac

=
λ′ad − λad
λcd − λad

and
λ′ab − λab
λbd − λab

=
λ′ad − λad
λbd − λad

.

See the points v′ab, v
′
ac and v

′
ad in Figure 12. Let Ha∼′b be the unique hyperplane that is parallel to 〈Pa∼b〉

and passes through v′ab. Similarly, we construct the hyperplanes Ha∼′c and Ha∼′d. See Figure 12 for an
illustration. Set Ha∼b := 〈Pa∼b〉 and similarly for Ha∼c and Ha∼d. Finally, let <′ be the conditional
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Figure 11: A conditional preference relation with four choices that satisfies strong transitivity and the line
property

Figure 12: How to construct a uniform preference increase under strong transitivity and the line property
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preference relation that coincides with < on {b, c, d}, and that is otherwise induced by the hyperplanes
Ha∼′b, Ha∼b, Ha∼′c, Ha∼c, Ha∼′d and Ha∼d through condition (a) in Definition 4.1. In can be seen from
Figure 12 that <′ uniformly increases the preference for a relative to < . In the appendix we show that this
construction works in general. That is, if there are no weakly dominated or equivalent choices, and strong
transitivity and the line property are satisfied, we can always construct a uniform preference increase in this
way.

7 Discussion

(a) Related literature. The paper that is closest to ours is Gilboa and Schmeidler (2003). It also
provides an axiomatic characterization of conditional preference relations that admit an expected utility
representation, but does so for a restricted class of utility functions —diversified utility functions. By this
we mean utility matrices where no row is weakly dominated by, or equivalent to, an affi ne combination of
at most three other rows. The crucial axiom in their analysis is diversity, which states that for every strict
ordering of at most four choices there must be at least one belief for which that ordering obtains in the
conditional preference relation at hand.

In contrast, we impose no restrictions on the utility matrix that can be used to represent the conditional
preference relation. In particular, we allow for non-diversified utility matrices and, correspondingly, allow
for non-diversified conditional preference relations . Note that all examples in this paper with three or four
choices were examples of non-diversified conditional preference relations, having a non-diversified utility
representation. By definition, diversity does not allow for weak dominance between choices. It may also be
verified that the diversity condition exludes cases with two states and more than two choices, and cases with
three states and more than three choices. Indeed, if we have two states and at least three choices, then there
are 6 possible strict orderings on three choices, but at most 4 of these orderings will be possible in a regular
conditional preference relation. Similarly, if we have three states and at least four choices, then there are
24 possible strict orderings on four choices, but at most 16 of these will be possible in a regular conditional
preference relation. However, Gilboa and Schmeidler (2003) allow for infinitely many, even uncountably
many, choices and states, whereas we do not.

Fishburn (1976) and Fishburn and Roberts (1978) concentrate on games, and assume that every player
holds a preference relation over the combinations of randomized choices —or mixed strategies —of all the
players. Combinations of mixed strategies may be viewed as lotteries with objective probabilities on the
set of possible (pure) choice combinations in the game. By imposing certain axioms on these preference
relations over mixed strategy combinations, they are able to identify those that admit an expected utility
representation. It may thus be viewed as a generalization of von Neumann and Morgenstern’s (1947)
axiomatic characterization of expected utility in lotteries. The crucial difference with our approach is that
we do not consider randomizations over choices, and that we use conditional preference relations as the
primitive, rather than preferences over lotteries with objective probabilities.

(b) Logical (in)dependence of the axioms. From conditions (a) and (b) in Definition 4.1 it follows
that the axiom existence of a uniform preference increase logically implies each of the regularity axioms.
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The other direction is not true: In Figure 2 we have seen a conditional preference relation that satisfies each
of the regularity axioms, but for which there is no uniform preference increase. It may be shown, however,
that the five regularity axioms are logically independent amongst each other.

(c) How unique is the representation? In the numerical example from Section 5.1 we have seen that
there will always be a whole range of different utility functions that represent a given conditional preference
relation, provided it satisfies our axioms of course. In the example from that section there were four degrees
of freedom. In general, the number of degrees of freedom may range anywhere between |X| and |C| · |X|. It
is clear that for a given “baseline choice”a we can always choose the baseline utilities u(a, x) in an arbitrary
fashion, yielding |X| degrees of freedom to start with. If, on the one extreme, the DM is always indifferent
between all of his choices, the other utilities will be fixed, and hence the total number of degrees of freedom
will be |X|. If, on the other extreme, the DM always holds the same strict preference relation between his
choices, say c1 � c2 � ... � cn, then the utilities for the other choices can be chosen freely at each of
the states, as long as these utilities respect this strict preference relation. This would result in |C| · |X|
degrees of freedom. For the special case where there are no weakly dominated or equivalent choices, and
where the indifference sets Pa∼b are all pairwise different, it can be shown that there are |X| + 1 degrees
of freedom. The single extra degree of freedom comes from the freedom to choose any α > 0 in the utility
design procedure from Section 5.1.

Savage (1954), on the other hand, has shown that for every preference relation over acts that satisfies the
Savage axioms, the utility representation is unique up to a positive affi ne transformation, leaving much less
freedom than is typically the case in our framework. The reason is that a DM in Savage’s framework holds
preferences over all possible acts, providing us with “more data”that restrict the possible utilities compared
to a DM in our framework. Gilboa and Schmeidler (2003) have a result similar to Savage’s, showing that
their utility representation is unique up to the choice of the baseline utilities, and up to multiplying all
utilities by the same positive number. This results in |X|+ 1 degrees of freedom —less than the number of
degrees of freedom in many of our cases. This is mainly due to their diversity axiom, which requires that
all strict rankings between four choices or less should be obtained for at least one belief, generating a “large
amount of data”that impose restrictions on the utilities.

(d) Uniform preference increase and counterfactual reasoning. The key axiom that has led to
our expected utility theorem is the “existence of a uniform preference increase”. This axioms asks whether
the conditional preference relation < at hand allows for an alternative conditional preference relation <′
in which the DM uniformly increases the preference for one of the choices. In a sense, it requires the DM
to perform a thought experiment in which he counterfactually would increase his preference for a given
choice in a uniform fashion, and see whether this would lead to inconsistencies. In Section 6 we have shown,
however, that in the case of no weakly dominated choices this counterfactual reasoning can be replaced by
checking some conditions that refer exclusively to the conditional preference relation < at hand. In a sense,
counterfactual reasoning is also required in the settings of Savage and Anscombe and Aumann. There, the
DM is required to rank all possible acts, also those that are not directly related to the decision problem at
hand. For those acts, the DM must thus imagine he would be facing a decision problem that involves such
as act.
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(e) Utility differences reflecting degrees of preference. The utilities that represent a given conditional
preference relation have a very clear and intuitive interpretation in our framework: The expected utility
difference between a and b at a belief p reflects “by how much” the DM prefers a to b at that particular
belief. Consequently, the utility difference between a and b at a state x reflects “by how much”he prefers
a to b at state x. Consider, for instance, the table of utilities in Section 5.1 that represents the conditional
preference relation < of Figure 7. At state x, the utility difference between a and b is 0−3 = −3, whereas at
state z this utility difference is 0− (−2) = 2. Interpreting these utility differences as “degrees of preference”,
we may say that the degree by which the DM prefers b to a at x is higher than the degree by which he
prefers a to b at z. This is also reflected by the fact that at the belief (1

2 , 0,
1
2), which is halfway between [x]

and [z], the DM still prefers b to a. We can say even more: The DM will only become indifferent between
a and b at the belief (2

5 , 0,
3
5), where the probability assigned to z is 1.5 times the probability assigned to x.

As such, we may say that the degree of preference between a and b at x is 1.5 times the degree of preference
between a and b at z. This corresponds precisely to the relative utility differences between a and b at x and
z, which are −3 and 2, respectively.

(f) Belief as a primitive notion. An important difference with Savage’s (1954) framework is that we
view the DM’s belief as a primitive notion, from which we can derive his preference relation over choices.
This is precisely how a conditional preference relation is defined: It takes the belief as an input, and delivers
the preferences over choices as an output. One of the beautiful features of Savage’s framework is that the
DM’s belief can be derived from his preferences over acts. That is, Savage views the DM’s preferences over
acts as the primitive notion, which then induces his belief. There is a whole debate about which of the two,
belief or preferences, should be taken as the primitive object, and we do not want to enter this debate here.
But the logic that underlies our framework is that the DM first reasons himself towards a belief, then forms
his preferences over choices based on this belief, which finally allows him to make a choice based on this
preference relation.

(g) Belief revision. A conditional preference relation does not only specify the DM’s preferences over
choices for a given belief, but also describes how these preferences would change if he were to revise his belief
in the light of new information. In a dynamic decision problem or game it may happen, for instance, that
some state is ruled out by some new information, forcing the DM to change his belief in response. And such
information events may even take place sequentially, such that more and more states can be ruled out. The
notion of a conditional preference relation is thus able to describe how the DM’s preferences would change
as a result of belief revision during the course of a dynamic decision problem or game.

(h) Game theory with conditional preference relations. In principle we could build an entire theory
of games based on conditional preference relations, which may or may not satisfy our system of axioms. In
a game, the DM would be a player i, his set of choices Ci would be the set of actions in the game, and the
states would be the setXi = ×j 6=iCj of opponents’choice combinations. Fix a conditional preference relation
<i for every player i. A Nash equilibrium (Nash (1950, 1951)) could be defined as a tuple of probability
distributions (σi)i∈I , with σi ∈ ∆(Ci) for every player i, such that σi(ci) > 0 only if ci is optimal for the
induced preference relation <iσ−i . Here, σ−i denotes the product of the probability distributions σj for
j 6= i, which is a probability distribution over C−i and hence a belief for player i. With this definition, a
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Nash equilibrium is thus interpreted as a tuple of beliefs about the opponents’choices, as in Aumann and
Brandenburger (1995).

Similarly, correlated rationalizability (Brandenburger and Dekel (1987), Bernheim (1984), Pearce (1984))
could be defined by the recursive procedure where C0

i := Ci for all players i, and

Cki := {ci ∈ Ck−1
i | ci optimal for <ipi for some pi ∈ ∆(Ck−1

−i )}

for every k ≥ 1. In fact, most — if not all — concepts in game theory could be generalized in terms of
conditional preference relations.

(i) Possible extensions. The analysis in this paper can be extended in various directions. First, one could
replace “standard”probability distributions on X by lexicographic probability systems (Blume, Branden-
burger and Dekel (1991)) or non-standard beliefs (Robinson (1973), Hammond (1994), Halpern (2010)) and
find axioms which guarantee a representation by lexicographic or non-standard expected utility, respectively.
Alternatively, one could attempt to extend the analysis to the case of infinitely many choices and/or states.
Some of the arguments in the proofs heavily rely on the set of choices, and above all the set of states, being
finite. It would be interesting to see how much, and what exactly, would have to be modified to generalize
the results to the infinite case.

8 Appendix

8.1 Proof of Section 2

Proof of Lemma 2.1. (a) As the hyperplanes V and W are different and parallel, there are a vector
n 6= 0 and two different numbers α, β such that

V = {v ∈ RX | v · n = α} and W = {v ∈ RX | v · n = β}.

Take some v ∈ RX . We first show that there is some number λ with v ∈ (1− λ)V + λW. If v ∈ V then we
can choose λ = 0. Assume next that v /∈ V. Choose the number λ such that (1−λ)α+λβ = v ·n. As v ·n 6= α
we conclude that λ 6= 0. Take some v′ ∈ V and consider the vector v′′ := 1

λv −
1−λ
λ v′. By the choice of λ it

then follows that v′′ ·n = β and hence v′′ ∈W. As v = (1−λ)v′+λv′′ it follows that v ∈ (1−λ)V +λW.We
next show that the number λ is unique. Suppose that v ∈ (1 − λ)V + λW and v ∈ (1 − µ)V + µW. Then,
v · n = (1− λ)α+ λβ = (1− µ)α+ µβ. As α 6= β it follows that λ = µ.

(b) As V is a hyperplane, there are |X| affi nely independent vectors v1, ..., v|X| in V. Take some arbitrary
vector v|X|+1 ∈W. We show that v1, ..., v|X|, v|X|+1 are affi nely independent. As every affi ne combination of
v1, ..., v|X| is in V, we know that v|X|+1 is not an affi ne combination of v1, ..., v|X|. Suppose now that some
vector in {v1, ..., v|X|}, say v1, is an affi ne combination of the other vectors in {v1, ..., v|X|, v|X|+1}. Then,

v1 =
∑|X|+1

k=2
αkvk for some a2, ..., α|X|+1 with

∑|X|+1

k=2
αk = 1. (8.1)
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As v1, ..., v|X| are affi nely independent it must be that α|X|+1 6= 0. But then, it follows from (8.1) that

v|X|+1 =
1

α|X|+1
(v1 −

∑|X|

k=2
αkvk) with

1

α|X|+1
(1−

∑|X|

k=2
αk) = 1.

In other words, v|X|+1 is an affi ne combination of v1, ..., v|X|, which is impossible as we have seen. Thus, the
vectors v1, ..., v|X|, v|X|+1 are affi nely independent.

(c) Let X = {x1, ..., xn}. Consider the system of linear equations, with n+ 1 variables β0, ..., βn and n+ 1
equations, given by

1 · β0 +
n∑
k=1

vm(xk)βk = αm for all m ∈ {1, ..., n+ 1}. (8.2)

Hence, the m-th equation has the row of coeffi cients rm := (1, vm(x1), ..., vm(xn)).We show that the vectors
r1, ..., rn+1 are linearly independent. Suppose not. Then, there is some vector, say r1, that is a linear
combination of the other vectors r2, ..., rn+1. Hence, there are numbers γ2, ..., γn+1 with r1 =

∑n+1
m=2 γmrm.

By definition of the vectors rm we must then have that

1 =
∑n+1

m=2
γm and (v1(x1), ..., v1(xn)) =

∑n+1

m=2
γm(vm(x1), ..., vm(xn)).

This implies, however, that v1 is an affi ne combination of v2, ..., vn+1, which is a contradiction to the
assumption that v1, ..., vn+1 are affi nely independent. We thus conclude that the vectors of coeffi cients
r1, ..., rn+1 are linearly independent. This guarantees that the system of linear equations in (8.2) has a
unique solution β0, β1, ..., βn. Consider the affi ne mapping f : RX → R given by

f(v) := β0 +
n∑
k=1

v(xk)βk.

Then, by (8.2), f(vm) = αm for all m ∈ {1, ..., n+ 1}. Moreover, f is also the only affi ne mapping with these
property. To see this, note that every affi ne mapping g : RX → R takes the form g(v) = δ0 +

∑n
k=1 v(xk)δk

for some numbers δ0, ..., δn+1. If g(vm) = αm for all m ∈ {1, ..., n + 1}, then the numbers δ0, ..., δn+1 must
solve the system of linear equations in (8.2). As this system has the unique solution β0, ..., βn+1, it follows
that g = f. �

8.2 Proof of Section 3

For the proof of Lemma 3.1 we need the following three properties.

Lemma 8.1 (Implications of regularity axioms) Suppose that the conditional preference relation < is
regular. Then, for every pair of choices a, b the following properties hold:

(a) Pa∼b = 〈Pa∼b〉 ∩∆(X);
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(b) If < has preference reversals on {a, b}, then there are |X| − 1 linearly independent beliefs in Pa∼b;

(c) If a weakly dominates b under < then

Pa∼b = {p ∈ ∆(X) |
∑

x∈Xa∼b

p(x) = 1}.

Proof of Lemma 8.1. (a) Clearly, Pa∼b ⊆ 〈Pa∼b〉∩∆(X). It remains to show that 〈Pa∼b〉∩∆(X) ⊆ Pa∼b.
We prove, by induction on k, that every p ∈ 〈Pa∼b〉 ∩∆(X) which can be written as the linear combination
of k elements in Pa∼b, is in Pa∼b. For k = 1 this is clear.

Take some k ≥ 2, and assume that the statement above is true for k − 1. Consider a p ∈ 〈Pa∼b〉 ∩∆(X)
that can be written as the linear combination of k elements in Pa∼b. That is, p = λ1p1 + ... + λkpk, with
p1, ..., pk ∈ Pa∼b and λ1, ..., λk 6= 0. Assume, without loss of generality, that λ1 ≤ λ2 ≤ ... ≤ λk. As p ∈ ∆(X)
and p1, ..., pk ∈ ∆(X), we have that

∑
x∈X p(x) =

∑
x∈X pm(x) = 1 for all m, and hence λ1 + ... + λk = 1.

Thus, λ1 ≤ 1
2 and p can be written as

p = λ1p1 + (1− λ1)w, with w =
1

1− λ1
(λ2p2 + ...+ λkpk).

We show that w ∈ ∆(X). By construction,
∑

x∈X w(x) = 1, and it thus remains to show that w(x) ≥ 0 for all
x.We distinguish two cases: If λ1 > 0, then λm > 0 for all m. As p2, ..., pk ∈ ∆(X), it follows that w(x) ≥ 0
for all x. Suppose now that λ1 < 0. Then, w = 1

1−λ1 (p− λ1p1). As p, p1 ∈ ∆(X) and λ1 < 0, it follows that
w(x) ≥ 0 for all x. We thus conclude that w ∈ ∆(X). Hence, w ∈ 〈Pa∼b〉 ∩∆(X) is the linear combination
of k − 1 elements in Pa∼b. By our induction assumption, w ∈ Pa∼b. Therefore, p = λ1p1 + (1 − λ1)w is in
∆(X) with p1, w ∈ Pa∼b.

We will now show that p ∈ Pa∼b. If λ1 ∈ [0, 1], then it follows by preservation of indifference that
p = λ1p1 + (1−λ1)w ∈ Pa∼b. Suppose now that either λ1 < 0 or λ1 < 1. Assume, without loss of generality,
that λ1 < 0. Then w = 1

1−λ1 ((λ1p1 + (1− λ1)w)− λ1p1), where 1
1−λ1 ,−

λ1
1−λ1 ∈ (0, 1). Suppose, contrary to

what we want to show, that λ1p1+(1−λ1)w /∈ Pa∼b. Since p1 ∈ Pa∼b, it would follow by preservation of strict
preference that w /∈ Pa∼b, which is a contradiction. Hence, we conclude that p = λ1p1 + (1− λ1)w ∈ Pa∼b.

Hence, every belief p that can be written as the linear combination of k elements in Pa∼b is again in
Pa∼b. By induction on k we conclude that 〈Pa∼b〉 ∩∆(X) ⊆ Pa∼b.
(b) As < has preference reversals on {a, b}, the sets Xa�b and Xb�a must both be non-empty. Indeed,
suppose that Xa�b would be empty. Then, [x] ∈ Pb<a for all x ∈ X. But then it would follow by preservation
of indifference and preservation of strict preference that p ∈ Pb<a for all beliefs p ∈ ∆(X), which would be a
contradiction to our assumption that < has preference reversals on {a, b}. Hence, we see that Xa�b cannot
be empty. By a similar argument it can be shown that Xb�a cannot be empty either.

Fix some states y ∈ Xa�b and z ∈ Xb�a. By continuity, there must be some λyz ∈ (0, 1) such that

pyz := (1− λyz)[y] + λyz[z] ∈ Pa∼b. (8.3)
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Similarly, for every x ∈ Xb�a\{z} there is some λyx ∈ (0, 1) such that

pyx := (1− λyx)[y] + λyx[x] ∈ Pa∼b, (8.4)

and for every x ∈ Xa�b\{y}, there is some λzx ∈ (0, 1) such that

pzx := (1− λzx)[z] + λzx[x] ∈ Pa∼b. (8.5)

Consider the set

B := {[x] | x ∈ Xa∼b} ∪ {pyz} ∪ {pyx | x ∈ Xb�a\{z}} ∪ {pzx | x ∈ Xa�b\{y}},

which contains |X| − 1 vectors in Pa∼b. We show that all vectors in B are linearly independent.
Take some numbers αx for x ∈ Xa∼b, some number αyz, some numbers αyx for x ∈ Xb�a\{z} and some

numbers αzx for x ∈ Xa�b\{y} such that∑
x∈Xa∼b

αx[x] + αyzpyz +
∑

x∈Xb�a\{z}
αyxpyx +

∑
x∈Xa�b\{z}

αzxpzx = 0.

By (8.3), (8.4) and (8.5), this sum is equal to∑
x∈Xa∼b

αx[x] + αyz((1− λyz)[y] + λyz[z]) +
∑

x∈Xb�a\{z}
αyx((1− λyx)[y] + λyx[x])

+
∑

x∈Xa�b\{y}
αzx((1− λzx)[z] + λzx[x])

=
∑

x∈Xa∼b

αx[x] +

αyz((1− λyz) +
∑

x∈Xb�a\{z}
αyx(1− λyx)

 [y]

+

αyzλyz +
∑

x∈Xa�b\{y}
αzx(1− λzx)

 [z] +
∑

x∈Xb�a\{z}
αyxλyx[x] +

∑
x∈Xa�b\{y}

αzxλzx[x] = 0.

As all vectors in {[x] | x ∈ X} are linearly independent, it follows that αx = 0 for all x ∈ Xa∼b, that
αyxλyx = 0 for all x ∈ Xb�a\{z}, and that αzxλzx = 0 for all x ∈ Xa�b\{y}. Since λyx ∈ (0, 1) for all
x ∈ Xb�a\{z} and λzx ∈ (0, 1) for all x ∈ Xa�b\{y}, it follows that αyx = 0 for all x ∈ Xb�a\{z} and
αzx = 0 for all x ∈ Xa�b\{y}. The sum above thus reduces to

αyz(1− λyz)[y] + αyzλyz[z]) = 0.

As λyz ∈ (0, 1), this implies that αyz = 0. We thus see that all coeffi cients in the linear combination above
must be 0, and hence the vectors in B are linearly independent. As such, Pa∼b contains |X| − 1 linearly
independent beliefs.
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Consider the set

B := {[x] | x ∈ Xa∼b} ∪ {pyz} ∪ {pyx | x ∈ Xb�a\{z}} ∪ {pzx | x ∈ Xa�b\{y}},

which contains |X| − 1 vectors in Pa∼b. It may be verified that all vectors in B are linearly independent,
and hence Pa∼b contains |X| − 1 linearly independent beliefs.

(c) Let A = {p ∈ ∆(X) |
∑

x∈Xa∼b p(x) = 1}. To show that Pa∼b ⊆ A, take some p ∈ Pa∼b. Assume, contrary
to what we want to show, that p /∈ A. Then, p(x) > 0 for some x ∈ Xa�b, and hence p = p(x)·[x]+(1−p(x))·q
for some q ∈ ∆(X). As [x] ∈ Pa�b, q ∈ Pa<b and p(x) > 0, it follows by preservation of strict preference that
p ∈ Pa�b, which is a contradiction to the assumption that p ∈ Pa∼b. We thus conclude that p ∈ A. To show
that A ⊆ Pa∼b, take some p ∈ A. Then, it follows by preservation of indifference that p ∈ Pa∼b. We thus see
that Pa∼b = A. �

Proof of Lemma 3.1. (a) Assume first that a and b are equivalent under < . Then we can choose the
hyperplane Ha∼b = {v ∈ RX |

∑
x∈X v(x) = 1}, which guarantees that Pa∼b = ∆(X) = Ha∼b ∩∆(X).

If < has preference reversals on {a, b} then we know from Lemma 8.1 (b) that dim(〈Pa∼b〉) ≥ |X| − 1.
Note that dim(〈Pa∼b〉) 6= |X| since otherwise 〈Pa∼b〉 = RX , which would imply by Lemma 8.1 (a) that
Pa∼b = 〈Pa∼b〉 ∩ ∆(X) = ∆(X). That would be a contradiction to the assumption that < has preference
reversals on {a, b}. Hence, dim(〈Pa∼b〉) = |X| − 1, which implies that 〈Pa∼b〉 is a hyperplane. By choosing
Ha∼b = 〈Pa∼b〉 we know by Lemma 8.1 (a) that Pa∼b = Ha∼b ∩∆(X).

Suppose next that a weakly dominates b under < . Then, we know by Lemma 8.1 (c) that

Pa∼b = {p ∈ ∆(X) |
∑

x∈Xa∼b
p(x) = 1}. (8.6)

Let n ∈ RX be the vector with n(x) = 0 for all x ∈ Xa∼b and n(x) = 1 for all x ∈ X\Xa∼b. As a is not
equivalent to b under < we know that Xa∼b 6= X, and hence n 6= 0. Define Ha∼b := {v ∈ RX | v · n = 0},
which is a hyperplane. Then, it follows from (8.6) that Pa∼b = Ha∼b ∩∆(X).

(b) This part follows from our arguments above. �

8.3 Proof of Section 6

For proving Theorem 6.1 we need the following result.

Lemma 8.2 (Preference and parallel hyperplanes) Let < be a regular conditional preference relation.
Consider two choices a, b and two different, parallel hyperplanes H and H ′ such that Pa∼b = H ∩∆(X).

(a) If there is some q ∈ Pa�b and λ < 1 with q ∈ (1− λ)H ′ + λH then

Pa<b = {p ∈ ∆(X) | there is some λ ≤ 1 with p ∈ (1− λ)H ′ + λH}.

(b) If there is some q ∈ Pb�a and λ < 1 with q ∈ (1− λ)H ′ + λH then

Pa<b = {p ∈ ∆(X) | there is some λ ≥ 1 with p ∈ (1− λ)H ′ + λH}.
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Proof. (a) Suppose there is some q ∈ Pa�b and µ < 1 with q ∈ (1 − µ)H ′ + µH. Let A be the set on the
righthand side of the equality in (a). To show that Pa<b ⊆ A take some p ∈ Pa<b, and let λ be such that
p ∈ (1−λ)H ′+λH. Suppose, contrary to what we want to show, that λ > 1. Then, there is some α ∈ (0, 1)
such that (1− α)q+ αp ∈ H ∩∆(X) = Pa∼b. However, as q ∈ Pa�b and p ∈ Pa<b, it follows by preservation
of strict preference that (1 − α)q + αp ∈ Pa�b for every α ∈ (0, 1), which is a contradiction. Hence, λ ≤ 1,
which implies that p ∈ A.

To show that A ⊆ Pa<b, take some p ∈ A. Hence, p ∈ (1 − λ)H ′ + λH for some λ ≤ 1. If λ = 1 then
p ∈ H ∩∆(X) = Pa∼b. Suppose now that λ < 1. As µ < 1 also, we know that p must be on the same side
of the hyperplane H as q. Since Pa∼b = H ∩∆(X) and q ∈ Pa�b, it follows by continuity and preservation
of strict preference that p ∈ Pa�b also. We thus have that p ∈ Pa<b in both cases. This completes the proof
for (a).

Property (b) can be shown in a similar fashion. �

Proof of Theorem 6.1. (a) Suppose that < is regular and satisfies existence of a uniform preference
increase. Then, by Theorem 5.1, there is a utility function u that represents < . To show strong transitivity,
consider three choices a, b and c. As < has preference reversals on every pair of choices, it follows from
Lemma 3.1 (b) that

〈Pa∼b〉 = {v ∈ RX | u(a, v) = u(b, v)}, 〈Pa∼c〉 = {v ∈ RX | u(a, v) = u(c, v)} and
〈Pb∼c〉 = {v ∈ RX | u(b, v) = u(c, v)},

which immediately implies that 〈Pa∼b〉 ∩ 〈Pa∼c〉 ⊆ 〈Pb∼c〉 .
To show the line property, note first that we can always find a line L = {v+λw | λ ∈ R} that intersects

each of the hyperplanes 〈Pe∼f 〉 at a single point vef = v+λefw, and such that λef 6= λeg whenever 〈Pe∼f 〉 6=
〈Pe∼g〉 . To see this, select a vector w such that w /∈ 〈Pe∼f 〉 for every e, f ∈ C. That is, w is not parallel to
any of the hyperplanes 〈Pe∼f 〉 . Then, the line {λw | λ ∈ R} will intersect each of the hyperplanes 〈Pe∼f 〉
exactly once. We can then choose the vector v such that the line L = {v + λw | λ ∈ R} intersects each
of the hyperplanes 〈Pe∼f 〉 at a single point vef = v + λefw, and such that λef 6= λeg whenever 〈Pe∼f 〉 6=
〈Pe∼g〉 .

Hence, u(e, vef ) = u(f, vef ) for all e, f ∈ {a, b, c, d}. We will show that

(λab − λbd)(λac − λbc)(λad − λcd) = (λab − λbc)(λac − λcd)(λad − λbd). (8.7)

Assume first that λef = λeg for some e, f, g ∈ {a, b, c, d}. Then, by transitivity of <, we have that λef =
λeg = λfg, and (8.7) trivially holds.

Suppose next that λef 6= λeg for all e, f, g ∈ {a, b, c, d}. Define the affi ne mappings δab, δac and δad from
R to R by

δab(λ) := u(a, v + λw)− u(b, v + λw), δac(λ) := u(a, v + λw)− u(c, v + λw) and (8.8)

δad(λ) := u(a, v + λw)− u(d, v + λw) for all λ ∈ R.
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Moreover, these mappings are nonconstant as δab(λab) = 0 and δab(λ) 6= 0 for all λ 6= λab, and similarly for
δac and δad. As these mappings are affi ne and nonconstant, there are nonzero numbers Dab, Dac and Dad

such that

δab(λ)− δab(µ) = Dab · (λ− µ) (8.9)

δac(λ)− δac(µ) = Dac · (λ− µ) and (8.10)

δad(λ)− δad(µ) = Dad · (λ− µ) (8.11)

for all λ, µ ∈ R.
We will now show that

Dab

Dac
=
λac − λbc
λab − λbc

. (8.12)

Note that Dab
Dac

plays the same role as ∆ dega�′c
∆ dega�′d

in the proof sketch of Section 6.2. By taking λ = λab and

µ = λbc, we obtain from (8.9) that

Dab =
δab(λab)− δab(λbc)

λab − λbc
= − δab(λbc)

λab − λbc
(8.13)

since δab(λab) = 0. Similarly, by taking λ = λac and µ = λbc, we obtain from (8.10) that

Dac =
δac(λac)− δac(λbc)

λac − λbc
= − δac(λbc)

λac − λbc
= − δab(λbc)

λac − λbc
(8.14)

since δac(λac) = 0 and δac(λbc) = δab(λbc). By combining (8.13) and (8.14) we obtain (8.12).
In a similar fashion it can be shown that

Dac

Dad
=
λad − λcd
λac − λcd

and
Dab

Dad
=
λad − λbd
λab − λbd

. (8.15)

As
Dab

Dad
=
Dab

Dac
· Dac

Dad

it follows from (8.12) and (8.15) that

λad − λbd
λab − λbd

=
λac − λbc
λab − λbc

· λad − λcd
λac − λcd

,

which yields (8.7). Hence, < satisfies strong transitivity and the line property, which was to show.
(b) Assume now that < is regular, and satisfies strong transitivity and the line property. Take an arbitrary
choice a. We construct a conditional preference relation <′ that uniformly increases the preference for a
relative to <, distinguishing two cases: (1) there are some b, c 6= a with Pa∼b 6= Pa∼c, and (2) Pa∼b = Pa∼c
for all b, c 6= a.
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Case 1. Suppose there are some e, f 6= a with Pa∼e 6= Pa∼f . Since < has preference reversals on all pairs
of choices we know by Lemma 3.1 (b) that every set 〈Pb∼c〉 is a hyperplane. By the same argument as in
(a) we can find a line L = {v∗ + λw∗ | λ ∈ R} that intersects each of the sets 〈Pb∼c〉 exactly once, say at
vbc = v∗ + λbcw

∗, and such that λbc 6= λbd whenever 〈Pb∼c〉 6= 〈Pb∼d〉 .
For the purpose of this proof we define, for every b, c 6= a with λac 6= λbc, the number

Dabc :=
λab − λbc
λac − λbc

. (8.16)

As λac 6= λbc, it follows by transitivity that λab, λac and λbc are pairwise different, and hence Dabc 6= 0. By
the line property we have that

Dabd = Dabc ·Dacd (8.17)

for all b, c, d 6= a with λad 6= λbd, λac 6= λbc and λad 6= λcd.

We will now define a hyperplane Ha∼′b for every choice b 6= a, as follows. Recall that choices e, f 6= a
are such that Pa∼e 6= Pa∼f . As < has preference reversals on {a, e}, there is some belief p∗ ∈ Pe�a. Since,
by Lemma 3.1 (a), Pa∼e = 〈Pa∼e〉 ∩∆(X), we know that p∗ /∈ 〈Pa∼e〉 . Let Ha∼′e be the unique hyperplane
that is parallel to 〈Pa∼e〉 and that passes through p∗. Then, the line L intersects Ha∼′e at a single point, say
v′ae = v∗ + λ′aew

∗. Note that λ′ae 6= λae, since Ha∼′e is parallel to, but different from, 〈Pa∼e〉 .
As Pa∼e 6= Pa∼f and, by Lemma 3.1 (a), we have that Pa∼e = 〈Pa∼e〉∩∆(X) and Pa∼f = 〈Pa∼f 〉∩∆(X),

it follows that 〈Pa∼e〉 6= 〈Pa∼f 〉 . By the way we have chosen the line L we then conclude that λae 6= λaf .
Thus, vae ∈ 〈Pa∼e〉 \ 〈Pa∼f 〉 . Since, by strong transitivity, 〈Pa∼e〉 ∩ 〈Pe∼f 〉 ⊆ 〈Pa∼f 〉 , we conclude that
vae /∈ 〈Pe∼f 〉 and hence λae 6= λef . Similarly, λaf 6= λef . That is, λae, λaf and λef are pairwise different. Let
λ′af be the unique number such that

λ′ae − λae = Daef · (λ′af − λaf ), (8.18)

and let Ha∼′f be the unique hyperplane that is parallel to 〈Pa∼f 〉 and that passes through v′af = v∗+λ′afw
∗.

Note that Daef is well-defined and not equal to 0 as λae, λaf and λef are pairwise different. This is exactly
the way we defined λ′ae and λ

′
af in the proof sketch of Section 6.2.

Next, take a choice b 6= a, e, f. Then either λab 6= λae or λab 6= λaf . Assume first that λab 6= λae. By
strong transitivity we can then show, in a similar way as above, that λab, λae and λbe are pairwise different.
Let λ′ab be the unique number such that

λ′ab − λab = Dabe · (λ′ae − λae) (8.19)

and let Ha∼′b be the unique hyperplane that is parallel to 〈Pa∼b〉 and that passes through v′ab = v∗+λ′abw
∗.

If λab = λae then it must be λab 6= λaf . By strong transitivity, it then follows that λab, λaf and λbf are
pairwise different. Let λ′ab be the unique number such that

λ′ab − λab = Dabf · (λ′af − λaf ), (8.20)

and let Ha∼′b be the unique hyperplane that is parallel to 〈Pa∼b〉 and that passes through v′ab = v∗+λ′abw
∗.
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We now show that, for all b, c 6= a with λab 6= λac,

λ′ab − λab = Dabc · (λ′ac − λac). (8.21)

In view of (8.18), (8.19) and (8.20) it only remains to show (8.21) for the case where c = f and λab 6= λae,
and for the case where b, c 6= e, f.

Consider first the case where c = f and λab 6= λae. Then we have, by (8.18) and (8.19), that

λ′ab − λab = Dabe · (λ′ae − λae) and λ′ae − λae = Daef · (λ′af − λaf ),

which implies that
λ′ab − λab = Dabe ·Daef · (λ′af − λaf ).

As, by the line property, Dabe ·Daef = Dabf , we obtain that λ′ab − λab = Dabf · (λ′af − λaf ), which was to
show.

Suppose next that b, c 6= e, f. If λab 6= λae and λac 6= λae, then it follows from (8.19) that

λ′ab − λab = Dabe · (λ′ae − λae) and λ′ac − λac = Dace · (λ′ae − λae)

and hence

λ′ab − λab =
Dabe

Dace
· (λ′ac − λac).

As, by definition, Dace = 1
Daec

, it follows that

λ′ab − λab = Dabe ·Daec · (λ′ac − λac) = Dabc · (λ′ac − λac)

since, by the line property, Dabe ·Daec = Dabc.
If λab 6= λae and λac = λae, then it follows from (8.19) and (8.20) that

λ′ab − λab = Dabe · (λ′ae − λae) and λ′ac − λac = Dacf · (λ′af − λaf ).

Combined with (8.18) we get

λ′ab − λab = Dabe ·Daef · (λ′af − λaf ) and λ′ac − λac = Dacf · (λ′af − λaf ),

and hence

λ′ab − λab =
Dabe ·Daef

Dacf
(λ′ac − λac).

As, by the line property, Dabe · Daef = Dabf , and
Dabf
Dacf

= Dabf · Dafc = Dabc, it follows that λ′ab − λab =

Dabc · (λ′ac − λac).
The case where λab = λae and λac 6= λae, and the case where λab = λae and λac = λae can be shown in

a similar fashion as above. We have thus established (8.21) for every b, c 6= a with λab 6= λac.
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In this way we have constructed, for every b 6= a, a hyperplane Ha∼′b. For every choice b 6= a set
Ha∼b := 〈Pa∼b〉 , which is a hyperplane as well by Lemma 3.1 (b). Let <′ be the conditional preference
relation that coincides with < on every pair of choices {b, c} with b, c 6= a, and such that for every choice
b 6= a

Pa�′b = {p ∈ ∆(X) | there is λ > 0 with p ∈ (1− λ)Ha∼′b + λHa∼b}, (8.22)

Pa∼′b = Ha∼′b ∩∆(X), and (8.23)

Pb�′a = {p ∈ ∆(X) | there is λ < 0 with p ∈ (1− λ)Ha∼′b + λHa∼b}. (8.24)

By (8.18), (8.19), (8.20), the fact that Dabc 6= 0 for all b, c 6= a with λab 6= λac, and the fact that
λae 6= λ′ae, it follows that the hyperplane Ha∼b is always different from Ha∼′b for every b 6= a.

We will show <′ is regular, and that these choices of <′, Ha∼b and Ha∼′b satisfy properties (a) and (b)
in Definition 4.1. We start by showing that

〈Pb∼c〉 = 〈(〈Pa∼b〉 ∩ 〈Pa∼c〉) ∪ {vbc}〉 (8.25)

for all b, c 6= a.
To see this, assume first that λab = λac. By the way we have chosen the line L it then follows that

〈Pa∼b〉 = 〈Pa∼c〉 , and hence, by transitivity, 〈Pa∼b〉 = 〈Pa∼c〉 = 〈Pb∼c〉 . Thus, vbc ∈ 〈Pa∼b〉 = 〈Pa∼c〉 , and
the (8.25) holds.

Assume next that λab 6= λac. Then, by transitivity, λab, λac and λbc are pairwise different, which means
that vbc /∈ 〈Pa∼b〉∩〈Pa∼c〉 .Moreover, as λab 6= λac, we must have that 〈Pa∼b〉 6= 〈Pa∼c〉 . Since, by Lemma 3.1
(b), dim(〈Pa∼b〉) = dim(〈Pa∼c〉) = |X| − 1, it follows that dim(〈Pa∼b〉 ∩ 〈Pa∼c〉) = |X| − 2. As vbc /∈ 〈Pa∼b〉 ∩
〈Pa∼c〉 we conclude that dim(〈(〈Pa∼b〉 ∩ 〈Pa∼c〉) ∪ {vbc}〉) = |X| − 1. By strong transitivity we know that
〈Pa∼b〉 ∩ 〈Pa∼c〉 ⊆ 〈Pb∼c〉 . Since vbc ∈ 〈Pb∼c〉 by construction, it follows that 〈(〈Pa∼b〉 ∩ 〈Pa∼c〉) ∪ {vbc}〉 ⊆
〈Pb∼c〉 . As both linear subspaces have dimension |X| − 1, they must be equal, and hence (8.25) applies.

We next show that

〈Pb∼c〉 = {v ∈ RX | there is some λ ∈ R with (8.26)

v ∈ (1− λ)Ha∼′b + λHa∼b and v ∈ (1− λ)Ha∼′c + λHa∼c}

for all b, c 6= a.
We first show this property for all b, c 6= a with λab = λac. By the choice of the line L, it must then be

that 〈Pa∼b〉 = 〈Pa∼c〉 , and hence, by transitivity, 〈Pa∼b〉 = 〈Pa∼c〉 = 〈Pb∼c〉 . Let A be the righthand side of
(8.26). Then,

A = {v ∈ RX | v ∈ 0Ha∼′b + 1Ha∼b and v ∈ 0Ha∼′c + 1Ha∼c} = Ha∼b ∩Ha∼c = 〈Pb∼c〉 ,

which establishes (8.26).
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We next show (8.26) for b, c 6= a with λab 6= λac. Let λ := λab−λbc
λab−λ′ab

. Then, it may be verified that

vbc = (1− λ)vab + λv′ab. On the basis of (8.21) we may conclude that λ = λac−λbc
λac−λ′ac

also, and hence it follows

similarly that vbc = (1− λ)vac + λv′ac. As such, there is some number λ 6= 0 with

vbc ∈ λHa∼′b + (1− λ)Ha∼b and vbc ∈ λHa∼′c + (1− λ)Ha∼c. (8.27)

Let A be the set on the righthand side of (8.26). To show that 〈Pb∼c〉 ⊆ A, take some v ∈ 〈Pb∼c〉 . Then,
by (8.25), there is some vector w ∈ Ha∼b ∩Ha∼c and some number α such that v = w+αvbc. Together with
(8.27) it then follows that

v ∈ αλHa∼′b + (1− αλ)Ha∼b and v ∈ αλHa∼′c + (1− αλ)Ha∼c

and hence v ∈ A.
To show that A ⊆ 〈Pb∼c〉 take some v ∈ A. Hence, there is some number µ with

v ∈ (1− µ)Ha∼′b + µHa∼b and v ∈ (1− µ)Ha∼′c + µHa∼c. (8.28)

We show that
w := λv − (1− µ)vbc ∈ Ha∼b ∩Ha∼c. (8.29)

By (8.27) and (8.28), there are hab, kab ∈ Ha∼b and h′ab, k
′
ab ∈ Ha∼′b such that v = (1 − µ)h′ab + µhab and

vbc = λk′ab + (1− λ)kab. Hence,

w = λ((1− µ)h′ab + µhab)− (1− µ)(λk′ab + (1− λ)kab)

= λµhab − (1− λ)(1− µ)kab + λ(1− µ)(h′ab − k′ab).

As the hyperplanes Ha∼′b and Ha∼b are parallel and Ha∼b = 〈Pa∼b〉 is a linear subspace, it follows that
h′ab − k′ab ∈ Ha∼b and hence w ∈ Ha∼b. In a similar way it can be shown that w ∈ Ha∼c, and hence we have
established (8.29).

As λ 6= 0 it follows from (8.29) that v = 1
λw + 1−µ

λ vbc ∈ 〈Pb∼c〉 by (8.25) and (8.29). We have thus
established (8.26) for all b, c 6= a.

We now show property (a) in Definition 4.1. Take some b 6= a. Note that, by (8.22) and (8.23),

Pa<′b = {p ∈ ∆(X) | there is λ ≥ 0 with p ∈ (1− λ)Ha∼′b + λHa∼b}.

Hence, it remains to show that

Pa<b = {p ∈ ∆(X) | there is λ ≥ 1 with p ∈ (1− λ)Ha∼′b + λHa∼b}. (8.30)

We first show (8.30) for b = e. Recall that we have chosen the belief p∗ such that p∗ ∈ Pe�a and p∗ ∈ Ha∼′e.
As Ha∼e ∩∆(X) = Pa∼e, it follows by Lemma 8.2 (b) that (8.30) obtains for b = e.
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We now show (8.30) for b = f. Recall that Pa∼e 6= Pa∼f and hence 〈Pa∼e〉 6= 〈Pa∼f 〉 . Then, by strong
transitivity, 〈Pa∼e〉 6= 〈Pe∼f 〉 and 〈Pa∼f 〉 6= 〈Pe∼f 〉 . Hence, there is some pef ∈ Pe∼f with pef /∈ Pa∼e∪Pa∼f .
Then, by (8.26), there is some λ such that

pef ∈ (1− λ)Ha∼′e + λHa∼e and pef ∈ (1− λ)Ha∼′f + λHa∼f

where λ 6= 1.
If λ > 1 then it follows from (8.30) for b = e that pef ∈ Pa�e. As pef ∈ Pe∼f we conclude that pef ∈ Pa�f .

Since pef ∈ (1 − λ)Ha∼′f + λHa∼f and λ > 1 we conclude from Lemma 8.2 that (1 − µ)Ha∼′f + µHa∼f ∩
∆(X) ⊆ Pf�a for all µ < 1. Since < has preference reversals on {a, f}, there is some µ < 1 such that
(1−µ)Ha∼′f +µHa∼f ∩∆(X) is non-empty. Take some q ∈ (1−µ)Ha∼′f +µHa∼f . Then, q ∈ Pf�a. Hence,
by Lemma 8.2 (b), (8.30) holds for b = f .

If λ < 1 then it follows from (8.30) for b = e that pef ∈ Pe�a. As pef ∈ Pe∼f we conclude that pef ∈ Pf�a.
Since pef ∈ (1− λ)Ha∼′f + λHa∼f and λ < 1 we conclude from Lemma 8.2 that (8.30) holds for b = f .

We finally show (8.30) for all b 6= e, f. Since Pa∼e 6= Pa∼f it follows that either Pa∼b 6= Pa∼e or
Pa∼b 6= Pa∼f . Assume that Pa∼b 6= Pa∼e, which implies by strong transitivity that 〈Pa∼b〉 6= 〈Pb∼e〉 and
〈Pa∼e〉 6= 〈Pb∼e〉 . Hence, we can choose some pbe ∈ Pb∼e with pbe /∈ Pa∼b ∪ Pa∼e. Then, by (8.26), there is
some λ such that

pbe ∈ (1− λ)Ha∼′b + λHa∼b and pbe ∈ (1− λ)Ha∼′e + λHa∼e

where λ 6= 1. But then, we can show in the same way as above that (8.30) holds. If Pa∼b 6= Pa∼f the proof
will be similar since we know that (8.30) holds for b = f. We have thus established (8.30) for all b 6= a, and
hence we have shown property (a) in Definition 4.1.

We continue by proving property (b) in Definition 4.1. Hence, we must show for all b, c 6= a that

Pb<c = {p ∈ ∆(X) | there are λ ≤ µ with (8.31)

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c}.

Note that by (8.26) and Lemma 3.1 (b) we know that

Pb∼c = {p ∈ ∆(X) | there is λ with (8.32)

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− λ)Ha∼′c + λHa∼c}.

We distinguish two cases: (i) Pa∼b 6= Pa∼c, and (ii) Pa∼b = Pa∼c.
(i) Assume first that Pa∼b 6= Pa∼c. As < has preference reversals on {a, b} and {a, c}, there is some

p ∈ Pa∼b\Pa∼c. Suppose that p ∈ Pa�c. By transitivity, p ∈ Pb�c. Moreover, since p ∈ Pa∼b ∩ Pa�c we know
by (8.30) that p ∈ Ha∼b and p ∈ (1−µ)Ha∼′c +µHa∼c for some µ > 1. Hence, we have found some p ∈ Pb�c
with 1 = λ < µ such that p ∈ (1 − λ)Ha∼′b + λHa∼b and p ∈ (1 − µ)Ha∼′c + µHa∼c. As < is regular, it
follows from (8.32) that

Pb�c = {p ∈ ∆(X) | there are λ < µ with

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c}.
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Together with (8.32) we thus obtain (8.31). If p ∈ Pc�a, we can use a similar argument to show (8.31).
(ii) Assume next that Pa∼b = Pa∼c. Recall that Pa∼e 6= Pa∼f . Hence, Pa∼b 6= Pa∼e or Pa∼b 6= Pa∼f .

Assume, without loss of generality, that Pa∼b 6= Pa∼e.
As Pa∼b = Pa∼c, it follows by transitivity of < that Pa∼b = Pa∼c = Pb∼c. We also have that Pb∼e and

Pc∼e are different. To see this, assume on the contrary that Pb∼e = Pc∼e. Then, by transitivity of < we
would have that Pb∼e = Pc∼e = Pb∼c. As Pb∼c = Pa∼b, it would follow that Pb∼e = Pa∼b, which would imply
that Pa∼b = Pa∼e, which is a contradiction. Hence, we conclude that Pb∼e and Pc∼e are different.

Take some p ∈ Pb∼e\Pc∼e. Then, by (8.32), there is some λ with

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− λ)Ha∼′e + λHa∼e. (8.33)

As p /∈ Pc∼e, we must have that either p ∈ Pc�e or p ∈ Pe�c.
Assume first that p ∈ Pc�e. As p ∈ Pb∼e it follows by transitivity that p ∈ Pc�b. Moreover, as p ∈ Pc�e

and Pa∼c = Pa∼b 6= Pa∼e, we know by case (i) above and the second equation in (8.33) that

p ∈ (1− µ)Ha∼′c + µHa∼c for some µ < λ. (8.34)

By combining (8.33) and (8.34) we have thus found some p ∈ Pc�b with

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c for some λ > µ. (8.35)

As < is regular, it follows from (8.35) and (8.32) that

Pc�b = {p ∈ ∆(X) | there are λ > µ with

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c}.

Together with (8.32) we thus obtain (8.31). If p ∈ Pe�c, we can use a similar argument as above to derive
(8.31).

We will finally show that <′ is regular. By (8.22), (8.23) and (8.24) it immediately follows that <′
is complete and satisfies continuity, preservation of indifference and preservation of strict preference. It
remains to show that <′ is transitive.

Take some b, c, d ∈ C and some p ∈ Pb<′c ∩ Pc<′d. We must show that p ∈ Pb<′d. If b, c, d 6= a this holds
because <′ coincides with < on {b, c, d} and < is transitive.

Assume now that b = a. As p ∈ Pa<′c it follows from (8.22) and (8.23) that p ∈ (1 − λ)Ha∼′c + λHa∼c
for some λ ≥ 0. Since p ∈ Pc<′d = Pc<d we know from (8.31) that p ∈ (1−µ)Ha∼′d +µHa∼d for some µ ≥ λ.
By combining these two facts we conclude that p ∈ (1− µ)Ha∼′d + µHa∼d for some µ ≥ 0. From (8.22) and
(8.23) it then follows that p ∈ Pa<′d, as was to show.

Assume next that c = a. As p ∈ Pb<′a it follows from (8.23) and (8.24) that p ∈ (1−λ)Ha∼′b+λHa∼b for
some λ ≤ 0. Since p ∈ Pa<′d we know from (8.22) and (8.23) that p ∈ (1−µ)Ha∼′d +µHa∼d for some µ ≥ 0.
By combining these two facts we conclude that p ∈ (1 − λ)Ha∼′b + λHa∼b and p ∈ (1 − µ)Ha∼′d + µHa∼d
for some λ ≤ µ. By (8.31) it then follows that p ∈ Pb<′d, as was to show.
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Assume finally that d = a. As p ∈ Pb<′c = Pb<c it follows from (8.31) that p ∈ (1 − λ)Ha∼′b + λHa∼b
and p ∈ (1− µ)Ha∼′c + µHa∼c for some λ ≤ µ. Since p ∈ Pc<′a it follows from (8.23) and (8.24) that µ ≤ 0.
By combining these two facts we conclude that p ∈ (1− λ)Ha∼′b + λHa∼b for some λ ≤ 0. From (8.23) and
(8.24) it then follows that p ∈ Pb<′a, as was to show.

We thus conclude that <′ is transitive. Summarizing, we see that <′ is regular, and that conditions (a)
and (b) in Definition 4.1 are satisfied. As such, <′ uniformly increases the preference for a relative to < .
This completes Case 1.

Case 2. Assume now that Pa∼b = Pa∼c for all b, c 6= a. By transitivity it then follows that Pa∼b = Pa∼c =
Pb∼c for all b, c 6= a. By Lemma 3.1 (b) we know, for every b 6= a, that Pa∼b = 〈Pa∼b〉 ∩ ∆(X) and that
〈Pa∼b〉 is a hyperplane. Set H := 〈Pa∼b〉 for some b 6= a. Hence, H = 〈Pa∼b〉 for all b 6= a. Let H+ and H−

be sets of vectors such that H separates H+ from H− and H+ ∪H− ∪H = RX .
As < has preference reversals on all pairs of choices, there are choices b1, b2, ..., bK , c1, c2, ..., cM 6= a

(where {b1, ..., bK} or {c1, ..., cM} may be empty) such that

b1 �p b2 �p ... �p bK �p a �p c1 �p c2 �p ... �p cM for all p ∈ H+ (8.36)

and
cM �p cM−1 �p ... �p c1 �p a �p bK �p bK−1 �p ... �p b1 for all p ∈ H−. (8.37)

Take a vector v ∈ H and a vector w 6= 0 such that the line L := {v + λw | λ ∈ R} intersects the
hyperplane H only at v, and such that for every p ∈ H+ ∩ L there is some λ > 0 with p = v + λw. Choose
a number λ′ab for every b 6= a such that

λ′abK > λ′abK−1 > ... > λ′ab1 > 0 > λ′acM > λ′acM−1 > ... > λ′ac1 . (8.38)

For every b 6= a let Ha∼′b be the unique hyperplane that is parallel to H and passes through v′ab := v+λ′abw.
Hence, by construction,

Ha∼′b ⊆ H+ for all b ∈ {b1, ..., bK} and Ha∼′b ⊆ H− for all b ∈ {c1, ..., cM}. (8.39)

Moreover, we can choose the numbers λ′ab close enough to 0 such that Ha∼′b ∩ ∆(X) is nonempty for all
b 6= a.

Set Ha∼b := H. Let <′ be the conditional preference relation that coincides with < on all pairs {b, c}
with b, c 6= a, and where for every b 6= a

Pa�′b = {p ∈ ∆(X) | there is λ > 0 with p ∈ (1− λ)Ha∼′b + λHa∼b}, (8.40)

Pa∼′b = Ha∼′b ∩∆(X), and (8.41)

Pb�′a = {p ∈ ∆(X) | there is λ < 0 with p ∈ (1− λ)Ha∼′b + λHa∼b}. (8.42)

We will show that <′ uniformly increases the preference for a relative to < . That is, we must prove that
<′ is regular, and that the choice of <′, Ha∼b and Ha∼′b satisfies the conditions (a) and (b) in Definition 4.1.
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We start by showing property (a) in Definition 4.1. In view of (8.40) and (8.41) it only remains to show
that

Pa<b = {p ∈ ∆(X) | there is λ ≥ 1 with p ∈ (1− λ)Ha∼′b + λHa∼b}. (8.43)

Take some b 6= a, and assume first that b ∈ {b1, ..., bK}. Hence, by (8.39), Ha∼′b ⊆ H+. Moreover, by (8.36)
and (8.37), Pa<b = H− ∪H. Since

H− ∪H = {p ∈ ∆(X) | there is λ ≥ 1 with p ∈ (1− λ)Ha∼′b + λHa∼b},

(8.43) obtains.
Take next some b ∈ {c1, ..., cM}. Hence, by (8.39), Ha∼′b ⊆ H−. Moreover, by (8.36) and (8.37), Pa<b =

H+ ∪H. Since

H+ ∪H = {p ∈ ∆(X) | there is λ ≥ 1 with p ∈ (1− λ)Ha∼′b + λHa∼b},

(8.43) obtains. We thus conclude that property (a) in Definition 4.1 holds.

We now prove property (b) in Definition 4.1. Hence, we must show for every b, c 6= a that

Pb<c = {p ∈ ∆(X) | there are λ ≤ µ with (8.44)

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c}.

Recall that Ha∼b = H for all b 6= a. Moreover, by construction, Ha∼′b 6= Ha∼′c for all b 6= c. Hence,

{p ∈ ∆(X) | there is λ with p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− λ)Ha∼′c + λHa∼c} (8.45)

= H ∩∆(X) = Pb∼c.

Now, take some b, c 6= a. Suppose first that p ∈ Pb�c for some p ∈ H+. Then, by (8.36) and (8.38) there
are λ < µ such that p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c. Hence, we have found some
p ∈ Pb�c such that there are λ < µ with p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c. Together
with (8.45) it follows that

Pb�c = {p ∈ ∆(X) | there are λ < µ with

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c},

which, together with (8.45), implies (8.44).
Suppose next that p ∈ Pc�b for some p ∈ H+. In the same way as above, it then follows that

Pc�b = {p ∈ ∆(X) | there are λ > µ with

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c}.

Together with (8.45) we conclude that

Pb�c = {p ∈ ∆(X) | there are λ < µ with

p ∈ (1− λ)Ha∼′b + λHa∼b and p ∈ (1− µ)Ha∼′c + µHa∼c},
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which, together with (8.45), implies (8.44). We thus have shown property (b) in Definition 4.1.

It remains to show that <′ is regular. This can be shown in the same way as in Case 1, using (8.40),
(8.41), (8.42) and (8.44). We thus see that <′ uniformly increases the preference for a relative to < . This
completes the proof. �
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