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Abstract

The framework of psychological game theory has allowed for the modelling of a wide range of belief-dependent motiva-
tions. At the same time, analysing psychological games can get complex rather quickly due to the fact that higher-order
beliefs may enter the utility functions. As a result, some nice properties of traditional games fail to carry over to psy-
chological games in general. This includes the failure of the iterated elimination of strictly dominated choices (IESDC)
to always exactly characterize the choices that are rationally played under belief hierarchies expressing common belief in
rationality. In this paper we characterize the families of two-player expectation-based psychological games for which IESDC
yields exactly the choices that are rationally played under common belief in rationality. We characterize these games based
on which orders of beliefs are directly utility-relevant for a decision-maker. In total we identify three cases. Two of these
are relatively trivial: piq the decision-maker’s utility depends on a single, even order of belief and piiq the decision-maker’s
utility and her opponent’s utility depend on a single order of belief. We also identify a third, non-trivial case. Our novel
notion of causality diagrams, which capture those orders of beliefs that are (indirectly) utility-relevant, is used to obtain
our results.
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1 Introduction

From traditional game theory we have become familiar with reasoning about interactive scenarios
where individuals care about material payoffs. However, in many real-life scenarios individuals
do not only have preferences that are rooted exclusively in the outcomes of the game. Rather,
they are also often motivated by the beliefs and intentions of themselves and others. These types
of belief-dependent motivations cannot be captured by the traditional framework of game the-
ory. As a response, the more general framework of psychological game theory was introduced
by Geanakoplos et al. (1989) and further developed and refined by Battigalli and Dufwenberg
(2009). This framework has allowed for the modelling (and experimental testing) of a wide range
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of belief-dependent motivations, including: intention-based reciprocity (Rabin, 1993; Dufwenberg
and Kirchsteiger, 2004; Falk and Fischbacher, 2006; Sebald, 2010), frustration and anger (Battigalli
et al., 2015), surprise (Khalmetski et al., 2015), deception and lying behaviour (Battigalli et al.,
2013; Dufwenberg and Dufwenberg, 2018; Gneezy et al., 2018), guilt (Dufwenberg, 2002; Charness
and Dufwenberg, 2006; Battigalli and Dufwenberg, 2007; Attanasi et al., 2013; Attanasi et al.,
2016) and social norm conformity (Li, 2008; Charness et al., 2019). While psychological games
can introduce very interesting phenomena, they can also be noticeably hard to analyse, certainly
compared to traditional games.

A well-established notion that is used to predict behaviour in traditional game theory is the
basic concept of common belief in rationality (Spohn, 1982; Brandenburger and Dekel, 1987; Tan
and Werlang, 1988). In traditional games, common belief in rationality is appealing for two reasons.
Conceptually, it allows for a one-person perspective on a game, as opposed to Nash equilibrium.
This means that when making a choice, a player forms beliefs in her mind about what her opponent
will choose. She also forms beliefs about what her opponent believes she will choose. And so on.
Based on such individual reasoning, the player reaches her decision. Practically, common belief in
rationality is also an intuitive notion to use and straightforward to compute in traditional games
due to its characterization in terms of iterated elimination of strictly dominated choices (IESDC).
It thus becomes a natural and important question to ask to what extent the IESDC-procedure is
able to characterize rational choices under common belief in rationality.

In this paper, we will explicitly focus on this question. We will consider the question for a
particular class of psychological games. As argued in Jagau and Perea (2018), most applications of
psychological game theory are expectation-based psychological games. In such games, players in a
game care only about higher-order expectations. These are sequences of probability distributions
that summarize some, but not all, aspects of a belief hierarchy. One nice property that carries over
from traditional games to such expectation-based psychological games is the finite matrix repre-
sentation of a psychological game. Because of this, such games behave very much like traditional
games. Moreover, a finite matrix representation is essential in defining procedures such as IESDC.1

Despite the resemblance to traditional games, there are examples of expectation-based psycholog-
ical games where the IESDC-procedure fails to characterize rational choices under common belief
in rationality (see for instance Jagau and Perea (2018)). Here we will shed light on the matter of
why the IESDC-procedure may fail to characterize common belief in rationality in certain scenarios
and why it actually does give an exact characterization in others. We do so by exactly identifying
those families of expectation-based psychological games where the IESDC-procedure does give a
characterization of rational choices under common belief in rationality. By doing so, we not only
identify those families of psychological games that are on a similar level of complexity in terms of
reasoning as traditional games. We also point out what can make the other families of psychological
games so difficult to reason about, both from the point of view of the player as well as that of the
analyst. Our analysis in this paper focuses on two-player expectation-based psychological games in
a static environment without updating of beliefs.

In Theorem 1 we show that all rational choices under common belief in rationality must neces-
sarily survive the IESDC-procedure. The other direction however does not need to hold.

To briefly illustrate how the IESDC-procedure can fail to characterize rational choices under
common belief in rationality, consider the introductory example of an expectation-based psycho-

1There are exceptions in psychological game theory that are not expectation-based psychological games. These
include modelling preferences regarding anxiety (Caplin and Leahy, 2004) and suspense (Caplin and Leahy, 2001;
Ely et al., 2015). To model such preferences, we need more information than just the higher-order expectations.
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Table 1: Introductory example

Player 1’s extreme second-order expectations

pc, aq pc, bq pd, aq pd, bq

a 0 0 0 0

b 1 0 1 1

Player 1’s utilities

Player 2’s extreme first-order expectations

a b

c 0 0

d 0 1

Player 2’s utilities

logical game in Table 1. Here we have two players: player 1 and player 2. Player 1 has alternatives
a and b to choose from, whereas player 2 can choose between options c and d. Player 2’s decision
problem is as in a traditional game: she cares only about what player 1 will do. This is repre-
sented by the lower matrix. Player 1’s utility however depends on her full second-order expectation.
That is, her expectation about what player 2 is going to do is relevant for her decision, which is
her first-order expectation. Additionally however, she cares about what player 2 expects player 1
(herself) to do. These two expectations, one of which is a higher-order expectation, form player
1’s second-order expectation. If player 1 chooses a, she always receives a utility of 0. If on the
other hand she chooses b, she receives a utility of 0 in case she expects player 2 to choose c while
expecting player 2 to believe player 1 will choose b. In all remaining extreme cases of second-order
expectations player 1 receives a utility of 1 when choosing b. Player 1’s decision problem is depicted
by the upper matrix. It is clear here that no choice for player 1 or player 2 is strictly dominated in
the relevant decision problem. The IESDC-procedure would therefore not eliminate any choice for
any player. However, choice a for player 1 can never be optimal under a belief hierarchy expressing
common belief in rationality. Choice a is only optimal under the extreme second-order expectation
pc, bq, but choice c is never optimal for player 2 given that she expects player 1 to choose b.

The game in Table 1 is part of a particular family of games. Namely one in which one player’s
utility directly depends on her first-order beliefs and the utility of the other depends on her first-
order and second-order beliefs. We identify the different families of expectation-based psychological
games based on the orders of beliefs that are directly relevant in shaping the belief-dependent
motivations of a decision-maker. We call these utility-relevant orders of beliefs or orders of belief in
which the utility is variable. For instance, when modelling simple guilt, whatever a player believes
about her opponent’s choice, her first-order belief, is irrelevant. However, what the player believes
about her opponent’s first-order beliefs, which is part of her second-order belief, is important. The
utility-relevant order of belief for modelling guilt would be the second order of belief. As another
example, the game in Table 1 then belongs to the family of games where player 1’s utility depends
on her first and second orders of belief and player 2’s utility is variable only in her first order of
belief.

In this paper we characterize those families of expectation-based psychological games where
the IESDC-procedure always characterizes exactly the choices that can rationally be made under
common belief in rationality. Take the perspective of player 1. The main theorem (Theorem 2)
establishes that the IESDC-procedure always characterizes rational choices under common belief
in rationality for player 1 if and only if at least one of the following three conditions holds: piq the
utility of player 1 is variable in a single, even order; piiq the utility of player 1 is variable in a single
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Figure 1: Causality diagram of player 1 in Table 1

order of belief and the utility of player 2 is variable in a single order of belief as well; piiiq player
1’s utility is only variable in odd orders and player 2’s utility is variable in a single, even order of
belief z, such that there is no pair x, y of utility-relevant orders for player 1 and no integer n with
x ` n ¨ z “ y. The game in Table 1 does not belong to any family of games described here. An
important observation can be made from this result. That is, if players care about material payoffs,
cases piq ´ piiiq boil down to traditional games where expected utility only depends on first-order
beliefs. In all other cases that involve material payoffs one has to go beyond the IESDC-procedure
to exactly characterize rational choices under common belief in rationality.

In order for a particular choice to be rational, restrictions then need to apply to the orders
of beliefs that are utility-relevant. Under strategic reasoning, it makes sense to assume that the
players to which these utility-relevant orders pertain play rationally as well. Similarly, these players
as well may have belief-dependent motivations, which are rooted in their higher-order beliefs. Then,
in order for the decision-maker to believe in the players’ rationality at her utility-relevant orders,
further restrictions need to be imposed on even higher orders of beliefs. And so on. In the end,
we obtain a sequence of orders of beliefs that satisfy all aforementioned restrictions. For player 1
in the introductory example of Table 1 we can illustrate this via a diagram, as depicted in Figure
1. Player 1’s utility is variable in her first-order and second-order expectations. These can be
directly derived from her first-order and second-order beliefs respectively. For a particular choice C
of player 1 to be optimal, restrictions thus need to be imposed on the first-order and second-order
beliefs. This is why we have arrows from C to orders 1 and 2 in Figure 1. Player 2’s utility is
variable only in her first-order expectation. In order for player 1 to believe in player 2’s rationality
at her already restricted first-order belief, further restrictions need to be imposed on the second-
order belief. This is why we have an arrow from order 1, which refers to a belief about player
2’s choices, to order 2 in Figure 1. Order 2 refers to a belief about player 1’s choices again. For
player 1 not to question her own rationality at the second order of belief given the restrictions that
have already been imposed on that order of belief, further restrictions are required on the third
and fourth orders of belief. Hence the arrows from order 2 to orders 3 and 4. We can continue
establishing such arrows indefinitely. Connected arrows together constitute a path in this diagram.

We refer to a diagram like in Figure 1 as a decision-maker’s causality diagram. Under common
belief in rationality, the causality diagram then captures those steps of reasoning of a decision-
maker that are directly or indirectly relevant for rationalizing a particular choice. As is for instance
the case with order 2 in Figure 1, in a causality diagram the same order of belief may be reached
by multiple paths. In the diagram there, order 2 is reached via the path p0, 2, ..q, but also via the
path p0, 1, 2, ...q. If the same order of belief is reached by multiple paths, it implies that in order
to rationalize a particular choice under common belief in rationality, not questioning rationality at
different orders of beliefs will require different restrictions on the same higher-order belief. If these
restrictions are contradictory, then the choice in question cannot be rational under a belief hierarchy
expressing common belief in rationality. Exactly this friction is what the IESDC-procedure cannot
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pick up on. As a result, the IESDC-procedure may allow for choices that are not rational under
common belief in rationality.

If the same order of belief is reached by multiple paths in a causality diagram of a player,
we say that two paths in the diagram overlap. If a causality diagram is completely free of any
overlapping paths, then also no contradictory restrictions on the same order of belief can occur.
The main theorem of this paper describes exactly these cases by means of families of expectation-
based psychological games. Two of the three cases are trivial in the sense that the causality diagram
only has a single path. Moreover, none of the cases include scenarios where both players care about
materialized outcomes and at least one player has some belief-dependent motivation.

The remainder of this paper is structured as follows. Section 2 presents a definition of static psy-
chological games and common belief in rationality in such games. Section 3 discusses the concept
of higher-order expectations, expectation-based psychological games and families of expectation-
based psychological games based on utility-variant orders. Section 4 discusses the IESDC-procedure
and its problems in psychological games. Moreover, we state here the main result of the paper:
Theorem 2. In Section 5 we introduce the notion of causality diagram to visualize reasoning in
expectation-based psychological games. Section 6 is fully dedicated to the proof of Theorem 2.
Some parts of the proof are moved to the Appendix that accompanies this paper. However, Section
6 illustrates these parts of the proof by means of examples. Finally, we end this paper with some
concluding remarks in Section 7.

2 Preliminaries

In this section we discuss the framework of psychological game theory in general. Moreover, we
will define the reasoning concept of common belief in rationality in this framework, which will play
a central role in this paper.

2.1 Psychological games

In a traditional setting, a player’s experienced, ex-post utility depends only on her opponents’
choices. The player’s utility of making a particular decision then depends only on her first-order
belief of what she expects her opponents to choose. As opposed to this, a player’s expected utility
in a psychological game can explicitly, and non-linearly, depend on any order of belief or even the
entire belief hierarchy. In order to formally discuss the framework of a psychological game, we
should therefore clarify what a belief hierarchy formally is and what types of belief hierarchies we
will be restricting to in this paper. A belief hierarchy bi for a player i represents an infinite chain of
beliefs. The first element in this chain represents the first-order belief about the opponents’ choices,
the second element represents the second-order belief about the opponents’ choices combined with
the opponents’ beliefs about their opponents’ choices and the third represents the third-order belief
about the combination of opponents’ choices, opponents’ first-order beliefs and the opponents’
second-order beliefs. And so on.

Following Brandenburger and Dekel (1993), we formally define beliefs in spaces of uncertainty.
Consider any Polish space S. Let ∆pSq be the set of probability measures on the Borel σ-field over
the space of uncertainty S. Finally, endow ∆pSq with the topology of weak convergence. Then
∆pSq is a Polish space as well. We are considering two-player psychological games throughout
this paper. The primitive space of uncertainty for player i in a two-player game is the set of the
opponent’s choices Cj . We can recursively define

5



X1
i :“ Cj

X2
i :“ X1

i ˆ∆pX1
j q

...

Xn
i :“ Xn´1

i ˆ∆pXn´1
j q

...

Then the set of all possible belief hierarchies for player i is B̃i :“
Ś8

n“1 ∆pXn
i q. Each belief

hierarchy bi is a vector of (higher-order) beliefs pb1i , b
2
i , ...q, where the n ´ th order belief of player

i is a probability distribution bni P ∆pXn
i q. In the current set-up a belief hierarchy bi P B̃i may be

incoherent in the sense that an n-th order belief may contradict what is stated by the pn ´ 1q-th
order belief. When defining psychological games, we assume a player’s belief hierarchy cannot show
such incoherences. More formally, we define coherency as follows.

Definition 1. A belief hierarchy bi “ pb
1
i , b

2
i , ...q expresses coherency if for every n ą 1 we have

margXn´1
i

bni “ bn´1
i .

Let player i’s set of coherent beliefs be denoted by B̃ip1q Ď B̃i.

From Brandenburger and Dekel (1993)’s Proposition 1 we know there exists a homeomorphism
fi : B̃ip1q Ñ ∆pCj ˆ B̃jq. Thus a coherent belief hierarchy can be identified with a probability
distribution over the possible combinations of the opponent’s choices and belief hierarchies. Next
to expressing coherency, a player can also believe her opponent expresses coherency, believe that
her opponent believes her opponent expresses coherency, and so on. This restricts the set of belief
hierarchies we will consider further. We can recursively define such sets of belief hierarchies:

B̃ipkq “ tbi P B̃ipk ´ 1q|fipbiqpCj ˆ B̃jpk ´ 1qq “ 1u, k ě 2.

Consider the set Bi “
Ş

kě0

B̃ipkq. We say a belief hierarchy bi expresses coherency and common belief

in coherency if bi P Bi. Throughout this paper, whenever we refer to a belief hierarchy bi, we assume
it to be a belief hierarchy in Bi, even if it is not directly stated as such. Moreover, every bi P Bi can
be identified with a probability distribution over CjˆBj through the homeomorphism fi as was used
in defining B̃ipkq for any k ě 1. We will make use of this fact multiple times throughout the paper.

With these elements in place, we can now give a formal definition of a psychological game. We
follow here the approach taken by Jagau and Perea (2017).

Definition 2. A psychological game is a tuple G “ pCi, Bi, uiqiPI , where Ci is the finite set
of choices for player i2, Bi denotes the set of belief hierarchies expressing coherency and common
belief in coherency and

ui : Ci ˆBi Ñ R

is player i’s (measurable) utility function.

2Ci may well be a singleton set, indicating a situation where player i does not have any choices to make but where
his beliefs matter for the utilities of other players.
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By this definition, we capture the idea that player i’s utility depends explicitly on her full
belief hierarchy. Formally speaking a psychological game is a generalisation of a traditional game,
since the utility function in a traditional game exclusively depends on first-order beliefs. Moreover,
utilities in a traditional game always depend linearly on first-order beliefs. This is not true for
psychological games in general, where utilities can depend non-linearly on the full belief hierarchy.
Definition 2 differs from definitions used in the seminal work by Geanakoplos et al. (1989) and
Battigalli and Dufwenberg (2009). Under these two definitions, utility also still explicitly depends
on the opponent’s choices. In case of the latter approach, utility moreover explicitly depends on
the opponent’s belief hierarchies as well. These two elements are helpful in visually distinguishing
between preferences over outcomes and belief-dependent motivations. However, as Jagau and Perea
(2017) point out, all these approaches are essentially equivalent. This can be seen by noting that
a belief hierarchy can be identified by a probability distribution over the combinations of the
opponent’s choices and her belief hierarchies Cj ˆBj . Hence, a belief hierarchy already includes a
conjecture about the opponent’s choices and opponent’s belief hierarchies. In terms of utility that
is deemed relevant at the moment of making a decision, as opposed to ex-post experienced utility,
all approaches are thus equivalent in an expected utility framework.

2.2 Common belief in rationality in psychological games

The central theme of this paper revolves around elimination procedures that characterize common
belief in rationality in psychological games. Much like in traditional games, common belief in
rationality conveys the idea that nowhere in one’s belief hierarchy the rationality of any player is
questioned. The notion of common belief in rationality in psychological games was first presented
in Battigalli and Dufwenberg (2009) by their discussion of common strong belief in rationality in
dynamic psychological games (the equivalent of this concept in static games is common belief in
rationality). Later it was the focal point in Jagau and Perea (2017). Our definition of the concept
follows that of the latter paper.

Common belief in rationality in a psychological game can be defined recursively. First we
consider an optimal choice given any belief.

Definition 3. Consider a psychological game G. A choice ci is optimal for a belief hierarchy
bi P Bi if for all c1i P Ci : uipci, biq ě uipc

1
i, biq.

Let RBi :“ tpci, biq P Ci ˆBi|ci optimal given biu be the set of combinations of choices and
belief hierarchies where the choice is optimal for the belief hierarchy. Then we can define what it
means to believe in an opponent’s rationality. To this end, recall that every belief hierarchy bi P Bi

is homeomorphic to a probability distribution in ∆pCj ˆBjq.

Definition 4. Consider a belief hierarchy bi P Bi for some player i in G. Belief hierarchy bi is
said to express belief in the opponent’s rationality if bipRBjq “ 1.

In line with Spohn (1982), Bernheim (1984), Pearce (1984) and Tan and Werlang (1988) for
standard games, we can iterate this definition to get the notion of common belief in rationality in
a psychological game (Jagau and Perea, 2017).

Definition 5. Consider bi P Bi for some player i. Define Bip1q “ tbi P Bi|bipRBjq “ 1u. If
bi P Bip1q, we say bi expresses 1-fold belief in rationality.
For every k ě 1, define Bipkq “ tbi P Bipk ´ 1q|bi P ∆pCj ˆBjpk ´ 1qqu. We say bi expresses up
to k-fold belief in rationality if bi P Bipkq.
If for every k ě 1, bi expresses up to k-fold belief in rationality, we say bi expresses common belief
in rationality.
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We assume here that the events of expressing up to k-fold belief in rationality are measurable.
Finally, let a rational choice under k-fold belief in rationality and common belief in rationality
respectively be denoted as follows.

Definition 6. Consider a choice ci P Ci. We say ci is rational under up to k-fold belief in
rationality if it is optimal for some belief hierarchy bi P Bi that expresses up to k ´ fold belief
in rationality. We say ci is rational under common belief in rationality if it is optimal for
some belief hierarchy bi P Bi that expresses common belief in rationality.

This definition of common belief in rationality and rational choice under a belief hierarchy that
expresses common belief in rationality is applicable to any class of psychological games.

3 Higher-order expectations

In this section we will be looking at a particular subclass of psychological games: expectation-
based psychological games. Furthermore, we will discuss how we will distinguish between different
families of psychological games. These families will be defined by the orders of belief that are
directly relevant for players’ utilities in a given expectation-based psychological game.

3.1 Expectation-based psychological games

When modelling emotions or other-regarding preferences, we typically do not use all information
contained in higher-order beliefs in the utility functions (Jagau and Perea, 2018). Instead, we use
expectations about expectations, which can be derived from (higher-order) beliefs. For instance,
in modelling surprise-related preferences we only care about a player’s expectation about her co-
players’ first-order beliefs in determining her psychological payoff. To illustrate this, consider the
following example.

Example 1 (Surprising student by means of exam). You are Ann’s high school teacher in eco-
nomics. You noticed that Ann’s focus during classes has been lacking. Therefore, you wish to give
her a wake-up call by surprising her (and the rest of the small class in the process). To this end, at
the end of a given school week you vaguely announce to the class that next Monday an exam might
be given. You can surprise Ann in two ways. You either give the exam on Monday while Ann
does not expect one or you do not give the exam on Monday while she did expect you to give one.
Surprising Ann gives you a feeling of psychological satisfaction. Either form of surprise is equally
satisfactory to you. Even though you wish to surprise Ann, you also do not want her to fail.

How do we model your utility as a teacher in the above example? Let us have I “ ty, au, with
y “ you and a “ Ann. For the choice-problem presented to us before Monday we moreover have
Cy “ texam, no examu for your choice-set as the teacher and Ca “ tstudy, not studyu as the choice
set for Ann.

The utility you receive from your decision before Monday depends on two factors: the probability
with which you believe Ann will study for the possible exam and the probability with which you
expect Ann to believe you will actually give the exam. Let us say that any form of surprise gives
you as a teacher one extra unit of utility, Ann failing the exam makes you lose a unit of utility and
Ann succeeding makes you gain a unit of utility. If we assume your utility to be additive in these
two different components, we can describe your expected utility of giving an exam on Monday by
the following relation

uypexam, byq “ p1´

ż

CaˆBa

b1apexamqdbyq ` p2 ¨ b
1
ypstudyq ´ 1q.
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Table 2: Surprise exam game

Extreme Second-order expectations

pstudy, examq pstudy, no examq pnot study, examq pnot study, no examq

Exam 1 2 ´1 0

No exam 1 0 1 0

The expected utility function above depends on a summary statistic of the second-order belief
induced by your belief hierarchy by. The second component in the expected utility function corre-
sponds to your first-order belief that Ann will study. The integral measure on the other hand repre-
sents your expectation of Ann’s first-order belief about your choice, induced by your belief hierarchy
by. This summary statistic is called your second-order expectation in this setting. For instance, we
can define Ann’s first-order expectation that you will give an exam as e1

arbaspexamq :“ b1apexamq.
Then your second-order expectation that Ann will study and that she believes you will give an
exam is given by

e2
yrbyspstudy, examq :“

ż

tstudyuˆBa

e1
arbaspexamqdby “

ż

tstudyuˆBa

ż

texamuˆBy

dbadby.

Notice that the above expectation is a joint probability measure. In fact, every second-order
expectation for you as a teacher is a joint probability measure e2

y P ∆pCa ˆ Cyq. We can directly
represent your utility of choosing to give an exam as a function of your second-order expectation
induced by your belief hierarchy by: uypexam, e

2
yrbysq. Similarly, the expected utility of not giving

an exam can be represented by uypno exam, e
2
yrbysq “

ş

CaˆBa
e1
arbaspexamqdby (if you do not give

an exam, you will not see Ann succeed or fail). Since both Ca and Cy are finite sets of choices, we
have that Ca ˆ Cy is finite as well. The set of second-order expectations then has finitely many
extreme points. Consequently, the resulting utility for you as a teacher for all possible extreme
second-order expectations can be represented in finite-matrix form as in Table 2.

Following Jagau and Perea (2018), we can define any higher-order expectation recursively. To
define any particular class of psychological games where utilities depend on higher-order expecta-
tions, this is a useful tool.

In a general psychological game G, let us start with the first-order expectation e1
i rbis for a player i.

This is simply the first-order belief of player i:

e1
i rbis :“ b1i P ∆pCjq.

The second-order expectation of player i that player j will choose cj while believing that player i
will choose ci is subsequently defined as follows:

e2
i rbispcj , ciq :“

ż

tcjuˆBj

e1
j rbjspciqdbi “

ż

tcjuˆBj

ż

tciuˆBi

dbjdbi.

As noted in our surprise exam example (Example 1), a second-order expectation is a joint probabil-
ity measure e2

i rbis P ∆pCj ˆ Ciq. We can recursively define any higher-order expectation following
this construction. Note however that second-order expectations are defined over the Cartesian
product of two choice sets. As the orders of higher-order expectations increase, this Cartesian
product will contain more and more elements as well. For the sake of clarity in our notation, we
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will therefore define the following sets recursively:

W 1
i “ Cj and W k

i “

$

’

’

’

&

’

’

’

%

Cj ˆ Ci ˆ ...ˆ Ci
loooooooooomoooooooooon

k times

, k is even

Cj ˆ Ci ˆ ...ˆ Cj
loooooooooomoooooooooon

k times

, k is odd
for all k ą 1.

Each wk
i P W

k
i thus has k components and represents a combination of your opponent’s and your

own choices. Throughout this paper, we will utilise the following identification of wk
i PW

k
i at times

as well: wk
i “ pcj , w

k´1
j q. A k-th order expectation is then defined as a probability measure over

W k
i .

Definition 7 (Jagau and Perea (2018)). Consider a two-player psychological game G with a player
i and a player j and let bi be the belief hierarchy for player i. Let e1

i rbis :“ b1i be the first-order
expectation for player i given bi. For k ě 2, the k-th order expectation eki rbis P ∆pW k

i q of player
i given belief hierarchy bi is defined as

eki rbispw
k
i q :“

ż

tcjuˆBj

ek´1
j rbjspw

k´1
j qdbi, where wk

i “ pcj , w
k´1
j q.

In the integral bi serves as a probability measure over CjˆBj , similar to how it was used in Section
2.2.

We can capture all possible k-th order expectations in the set Ek
i :“ ∆pW k

i q. This allows us
to define utilities that depend explicitly on k-th order expectations by ui : Ci ˆ Ek

i Ñ R. Notice
here that eki rbis for any k ą 1 given a belief hierarchy bi also contains the lower-order expectations
induced by said belief hierarchy. That is, we have that margWk´1

i
eki rbis “ ek´1

i rbis. Much like

beliefs, we thus obtain a hierarchy of expectations eirbis :“ pe1
i rbis, e

2
i rbis, ...q induced by a belief

hierarchy bi.
Two points are worthwhile to elaborate on here leading to the upcoming Definition 8. First,

the mapping from the set of belief hierarchies to the set Ek
i is surjective but non-injective. For

every k-th order expectation, there is a belief hierarchy that induces it. However, a given k-th order
expectation may be induced by multiple belief hierarchies. This is illustrated in Table 3, where
we depict the second-order beliefs of two possible belief hierarchies for you as the teacher. The
second-order expectations induced by the two belief hierarchies are equal, whereas the second-order
beliefs are not. Indeed, in b2y you are certain about Ann’s belief and believe that Ann is uncertain

Table 3: Illustration of belief hierarchies and second-order expectations for Example 1

Your second-order beliefs b2y = pstudy, b1aq

b2y
1

= 1
2pstudy, b

1
a
1
q ` 1

2pstudy, b̂
1
aq

Ann’s first-order beliefs b1a = 1
2pexamq `

1
2pno examq

b1a
1

= exam

b̂1a = no exam

Your second-order expectations e2
i rbys = 1

2pstudy, examq `
1
2pstudy, no examq

e2
i rby

1s = 1
2pstudy, examq `

1
2pstudy, no examq

10



Table 4: Surprise exam game with a mean teacher

Your extreme second-order expectations

pstudy, examq pstudy, no examq pnot study, examq pnot study, no examq

Exam 0 0 0 1

No exam 1 0 0 0

Teacher’s utilities

about your choices. In b2y
1 you are uncertain about Ann’s belief but believe that Ann is certain

about your choice.
Second, recall again from Section 2.1 that any belief hierarchy bi can be represented by a

probability distribution in ∆pCj ˆBjq. Take any two belief hierarchies bi, b
1
i P Bi. The convex

combination λbi ` p1 ´ λqb1i for any λ P r0, 1s is then the belief hierarchy that puts probability
λfipbiqpEq ` p1 ´ λqfipb

1
iqpEq to every measurable E Ď Cj ˆ Bj . With the previous two points in

mind, we are now in a position to formally define a psychological game where expectations instead
of beliefs matter explicitly for utilities.

Definition 8 (Jagau and Perea, 2018). We call a two-player psychological game G “ pCi, Bi, uiqiPI
an expectation-based psychological game if, for both players i and all choices ci P Ci,

(i) eirbis “ eirb
1
is implies uipci, biq “ uipci, b

1
iq

(ii) utility is linear in the beliefs hierarchies: uipci, λbi ` p1´ λqb
1
iq “ λuipci, biq ` p1´ λquipci, b

1
iq,

for all λ P r0, 1s.

The second condition is that of belief linearity. This condition states that the expected utility
given ci and the convex combination of two belief hierarchies bi and b1i has to be equal to the convex
combination of the two expected utilities induced by the choice ci P Ci and by the belief hierarchies
bi and b1i. Finally, we can impose a last, natural condition.

Definition 9. A psychological game G “ pCi, Bi, uiqiPI is belief-finite if there is some n ě 1 such
that for every choice ci P Ci, and every two belief hierarchies bi,b̂i P Bi with bni “ b̂ni we have that
uipci, biq “ uipci, b̂iq.

In words, belief-finiteness means that utility depends only on finite orders of beliefs. Belief-
finiteness allows us to have a finite representation of an expectation-based psychological game in
matrix form. This is because there are finitely many extreme higher-order expectations under
belief-finiteness for a player i to consider. These extreme higher-order expectations are represented
in the columns of the matrix (see for instance Table 2). The choices, as traditionally is the case, are
found in the rows. For the remainder of the paper, we assume every expectation-based psychological
game we will be dealing with is belief-finite.

Finally, note that the example in Table 2 assumes that your utility as a teacher by giving the
exam is additively separable in wanting to surprise Ann and wanting her to pass the exam. However,
by definition of an expectation-based, belief-finite psychological game, utility does not always have
to be additive in the different higher-order expectations. To this end, reconsider Example 1, but
now assume you are a mean teacher. That is, you wish to surprise Ann by giving the exam if she
does not study, and you wish to surprise Ann by not giving an exam if she does study. Any other
scenario does not interest you. This non-additively separable psychological game is illustrated in
Table 4.

11



3.2 Order-variable families of psychological games

The problem that a player in any belief-finite, expectation-based psychological game faces can
be thought of as a decision problem. Generally, a decision problem can be defined by a triple
D “ pC,X, vq. In this triple, C refers to a finite set of choices, X is a finite set of states and
v : C ˆ X Ñ R is a Bernoulli utility function. A choice c P C is then optimal in D if there is a
belief b P ∆pXq such that

ÿ

xPX

bpxq ¨ vpc, xq ě
ÿ

xPX

bpxq ¨ vpc1, xq,@c1 P C.

In a belief-finite, expectation-based psychological game where utilities only depend up to order k
the set of states X would then refer to W k

i for k ě 1. The utility vipci, w
k
i q then refers to the utility

experienced from choosing ci while being in state wk
i .

We can define families of expectation-based psychological games depending on which orders of
beliefs are of direct relevance to a player’s preferences.

Definition 10. Let i P t1, 2u. Take a belief finite, expectation-based psychological game G, where
player i’s utility function can be summarized by vi : Ci ˆWn

i Ñ R. If vipci, w
n
i q ‰ vipci, ŵ

n
i q for

some ci P Ci and some wn
i and ŵn

i that only differ in the m-th order, we say vi is variable in the
m-th order.
By GpN1, N2q we denote the family of psychological games in which player 1’s and player 2’s
utility-variable orders are specified by N1 and N2 respectively, with N1, N2 Ď N.

When we refer to ‘(directly) utility-relevant’ orders of belief for a player i in the remainder of
the paper, we always mean the orders of belief in which player i’s utility is variable.

4 Iterated elimination of strictly dominated choices

In this section we will discuss the procedure of iterated elimination of strictly dominated choices
in psychological games. Unlike traditional games, this procedure does not always characterize the
rational choices a player can make under common belief in rationality. However, there are some
families of games for which this relationship does hold. This leads us to state the main result of
this paper, captured in Theorem 2. In the second part of this section we provide intuition on why
the elimination procedure may fail in its characterization of rational choices under common belief
in rationality.

4.1 Iterated elimination of strictly dominated choices in psychological games

In traditional games, choices that are rational under some belief hierarchy expressing common
belief in rationality are characterized by iteratively eliminating strictly dominated choices. We say
a choice c P C is strictly dominated in a decision problem D “ pC,X, vq if there is a randomized
choice r P ∆pCq such that

vpc, xq ă
ÿ

c1PC

rpc1q ¨ vpc1, xq,@x P X.

Under the set-up presented above, iterative elimination of strictly dominated choices then means
that each round of eliminating choices induces a new decision problem for a decision-maker. In
each round, those choices are eliminated that are never optimal in the given decision problem. We
can use a result by Pearce (1984) for this.
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Lemma 1 (Pearce’s Lemma). Consider a decision problem D “ pC,X, vq. Then, c P C is optimal
in D if and only if c is not strictly dominated in D.

Pearce’s original lemma defines the set of states X as the set of choices Cj of the opponent j of
a player in a traditional, two-player game. But his proof technique can be used to prove Lemma 1
as well.

In a belief-finite, expectation-based psychological game where utilities only depend up to order
n the set of states X would refer to Wn

i for n ě 1. The utility vipci, w
n
i q refers to the utility

experienced from choosing ci while being in state wn
i . The procedure of iterative elimination of

strictly dominated choices (IESDC) is then defined as follows.

Procedure 1 (Iterated elimination of strictly dominated choices (IESDC)).
Consider a two-player psychological game G “ pCi, Bi, uiqiPI which is expectation-based and belief-
finite, and in which utilities depend up to the n-th order expectation. For every player i, consider
the full decision problem pC0

i ,W
n,0
i , viq, where C0

i :“ Ci, W
n,0
i :“ Wn

i and vi : Ci ˆ Wn
i Ñ R

summarizes the utility function ui.

Step 1
For each player i, define: C1

i “ tci P Ci| ci is not strictly dominated in pC0
i ,W

n,0
i , viq u.

For each player i, define: Wn,1
i “

#

C1
j ˆ C

1
i ˆ ...ˆ C

1
j if n is odd.

C1
j ˆ C

1
i ˆ ...ˆ C

1
i if n is even.

Step k ě 2
For each players i, define: Ck

i “ tci P C
k´1
i | ci is not strictly dominated in pCk´1

i ,Wn,k´1
i , viq u.

For each player i, define: Wn,k
i “

#

Ck
j ˆ C

k
i ˆ ...ˆ C

k
j if n is odd.

Ck
j ˆ C

k
i ˆ ...ˆ C

k
i if n is even.

For each players i, define C8i “
Ş

kě1

Ck
i .

Some explanation is due here. In this procedure we assume that player i only cares for higher-
order expectations up to order n (this may or may not include order n). In Step 1, both play-
ers i eliminate those choices that are strictly dominated in their respective decision problems.
Subsequently we define the resulting sets of combination of choices Wn,1

i for each i which are
constructed from those sets of choices that are not strictly dominated in the original decision prob-
lems. Then, using C1

i and Wn,1
i we can construct a reduced decision problem pC1

i ,W
n,1
i , viq, where

vi : C1
i ˆW

n,1
i Ñ R. Note that for the identification of the utility function vi we technically abuse

notation in this elimination step. Formally we have vi : Ci ˆWn
i Ñ R, but we identify it with a

restriction on C1
i ˆW

n,1
i . After constructing the reduced decision problem, we repeat the process.

The procedure ends when no choices can be eliminated any longer for any of the two players.
This procedure leads us to consider the following theorem for this section.

Theorem 1 (Rational choice under common belief in rationality requires surviving the procedure).
Consider any belief-finite, expectation-based psychological game G, with two players where utilities
depend on up to n-th order expectations. Then every choice that is rational under common belief
in rationality must necessarily survive IESDC.
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Proof. Define by R8i the set of rational choices player i can make under common belief in rationality.
We will prove that R8i Ď C8i . We will do this by showing that R8i Ď Ck

i for every k ě 1. This will
be done by induction on k. We will start with the case of k “ 1.

Induction start Take an arbitrary choice ci P R
8
i . This means that ci is optimal for some

belief hierarchy bi P Bi that expresses common belief in rationality. By Pearce’s Lemma this implies
ci P C

1
i as well, as ci being optimal for some belief hierarchy bi P Bi among all choices in Ci is

exactly the same as ci not being strictly dominated in the decision problem pC0
i ,W

n,0
i , viq.

Induction step Assume that R8i Ď Ck´1
i for some k ě 2 for each player i. Now take some

ci P R
8
i . Then we have that ci is optimal for some belief hierarchy bi P ∆pCj ˆBjq that expresses

common belief in rationality, among all choices in Ci. Common belief in rationality implies that
player i believes that her opponent player j makes an optimal choice according to a belief hierarchy
that expresses common belief in rationality. Hence each pcj , bjq P supppbiq is such that cj is optimal
for bj which expresses common belief in rationality. Thus, cj P R8j by definition and by our

induction assumption therefore cj P C
k´1
j .

However, if bj P ∆pCi ˆBiq expresses common belief in rationality, this implies that player
i believes that player j believes player i expresses common belief in rationality and makes an
optimal choice accordingly. Hence, each pc1i, b

1
iq P supppbjq is such that c1i is optimal for b1i which

expresses common belief in rationality. Therefore, c1i P R8i and by the induction assumption,
c1i P Ck´1

i . As a result, the choice ci we started with must be optimal for a belief hierarchy
bi P ∆pCk´1

j ˆ∆pCk´1
i ˆBiqq.

If we continue this line of reasoning that each player i believes rationality is commonly be-
lieved, we get that the ci P R8i we started with in this induction step must be optimal for a
belief hierarchy bi P ∆pCk´1

j ˆ∆pCk´1
i ˆ∆pCk´1

j ˆ ...qqq. If we take the n-th order expectation

induced by this belief hierarchy, we get eni rbis P ∆pCk´1
j ˆ Ck´1

i ˆ ...ˆ Ck´1
j

loooooooooooooooomoooooooooooooooon

n times

q if n is odd and

eni rbis P ∆pCk´1
j ˆ Ck´1

i ˆ ...ˆ Ck´1
i

loooooooooooooooomoooooooooooooooon

n times

q if n is even. Thus ci is optimal for some n-th order expecta-

tion eni rbis P ∆pWn,k´1
i q induced by belief hierarchy bi. By Pearce’s Lemma then ci is not strictly

dominated in the decision problem pCi,W
n,k´1
i , viq. It follows that ci is then also not strictly dom-

inated in the decision problem pCk´1
i ,Wn,k´1

i , viq. Hence, ci P C
k
i and since we took an arbitrary

ci P R
8
i , we also have that R8i Ď Ck

i .

By induction on k, we have that R8i Ď Ck
i for every k ě 1, which completes the proof.

We have thus shown that if a choice is rational under common belief in rationality it must survive the
IESDC-procedure. This result holds given a game G P GpN1, N2q for any family of games GpN1, N2q,
N1, N2 Ď N. The reverse statement does not always hold. It is not true that those choices that
survive the IESDC-procedure are always rational under common belief in rationality (Jagau and
Perea, 2017). The example of Table 1 illustrates this. There are however specific families of games
where, for all games in such a family, the IESDC-procedure does exactly characterize rational
choices under common belief in rationality.

Theorem 2. Consider any family GpN1, N2q of belief-finite, expectation-based psychological games
with two players. For every game in GpN1, N2q, each choice for player 1 that survives the IESDC-
procedure is also a rational choice under common belief in rationality, if and only if, one of the
following conditions is true:
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Choice

C

Order

1 2 3 4 5 ...

Figure 2: Causality diagram of player 1 in Table 1 (repeated)

(i) Player 1’s utility and player 2’s utility are both variable in a single order of belief;

(ii) Player 1’s utility is variable in a single even order of belief;

(iii) Player 1’s utility is variable only in odd orders of belief and player 2’s utility is variable in a
single even order of belief z which is such that there is no pair x, y of player 1’s utility-variant
orders and no n P N with x` n ¨ z “ y.

An important observation we can make here is that if both players care (among others) about
material payoffs, the conditions listed in the theorem above reduce to those that specify a traditional
game.

In the remainder of this paper, Theorem 2 will take center-stage.

4.2 Illustrating the problem of the IESDC-procedure

Recall the example from the Introduction in Table 1. There is an underlying reason why in this
example in Table 1 the IESDC procedure does not give us exactly the choices one can rationally
make under common belief in rationality. In short terms, there is an overlap between the orders
in which one’s utility is variable on the one hand and the orders of beliefs one needs to consider
for expressing 1-fold belief in rationality on the other hand. This is also illustrated in the causality
diagram for player 1 in Figure 1, repeated here in Figure 2. We will formalize such diagrams in
Section 5. In words, we can say the following however. In the diagram in Figure 2, the arrow
from player 1’s choice C to order “1” indicates that the optimality of player 1’s choice depends
on her first-order expectation. The same applies for the arrow from her choice to order “2”: the
optimality of player 1’s choice also depends on her second-order expectation. Player 2’s utility only
depends on her first-order expectation. This is represented by the arrow from order “1” to order
“2”. And so on. Clearly then, the rationality of player 1’s own choice and believing that player
2 makes a rational choice both directly depend on player 1’s second-order expectation. Thus for
c to be optimal and for player 1 to believe in player 2’s rationality, different restrictions need to
be imposed on the second-order expectation. In this example these restrictions happen to be in
conflict as also explained in the Introduction: in order for choice a to be optimal player 1 in her
first-order expectation has to believe that player 2 will choose c while expecting in her second-order
expectation that player 2 expects her to choose b. However, in order for choice c to be optimal for
player 2, she must expect player 1 to choose a.

Believing in an opponent’s rationality is believing in the event that your opponent makes an
optimal choice given her belief. Belief in the opponent’s rationality thus restricts the combinations
of choices and belief hierarchies pcj , bjq you can consider for the opponent where cj is optimal
specifically for bj . The first step of the IESDC-procedure however only eliminates choices for your
opponent which are never optimal, given any belief hierarchy. The second step subsequently only
eliminates choices that are never optimal given beliefs that only assign positive probability to
choices that are not eliminated in Step 1.
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Order

1 2 3 4 5 ...

Figure 3: Causality diagram of player 1 in game in Gpt1, 2u, t2, 4uq

This kind of procedure does not sufficiently restrict the second-order expectations one can
consider under belief in the opponent’s rationality. One may assign positive probability to an
extreme second-order expectation whose two components entail choices for an opponent and oneself
that did survive Step 1 of the procedure. However, as illustrated via the example in Table 1, we then
allow for scenarios in which the player 2’s choice in the first component can never be optimal given
the conditional probability assigned to player 1’s choice that features in the second component.
In a traditional game there is no such issue at all, as player 1’s utility would only depend on her
first-order belief. The rationality of her first-order belief would only depend on her second-order
belief. And so on. In this case each step k of eliminating strictly dominated choices corresponds
exactly to the reasoning step of expressing up to pk´ 1q-fold belief in rationality. This corresponds
also with the observation that traditional games are a special sub-case of case piq.

In the game in Table 1 we have that the utility for player 1 is dependent on her first order and
second order of belief, which overlap with the orders of belief that matter for expressing 1-fold belief
in rationality. That is, 1-fold belief in rationality is determined by a first-order belief of player 1,
rationalized by her second-order belief. In general, this kind of overlap may also occur because of
overlap between deeper levels of reasoning. Consider for instance a causality diagram as in Figure
3 for player 1. Here player 1’s utility depends on her first-order and second-order expectations,
whereas player 2’s utility depends on her second-order and fourth-order expectations. Here we see
that expressing 1-fold belief in rationality and expressing 2-fold belief in rationality both require
restrictions on player 1’s third-order expectation, which may be in conflict.

First, there is the event of expressing 1-fold belief in rationality, as the first-order expectation is
a conjecture about player 2’s choice, which is motivated by player 2’s second-order and fourth-order
expectations. Hence, a rational first-order belief is explained by player 1’s third-order expectation
and fifth-order expectation3. Second, there is the event of expressing 2-fold belief in rationality,
which next to the fourth-order expectation, also depends on the third-order expectation. Namely,
the second-order belief is a conjecture about player 1’s own choice. The utility of player 1 depends
on her first-order and second-order expectation. So in order to rationalize the choices in her second-
order expectation, player 1 should also consult her third-order and fourth-order beliefs. Hence, there
is an overlap in the causality diagram at order 3: one-fold belief in rationality and two-fold belief
in rationality both impose restrictions on the third-order belief, and these restrictions may be in
conflict.

3We slightly abuse the use of “k-th order expectation” here. Technically, a third-order expectation can be derived
from the fifth-order expectation by taking the relevant marginal distribution. With third-order expectation in this
context we specifically refer to margC2e

3
1 P ∆pC2q where e31 P ∆pW 2

1 ˆ C2q and by the fifth-order expectation we
mean margC2e

5
1 P ∆pC2q where e51 P ∆pW 4

1 ˆ C2q.

16



According to Theorem 2, there should also be expectation-based psychological games with utilities
such that any kind of overlap in reasoning does not occur. In such games, as we will show in Section
6, iterated elimination of strictly dominated choices alone would always give exactly the choices one
can make under common belief in rationality. We will do so by making use of causality diagrams.

5 Causality diagrams

Causality diagrams prove to be a useful analytical tool to think about the problem of overlap
in reasoning which appears in psychological games. In order to formally capture the notion of a
causality diagram, a discussion on elementary graph theory is in place. A graph Σ is a nonempty
set of vertices V and a (possibly empty) set of edges E. In Figure 3 the vertices correspond to
the choice and the orders of belief, whereas the edges are the arrows between the vertices which
indicate in which orders a particular utility is variable. In a directed graph, the direction of the
edge, also known as an arc in a directed graph, matters. In that case we speak of outgoing arcs if
an arc leaves a vertex and ingoing arcs if an arc goes into a vertex. The amount of outgoing arcs
is known as the outdegree, whereas the number of ingoing arcs is the indegree. All the vertices
that some vertex x is joined with directly by an outgoing arc is known as the out-neighborhood,
whereas all adjacent vertices that x is joined with via ingoing arcs is known as the in-neighborhood.
Finally, there is the concept of a path. A path in a directed graph is a sequence of vertices that
starts at the root, where the k-th element is joined with the pk ´ 1q-th element by an ingoing arc.
A vertex r is called a root if paq that vertex has only outgoing arcs and pbq for all vertices in the
graph that have ingoing arcs, there is a path from r to that vertex. Whenever we refer to a path
in the remainder of this paper, we specifically mean a path that starts at the root. Moreover, we
say we have a divergence point between two paths p1 and p2 in a rooted graph if p1 “ pp, a, b, ...q
and p2 “ pp, a, c, ...q with p being a subpath of both p1 and p2 and b ‰ c. The divergence point is
then located at vertex a. The root itself can also function as the divergence point.

We can now formally define the concept of a causality diagram.

Definition 11. Consider a game G P GpN1, N2q. The causality diagram D1pN1, N2q for player
1 in the game G is a rooted, directed graph pNY t0u, Eq with the root being 0. The set of arcs E is
as follows:

• For the root r “ 0, establish an arc p0, a1q for every a1 P N1;

• Inductively for every k ě 2 do the following:

– For every even ak´1, establish an arc pak´1, akq with ak “ ak´1 ` b for every b P N1;

– For every odd ak´1, establish an arc pak´1, akq with ak “ ak´1 ` c for every c P N2.

It is important to note that each player in a game has her own causality diagram, as players
utilities may be variable in different orders. The paths in a causality diagram have a natural
interpretation. Each path represents a chain of restrictions. For instance, in Figure 3 in order
to ensure that some choice c1 is optimal, the first-order and second-order expectation need to
be restricted. If in addition player 1 wants to express 1-fold belief in rationality, restrictions on
expectations of an even higher order are necessary. That is, given what player 1 expects player 2 to
do, each choice in that conjecture can only be made optimal given its own appropriate restrictions
on player 1’s third-order and fifth-order expectations. And so on. In a traditional game, the
causality diagram would look as in Figure 4. It is clear that in a traditional game there is only
a single path on the causality diagram for each player. Compare this to the causality diagram
in Figure 3. There, up to three orders, we can already distinguish between four different paths:
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1 2 3 4 ...

Figure 4: Causality diagram of a player in a traditional game

p0, 1, 3, ...q, p0, 1, 5, ...q, p0, 2, 3, ...q and p0, 2, 4, ...q. The paths p0, 1, 3, ...q and p0, 2, 3, ...q also clearly
display a common vertex after having diverged: vertex order 3. It is this overlap that can cause
problems for the characterization of rational choices under common belief in rationality by IESDC.

We say that two paths in a directed graph are pairwise vertex-disjoint starting at a particular
vertex a if they do not have any vertices in common after this vertex a. This leads us to define the
following concept.

Definition 12. A causality diagram is overlap-free if all pairs of paths are pairwise vertex-disjoint
after the respective divergence point.

If we take the interpretation that a path represents a chain of utility-relevant restrictions, then
if two paths have a vertex b in common after a divergence point, it follows that two paths lead to
two different restrictions on the same set of higher-order beliefs. Of course, these restrictions may
clash. If paths are vertex-disjoint however, then the set of higher-order expectations for a particular
order is never restricted from multiple angles.

The combinations of variable orders N1 and N2 that induce an overlap-free causality diagram
are actually identifiable. These correspond to the three cases listed in Theorem 2.

Lemma 2. The causality diagram D1pN1, N2q for player 1 in a game G P GpN1, N2q is overlap-free
if and only if one of the following is the case:

(i) N1 “ txu and N2 “ tyu;

(ii) N1 “ txu with x even;

(iii) N1 only consists of odd orders and N2 “ tzu with z even such that there is no pair x, y P N1

and no n P N where x` n ¨ z “ y.

Proof. We start off by proving the “if”-direction. We do so for each of the three cases separately.
Canonical causality diagrams that represent each of the cases are depicted in Figure 5.
ð:
piq If N1 “ txu and N2 “ tyu, then the cardinality of both sets of orders is one. This implies that
in the resulting causality diagram every vertex has an outdegree of at most one. Then it follows
there is also a unique path in the causality diagram. By definition the causality diagram is then
overlap-free, as there is no second path present to have overlap with.

piiq Clearly, there is a unique path in player 1’s causality diagram, containing only even num-
bers. Hence vertex-disjointness is guaranteed in this case and therefore the causality diagram is
overlap-free. This is illustrated in Figure 5b.

piiiq The root may be at the start of multiple paths, as |N1| ě 1. As the out-neighborhood of
the root is determined by N1, the root is only connected to x P N1, each of which is odd. Each
odd vertex’s out-neighborhood is determined by N2 “ tzu. Thus each odd vertex is connected
to a different odd vertex, as z is even. Then take two paths in player 1’s causality diagram:
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... x ... px` yq ... px` y ` xq ...

(a) (i)

Choice

C

Order

... x ... 2x ... 3x ...

(b) (ii)
Choice

C

Order

... x ... x` z ... y ... x` 2z ... y ` z ...

(c) (iii)

Figure 5: Canonical causality diagram for cases (i), (ii) and (iii) in Lemma 2

p0, x, x` z, ..., x` g ¨ z, ...q and p0, x1, x1 ` z, ..., x1 ` h ¨ z, ...q with x, x1 P N1 and x ‰ x1. These two
paths must be vertex-disjoint. First, note that the divergence point of the two paths is the root.
Now assume they do have a vertex in common: let x` g ¨ z “ x1 ` h ¨ z. Then x´ x1 “ ph´ gq ¨ z.
Assume without loss of generality that h ą g. However, this violates the condition that there is no
pair x, x1 P N1 such that x1 ` n ¨ z “ x with n “ h ´ g. Hence it must be the case that all paths
in player 1’s causality diagram are pairwise vertex-disjoint and therefore the causality diagram is
overlap-free.

For the“only-if” direction, we show that if conditions piq, piiq and piiiq do not hold, then the
causality diagram of player 1 has an overlap. In total there are six scenarios under which none of
the three cases listed in Lemma 2 apply: piq N1 contains two even orders; piiq N1 contains an even
and an odd order, whereas N2 contains an even order; piiiq N1 contains an even and an odd order,
whereas N2 contains an odd order; pivq N1 contains an odd x and an odd y and N2 contains an
even z such that x “ y`n ¨ z for some n P N; pvq N1 contains two odd orders and N2 contains also
an odd order; and pviq N1 contains an odd order and N2 contains two arbitrary orders. We go by
all these cases one-by-one.

ñ:
piq Consider tx, yu Ď N1 with both x and y even. Then there exist the following two paths in the
causality diagram D1pN1, N2q: p0, x, 2x, ...q and p0, y, 2y, ...q. These paths share a common vertex
in x ¨ y. Hence the two paths are not vertex-disjoint after their divergence-point and thus the
causality diagram D1pN1, N2q for player 1 is not overlap-free.
piiq Consider tx, yu Ď N1 with x even and y odd and an even z P N2. We have a path p0, y, y `
z, y ` 2 ¨ z, ..., y ` x ¨ z, ...q. There is also the path p0, x, 2x, ..., z ¨ x, z ¨ x` y, ...q. These two paths
have vertex z ¨ x` y in common after the point of divergence, being the root. Hence the causality
diagram is not overlap-free.
piiiq Now consider tx, yu Ď N1 with x even and y odd and an odd z P N2. We have a path p0, y, y`
z, y` py` zq, py` zq ` py` zq, ..., xpy` zq, ...q. There exists also the path p0, x, 2x, ..., py` zqx, ...q.
These two paths share a vertex in xpy ` zq after the divergence point, being the root. Hence the
causality diagram is not overlap free.
pivq Consider tx, yu Ď N1 with both x and y odd and an even z P N2 such that x “ y ` n ¨ z for
some n P N. There is a path p0, y, y ` z, y ` 2 ¨ z..., y ` n ¨ z, ...q. We assumed that x “ y ` n ¨ z.
We then have two paths: p0, x, ...q and p0, y, y ` z, y ` 2 ¨ z, ..., y ` n ¨ z, ...q. These two paths share
a vertex in y ` n ¨ z “ x. Hence the causality-diagram for player 1 is not overlap-free.
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pvq Consider tx, yu Ď N1 with both x and y odd and an odd z P N2. Then the paths p0, x, x `
z, x`z`y, ...q and p0, y, y`z, y`z`x, ...q share a vertex after the point of divergence in x`z`y.
Hence the resulting causality diagram for player 1 contains paths that are not vertex-disjoint after
the divergence point and thus is not overlap-free.
pviq Consider txu Ď N1 with x odd and consider two orders ty, zu Ď N2. The root of the causality
diagram of player 1 is then joined to the odd vertex x. This vertex x can be considered as the
root of its own subgraph Dx

2 . Then, if N2 contains two even orders, the scenario piq applies to
subgraph Dx

2 . Hence, under such a scenario, Dx
2 would not be overlap-free. If N2 contains an even

and an odd order, the scenario of piiiq applies to Dx
2 . Then also now, Dx

2 is not overlap-free. If N2

contains two odd orders, then the scenario of pvq applies. Also then, Dx
2 is not overlap-free. Since

the root of player 1’s causality diagram is connected to vertex x, the paths that are not pairwise
vertex-disjoint in Dx

2 are subpaths in player 1’s causality diagram. Hence there also exist paths
in player 1’s causality diagram that are not vertex-disjoint after a point of divergence. Therefore,
player 1’s causality diagram is also not overlap-free.

Hence, we have shown that if none of the three cases listed in Lemma 2 apply, the causality
diagram cannot be overlap-free. This ends the proof for Lemma 2.

In the following section, we will provide and discuss the proof for Theorem 2.

6 Proof of Theorem 2

In order to prove Theorem 2, we will split it up into two seperate lemmas: Lemmas 3 and 4. We
will prove each of those in turn. For Lemma 4 we provide sketches of the proof in this section. The
full proof can be found in the Appendix accompanying this paper.

Lemma 3. Consider a family of games GpN1, N2q. If for every game in GpN1, N2q, each choice
that survives the IESDC-procedure for player 1 is also a rational choice under common belief in
rationality, then the causality diagram of player 1 is overlap-free.

Proof. Suppose that the causality diagram D1pN1, N2q of player 1 is not overlap-free. We will
construct a game G˚ in GpN1, N2q such that not every choice for player 1 that survives the IESDC-
procedure is rational under common belief in rationality.

We will do this in the following way. First, assume pN1, N2q induces a causality diagram for
player 1 where the root is already a divergence point for two paths that overlap. So we have a path
p0, a1, a2, ..., an´1, an “ s, ...q and a path p0, z1, z2, ..., zm´1, zm “ s, ...q. Subsequently we construct
a game G˚ that has some particular properties. First, we construct G˚ such that each choice in
C1 and each choice in C2 survives the IESDC-procedure. So each choice is optimal for some belief
hierarchy. Then we construct the game G˚ further such that c̄1 P C1 is only optimal for a belief
hierarchy whose a1-th order expectation assigns probability one to choice cra1s (in C81 if a1 is
even and in C82 if a1 is odd) and whose z1-th order expectation assigns probability one to choice
drz1s (also in C81 if z1 is even and in C82 if a1 is odd). Choice cra1s in turn is only optimal for a
pa2 ´ a1q-th order expectation assigning probability one to choice cra2s. And so on, up until we
arrive at choice crans for the s-th order expectation. We can do the same for the second subpath
p0, z1, z2, ..., zm “ sq, which then ends up with a choice drzms for the s-th order expectation. We
construct G˚ such that crans ‰ drzms, and hence c̄1 cannot be optimal while expressing common
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Orders

Choices c̄1

... a1

cra1s

... z1

drz1s

... a2

cra2s

... s

crans

drzms

Figure 6: Example Proof Lemma 3, (part of) beliefs diagram

belief in rationality.

Now, let
C1 :“ tcraks : ak is even and k P t1, ..., nuu Y tdrzks : zk is even and k P t1, ..., nuu Y tc̄1u Y txu,
and
C2 :“ tcraks : ak is odd and k P t1, ..., nuu Y tdrzks : zk is odd and k P t1, ..., nuu Y tyu. We assume
here that all these choices are different. Note that for order zm “ an “ s, there are two different
choices: crans and drzms. Let the choices have the following properties.

1. Choice x always yields a utility of 1 for player 1, under any belief hierarchy b1;

2. Choice y always yields a utility of 1 for player 2, under any belief hierarchy b2;

3. Choice c̄1 is only optimal for a higher-order expectation which assigns in the a1-th component
probability one to cra1s and in the z1-th component probability one to drz1s. Only in that
case choice c̄1 leads to a utility of 1. In all other cases, utility is 0;

4. Each crak´1s P C1 for k P t2, ..., nu is such that u1pcrak´1s, b1q “ 1 for any b1 P B1 where
the pak ´ ak´1q-th order expectation assigns probability one to craks. If b1 P B1 is such that
the pak ´ ak´1q-th order expectation assigns probability one to any choice c ‰ craks, then
the utility will be 0. Each drzk´1s P C1 for k P t2, ..., nu is such that u1pdrzk´1s, b1q “ 1 for
any b1 P B1 where the pzk ´ zk´1q-th order expectation assigns probability one to drzks. If
b1 P B1 is such that the pzk ´ zk´1q-th order expectation assigns probability one to any choice
d ‰ drzks, then the utility will be 0. We do exactly the same for each crak´1s, drzk´1s P C2 for
k P t2, ..., nu.

5. For simplicity assume crans and drzms always lead to a utility of 1.

Note that each choice in C1 and C2 leads to a utility of 1 under some extreme higher-order ex-
pectation. As a result, no choice is strictly dominated and hence each choice survives the IESDC-
procedure.

We will now show that choice c̄1 in the game G˚ as constructed before cannot be optimal under a be-
lief hierarchy expressing common belief in rationality, even though it survives the IESDC-procedure.
We will do so by arguing that c̄1 cannot be optimal for a belief hierarchy that simultaneously ex-
presses up to an´1-fold and up zm´1-fold belief in rationality. That is, the latter two events will
require conflicting restrictions on the s-th order expectation. Figure 6 helps in illustrating this
point by depicting (part of) a beliefs diagram of some game G˚.

In gameG˚, choice c̄1 is optimal only if the a1-th order expectation of player 1 assigns probability
one to choice cra1s. Namely, only then the utility for player 1 is equal to 1. For any k P t2, ..., nu,

21



choice crak´1s is only optimal if the pak ´ ak´1q-th order expectation (of player 1 if ak´1 is even,
otherwise of player 2) assigns probability one to choice craks. Thus we obtain a chain of restrictions.
In the example of Figure 6 this would correspond to the upper path p0, a1, a2, sq. In order for player
1 to be able to rationally choose c̄1 under a belief hierarchy expressing up to an´1-fold belief in
rationality, the s-th order expectation should thus assign probability one to choice crss.

Another requirement for choice c̄1 in game G˚ to be optimal is that the z1-th order expectation of
player 1 assigns probability one to choice drz1s. Namely, only under such a condition can the utility
of player 1 be equal to 1. For any k P t2, ..., nu, choice drzk´1s is only optimal if the pzk ´ zk´1q-th
order expectation (of player 1 if zk´1 is even, otherwise of player 2) assigns probability one to
choice drzks. In Figure 6 this chain of restrictions would for instance correspond to the lower path
p0, z1, sq. In order for player 1 to be able to rationally choose c̄1 under a belief hierarchy expressing
up to zm´1-fold belief in rationality, the s-th order expectation should assign probability one to
choice drss.

We constructed G˚ such that crss ‰ drss. But then, c̄1 cannot be optimal for a belief hierarchy
that expresses both up to an´1-fold belief in rationality and up to zm´1-fold belief in rationality.
Then c̄1 also cannot be optimal for a belief hierarchy expressing common belief in rationality.

Now, we initially assumed that the point of divergence for our two paths was at the root. Not
for every causality diagram with overlap this is possible. However, it should certainly be possible
to occur within one arc-distance of the root.

Claim 1. Consider a causality diagram D1pN1, N2q for player 1 that is not overlap-free. Then
there exist two paths with overlap that either paq have a point of divergence at the root, or pbq that
have a point of divergence at an odd order a P N1.

Proof of claim. To prove this, we can point to our proof construction for the “only if”-part of
the proof for Lemma 2. In this proof, we provided an exhaustive list of six scenarios. In the first
five scenarios listed for that proof we were able to construct two paths with overlap that had a
divergence point at the root of the causality diagram. So for these scenarios case paq of the claim
is satisfied. For the final scenario we noted that the root had an outgoing arc to an odd vertex
a P N1. This odd vertex was the root of its own subgraph, which always could be categorized under
scenario piq, piiiq or pvq. As such, in this subgraph there also existed overlapping paths that had
their point of divergence at the root. Hence, for this scenario case pbq is satisfied. This completes
the proof of this claim.

So let us now consider the case that the first point of divergence in the causality diagram
occurs at the odd order a P N1. Let us have two paths p0, a, a1, a2, ..., an´1, an “ s, ...q and
p0, a, z1, z2, zm´1, zm “ s, ...q. Then we can simply construct the game G˚ as follows. Let
C1 :“ tcraks : ak is even and k P t1, ..., nuu Y tdrzks : zk is even and k P t1, ..., nuu Y tc̄1u Y txu,
and
C2 :“ tcraks : ak is odd and k P t1, ..., nuuYtdrzks : zk is odd and k P t1, ..., nuuYtc̄2uYtyu. Again,
we assume here that all these choices are different. Let the choices have the following properties.

1. Choice x always yields a utility of 1 for player 1, under any belief hierarchy b1;

2. Choice y always yields a utility of 1 for player 2, under any belief hierarchy b2;

3. Choice c̄2 is only optimal for a higher-order expectation which assigns in the pa1 ´ aq-th
component probability one to cra1s and in the pz1´ aq-th component probability one to drz1s.
Only in that case choice c̄1 leads to a utility of 1. In all extreme other cases, utility is 0;

4. Each crak´1s P C1 for k P t2, ..., nu is such that u1pcrak´1s, b1q “ 1 for any b1 P B1 where
the pak ´ ak´1q-th order expectation assigns probability one to craks. If b1 P B1 is such that
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the pak ´ ak´1q-th order expectation assigns probability one to any choice c ‰ craks, then
the utility will be 0. Each drzk´1s P C1 for k P t2, ..., nu is such that u1pdrzk´1s, b1q “ 1 for
any b1 P B1 where the pzk ´ zk´1q-th order expectation assigns probability one to drzks. If
b1 P B1 is such that the pzk ´ zk´1q-th order expectation assigns probability one to any choice
d ‰ drzks, then the utility will be 0. We do exactly the same for each crak´1s, drzk´1s P C2 for
k P t2, ..., nu.

5. For simplicity assume crans and drzms always lead to a utility of 1;

6. Choice c̄1 is only optimal for a higher-order expectation which assigns in the a-th component
probability one to c̄2. Only in that case choice c̄1 leads to a utility of 1. In all extreme other
cases, utility is 0.

Note that game G˚ from the perspective of player 2 is exactly as it was before from the perspective
of player 1. It follows then that choice c̄2 cannot be optimal for player 2 under a belief hierarchy
expressing common belief in rationality. In the new version of G˚ we added an extra choice for
player 1: choice c̄1 is only optimal under an a-th order expectation that assigns probability one to
choice c̄2 for player 2. Then it follows that choice c̄1 is also never optimal given a belief hierarchy
expressing common belief in rationality.

Since we took an arbitrary combinations pN1, N2q that leads to a causality diagram for player
1 with overlap, it follows that for each family of games GpN1, N2q we can construct a game G˚ as
we did here.

From Lemma 3 we can conclude that if the causality diagram is not overlap-free, there always
exist accompanying psychological games in which the IESDC-procedure does not characterize those
choices that are rational under common belief in rationality. Next we will show that if the causality
diagram is overlap-free, then this exact characterization does always occur.

Lemma 4. Consider a family of games GpN1, N2q. If the causality diagram of player 1 is overlap-
free, then for every game in GpN1, N2q, each choice that survives the IESDC-procedure for player 1
is also a rational choice under common belief in rationality.

The actual proof can be found in the appendix. Here we provide an overview of the proof and
an explanation by means of examples.

The outline of this proof is as follows. We consider three different scenarios, which together
exactly cover all three cases from Theorem 2. Scenario piq corresponds to the scenario that N1

contains a single even order, scenario piiq correspond to the case that N1 and N2 both consists of a
single odd order, and scenario piiiq corresponds to case piiiq of Theorem 2. Note here that scenario
piiiq covers the subcase piq of Theorem 2 where N1 contains a single odd order and N2 contains a
single even order.

The proof is constructive. For each of the scenarios listed above, we will take some arbitrary
choice c1 P C

8
1 that survives the IESDC-procedure. The goal is to construct a belief hierarchy that

expresses common belief in rationality and is such that it optimizes choice c1. We do so by making
use of finite epistemic models where types represent belief hierarchies.

Definition 13 (Epistemic model in a static psychological game).
Consider a psychological game G. An epistemic model M “ pTi, biqiPI for G specifies for every
player i a finite set Ti of possible types. Moreover, for every player i and every type ti P Ti the
epistemic model specifies a probability distribution birtis over the set of the opponent’s choice-type
combinations Cj ˆ Tj. The probability distribution birtis represents the belief player i has about the
choice-type combinations of her opponent.
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Each type represents a probability distribution over the opponent’s choice-type combination.
Each types thus already induces a probability distribution over the opponent’s choices. Hence we
can retrieve first-order beliefs from types in an epistemic model. Since a type also represents a
probability distribution over the opponent’s types, we can also retrieve a probability distribution
over the opponent’s first-order beliefs. As such, types also capture second-order beliefs. In a similar
fashion we can retrieve from a type in an epistemic model third-order beliefs, fourth-order beliefs,
and so on.

The proof of Lemma 4 consists of two steps. In Step 1, we first fix an arbitrary choice c1 P C
8
1 for

player 1 that survives the IESDC-procedure. For each of the three scenarios, we construct a finite
epistemic model with a type tc11 that optimizes choice c1. Moreover, we construct this epistemic
model such that for each order of belief k that is on a path in player 1’s causality diagram, the
type tc11 expresses k-fold belief in rationality. We call this on-path belief in rationality.

Definition 14. Consider a game in GpN1, N2q and the causality diagram D1pN1, N2q for player 1.
Consider a belief hierarchy b1 for player 1. We say b1 expresses on-path belief in rationality if
it expresses k-fold belief in rationality for every k ě 1 that is on some path in the causality diagram.

Then, in Step 2, we transform the epistemic model created in Step 1. We ensure that for all
the remaining orders of belief l, type tc11 expresses also l-fold belief in rationality. Then type tc11
will also express common belief in rationality. A formal proof can be found in the appendix. Here,
we sketch the proof by means of examples for the three scenarios.

Example Scenario piq First consider scenario piq. This corresponds to case piiq in Theorem
2. Let C1 “ tA,B,Cu, C2 “ tD,Eu, N1 “ t4u and let N2 “ t1, 2u. Consider the game in Ta-
ble 5. Each choice for player 1 and player 2 in this game is not strictly dominated, and hence

Table 5: Illustration of Proof scenario piq

Player 1’s extreme fourth-order expectations

A B C

A 2 2 0

B 3 0 2

C 0 3 1

Player 1’s utilities

Player 2’s combinations of extreme first-order and second-order expectations

pA,Dq pA,Eq pB,Dq pB,Eq pC,Dq pC,Eq

D 0 3 0 1 2 0

E 1 1 1 0 1 2

Player 2’s utilities

C81 “ tA,B,Cu, C82 “ tD,Eu.
First, for A, B and C we will fix fourth-order expectations that will optimize each of these

choices in turn. For A, we can take bA1 P ∆pC81 q with bA1 “ 0.5A ` 0.5B. For B, we can take
bB1 “ C and for C we can take bC1 “ B.

Next, for each choice in c1 P C
8
1 , we will construct a type tc11 for player 1. Each such type

assigns probability one to a type tc1,12 for player 2, which on its turn assigns probability one to

a type tc1,21 for player 1. Type tc1,21 on its turn assigns probability one to type tc1,32 for player 2.

Type tA,3
2 is such that b2rt

A,3
2 s “ 0.5pA, tA1 q ` 0.5pB, tB1 q; type tB,3

2 is such that b2rt
B,3
2 s “ pC, tC1 q;
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type tC,3
2 is such that b2rt

C,3
2 s “ pB, tB1 q. The probability distributions over choices in the induced

beliefs here are thus equal to the fourth-order expectations we fixed before to optimize each choice.
We couple the choices assigned positive probability to in these induced beliefs with the respective
types we started with. The resulting, partial epistemic model is illustrated via the beliefs diagram
in Figure 7a. We explictely mention that it is partial, since some types induce beliefs that do not
yet specify beliefs over choices.

Next, we continue with Step 2 of the proof for this scenario. This involves filling in all blank
spaces in our beliefs diagram. We do so in an iterative way. First, fill in random choices in each
blank space. This is illustrated in a beliefs diagram in Figure 7b, by taking all components that
have a superscript 0.

Next, take each right-most matrix. For instance, take the upper-right matrix in the diagram
of Figure 7b. In this order of belief player 2 expects with probability 0.5 player 1 to choose A
while expecting player 1 to believe that player 2 plays E0. With the remaining probability of 0.5
player 2 expects player 1 to choose B while expecting player 1 to believe that player 2 plays D0.
For such a second-order belief, choice D is optimal. Hence we fill in D1 in the upper-right matrix.
Then, take the upper-middle matrix. Here player 1 in her fourth-order expectation assigns 0.5 to
choice C0 and probability 0.5 to choice B0. Then choice C is optimal. Hence we fill in C1 in the
upper-middle matrix. Lastly, take the left-upper matrix. Here now player 2 expects player 1 to
choose C1 while expecting player 1 believes player 2 will choose D1. Thus we get a second-order
expectation of pC,Dq. Given pC,Dq, choice D is optimal for player 2. Hence, in the left-upper
matrix we list choice D1. We do this for every sequence of matrices in the diagram.

Next, in Iteration 2, we do a similar thing, leading to the choices with superscript 2 in the
various matrices.

After a while we see a pattern emerge. We see that iterations 2 and 3 correspond to iterations
4 and 5 respectively. So the pattern repeats itself always after two iterations. Also, we have from
iteration 1 onwards that each type expresses belief in the opponent’s rationality by construction.
Taken together, two recurring iterations from iteration 1 onwards are therefore sufficient to char-
acterize a finite, epistemic model in which each type expresses common belief in rationality. In this
case these are Iterations 2 and 3. We loop these iterations indefinitely. In this way, we construct
the epistemic model M˚ as is depicted in Figure 7c. All beliefs in the second column of the table
in this figure correspond to beliefs generated by Iteration 3 of Step 2. All beliefs in the last column
of the table correspond to beliefs generated by Iteration 2 of Step 2.

One may verify that inM˚ each type expresses common belief in rationality. This includes types
tA1 , tB1 and tC1 . By construction of Step 1 these types optimize choices A, B and C respectively.
Hence, for each choice that survives the IESDC-procedure we have managed to construct a type
expressing common belief in rationality, such that that choice is also still optimal.

Example Scenario piiq Consider scenario piiq. This corresponds to case piq in Theorem 2 where
for both players the orders are odd. Let, C1 “ tA,B,Cu, C2 “ tD,Eu, N1 “ t3u and let N2 “ t1u.
Consider the game in Table 6. Note that each choice for player 1 is not strictly dominated. Similarly,
for player 2, both choices D and E are not strictly dominated.

First, for A, B and C we will fix third-order expectations that we will optimize each of these
choices in turn. For A, we can take bA1 P ∆pC81 q with bA1 “ 0.5D`0.5E. For B, we can take bB1 “ E
and for C we can take bC1 “ D. Similary, for choice D of player 2 we can take bD2 “ 0.6A ` 0.4B
and for choice E we can take bE2 “ C.
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tA1

tB1

tC1

p¨, tA,1
2 q

p¨, tB,1
2 q

p¨, tC,1
2 q

p¨, tA,2
1 q

p¨, tB,2
1 q

p¨, tC,2
1 q

p¨, tA,3
2 q

p¨, tB,3
2 q

p¨, tC,3
2 q

pA, tA1 q

pB, tB1 q

pC, tC1 q

0.5

0.5

(a) Step 1 scenario piq

A

B

C

E0 E3 D6

D1 D4 E7

D2 D5 D8

D0 E3 D6

E1 D4 E7

D2 E5 D8

D0 E3 D6

E1 D4 E7

D2 E5 D8

C0 C3 C6

C1 C4 C7

C2 C5 C9

B0 B3 B6

B1 B4 B7

B2 B5 B8

A0 C3 C6

C1 C4 C7

C2 C5 C8

D0 E3 D6

D1 D4 E7

D2 E5 D8

E0 D3 E6

D1 E4 D7

E2 D5 E8

D0 E3 D6

E1 D4 E7

D2 E5 D8

A

B

C

0.5

0.5

(b) Beliefs diagram Step 2

Types player 1 T1 “ tt
A
1 , t

B
1 , t

C
1 , t

A,2
1 , tB,2

1 , tC,2
1 , tA1

1, tB1
1, tC1

1, tA,2
1

1, tB,2
1

1, tC,2
1

1u

Types player 2 T2 “ tt
A,1
2 , tB,1

2 , tC,1
2 , tA,3

2 , tB,3
2 , tC,3

2 , tA,1
2

1, tB,1
2

1, tC,1
2

1, tA,3
2

1, tB,3
2

1, tC,3
2

1u

Player 1’s beliefs b1rt
A
1 s = pE, tA,1

2 q b1rt
A
1
1s = pD, tA,1

2
1q

b1rt
B
1 s = pE, tB,1

2 q b1rt
B
1
1s = pD, tB,1

2
1q

b1rt
C
1 s = pE, tC,1

2 q b1rt
C
1
1s = pD, tC,1

2
1q

b1rt
A,2
1 s = pE, tA,3

2 q b1rt
A,2
1

1s = pD, tA,3
2

1q

b1rt
B,2
1 s = pD, tB,3

2 q b1rt
B,2
1

1s = pE, tB,3
2

1q

b1rt
C,2
1 s = pE, tC,3

2 q b1rt
C,2
1

1s = pD, tC,3
2

1q

Player 2’s beliefs b2rt
A,1
2 s = pC, tA,2

1 q b2rt
A,1
2

1s = pC, tA,2
1

1q

b2rt
B,1
2 s = pB, tB,2

1 q b2rt
B,1
2

1s = pB, tB,2
1

1q

b2rt
C,1
2 s = pC, tC,2

1 q b2rt
C,1
2

1s = pC, tC,2
1

1q

b2rt
A,3
2 s = 0.5pA, tA1

1q ` 0.5pB, tB1
1q b2rt

A,3
2

1s = 0.5pA, tA1 q ` 0.5pB, tB1 q

b2rt
B,3
2 s = pC, tC1

1q b2rt
B,3
2

1s = pC, tC1 q

b2rt
C,3
2 s = pB, tB1

1q b2rt
C,3
2

1s = pB, tB1 q

(c) Epistemic model scenario (i)

Figure 7: Illustration proof Scenario piq
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Table 6: Illustration of Proof scenario piiq

Player 1’s extreme third-order expectations

D E

A 2 2

B 0 3

C 3 0

Player 1’s utilities

Player 2’s extreme first-order expectations

A B C

D 6 6 6

E 8 0 8

Player 2’s utilities

Next, for each choice c P C81 , we can construct a type tc1. Similarly, for each choice c P
C82 , we can construct a type tc2. Each type tc1 assigns probability one to a type tc,12 , which

on its turn induces a belief that assigns probability one to a type tc,21 . Type tA,2
1 is such that

b1rt
A,2
1 s “ 0.5pD, tD2 q ` 0.5pE, tE2 q; type tB,2

1 is such that b1rt
B,2
1 s “ pE, tE2 q; type tC,2

1 is such that

b1rt
C,2
1 s “ pD, tD2 q. Similarly, we can let type tD2 be such that b2rt

D
2 s “ 0.6pA, tA1 q ` 0.4pB, tB1 q and

type tE2 be such that b2rt
E
2 s “ pC, t

C
1 q The resulting, partial epistemic model is illustrated via the

beliefs diagram in Figure 8a.

We then use exactly the same construction method as we did for situation piq for Step 2. First,
for the blank spaces we fill in random choices. These choices have superscript 0 and can be seen in
Figure 8b. Next, for each sequence of matrices, we will select optimal choices in a backward fashion.
For instance, take the right-upper matrix. This order of belief relates to choices of player 1. We
know that player 1’s utility is variable in order 3. According to the diagram, player 1’s third-order
expectation reasoned from this matrix is 0.5 ¨ 0.6pD,A,E0q ` 0.5 ¨ 0.4pD,B,D0q ` 0.5pE,C,D0q.
Summarized, this yields 0.3 ¨ E0 ` 0.7 ¨ D0 as a third-order expectation. Given this third-order
expectation, we have that choice C is optimal. Hence we list choice C1 next in this matrix.
Similarly, take the left-upper matrix. We know player 2’s utility is variable in order 1. According
to the diagram, player 2’s first-order expectation reasoned from this point is one that assigns
probability one to choice C1. Given this first-order expectation, choice E is optimal. Hence we
list E1. We do this same backward construction for the lower sequence of matrices in the beliefs
diagram as well. Now, for the next iteration of Step 2, we do something similar, leading to the
choices with superscript 2 in the various matrices.

Just like in scenario piq, we continue this process iteratively. We can note that iterations
4 and 5 yield the same choices as iterations 2 and 3. From Iteration 1 onwards we have that
each type constructed expresses belief in the opponent’s rationality. Hence, by looping Iteration
2 and 3 we can construct a finite, epistemic model where each type expresses common belief in
rationality. Moreover, this would also include types that optimize each choice that survives the
IESDC-procedure for player 1 for the same reason as in scenario piq. The resulting epistemic model
M˚ is found in Figure 8c. All beliefs in the second column of the table in this figure correspond to
beliefs generated by Iteration 3 of Step 2. All beliefs in the last column of the table correspond to
beliefs generated by Iteration 2 of Step 2.

Scenario piiiq
Consider scenario piiiq. This corresponds to case piiiq in Theorem 2. Take N1 “ t1, 7u and
N2 “ t4u. Now, consider the game as depicted in Table 7, with C1 “ ta, bu and C2 “ tc, d, e, fu.
Note that no choice for player 2 is strictly dominated. No choice for player 1 is strictly dominated
either. Thus C1 “ C81 and C2 “ C82 . Also note that choice a for player 1 is only optimal for
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tA1

tB1

tC1

p¨, tA,1
2 q

p¨, tB,1
2 q

p¨, tC,1
2 q

p¨, tA,2
1 q

p¨, tB,2
1 q

p¨, tC,2
1 q

pD, tD2 q

pE, tE2 q

pA, tA1 q

pB, tB1 q

pC, tC1 q

0.5

0.5

0.6

0.4

(a) Step 1 scenario piiq

A

B

C

E0 E3 D6

E1 D4 E7

D2 E5 D8

D0 E3 D6

E1 D4 E7

D2 E5 D8

D0 E3 D6

E1 D4 E7

D2 E5 D8

A0 C3 B6

C1 B4 C7

B2 C5 B8

A0 C3 B6

C1 B4 C7

B2 C5 B8

A0 C3 B6

A1 B4 C7

B2 C5 B8

D

E

A

B

C

0.5

0.5

0.6

0.4

(b) Beliefs diagram iteration Step 2

Types player 1 T1 “ tt
A
1 , t

B
1 , t

C
1 , t

A,2
1 , tB,2

1 , tC,2
1 , tA1

1, tB1
1, tC1

1, tA,2
1

1, tB,2
1

1, tC,2
1

1u

Types player 2 T2 “ tt
A,1
2 , tB,1

2 , tC,1
2 , tD2 , t

E
2 , t

A,1
2

1, tB,1
2

1, tC,1
2

1, tD2
1, tE2

1u

Player 1’s beliefs b1rt
A
1 s = pE, tA,1

2 q b1rt
A
1
1s = pD, tA,1

2
1q

b1rt
B
1 s = pE, tB,1

2 q b1rt
B
1
1s = pD, tB,1

2
1q

b1rt
C
1 s = pE, tC,1

2 q b1rt
C
1
1s = pD, tC,1

2
1q

b1rt
A,2
1 s = 0.5pD, tD2 q ` 0.5pE, tE2 q b1rt

A,2
1

1s = 0.5pD, tD2
1q ` 0.5pE, tE2

1q

b1rt
B,2
1 s = pE, tE2 q b1rt

B,2
1

1s = pE, tE2
1q

b1rt
C,2
1 s = pD, tD2 q b1rt

C,2
1

1s = pD, tD2
1q

Player 2’s beliefs b2rt
A,1
2 s = pC, tA,2

1 q b2rt
A,1
2

1s = pB, tA,2
1

1q

b2rt
B,1
2 s = pC, tB,2

1 q b2rt
B,1
2

1s = pB, tB,2
1

1q

b2rt
C,1
2 s = pC, tC,2

1 q b2rt
C,1
2

1s = pB, tC,2
1

1q

b2rt
D
2 s = 0.6pA, tA1

1q ` 0.4pB, tB1
1q b2rt

D
2
1s = 0.6pA, tA1 q ` 0.4pB, tB1 q

b2rt
E
2 s = pC, tC1

1q b2rt
E
2
1s = pC, tC1 q

(c) Epistemic model scenario piiq

Figure 8: Illustration proof Scenario piiq
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the belief ba1 “ pc
1, d7q. The superscripts here in the belief indicate the order of belief the choice

corresponds to.

Table 7: Illustrating game for proof scenario piiiq

Player 1’s combinations of extreme first-order and seventh-order expectations
pc, cq pc, dq pc, eq pc, fq pd, cq pd, dq ...

a 0 1 0 0 0 0 0
b 1 1 1 1 1 1 1

Player 1’s utilities

Player 2’s extreme fourth-order expectations
c d e f

c 2 2 0 0
d 0 2 2 0
e 3 0 3 3
f 0 3 0 2

Player 2’s utilities

We will focus in this scenario on making choice a optimal for a belief hierarchy expressing k-fold
belief in rationality for every order of belief k on a path of player 1’s causality diagram. To this
end, first fix a type ta1 for player 1.

Scenario piiiq differs from the previous ones in that we have multiple paths on the causality
diagram of player 1. As a result, we cannot use the construction with sequences of probability one
beliefs in exactly the same way as we did for scenarios piq and piiq. To compare more specifically
with the previous two scenarios, consider the following example. First, define type ta1 to be such that
it assigns probability one to the choice-type combination pc, ta,12 q for player 2. Let type ta,12 on its

turn assigns probability one to the choice-type combination p¨, ta,21 q. Let type ta,21 assign probability

one to p¨, ta,32 q; let type ta,32 assign probability one to p¨, ta,41 q; let type ta,41 assign probability one to

p¨, ta,52 q; let type p¨, ta,52 q assign probability one to p¨, ta,61 q; and let type ta,61 assign probability one
to the choice-type combination pd, td2q. Then clearly choice a is optimal given type ta1. However,
player 1 would not express 1-fold belief in rationality and thus also not on-path belief in rationality.
Namely, choice c is only optimal for a probabilistic fourth-order expectation. We have that ta1 assigns
probability one to the choice-type combination pc, ta,12 q, from which there follows a sequence of three

more probability one beliefs until type ta,41 , which induces a belief that assigns probability one to

p¨, ta,52 q. Whatever choice we fill in to complete the belief brta,41 s, choice c assigned probability one to

in brta1s will then never be optimal, as by construction the fourth-order expectation induced by ta,12

will be non-probabilistic. Another route we could take is to make the belief brta,41 s probabilistic, in
such a way that choice c in the support of brta1s becomes optimal. However, then we are not taking
into account that the seventh-order expectation induced by type ta1 should be non-probabilistic.
That is, choice a is only optimal for the non-probabilistic belief (or seventh-order expectation)
ba1 “ pc

1, d7q. So we cannot fix just any type ta,41 such that choice c is optimal given type ta,11 .

When constructing types for a partial epistemic model where type ta1 expresses k-fold belief in
rationality for every order k on the causality diagram, we therefore should at all times look at
combinations of choices. As an (incomplete) illustration of such a partial epistemic model, consider
Figure 9. In this figure, we have type ta1 for player 1. All the remaining types have combinations of
two choices in their superscripts. The reason for this is that the sequences of types we will construct
in this step will be such that they optimize a combination of two choices. These choices appear in
different orders of belief. For instance, we define type ta1 now such that brta1spc, t

cf
2 q “ 1. The idea is

to construct tcf2 such that choice c for player 2 is optimal given this type. Then type ta1 would express
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ta1

...

pc, tcc2 q

pc, tcd2 q

pc, tce2 q

pc, tcf2 q

pd, tdc2 q

pd, tdd2 q

pd, tde2 q

pd, tdf2 q

...

pf, tff2 q

p¨, tcc,21 q

p¨, tcd,11 q

p¨, tce,21 q

p¨, tcf,11 q

p¨, tdc,11 q

p¨, tdd,11 q

p¨, tde,11 q

p¨, tdf,11 q

p¨, tff,11 q

pc, tcc,22 q

pd, tcd,22 q

pe, tce,22 q

pf, tcf,22 q

pc, tdc,22 q

pd, tdd,22 q

pe, tde,22 q

pf, tdf,22 q

pf, tff,22 q

p¨, tcc,31 q

p¨, tcd,31 q

p¨, tce,31 q

p¨, tcf,31 q

p¨, tdc,31 q

p¨, tdd,31 q

p¨, tde,31 q

p¨, tdf,31 q

p¨, tff,32 q

pc, tcd2 q

pc, tce2 q

pd, tdd2 q

pd, tde2 q

0.2

0.3

0.2

0.3

0.5

0.5

Figure 9: Step 1 scenario piiiq
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f

4 5 6 7
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Figure 10: Step 1 scenario piiiq

1-fold belief in rationality. We do so by first constructing a sequence of types ptcf2 , t
cf,1
1 , tcf,22 , tcf,31 q.

In this sequence, we have b2rt
cf
2 sp¨, t

cf,1
1 q “ 1, b1rt

cf,1
1 spf, tcf,22 q “ 1 and b2rt

cf,2
2 sp¨, tcf,31 q “ 1. Finally,

we have b1rt
cf,3
1 s “ 0.5pc, tcd2 q ` 0.5pd, tdd2 q. The fourth-order expectation that type tcf2 induces is

then bc2 “ 0.5c ` 0.5d. Looking at the utilities for player 2 in Table 7, this indeed makes choice c
for player 2 optimal.

The second choice listed in the superscript of type tcf2 is the choice f . When player 1 is of
type ta1, her third-order expectation corresponds to a belief that assigns probability one to choice

f . That is, we have that brtcf,11 spf, tcf,22 q “ 1. The reason why we look specifically at the third-
order expectation here is illustrated in Figure 10. We know that choice a is only optimal given a
seventh-order expectation that places probability one on d7. Directly specifying the seventh-order
expectation is problematic since the fifth-order expectation necessarily needs to be probabilistic.
Therefore, what we do is the following. For each order of belief in N1 beyond order 1`4 “ 5, we first
reason backwards, up until we get in the range of beliefs between orders 1 and 5. In this case, this
means we first reason backwards one optimality-relevant step from order 7 to order 7´ 4 “ 3. We
fix one choice for player 2 that is optimal given a fourth-order expectation that places probability
one on choice d7. In this game the only optimal choice for such a fourth-order expectation is f3.
Hence we fix choice f . Note that if we had order 11 instead of 7, we would have to reason two steps
backwards first: first from order 11 to order 11´ 4 “ 7 and then from order 7 to order 7´ 4 “ 3.

As we can conclude from Figure 9, choice f is optimal for type tcf,22 . That is, we have that

b2rt
cf,2
2 sp¨, tcf,31 q “ 1 and that b1rt

cf,3
1 s “ 0.5pc, tcd2 q ` 0.5pd, tdd2 q. In this model, we defined tcd2 such

that it induces a second-order expectation that places probability one on choice d. The same applies
to type tdd2 . Hence, the fourth-order expectation induced by type tcf,22 is bf2 “ 0.5d` 0.5d “ d.

We can construct such types like tcf2 for each combination of choices in C82 ˆ C82 . To take
another example of a combination of choices, consider pc1, d3q. Here we define the type tcd2 and

the types in the sequence ptcd,11 , tcd,22 , tcd,31 q in a similar way as before. This is again illustrated in
Figure 9. We have that choice c is optimal given a fourth-order expectation bc2 “ 0.5c ` 0.5d. We
have that choice d is optimal given a fourth-order expectation bd2 “ 0.4d ` 0.6e. The resulting
joint probability distribution is bcd2 “ 0.5 ¨ 0.4 ¨ pc, dq ` 0.5 ¨ 0.6 ¨ pc, eq ` 0.5 ¨ 0.4 ¨ pd, dq ` 0.5 ¨

0.6 ¨ pd, eq “ 0.2pc, dq ` 0.3pc, eq ` 0.2pd, dq ` 0.3pd, eq. Thus we define type tcd,31 to be such that

b1rt
cd,3
1 s “ 0.2pc, tcd2 q`0.3pc, tce2 q`0.2pd, td,d2 q`0.3pd, td,e2 q. By construction, type tcd2 then induces a

fourth-order expectation bc2 and type tcd,22 induces a fourth-order expectation bd2. Therefore choice

c1 is optimal given the type tcd2 and choice d3 is optimal given the type tcd,22 .

For each combination of two choices pc1
2, c

3
2q P C

8
2 ˆ C

8
2 , we now do the following. Take any such

combination. Create a type for this combination: t
c12c

3
2

2 . Define this type to be such that b2rt
c12c

3
2

2 s
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assigns probability one to type t
c12c

3
2,1

1 . Define type t
c12c

3
2,1

1 to be such that the belief b1rt
c12c

3
2,1

1 s

assigns probability one to pc3
2, t

c12c
3
2,2

2 q. Define type t
c12c

3
2,2

2 such that b2rt
c12c

3
2,2

2 s assigns probability

one to t
c12c

3
2,3

1 . Finally, for type t
c12c

3
2,3

1 we need to do the following. For every c2 P C2, let bc22 P ∆pC82 q

be a fourth-order expectation that makes c2 optimal. Let b
c12c

3
2

2 P ∆pC82 ˆ C
8
2 q be the product of

b
c12
2 and b

c32
2 . Now, we define b1rt

c12c
3
2

1 p3qs in the following manner:

b1rt
c12c

3
2,3

1 spc1
2
1, t

c12
1c32
1

2 q “ b
c12c

3
2

2 pc1
2
1, c3

2
1q, (1)

for each combination of choices pc1
2
1, c3

2
1q P C82 ˆ C

8
2 .

Construct such sequences of types for every possible combination of player 2’s choices in the
product-space C82 ˆ C82 . This results in a partial epistemic model as is partially illustrated in

Figure 9. First, each type t
c12c

3
2

2 in this model is such that that choice c1
2 is optimal given this type.

Namely, the fourth-order expectation of type t
c12c

3
2

2 is b
c12
2 by equation p1q. Also, choice c3

2 is optimal

for type t
c12c

3
2,2

2 , because the fourth-order expectation of type t
c12c

3
2,2

2 is b
c32
2 by equation p1q. Second,

each type t
c12c

3
2

2 in this model expresses 4-fold belief in rationality. Namely, the final type in the

sequence of types t
c12c

3
2,3

1 is such that it only assigns positive probability to choice-type combinations

pc1
2
1, t

c12
1c32
1

2 q. By construction, we have in such choice-type combinations that the choice c1
2
1 is optimal

given the type t
c12
1c32
1

2 . Similarly, we also have by construction that each type t
c12c

3
2,2

2 expresses 4-fold
belief in rationality: from each such type, “following” four arrows in Figure 9 always brings us to

choice-type combinations pc3
2
1, t

c12
1c32
1,2

2 q. As shown before, we have in such choice-type combination

that the choice c3
2
1 is optimal given the type t

c12
1c32
1,2

2 . Because the types t
c12c

3
2

2 and t
c12c

3
2,2

2 for each
combination of choices pc1

2, c
3
2q expresses 4-fold belief in rationality and because N2 “ t4u, we have

in fact that each such type for player 2 also expresses k-fold belief in rationality for every k on a
path in player 2’s causality diagram.

Now, recall that N1 “ t1, 7u. Looking at Figure 9, one arrow away from type ta1 we have

the choice-type combination pc, tcf2 q and seven arrows away from type ta1 we have the choice-type

combinations pd, tcd,22 q and pd, tdd,22 q. Hence, the first-order and seventh-order expectation induced
by type ta1 are pc1, d7q, which means that a is optimal for ta1. Also, type ta1 expresses 1-fold and
7-fold belief in rationality and believes that player 2 expresses k-fold belief in rationality for every
k on a path in her causality diagram. It then follows that also player 1 expresses k-fold belief in
rationality for every order k on a path in her causality diagram if she is of type ta1.

The model illustrated in Figure 9 is not completed. We only completed the sequences of types for the
following combinations of choices: pc, dq, pc, fq and pf, fq. We leave the remainder of the illustration
of Step 1 to the reader. The backward construction of Step 2 is almost completely analogous to
Step 2 for scenarios piq and piiq. For more details the reader is referred to the Appendix.

From Lemma 4 we conclude that if the causality diagram of player 1 is overlap-free, then each
choice that survives the IESDC-procedure for player 1 is also a rational choice under common be-
lief in rationality. From Lemma 3 we concluded the reverse. Together then, Lemma 3 and Lemma
4 prove Theorem 2: the IESDC-procedure exactly characterizes the rational choices under common
belief in rationality for player 1 if and only if the player 1’s causality diagram is overlap-free. We
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know the causality diagram is overlap-free if and only if at least one of the cases as is listed in
Theorem 2 is true.

7 Concluding remarks

Since its introduction by Geanakoplos et al. (1989), psychological game theory has proven to be a
competent framework to model many belief-dependent motivations in games. Much of the work in
this framework illustrates that, compared to traditional games, reasoning about and in situations
with belief-dependent motivations can be rather complex. Some properties of traditional games
that add intuition to reasoning in such games do not always carry over to psychological games.
In this paper we focused on one of such failures: the exact characterization of common belief
in rationality by the iterated elimination of strictly dominated choices (IESDC) procedure. The
IESDC procedure has proven to be a very useful algorithm to analyse traditional games as it is
straightforward to use and an intuitive notion because of its characterization of common belief in
rationality. This sparked the question in what kind of psychological games the IESDC-procedure
always characterizes rational choices under common belief in rationality. By exactly identifying
these cases, we also wished to give intuition as to why the IESDC-procedure may fail in other
cases.

The IESDC-procedure takes into account that players may have belief-dependent motivations.
The manner in which decision problems are defined clearly lets utilities depend on higher-order
expectations. In each elimination round, for those choices that survive the round we can always
find some belief hierarchy in the (reduced) decision problem such that the relevant choice is optimal.
We do this for each (reduced) decision problem independently. The complexity psychological games
introduce is that reasoning steps may overlap, as we illustrated via causality diagrams. In order for
a belief hierarchy to express k-fold belief in rationality, restrictions need to be imposed on particular
higher-order beliefs. Expressing k’-fold belief in rationality may require restrictions on the same
higher-order belief. These restrictions can be in conflict. Thus even though a choice (1) may be
rational under a belief hierarchy expressing k-fold belief in rationality and (2) that same choice
may be rational under a belief hierarchy expressing k’-fold belief in rationality, this choice may not
be rational under any belief hierarchy that expresses both k-fold and k’-fold belief in rationality.
The IESDC-procedure cannot take into account this friction. To the extent the IESDC-procedure
characterizes particular reasoning steps of an individual, it does so for each such reasoning step
independently. This completely disregards any overlap in reasoning steps.

When a causality diagram for a player is overlap-free, contradicting restrictions on the same
order of belief in order to express common belief in rationality cannot occur. The main result that
we have shown in this paper is that in precisely such cases IESDC always characterizes the rational
choices under common belief in rationality.

In total we identified three cases in which causality diagrams are overlap-free. These include two
relatively trivial cases in the sense that the causality diagram has a single path, and one non-trivial
case. Though interesting kinds of psychological games can be captured by these three, it can be
argued that many types of psychological games that are prominent in practice cannot. Namely,
we have that if both players in an expectation-based psychological game care for the material
outcome of the game and at least one player has some belief-dependent motivation, already then
the IESDC-procedure is not guaranteed to characterize the rational choices under common belief
in rationality. In particular in experimental settings this will very often be the case, as subjects
need to be incentivized by material pay-offs.
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A couple of natural extensions of the questions asked in this paper arise. First, to keep matters
tractable we focused on two-player expectation-based psychological games. We did not venture into
the topic of expectation-based psychological games with many players. One interesting additional
complexity such settings bring along is the question of whether correlation between the beliefs of
opponents’ matters in the formation of higher-order expectations.

A second natural extension of this research would be to consider similar questions as asked in
this paper for dynamic psychological games. Many instances of belief-dependent motivations arise
when players have the opportunity to learn about the beliefs and intentions of their opponents
by observing their past behaviour. Such instances can also arise in one-stage games, where the
updated belief after play can be utility-relevant as well (Battigalli and Dufwenberg, 2009). In
traditional settings, prominent reasoning concepts for dynamic games are for instance common
belief in future rationality (which can capture backward induction reasoning) as in Perea (2014) and
common strong belief in rationality (which captures forward induction reasoning) as in Battigalli
and Siniscalchi (2002). Both concepts are characterized by procedures that (amongst other things)
rely on iteratively eliminating strictly dominated strategies. The natural question then arises to
what extent such elimination procedures also succeed in characterizing relevant reasoning concepts
in expectation-based psychological games.

Throughout this paper we assumed common knowledge of players’ motivations, including belief-
dependent motivations. It is a strong assumption to make that psychological entities such as belief-
dependent motivations are completely transparant among all players in a game (Attanasi et al.,
2016). Elimination procedures have already been developed for traditional games with incomplete
information (see for instance Bach and Perea (2016)). A final extension one therefore could consider
is how well such elimination procedures fare in characterizing the relevant rationality concepts in
expectation-based psychological games with incomplete information.

34



Appendix

A Proof Lemma 4

We recall here Lemma 4.

Lemma 4. Consider a family of games GpN1, N2q. If the causality diagram of player 1 is overlap-
free, then for every game in GpN1, N2q, each choice that survives the IESDC-procedure for player
1 is also a rational choice under common belief in rationality.

Proof. We will now prove this theorem for the three scenarios described in the main text. We will
do so in two steps. We will take some choice c1 P C

8
1 that survives the IESDC-procedure. Then in

Step 1 we will create a partial epistemic model with a type that makes choice c1 optimal. Moreover,
we construct this type such that for each order k on a path in player 1’s causality diagram, this
type expresses k-fold belief in rationality. Afterwards, in Step 2, we will show that from any partial
epistemic model including a type as created in Step 1, we can create a full epistemic model with
a type that makes choice c1 optimal and that expresses common belief rationality. We do so by
making use of a backward, recursive procedure that in each iteration simultaneously constructs
types and choices (which are optimal given those types).

Scenario (i)
Step 1
First consider scenario piq with N1 “ tau and a even. In this Step 1, we will construct a partial
epistemic model. By partial we mean we only completely specify the beliefs induced for some
particular types.

For each choice c1 P C
8
1 , fix an a-th order expectation bc11 P ∆pC81 q for which c1 is optimal.4 The

reason we can do so is as follows. From Lemma 1 we know that for each choice that is not strictly
dominated in a decision problem, we can find a belief in that decision problem such that the relevant
choice is optimal. The final reduced decision problem resulting from the IESDC-procedure leaves
the choices in C81 for player 1 in the decision problem. That is, because order a is even we have as
a reduced decision problem after following through with the IESDC-procedure: pC81 , C

8
1 , v1q. By

Lemma 1, we should then have that each choice in C81 is optimal for some belief in ∆pC81 q.
Subsequently, for each c1 P C

8
1 , construct a type tc11 rc1s. Take for each tc11 rc1s a sequence of

types ptc11 rc1s, t
c1,1
2 rc1s, ..., t

c1,a´1
2 rc1sq. Then, for each c1 P C

8
1 let us have in each such sequence that

type tc11 rc1s assigns probability one to type tc1,12 rc1s, and that type tc1,ni rc1s with i P t1, 2u assigns

probability one to type tc1,n`1
j with j ‰ i, for each n P t1, ..., a´ 2u.

Next, for each c1 P C
8
1 construct for each c11 P C18 a type tc1,a1 rc11s. Then define tc1,a´1

2 rc1s to
be such that

b2rt
c1,a´1
2 rc1sspc

1
1, t

c1,a
1 rc21sq :“

#

bc11 pc
1
1q, if c11 “ c21

0, otherwise.

Now, we do a similar thing k˚´2 times, where k˚ “ maxpN1YN2q. For each p P t1, ..., k˚ ´ 2u, do

4With a-th order expectation in this context we specifically refer to margC1e
a
1 P ∆pC1q where ea1 P ∆pW a´1

1 ˆ C1q.
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the following: For each c1, c
1
1 P C

8
1 take a sequence of types ptc1,pa1 rc11s, t

c1,pa`1
2 rc11s, ..., t

c1,pp`1qa´1
2 rc11sq.

Then, let us have in each such sequence that type tc1,pa1 rc11s assigns probability one to type tc1,pa`1
2 rc11s,

and that type tc1,pa`ni rc11s with i P t1, 2u assigns probability one to type tc1,pa`n`1
j with j ‰ i, for

each n P t1, ..., a´ 2u.

Then, for each c1, c
1
1 P C

8
1 construct a type t

c1,pp`1qa
1 rc11s. Then define t

c1,pp`1qa´1
2 rc11s to be such

that

b2rt
c1,pp`1qa´1
2 rc11sspc̄1, t

c1,pp`1qa
1 rc21sq :“

#

b
c11
1 pc̄1q, if c̄1 “ c21

0, otherwise.

Finally, consider the case p “ k˚´1. For each combination of choices c1, c
1
1 P C

8
1 take a sequence of

types pt
c1,pk˚´1qa
1 rc11s, t

c1,pk˚´1qa`1
2 rc11s, ..., t

c1,k˚a´1
2 rc11sq. Then, let us have in each such sequence that

type t
c1,pk˚´1qa
1 rc11s assigns probability one to type t

c1,pk˚´1qa`1
2 rc11s, and that type t

c1,pk˚´1qa`n
i rc11s

with i P t1, 2u assigns probability one to type t
c1,pk˚´1qa`n`1
j with j ‰ i, for each n P t1, ..., a´ 2u.

Finally define tc1,k
˚a´1

2 rc11s to be such that

b2rt
c1,k˚a´1
2 rc11sspc̄1, t

c21
1 rc

2
1sq :“

#

b
c11
1 pc̄1q, if c̄1 “ c21

0, otherwise.

So we have that the distribution over choices induced by type tc1,a´1
2 rc1s is equal to the distribution

over choices represented by the a-th order expectation bc11 . From type tc11 rc1s there follows a sequence

of probability one beliefs up to type tc1,a´1
2 rc1s. The a-th order expectation induced by type tc11 rc1s

is thus equal to bc11 . Taken together, then choice c1 is optimal given type tc11 .
A similar line of reasoning holds for each choice c11 in combination with the type tc1,pa1 rc11s,

for each c1 P C81 and each p P t1, ..., k˚ ´ 1u. The distribution over choices induced by type

t
c1,pp`1qa´1
2 rc11s is equal to the distribution over choices represented by the a-th order expectation b

c11
1 .

From type tc1,pa1 rc1s
1 there follows a sequence of probability one beliefs up to type t

c1,pp`1qa´1
2 rc11s.

The a-th order expectation induced by type tc1,pa1 rc11s is thus equal to b
c11
1 . Taken together, then

choice c11 is optimal given type tc1,pa1 rc11s.
We do the above for each c1 P C

8
1 . Call the resulting partial epistemic modelM. By construc-

tion, we have for each c1 P C
8
1 that c1 is optimal given tc11 rc1s. Moreover, each tc11 rc1s also expresses

on-path belief in rationality. This is because for each order of belief pa for p P t1, ..., k˚ ´ 1u the
type tc1,pa´1

2 rc11s (with tc1,a´1
2 rc1s for p “ 1 specifically) only assigns positive probability to choice

type pairs pc21, t
c1,pp`1qa
1 rc21sq. In these pairs the choice is optimal for the type by construction.

Additionally, for order k˚a, type tc1,k
˚a´1

2 rc11s only assigns positive probability to choice type pairs

pc21, t
c21
1 rc

2
1sq. Also in these pairs the choice is optimal for the type by construction.

Step 2
In Step 1 we have shown that for every choice c1 P C

8
1 we can always construct a partial epistemic

model with a type tc11 rc1s for which c1 is optimal and that expresses on-path belief in rationality. In
Step 2 we will now do the following. We will show that if there exists a belief hierarchy expressing
on-path belief in rationality for which c1 is optimal, then there is also a belief hierarchy expressing
common belief in rationality for which c1 is optimal.

Consider a partial epistemic model M “ pTi, birtisqiPt1,2u as constructed in Step 1 with a type
tc11 rc1s that expresses on-path belief in rationality and for which c1 is optimal. By means of a back-
ward, recursive procedure we transform this epistemic model such that we get to a new, complete
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epistemic model that includes a type tm1 rc1, c1, 0s that expresses common belief in rationality and
induces the same a-th order expectation as type tc11 rc1s does. The recursive procedure here defines
choices and types at the same time in each iteration.

The recursive procedure is as follows.

Iteration 0: For each choice c1 P C
8
1 , define

d0rc1, c1, 0s :“ c1.

Moreover, for each choice c1 P C
8
1 and each k P t1, 2, ..., a´ 1u, define d0rc1, c1, ks randomly. So

d0rc1, c1, ks :“ c1, for some c1 P C81 if k is even or some c1 P C82 if k is odd.

For each p P t1, ..., k˚ ´ 1u let us have in a similar fashion that

d0rc1, c
1
1, pas :“ c11,

and for every k P t1, 2, ..., a´ 1u that

d0rc1, c
1
1, pa` ks :“ c1, for some c1 P C81 if k is even or some c1 P C82 if k is odd.

Take a sequence of types pt01rc1, c1, 0s, t
0
2rc1, c1, 1s, ..., t

0
2rc1, c1, a ´ 1sq for every choice c1 P C81 .

Similarly, for each p P t1, ..., k˚ ´ 1u and each pair of choices c1, c
1
1 P C

8
1 , take a sequence of types

pt01rc1, c
1
1, pas, t

0
2rc1, c

1
1, pa` 1s, ..., t02rc1, c

1
1, pp` 1qa´ 1sq.

Now, for each c1 P C
8
1 , define type t01rc1, c1, 0s such that

b1rt
0
1rc1, c1, 0ss :“ pd0rc1, c1, 1s, t

0
2rc1, c1, 1sq.

Then, define for each k P t1, 2, ..., a´ 2u type t0i rc1, c1, ks with i P t1, 2u to be such that

birt
0
i rc1, c1, kss :“ pd0rc1, c1, k ` 1s, t0j rc1, c1, k ` 1sq.

Finally, we define for each choice c1 P C
8
1 type t02rc1, c1, a´ 1s to be such that

b2rt
0
2rc1, c1, a´ 1sspc11, t

0
1rc1, c

1
1, 0sq :“ bc11 pc

1
1q,@c

1
1 P C

8
1 .

Similarly, for each c1, c
1
1 P C

8
1 and each p P t1, ..., k˚ ´ 1u define t01rc1, c

1
1, pas to be such that

b1rt
0
1rc1, c

1
1, pass :“ pd0rc1, c

1
1, pa` 1s, t02rc1, c

1
1, pa` 1sq.

And define for each k P t1, 2, ..., a´ 2u type t0i rc1, c
1
1, pa` ks to be such that

birt
0
i rc1, c

1
1, pa` kss :“ pd0rc1, c

1
1, pa` k ` 1s, t0j rc1, c

1
1, pa` k ` 1sq.

Finally, we define type t02rc1, c
1
1, pp` 1qa´ 1s for p P t1, ..., k˚ ´ 2u to be such that

b2rt
0
2rc1, c

1
1, pp` 1qa´ 1sspc21, t

0
1rc1, c

2
1, pp` 1qasq :“ b

c11
1 pc

2
1q,@c

2
1 P C

8
1 .

If p “ k˚ ´ 1, define type t02rc1, c
1
1, k

˚a´ 1s to be such that

b2rt
0
2rc1, c

1
1, k

˚a´ 1sspc21, t
0
1rc

2
1, c

2
1, 0sq :“ b

c11
1 pc

2
1q,@c

2
1 P C

8
1 .
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Note that by construction of Step 1, we have for each p P t1, ..., k˚u that b
c11
1 pc

2
1q “ b2rt

0
2rc1, c

1
1, pa´

1sspc21, t
0
1rc1, c

2
1, pasq for each c21 P C

8
1 . Moreover, all other types induce a probability one belief.

This implies that type t01rc1, c1, 0s induces exactly the same a-th order expectation as type tc11 rc1s

did in Step 1. Similarly, each type t01rc1, c
1
1, pas induces the same a-th order expectation as type

tc1,pa1 rc11s did. So for Iteration 0 we essentially take a copy of the epistemic model created in Step
1, but fill in the beliefs that were still incomplete from this step.

Iteration n ě 1 : For each choice c1 P C
8
1 and each choice c11 P C

8
1 define type tn2 rc1, c

1
1, k

˚a´ 1s
to be such that

b2rt
n
2 rc1, c

1
1, k

˚a´ 1sspc21, t
n´1
1 rc21, c

2
1, 0sq :“ b

c11
1 pc

2
1q,@c

2
1 P C

8
1 .

For each c1, c
1
1 P C

8
1 , we then also define

dnrc1, c
1
1, k

˚a´ 1s :“ c12, with c12 optimal given the type tn2 rc1, c
1
1, k

˚a´ 1s.

Now, for each pair of choices c1, c
1
1 P C

8
1 , define recursively for each even k P t2, ..., a´ 2u starting

at k “ a´ 2, type tn1 rc1, c
1
1, pk

˚ ´ 1qa` ks to be such that

b1rt
n
1 rc1, c

1
1, pk

˚ ´ 1qa` kss :“ pdnrc1, c
1
1, pk

˚ ´ 1qa` k ` 1s, tn2 rc1, c
1
1, pk

˚ ´ 1qa` k ` 1sq.

Second, also define

dnrc1, c
1
1, pk

˚ ´ 1qa` ks :“ c̄1, with c̄1 optimal given the type tn1 rc1, c
1
1, pk

˚ ´ 1qa` ks.

Third, define type tn2 rc1, c
1
1, pk

˚ ´ 1qa` k ´ 1s to be such that

b2rt
n
2 rc1, c

1
1, pk

˚ ´ 1qa` k ´ 1ss :“ pdnrc1, c
1
1, pk

˚ ´ 1qa` ks, tn1 rc1, c
1
1, pk

˚ ´ 1qa` ksq.

Fourth, also define

dnrc1, c
1
1, pk

˚ ´ 1qa` k ´ 1s :“ c12, with c12 optimal given the type tn2 rc1, c
1
1, pk

˚ ´ 1qa` k ´ 1s.

Finally, for each c1, c
1
1 P C

8
1 define type tn1 rc1, c

1
1, pk

˚ ´ 1qas to be such that

b1rt
n
1 rc1, c

1
1, pk

˚ ´ 1qass :“ pdnrc1, c
1
1, pk

˚ ´ 1qa` 1s, tn2 rc1, c
1
1, pk

˚ ´ 1qa` 1sq,

and define
dnrc1, c

1
1, pk

˚ ´ 1qas, pk˚ ´ 1qas :“ c11.

Next, for each p P t0, ..., k˚ ´ 2u, do the following iteratively, going backwards starting at p “ k˚´2:
For each choice c1 P C

8
1 and each choice c11 P C

8
1 define type tn2 rc1, c

1
1, pp` 1qa´ 1s to be such

that
b2rt

n
2 rc1, c

1
1, pp` 1qa´ 1sspc21, t

n
1 rc1, c

2
1, pp` 1qasq :“ b

c11
1 pc

2
1q,@c

2
1 P C

8
1 .

For each c1, c
1
1 P C

8
1 , we then also define

dnrc1, c
1
1, pp` 1qa´ 1s :“ c12, with c12 optimal given the type tn2 rc1, c

1
1, pp` 1qa´ 1s.

Now, for each pair of choices c1, c
1
1 P C

8
1 , define recursively for each even k P t2, ..., a´ 2u starting

at k “ a´ 2, type tn1 rc1, c
1
1, pa` ks to be such that

b1rt
n
1 rc1, c

1
1, pa` kss :“ pdnrc1, c

1
1, pa` k ` 1s, tn2 rc1, c

1
1, pa` k ` 1sq.
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Second, also define

dnrc1, c
1
1, pa` ks :“ c̄1, with c̄1 optimal given the type tn1 rc1, c

1
1, pa` ks.

Third, define type tn2 rc1, c
1
1, pa` k ´ 1s to be such that

b2rt
n
2 rc1, c

1
1, pa` k ´ 1ss :“ pdnrc1, c

1
1, pa` ks, t

n
1 rc1, c

1
1, pa` ksq.

Fourth, also define

dnrc1, c
1
1, pa` k ´ 1s :“ c12, with c12 optimal given the type tn2 rc1, c

1
1, pa` k ´ 1s.

Finally, for each c1, c
1
1 P C

8
1 define type tn1 rc1, c

1
1, pas to be such that

b1rt
n
1 rc1, c

1
1, pass :“ pdnrc1, c

1
1, pa` 1s, tn2 rc1, c

1
1, pa` 1sq,

and define
dnrc1, c

1
1, pas :“ c11.

We do this iteratively for each p P t0, ..., k˚ ´ 2u, starting at p “ k˚ ´ 2.

We have that C81 and C82 are finite sets. Moreover, a and k˚ are finite orders of belief, and
therefore k˚a is as well. Hence, there are iterations m,n with m ą n such that:

dmrc1, c1, ks “ dnrc1, c1, ks, @c1 P C
8
1 , k P t0, 1, ..., a´ 1u,

and

dmrc1, c
1
1, pa` ks “ dnrc1, c

1
1, pa` ks, @c1, c

1
1 P C

8
1 , k P t0, 1, ..., a´ 1u, p P t1, ..., k˚ ´ 1u.

When we find such iterations m and n, we stop the recursive procedure.

Now we create the epistemic model M˚ from the types we have constructed in our recursive
procedure. Define T1plq :“ ttl1rc1, c1, ks : c1 P C

8
1 , k P t0, ..., a´ 2u evenu Y ttl1rc1, c

1
1, pa ` ks :

c1, c
1
1 P C

8
1 , p P t1, ..., k

˚ ´ 1u, k P t0, ..., a´ 2u evenu and T2plq :“ ttl2rc1, c1, ks : c1 P C
8
1 , k P

t1, ..., a´ 1u oddu Y ttl2rc1, c
1
1, pa ` ks : c1, c

1
1 P C81 , p P t1, ..., k

˚ ´ 1u, k P t1, ..., a´ 1u oddu.
Then, let T plq :“ T1plq Y T2plq. Do this for every l P tn, ...,mu.

In T pn ` 1q specifically, we re-define for each c1, c
1
1 P C

8
1 the type tn`1

2 rc1, c
1
1, k

˚a ´ 1s to be such
that

b2rt
n`1
2 rc1, c

1
1, k

˚a´ 1sspc21, t
m
1 rc

2
1, c

2
1, 0sq :“ b

c11
1 pc

2
1q,@c

2
1 P C

8
1 .

So instead of assigning positive probability to types in T pnq, each type tn`1
2 rc1, c

1
1, k

˚a ´ 1s now
assigns positive probability to types in T pmq. Then define M˚ :“ p

Ť

lPtn`1,...,mu Tiplq, brtisqiPt1,2u.

We will show that each type in M˚ expresses common belief in rationality. We will do so in
steps.
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First, we can note that for each c1 P C
8
1 and each l P tn` 1, ...,mu inM˚, choice c1 is optimal for

type tl1rc1, c1, 0s, and that for each c1, c
1
1 P C

8
1 , each l P tn` 1, ...,mu and each p P t1, ..., k˚ ´ 1u

choice c11 is optimal for type tl1rc1, c
1
1, pas.

Namely, from type tl1rc1, c1, 0s there follows a sequence of probability one beliefs, induced by
the sequence of types ptl1rc1, c1, 0s, t

l
2rc1, c1, 1s, ..., t

l
1rc1, c1, a´ 2sq. This sequence of probability one

beliefs ends at type tl2rc1, c1, a´ 1s. By construction, we have that

margC81 b2rt
l
2rc1, c1, a´ 1ss “ bc11 .

It follows then that type tl1rc1, c1, 0s induces an a-th order expectation that is equal to bc11 . We
constructed bc11 such that c1 is optimal given bc11 . Hence c1 is optimal given type tl1rc1, c1, 0s. This
goes for every l P tn` 1, ...,mu.

Similarly for each p P t1, ..., k˚ ´ 1u, from type tl1rc1, c
1
1, pas there follows a sequence of probabil-

ity one beliefs, induced by the sequence of types ptl1rc1, c
1
1, pas, t

l
2rc1, c

1
1, pa`1s, ..., tl1rc1, c

1
1, pp`1qa´

2sq. This sequence of probability one beliefs ends at type tl2rc1, c
1
1, pp` 1qa´ 1s. By construction,

we have that
margC81 b2rt

l
2rc1, c

1
1, pp` 1qa´ 1ss “ b

c11
1 .

It follows then that type tl1rc1, c
1
1, pas induces an a-th order expectation that is equal to b

c11
1 . We

constructed b
c11
1 such that c11 is optimal given b

c11
1 . Hence c11 is optimal given type tl1rc1, c

1
1, pas. This

goes for every l P tn` 1, ...,mu.

Second, we can also show the following is true.

Claim 2. Consider the epistemic model M˚. For each l P tn` 1, ...,mu, each k P t1, 2, ..., a´ 1u
and each c1 P C

8
1 , choice dlrc1, c1, ks is optimal given the type tlirc1, c1, ks with i P t1, 2u. Moreover,

for each p P t1, ..., k˚ ´ 1u, each l P tn` 1, ...,mu, each k P t1, 2, ..., a´ 1u and each c1, c
1
1 P C

8
1 ,

choice dlrc1, c
1
1, pa` ks is optimal given the type tlirc1, c

1
1, pa` ks with i P t1, 2u.

Proof of claim. We start off with the epistemic model we created when ending the recursive
procedure, but before M˚ was created.

For each k P t0, 1, ..., a´ 2u and each c11 P C
8
1 we have by construction that

birt
n
i rc

1
1, c

1
1, ksspd

nrc11, c
1
1, k`1s, tnj rc

1
1, c

1
1, k`1sq “ 1 “ birt

m
i rc

1
1, c

1
1, ksspd

mrc11, c
1
1, k`1s, tmj rc

1
1, c

1
1, k`1sq,

with dnrc11, c
1
1, k ` 1s “ dmrc11, c

1
1, k ` 1s. Note that these were the n and m that determined when

to stop our recursive procedure. Moreover, for each k P t0, 1, ..., a´ 2u, each c11, c̄1 P C
8
1 and each

p P t1, ..., k˚ ´ 1u we also have by construction

birt
n
i rc

1
1, c̄1, pa` ksspd

nrc11, c̄1, pa` k ` 1s, tnj rc
1
1, c̄1, pa` k ` 1sq “ 1 “

birt
m
i rc

1
1, c̄1, pa` ksspd

mrc11, c̄1, pa` k ` 1s, tmj rc
1
1, c̄1, pa` k ` 1sq,

with dnrc11, c̄1, pa` k ` 1s “ dmrc11, c̄1, pa` k ` 1s. Additionally, we have by construction that

b2rt
n
2 rc

1
1, c

1
1, a´1sspdnrc11, c

2
1, as, t

n
1 rc

1
1, c

2
1, asq “ b

c11
1 rc

2
1s “ b2rt

m
2 rc

1
1, c

1
1, a´1sspdmrc11, c

2
1, as, t

m
1 rc

1
1, c

2
1, asq,

for each c21 P C
8
1 . For each p P t1, ..., k˚ ´ 2u we also have that

b2rt
n
2 rc

1
1, c̄1, pa´ 1sspdnrc11, c

2
1, pas, t

n
1 rc

1
1, c

2
1, pasq “ bc̄11 rc

2
1s “

b2rt
m
2 rc

1
1, c̄1, pa´ 1sspdmrc11, c

2
1, pas, t

m
1 rc

1
1, c

2
1, pasq,
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for each c21 P C
8
1 . Finally, we have that

b2rt
n
2 rc

1
1, c̄1, k

˚a´ 1sspdn´1rc21, c
2
1, 0s, t

n´1
1 rc21, c

2
1, 0sq “ bc̄11 rc

2
1s “

b2rt
m
2 rc

1
1, c̄1, k

˚a´ 1sspdm´1rc21, c
2
1, 0s, t

m´1
1 rc21, c

2
1, 0sq,

for each c21 P C
8
1 .

Then, for each c11 P C
8
1 , the pair of types tm1 rc

1
1, c

1
1, 0s and tn1 rc

1
1, c

1
1, 0s induce the same k˚a-th order

belief. To see why this is the case, we can employ a recursive argument, for each p P t1, ..., k˚ ´ 1u
starting at p “ k˚ ´ 1.

We can first note that the pair of types tm1 rc
1
1, c̄1, pk

˚ ´ 1qas and tn1 rc
1
1, c̄1, pk

˚ ´ 1qas for each
c11, c̄1 P C

8
1 induce the same a-th order belief. Namely, from the beginning of the proof of this

claim we know that types tmi rc
1
1, c̄1, pk

˚ ´ 1qa ` ks and tni rc
1
1, c̄1, pk

˚ ´ 1qa ` ks with i P t1, 2u for
each k P t1, ..., a´ 2u induce a probability one belief. Moreover, the first-order belief induced by
type tmi rc

1
1, c̄1, pk

˚ ´ 1qa` ks for each k P t1, ..., a´ 1u is equal to the first-order belief induced by
type tni rc

1
1, c̄1, pk

˚ ´ 1qa` ks. As a result, types tm1 rc
1
1, c̄1, pk

˚ ´ 1qas and tn1 rc
1
1, c̄1, pk

˚ ´ 1qas induce
the same a-th order belief.

Now recall, for each c11, c̄1 P C
8
1 , we have that

b2rt
n
2 rc

1
1, c̄1, pk

˚ ´ 1qa´ 1sspdnrc11, c
2
1, pk

˚ ´ 1qas, tn1 rc
1
1, c

2
1, pk

˚ ´ 1qasq “ bc̄11 rc
2
1s “

b2rt
m
2 rc

1
1, c̄1, pk

˚ ´ 1qa´ 1sspdmrc11, c
2
1, pk

˚ ´ 1qas, tm1 rc
1
1, c

2
1, pk

˚ ´ 1qasq

Both types tm2 rc
1
1, c̄1, pk

˚´1qa´1s and tn2 rc
1
1, c̄1, pk

˚´1qa´1s thus assign exactly the same probability
to choice-type combinations where the choice is equal and the type induces the same a-th order
belief. Hence, both types induce the same pa` 1q-th order belief.
Now we can employ our recursive argument, starting at p “ k˚ ´ 2. For p P t1, ..., k˚ ´ 2u, assume
that types tm2 rc

1
1, c̄1, pp ` 1qa ´ 1s and tn2 rc

1
1, c̄1, pp ` 1qa ´ 1s induce the same ppk˚ ´ p ´ 1qa ` 1q-

th order belief. Then types tm1 rc
1
1, c̄1, pas and tn1 rc

1
1, c̄1, pas induce the same pk˚ ´ pqa-th order

belief. Namely, from the beginning of the proof of this claim we have that types tmi rc
1
1, c̄1, pa` ks

and tni rc
1
1, c̄1, pa ` ks with i P t1, 2u for each k P t1, ..., a´ 2u induce a probability one belief and

moreover induce the same first-order belief. Therefore, they induce the same pa´1q-th order belief.
Additionally, types tm1 rc

1
1, c̄1, pp` 1qa´ 2s and tn1 rc

1
1, c̄1, pp` 1qa´ 2s assign probability one to types

that by assumption induce the same ppk˚ ´ pqa ` 1q-th order belief. It follows then that types
tm1 rc

1
1, c̄1, pas and tn1 rc

1
1, c̄1, pas induce the same pk˚ ´ pqa-th order belief.

Now recall that for each c11, c̄1 P C
8
1 , we have that

b2rt
n
2 rc

1
1, c̄1, pa´ 1sspdnrc11, c

2
1, pas, t

n
1 rc

1
1, c

2
1, pasq “ bc̄11 rc

2
1s “

b2rt
m
2 rc

1
1, c̄1, pa´ 1sspdmrc11, c

2
1, pas, t

m
1 rc

1
1, c

2
1, pasq

Both types tm2 rc
1
1, c̄1, pa´1s and tn2 rc

1
1, c̄1, pa´1s thus assign exactly the same probability to choice-

type combinations where the choice is equal and the type induces the same pk˚´pqa-th order belief.
Hence, both types induce the same ppk˚ ´ pqa` 1q-th order belief.

Following the same argument, we can establish that types tm1 rc
1
1, c

1
1, 0s and tn1 rc

1
1, c

1
1, 0s induce the

same k˚a-th order belief. From the above we know that types tm2 rc
1
1, c

1
1, a´ 1s and tn2 rc

1
1, c

1
1, a´ 1s

induce the same ppk˚ ´ 1qa ` 1q-th order belief. From the beginning of the proof of this claim
we have that types tmi rc

1
1, c

1
1, ks and tni rc

1
1, c

1
1, ks with i P t1, 2u for each k P t1, ..., a´ 2u induce

a probability one belief and moreover induce the same first-order belief. Therefore, they induce
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the same pa ´ 1q-th order belief. Additionally, types tm1 rc
1
1, c

1
1, a ´ 2s and tn1 rc

1
1, c

1
1, a ´ 2s assign

probability one to types that by the above recursive argument induce the same ppk˚ ´ 1qa ` 1q
order belief. It follows then that types tm1 rc

1
1, c

1
1, 0s and tn1 rc

1
1, c

1
1, 0s induce the same k˚a-th order

belief. This goes for each c11 P C
8
1 .

Denote type tn`1
2 rc1, c̄1, k

˚a ´ 1s that results from our recursive backwards procedure but before
constructing M˚ by t̄n`1

2 rc1, c̄1, k
˚a ´ 1s. In contrast, let the same type that does result from

constructing M˚ still be denoted as tn`1
2 rc1, c̄1, k

˚a´ 1s. Now, we have for each c1, c̄1 P C
8
1

b2rt̄
n`1
2 rc1, c̄1, k

˚a´ 1sspc11, t
n
2 rc

1
1, c

1
1, 0sq “ b2rt

n`1
2 rc1, c̄1, k

˚a´ 1sspc11, t
n
2 rc

1
1, c

1
1, 0sq,@c

1
1 P C

8
1 .

It thus follows that each such type tn`1
2 rc1, c̄1, k

˚a´ 1s induces the same pk˚a` 1q-th order belief
inM˚ as it did beforeM˚ was constructed. All the remaining types in

Ť

lPtn`1,...,mu T plq remained
unchanged whenM˚ was constructed: they induce exactly the same belief over choice-type combi-
nations as before. As a result, all types in

Ť

lPtn`1,...,mu T plq induce at least the same pk˚a` 1q-th
order belief in M˚ as before M˚ was constructed.

In our backward construction procedure of types and choices, before creating M˚, we con-
structed each dlrc1, c

1
1, ks for each l P tn` 1, ...,mu, k P t1, ..., k˚a´ 1u and c1, c

1
1 P C

8
1 such that

it is optimal given type tlirc1, c
1
1, ks. Now, we have that the maximum directly utility-relevant or-

der of belief for any player is k˚ and that each type tlirc1, c
1
1, ks at least induces exactly the same

pk˚a` 1q-th order belief inM˚ as it did before constructingM˚. Hence, we also have inM˚ that
dlrc1, c

1
1, ks is optimal given tlirc1, c

1
1, ks. This completes the proof of this claim.

Since each type inM˚ only assigns positive probability to choice-type combinations pdlrc1, c
1
1, ks, t

l
irc1, c

1
1, kssq

for k P t0, 1, ..., k˚a´ 1u, each type only assigns positive probability to choice-type combinations
where the choice is optimal given the type. Hence each type in M˚ expresses 1-fold belief in
rationality. Therefore also each type in M˚ expresses common belief in rationality.

By our backward, recursive construction, we also have that type tm1 rc1, c1, 0s induces an a-th
order expectation bc11 . By construction of Step 1, choice c1 is optimal given such a higher-order
expectation. Hence we have constructed an epistemic model with a type that expresses common
belief in rationality and is such that c1 is optimal given that type.

In Step 1 we have shown that for every choice c1 P C81 we can construct a partial epistemic
model with a type that expresses on-path belief in rationality and that is such that choice c1 is
optimal. In Step 2 we showed that we are then also able to construct a finite, epistemic model with
a type that expresses common belief in rationality and that is such that choice c1 is optimal. This
concludes the proof for Scenario piq.

Scenario (ii)
Step 1
Next consider scenario piiq with N1 “ tau and N2 “ tzu, a, z odd. In this Step 1, we will construct
a partial epistemic model.

For each choice c1 P C
8
1 , fix an a-th order expectation bc11 P ∆pC82 q for which c1 is optimal.5

5With a-th order expectation in this context we specifically refer to margC2e
a
1 P ∆pC2q where ea1 P ∆pW a´1

1 ˆ C2q.
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The reason we can do so is as follows. From Lemma 1 we know that for each choice that is not
strictly dominated in a decision problem, we can find a belief in that decision problem such that the
relevant choice is optimal. The final reduced decision problem resulting from the IESDC-procedure
leaves the choices in C81 for player 1 in the decision problem and the choices in C82 for player 2.
That is, we have as a reduced decision problem after following through with the IESDC-procedure:
pC81 , C

8
2 , viq. By Lemma 1, we should then have that each choice in C81 is optimal for some a-th

order expectation in ∆pC82 q. Then, for each c1 P C
8
1 , construct a type tc11 . Similarly, also for each

choice c2 P C
8
2 , fix a z-th order expectation bc22 P ∆pC81 q for which c2 is optimal. Again, we can do

so for the reasons explained above, but then from player 2’s perspective. Then, for each c2 P C
8
2 ,

construct a type tc22 .

Take for each tc11 a sequence of types ptc11 , t
c1,1
2 , ..., tc1,a´1

1 q. Then, let us have in each such

sequence that type tc11 assigns probability one to type tc1,12 if a ą 1, and type tc1,ni probability one

to type tc1,n`1
j for each n P t1, 2, ..., a´ 2u and with i P t1, 2u and j ‰ i. Note that if a “ 1, we treat

type tc11 such that tc11 “ tc1,a´1
1 . Similarly, take for each tc22 a sequence of types ptc22 , t

c2,1
1 , ..., tc2,z´1

2 q.
Then, for each c2, let us have in each such sequence that type tc22 assigns probability one to type

tc2,11 if z ą 1, and type tc2,ni probability one to type tc2,n`1
j for each n P t1, 2, ..., z ´ 2u. Again, if

z “ 1, we treat type tc22 such that tc22 “ tc2,z´1
2 .

Finally, for each c1 P C
8
1 define type tc1,a´1

1 to be such that, for each c12 P C
8
2 ,

b1rt
c1,a´1
1 spc12, t

c22
2 q :“

#

bc11 pc
1
2q, if c12 “ c22

0, otherwise.

So we have that the distribution over choices induced by type tc1,a´1
1 is equal to the distribution over

choices represented by the expectation bc11 . From type tc11 there follows a sequence of probability

one beliefs up to type tc1,a´1
1 . The a-th order expectation induced by type tc11 is thus equal to bc11 .

Hence, choice c1 is optimal given type tc11 .

Similarly, for each c2 P C
8
2 define type tc2,z´1

2 to be such that, for each c11 P C
8
1

b2rt
c2,z´1
2 spc11, t

c21
1 q :“

#

bc22 pc
1
1q, if c11 “ c21

0, otherwise.

So we have that the distribution over choices induced by type tc2,z´1
2 is equal to the distribution over

choices represented by the expectation bc22 . From type tc22 there follows a sequence of probability one

beliefs up to type tc2,z´1
2 . Similarly as before, then type tc22 then induces a z-th order expectation

that is equal to bc22 . Then choice c2 is optimal given type tc22 .
Call the resulting partial epistemic model M. By construction, we have for each c1 P C81

that c1 is optimal given tc11 , and we have for each c2 P C
8
2 that c2 is optimal for tc22 . Moreover,

each tc11 also expresses on-path belief in rationality. This is because the type tc1,a´1
1 only assigns

positive probability to choice type pairs pc12, t
c12
2 q. In these pairs the choice is optimal for the type

by construction. For similar reasons, each type tc22 also expresses on-path belief in rationality.

Step 2
In Step 1 we have shown that for each choice c1 P C

8
1 we can always construct a partial epistemic

model with a type tc11 for which c1 is optimal and that expresses on-path belief in rationality. In
Step 2 we will now do the following. We will show that if there exists a belief hierarchy expressing
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on-path belief in rationality for which c1 is optimal, then there is also a belief hierarchy expressing
common belief in rationality for which c1 is optimal.

Consider a partial epistemic modelM as constructed in Step 1 with a type tc11 that expresses on-
path belief in rationality and for which c1 is optimal. By means of a backward, recursive procedure
we transform this partial epistemic model such that we get to a new, complete epistemic model that
now includes a completed type tm1 rc1, 0s that expresses common belief in rationality and induces
the same a-th order expectation as type tc11 does. The recursive procedure in each iteration defines
combinations of choices and types at the same time.

The recursive procedure is as follows.

Iteration 0: For each choice c1 P C
8
1 , define

d0rc1, 0s :“ c1.

Moreover, for each choice c1 P C
8
1 and each k P t1, 2, ..., a´ 1u, define d0rc1, ks randomly. So

d0rc1, ks :“ c1, for some c1 P C81 if k is even or some c1 P C82 if k is odd.

Now, take a sequence of types pt01rc1, 0s, t
0
2rc1, 1s, ..., t

0
1rc1, a ´ 1sq for every choice c1 P C

8
1 . Define

type t01rc1, 0s to be such that

b1rt
0
1rc1, 0ss :“ pd0rc1, 1s, t

0
2rc1, 1sq.

Then, define for each k P t1, 2, ..., a´ 2u type t0i rc1, ks with i P t1, 2u to be such that

birt
0
i rc1, kss :“ pd0rc1, k ` 1s, t0j rc1, k ` 1sq.

Finally, we define for each choice c1 P C
8
1 type t01rc1, a´ 1s to be such that

b1rt
0
1rc1, a´ 1sspc12, t

0
2rc

1
2, 0sq :“ bc11 pc

1
2q,@c

1
2 P C

8
2 .

This implies that type t01rc1, 0s induces exactly the same a-th order expectation as type tc11 did in
Step 1. So for Iteration 0 we essentially take a copy of the epistemic model created in Step 1, but
fill in the beliefs that were still incomplete from this step.

We do a similar thing for each choice c2. For each choice c2 P C
8
2 , define

d0rc2, 0s :“ c2.

Moreover, for each choice c2 P C
8
2 and each k P t1, 2, ..., z ´ 1u, define d0rc2, ks randomly. So

d0rc2, ks :“ c1, for some c1 P C82 if k is even or some c1 P C81 if k is odd.

Now, take a sequence of types pt02rc2, 0s, t
0
1rc2, 1s, ..., t

0
2rc2, z ´ 1sq for every choice c2 P C

8
2 . Define

type t02rc2, 0s to be such that

b2rt
0
2rc2, 0ss :“ pd0rc2, 1s, t

0
1rc2, 1sq.

Then, define for each k P t1, 2, ..., z ´ 2u type t0i rc2, ks with i P t1, 2u to be such that

birt
0
i rc2, kss :“ pd0rc2, k ` 1s, t0j rc2, k ` 1sq.
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Finally, we define for each choice c2 P C
8
2 type t02rc2, z ´ 1s to be such that

b2rt
0
2rc2, z ´ 1sspc11, t

0
1rc

1
1, 0sq :“ bc22 pc

1
1q,@c

1
1 P C

8
1 .

Iteration ně 1 : We define for each choice c2 P C
8
2 type tn2 rc2, z ´ 1s to be such that

b2rt
n
2 rc2, z ´ 1sspc11, t

n´1
1 rc11, 0sq :“ bc22 pc

1
1q,@c

1
1 P C

8
1 .

We also define

dnrc2, z ´ 1s :“ c12, with c12 optimal given the type tn2 rc2, z ´ 1s.

Define recursively for each odd k P t1, 2, ..., z ´ 2u starting at k “ z ´ 2, type tn1 rc2, ks that is such
that

b1rt
n
1 rc2, kss :“ pdnrc2, k ` 1s, tn2 rc2, k ` 1sq.

Second, also define

dnrc2, ks :“ c11, with c11 optimal given the a-th order expectation induced by tn1 rc2, ks.

Third, define type tn2 rc2, k ´ 1s to be such that

b2rt
n
2 rc2, k ´ 1ss :“ pdnrc2, ks, t

n
1 rc2, ksq.

Fourth, also define

dnrc2, k ´ 1s :“ c22, with c22 optimal given the type tn2 rc2, k ´ 1s.

Finally, for each choice c2 P C
8
2 define type tn2 rc2, 0s to be such that

b2rt
n
2 rc2, 0ss :“ pdnrc2, 1s, t

n
1 rc2, 1sq,

and define
dnrc2, 0s :“ c2.

Next, we do exactly the same thing for choices c1. We define for each choice c1 P C
8
1 type tn1 rc1, a´1s

to be such that
b1rt

n
1 rc1, a´ 1sspc12, t

n
2 rc

1
2, 0sq :“ bc11 pc

1
2q,@c

1
2 P C

8
2 .

For each choice c1 P C
8
1 , we then also define

dnrc1, a´ 1s :“ c11, with c11 optimal given the type tn1 rc1, a´ 1s.

Now, for each choice c1 P C
8
1 , define recursively for each odd k P t1, 2, ..., a´ 2u starting at k “ a´2,

type tn2 rc1, ks that is such that

b2rt
n
2 rc1, kss :“ pdnrc1, k ` 1s, tn1 rc1, k ` 1sq.

Second, also define

dnrc1, ks :“ c12, with c12 optimal given the a-th order expectation induced by tn2 rc1, ks.
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Third, define type tn1 rc1, k ´ 1s to be such that

b1rt
n
1 rc1, k ´ 1ss :“ pdnrc1, ks, t

n
2 rc1, ksq.

Fourth, also define

dnrc1, k ´ 1s :“ c21, with c21 optimal given the type tn1 rc1, k ´ 1s.

Finally, for each choice c1 P C
8
1 define type tn1 rc1, 0s to be such that

b1rt
n
1 rc1, 0ss :“ pdnrc1, 1s, t

n
2 rc1, 1sq,

and define
dnrc1, 0s :“ c1.

We have that C81 and C82 are finite sets. Moreover, a and z are both finite orders of belief.
Hence, there are iterations m and n with m ą n such that

dmrc1, ks “ dnrc1, ks and dmrc2, ls “ dnrc2, ls,

for each c1 P C
8
1 and k P t0, 1, ..., a´ 1u, and c2 P C

8
1 and l P t0, 1, ..., z ´ 1u respectively. When

we find such iterations m and n, we stop the procedure.

Next, we create the epistemic model M˚ from the types we have constructed in our recursive
procedure. Define T1plq :“ ttl1rc1, ks : c1 P C

8
1 , k P t2, ..., a´ 1u evenu Y ttl1rc2, ks : c2 P C

8
2 , k P

t1, ..., z ´ 2u oddu and T2plq :“ ttl2rc2, ks : c2 P C
8
2 , k P t2, ..., z ´ 1u evenuYttl2rc1, ks : c1 P C

8
1 , k P

t1, ..., a´ 2u oddu. Then, let T plq :“ T1plq Y T2plq. Do this for every l P tn, ...,mu.

In T pn` 1q specifically, we re-define for each c2 P C
8
2 the type tn`1

2 rc2, z ´ 1s. Re-define each such
type tn`1

2 rc2, z ´ 1s to be such that

b2rt
n`1
2 rc2, z ´ 1sspc11, t

m
1 rc

1
1, 0sq :“ bc22 pc

1
1q,@c

1
1 P C

8
1 .

So instead of assigning positive probability to types in T pnq, each type tn`1
2 rc2, z ´ 1s now assigns

positive probability to types in T pmq. Then define M˚ :“ p
Ť

lPtn`1,...,mu Tiplq, brtisqiPt1,2u.

We will show that each type in M˚ expresses common belief in rationality. We will do so in
steps.

First we note that choice c1 is optimal for type tl1rc1, 0s, for each c1 P C
8
1 and each l P tn` 1, ...,mu

in M˚. Namely, from type tl1rc1, 0s there follows a sequence of probability one beliefs, induced by
the sequence of types ptl1rc1, 0s, t

l
2rc1, 1s, ..., t

l
2rc1, a ´ 2sq. This sequence of probability one beliefs

ends at type tl1rc1, a ´ 1s. Note that if a “ 1 we treat tl1rc1, 0s as if tl1rc1, 0s “ tl1rc1, a ´ 1s. By
definition, we have that

margC82 b1rt
l
1rc1, a´ 1ss “ bc11 .

The a-th order expectation induced by type tl1rc1, 0s is thus equal to bc11 . We constructed bc11
such that c1 is optimal given bc11 . Hence c1 is optimal given type tl1rc1, 0s. This goes for every
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l P tn` 1, ...,mu. For similar reasons, we have that for each l P tn` 1, ...,mu and each c2 P C
8
2

that tl2rc2, 0s induces the same z-th order expectation as bc22 does. Hence, c2 is optimal given type
tl2rc2, 0s.

Second, we can also show the following is true.

Claim 3. Consider the epistemic model M˚. For each l P tn` 1, ...,mu, each c1 P C
8
1 and each

k P t1, 2, ..., a´ 1u, each choice dlrc1, ks is optimal given the type tlirc1, ks. Moreover, for each
l P tn` 1, ...,mu, each c2 P C

8
2 and each k P t1, 2, ..., z ´ 1u, each choice dlrc2, ks is optimal given

the type tlirc2, ks.

Proof of claim. For each k P t0, 2, ..., a´ 2u and each c11 P C
8
1 we have by construction that

birt
n
i rc

1
1, ksspd

nrc11, k ` 1s, tnj rc
1
1, k ` 1sq “ 1 “ birt

m
i rc

1
1, ksspd

mrc11, k ` 1s, tmj rc
1
1, k ` 1sq

with dmrc11, k ` 1s “ dnrc11, k ` 1s. We similarly have for each k P t0, 2, ..., z ´ 2u and each c12 P C
8
2

that

birt
n
i rc

1
2, ksspd

nrc12, k ` 1s, tnj rc
1
2, k ` 1sq “ 1 “ birt

m
i rc

1
2, ksspd

mrc12, k ` 1s, tmj rc
1
2, k ` 1sq

with dmrc12, k ` 1s “ dnrc12, k ` 1s. Additionally, we have that

b1rt
n
1 rc

1
1, a´ 1sspc22, t

n´1
2 rc22, 0sq “ b

c11
1 pc

2
1q “ b1rt

m
1 rc

1
1, a´ 1spc22, t

m´1
2 rc22, 0sq,

for each c22 P C
8
1 . And we have that

b2rt
n
2 rc

1
2, z ´ 1sspc21, t

n´1
1 rc21, 0sq “ b

c12
2 pc

2
1q “ b2rt

m
2 rc

1
2, z ´ 1spc21, t

m´1
1 rc21, 0sq,

for each c21 P C
8
1 .

Then for each c11 P C
8
1 the pair of types tn1 rc

1
1, 0s and tm1 rc

1
1, 0s induce the same pz`aq-th order belief.

To see this, we can first note that for each c22 P C
8
2 the pair of types tn2 rc

2
2, 0s and tm2 rc

2
2, 0s induce

the same z-th order belief. Namely, from the beginning of the proof of this claim we have that
types tmi rc

2
2, ks and tni rc

2
2, ks for each k P t0, 1, ..., z ´ 2u induce a probability one belief. Moreover,

the first-order belief induced by type tmi rc
2
2, ks for each k P t0, 1, ..., z ´ 1u is equal to the first-order

belief induced by tni rc
2
2, ks. As a result, types tm2 rc

2
2, 0s and tn2 rc

2
2, 0s in fact induce the same z-th

order belief.
Recall that for each c11 P C

8
1 we have that

b1rt
n
1 rc

1
1, a´ 1sspc22, t

n´1
2 rc22, 0sq “ b

c11
1 pc

2
1q “ b1rt

m
1 rc

1
1, a´ 1spc22, t

m´1
2 rc22, 0sq,

for each c22 P C
8
1 . Both types tm1 rc

1
1, a´1s and tn1 rc

1
1, a´1s thus assign exactly the same probability

to choice-type combinations where the choice is equal and the type induces the same z-th order
belief as established before. It follows that for each c11 P C

8
1 types tn1 rc

1
1, a ´ 1s and tm1 rc

1
1, a ´ 1s

induce the same pz ` 1q-th order belief.
From the beginning of the proof of this claim we have that types tmi rc

1
1, ks and tni rc

1
1, ks for

each k P t0, 1, ..., a´ 2u induce a probability one belief.. These probability one beliefs end at types
tm1 rc

1
1, a´ 1s and tn1 rc

1
1, a´ 1s respectively. We know these types induce the same pz ` 1q-th order

expectation. Moreover, the first-order belief induced by type tmi rc
1
1, ks for each k P t0, 1, ..., a´ 2u
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is equal to the first-order belief induced by tni rc
1
1, ks. Taken together, types tm1 rc

1
1, 0s and tn1 rc

1
1, 0s

in fact induce the same pz ` aq-th order belief.

Denote type tn`1
2 rc2, z ´ 1s that results from our recursive, backward procedure but before con-

structing M˚ by t̄n`1
2 rc2, z ´ 1s. Now, we have that for each c2 P C

8
2

b2rt̄
n`1
2 rc2, z ´ 1sspc11, t

n
1 rc

1
1, 0sq “ b2rt

n`1
2 rc2, z ´ 1sspc11, t

m
1 rc

1
1, 0sq,@c

1
1 P C

8
1 .

It follows that each such type tn`1
2 rc2, z´1s induces the same pz`a`1q-th order belief inM˚ as it

did beforeM˚ was constructed. All the remaining types in
Ť

lPtn`1,...,mu T plq remained unchanged
when M˚ was constructed: they induce exactly the same belief over choice-type combinations as
before. As a result, all types in

Ť

lPtn`1,...,mu T plq induce at least the same pz`a`1q-th order belief
in M˚ as before M˚ was constructed.

In our backward construction procedure of types and choices, before creating M˚, we con-
structed dlrc1, ks for each l P tn` 1, ...,mu, k P t1, 2, ..., a´ 1u and c1 P C

8
1 such that it is optimal

given type tlirc1, ks. Similarly, we constructed dlrc1, ks for each l P tn` 1, ...,mu, k P t1, 2, ..., z ´ 1u
and c2 P C

8
2 such that it is optimal given type tlirc2, ks. Now, we have that the maximum order of

belief in which either of the players’ utility is variable is maxpN1YN2q, which is either a or z. We
also have that types tlirc1, ks and tlirc2, ks induce exactly the same pz` a` 1q-th order belief inM˚

as before M˚ was constructed. Hence, we also have in M˚ that dlrc1, ks is optimal given tlirc1, ks
and that dlrc2, ks is optimal given tlirc2, ks. This completes the proof of this claim.

Since each type in the epistemic modelM˚ only assigns positive probability to choice-type combi-
nations pdlrc1, ks, t

l
irc1, ksq for k P t0, 1, ..., a´ 1u or pdlrc2, ks, t

l
irc2, ksq for k P t0, 1, ..., z ´ 1u, each

type only assigns positive probability to choice-type combinations where the choice is optimal given
the type. Hence each type in M˚ expresses 1-fold belief in rationality. Therefore also each type in
M˚ expresses common belief in rationality.

By our backward, recursive construction, we also have that type tm1 rc1, 0s induces an a-th
order expectation bc11 . By construction of Step 1, choice c1 is optimal given such a higher-order
expectation. Hence we have constructed an epistemic model with a type that expresses common
belief in rationality and is such that c1 is optimal given that type.

In Step 1 we have shown that for every choice c1 P C81 we can construct a partial epistemic
model with a type that expresses on-path belief in rationality and that is such that choice c1 is
optimal. In Step 2 we showed that we are then also able to construct a finite, epistemic model with
a type that expresses common belief in rationality and that is such that choice c1 is optimal. This
concludes the proof for Scenario piiq.

Scenario (iii)
Step 1:
Finally, consider scenario piiiq. This corresponds to case piiiq of Theorem 2. Here we have that
N1 “ ta, b, ..., xu consists of (possibly multiple) odd orders and that N2 is of a single, even order
such that in the resulting causality diagram for player 1 there are no overlapping paths. In this
Step 1, we will construct a partial epistemic model. By partial we mean we only completely specify
the beliefs for some particular types.

For each choice c1 P C
8
1 , fix an expectation bc11 which is a probability distribution over the product-
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space Ca,8
2 ˆCb,8

2 ˆ ...ˆCx,8
2 and for which c1 is optimal. The reason we can do so is as follows.

From Lemma 1 we know that for each choice that is not strictly dominated in a decision problem,
we can find a belief in that decision problem such that the relevant choice is optimal. The final
reduced problem decision resulting from the IESDC-procedure leaves the choices in C82 for player
2 in the decision problem. By Lemma 1, we should then have that each choice in C81 is optimal

for some belief in ∆pCa,8
2 ˆCb,8

2 ˆ ...ˆCx,8
2 q. Each letter in the superscripts of the product space

Ca,8
2 ˆ Cb,8

2 ˆ ...ˆ Cx,8
2 refers to an order of belief in N1.

Then, fix a type tc11 rc1s for choice c1.

The lowest order in N1 is order a. Let N2 “ tzu and take a ` z. For each remaining order
p P N1, subtract a multiple n P N of z from order p such that p ´ n ¨ z P ta, ..., a` zu. Call this
order ap. Note here that, by how case piiiq in Theorem 2 is defined, for any orders b, c P N1 with
b, c ‰ a, we have that b´n ¨ z ‰ c´m ¨ z, for any combination of n,m. Hence, ab ‰ ac for any two
different orders b, c P N1.

Take some combination of choices for player 2 pca, cb, ..., cxq P supppbc11 q. For each order p P N1

we do the following: take choice cp in Cp,8
2 . Let

bc
p´z

2 :“ cp

be the z-th order expectation for player 2 that puts probability one on cp.6 Then there is a choice
cp´z in Cp´z,8

2 such that cp´z is optimal given bc
p´z

2 . This follows from the construction of the
IESDC-procedure. Namely, every choice c2 P C2 that is optimal for some belief b2 P ∆pC82 q is in
C82 .

Next, for each n ě 1, up until we have p ´ n ¨ z P ta, ..., a` zu, we can do the same as we did
for choice cp. Take choice cp´pn´1qz. Let

bc
p´nz

2 :“ cp´pn´1qz,

be the z-th order expectation for player 2 that puts probability one on cp´pn´1qz. Then following
the same argument as before there is a choice cp´nz in Cp´nz,8

2 such that cp´nz is optimal given

bc
p´nz

2 . We can do this for any p ą a` z with p P N1, up until we have the choice ca
p

in Cap,8
2 .

Each choice cp´nz, given any p and any n, is a choice in C82 . For these choices, we fix the z-th
order expectation bc

p´nz

2 we just constructed before. For all the remaining choices c2 in C82 , we fix
some z-th order expectation bc2 such that c2 is optimal given bc22 . Again, we can do so by Lemma 1.

The next step is to move on to the construction of types. For each combination of choices
c̄ “ pca, ca

b
, ..., ca

x
q that results from the construction above, create a type tc̄2rc̄s. We specifically

say ‘each’, as the support of bc11 may include multiple combinations of choices pca, cb, ..., cxq.

For each combination of choices c̄, take a sequence of types ptc̄2rc̄s, t
c̄,1
1 rc̄s, ..., t

c̄,z´1
1 rc̄sq. Then

in each such sequence let us have that type tc̄2rc̄s assigns probability one to type tc̄,11 rc̄s. Also in
each such sequence, let us have, for each n P t1, 2, ..., z ´ 1u that type tc̄,ni rc̄s with i P ti, ju assigns

probability one to type tc̄,n`1
j rc̄s with j ‰ i. Additionally, for each k “ ap´a´1, define type tc̄,k1 rc̄s

such that
b1rt

c̄,k
1 rc̄ss :“ pca

p
, tc̄,k2 rc̄sq.

Finally, we need to specify the belief that type tc̄,z´1
1 rc̄s in the sequence induces. To this end, first

construct for each c̄ P Ca,8
2 ˆ ...ˆ Cax,8

2 and each c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 a type tc̄,z2 rc̄
1s. Then,

6With z-th order expectation in this context we specifically refer to margC2e
z
2 P ∆pC2q where ez2 P ∆pW z´1

2 ˆ C2q.
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consider the joint probability distribution bc̄ P ∆pCa,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax
2 q. That is,

bc̄pc̄1q :“ bc
a

2 pc
a1q ¨ bc

ab

2 pca
b 1q ¨ ... ¨ bc

ax

2 pca
x 1q, @c̄1 “ pca1, ca

b 1, ..., ca
x 1q P Ca,8

2 ˆ Cab,8
2 ˆ ...ˆ Cax

2 .

Then, define type tc̄,z´1
1 rc̄s to be such that, for each c̄1 “ pca1, ca

b 1, ..., ca
x 1q P Ca,8

2 ˆ Cab,8
2 ˆ ...ˆ Cax

2

b1rt
c̄,z´1
1 rc̄sspca1, tc̄,z2 rc̄

2sq :“

#

bc̄pc̄1q, if c̄1 “ c̄2

0, otherwise.

We create such sequences of types for each combination of choices c̄ “ pca, ca
b
, ..., ca

x
q.

Now, we follow the same construction another k˚ ´ 2 times, where k˚ “ maxpN1 YN2q. For each

y P t1, ..., k˚ ´ 2u, do the following: For each c̄, c̄1 P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax
2 take a sequence of

types ptc̄,yz2 rc̄1s, ..., t
c̄,py`1qz´1
1 rc̄1sq. Then, let us have in each such sequence that type tc̄,yz2 rc̄1s assigns

probability one to type tc̄,yz`1
1 rc̄1s, and that type tc̄,yz`ni rc̄1s with i P t1, 2u assigns probability one

to type tc̄,yz`n`1
j rc̄1s with j ‰ i, for each n P t1, ..., z ´ 2u. Additionally, for each k “ ap ´ a ´ 1,

define type tc̄,yz`k1 rc̄1s to be such that

b1rt
c̄,yz`k
1 rc̄1ss :“ pca

p 1, tc̄,yz`k`1
2 rc̄1sq,

with c̄1 “ pca1, ..., ca
x 1q. Then, for each c̄, c̄˚ P Ca,8

2 ˆ Cab,8
2 ˆ ...ˆ Cax

2 construct a type t
c̄,py`1qz
2 rc̄˚s.

Then define type t
c̄,py`1qz´1
1 rc̄1s to be such that for each c̄˚ “ pca

˚

, ca
b˚, ..., ca

x˚q P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax
2

b1rt
c̄,py`1qz´1
1 rc̄1sspca˚, t

c̄,py`1qz
2 rc̄2sq :“

#

bc̄
1

pc̄˚q, if c̄˚ “ c̄2

0, otherwise.

We do this for every y P t1, ..., k˚ ´ 2u.

Finally, we consider the case y “ k˚´1. For each c̄, c̄1 P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax
2 take a sequence of

types pt
c̄,pk˚´1qz
2 rc̄1s, ..., tc̄,k

˚z´1
1 rc̄1sq. Then, let us have in each such sequence that type t

c̄,pk˚´1qz
2 rc̄1s

assigns probability one to type t
c̄,pk˚´1qz`1
1 rc̄1s, and that type t

c̄,pk˚´1qz`n
i rc̄1s with i P t1, 2u assigns

probability one to type t
c̄,pk˚´1qz`n`1
j rc̄1s with j ‰ i, for each n P t1, ..., z ´ 2u. Additionally, for

each k “ ap ´ a´ 1, define type t
c̄,pk˚´1qz`k
1 rc̄1s to be such that

b1rt
c̄,pk˚´1qz`k
1 rc̄1ss :“ pca

p 1, t
c̄,pk˚´1qz`k`1
2 rc̄1sq,

with c̄1 “ pca1, ..., ca
x 1q. Then define type tc̄,k

˚z´1
1 rc̄1s to be such that for each c̄˚ “ pca

˚

, ca
b˚, ..., ca

x˚q P

Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax
2

b1rt
c̄,k˚z´1
1 rc̄1sspca˚, tc̄

2

2 rc̄
2sq :“

#

bc̄
1

pc̄˚q, if c̄˚ “ c̄2

0, otherwise.

We create such k˚ sequences of z types for each combination of choices c̄ “ pca, ..., ca
x
0 P Ca,8

2 ˆ Cab,8
2 ˆ ...ˆ Cax

2 .
All these types together form a partial epistemic model. Call this partial epistemic model M̄.
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Extend this partial epistemic model in the following way. Let type tc11 rc1s we fixed at the be-

ginning be at the start of the following sequence of types: ptc11 rc1s, t
c1,1
2 rc1s, ..., t

c1,a´1
1 rc1sq. Let type

tc11 rc1s be such that it assigns probability one to type tc1,12 rc1s and let type tc1,ni rc1s be such that it

assigns probability one to type tc1,n`1
j rc1s, for each n P t1, 2, ..., a´ 2u.

Now, we have that from each combination of choices pca, cb, ..., cxq we derive a single combina-

tion of choices c̄ “ pca, ca
b
, ..., ca

x
q. Then, for each combination of choices pca, cb, ..., cxq and the

combination of choices c̄ that is derived from it, define type tc1,a´1
1 rc1s to be such that

b1rt
c1,a´1
1 rc1sspc

a, tc̄
1

2 rc̄
1sq :“

#

bc11 pc
a, cb, ..., cxq, if c̄1 “ c̄,

0, otherwise.

As will be explained below, then type tc11 rc1s expresses on-path belief in rationality in this partial
epistemic model. We do so by first showing that each type tc̄2rc̄s expresses z-fold belief in rationality,
2z-fold belief in rationality, and so on. Additionally, we show that this type expresses pap´ aq-fold
belief in rationality, z ` pap ´ aq-fold belief in rationality and so on, for every order ap.

First, it is clear that type tc̄2rc̄s for any c̄ P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax
2 expresses z-fold belief in

rationality by construction. Namely, for any c̄1 “ pca1, ..., ca
x 1q, type tc̄,2z´1

1 rc̄1s is such that its
distribution over choices in C82 in the belief it induces is exactly equal to bc̄

1

, which makes choice
ca1 optimal by construction. Since from type tc̄,z1 rc̄

1s a sequence of z ´ 1 probability one beliefs is

induced that ends up at type tc̄,2z´1
1 rc̄1s, it follows that choice ca1 is optimal given type tc̄2rc̄

1s. We

have in the sequence ptc̄2rc̄s, ..., t
c̄,z´1
1 rc̄sq that type tc̄,z´1

1 rc̄s is constructed such that it only assigns
positive probability to choice-type combinations pca1, tc̄,z2 rc̄

1s where the choice is optimal given such
type. Hence type tc̄2rc̄s expresses z-fold belief in rationality.

Similarly, type tc̄2rc̄s expresses pap´aq-fold belief in rationality for each order ap. To see this, first

note that from type tc̄,a
p´a

2 rc̄s there follows a sequence of probability one beliefs up to type tc̄,z´1
1 rc̄s.

Second, type tc̄,z´1
1 rc̄s induces a belief whose distribution over types is such that it is equal to the

distribution that bc̄ has over Ca,8
2 ˆ ...ˆCax,8

2 . In different terms, the belief b1rt
c̄,z´1
1 rc̄ss assigns a

probability to type tc̄,z2 rc̄
1s that is equal to the probability that bc̄ “ bc

a

2 ˆ ...ˆb
ca

p

2 ˆ ...ˆbc
ax

2 assigns
to c̄1 “ pca1, ..., ca

p 1, ..., ca
x 1q. Third, by construction, from type tc̄,z2 rc̄

1s there follows a sequence
of pap ´ aq probability one beliefs. The pap ´ aq-th type in this sequence assigns probability one
to specifically the choice-type combination pca

p 1, tc̄,a
p´a

2 rc̄1sq. Taken together then, type tc̄,a
p´a

2 rc̄s

induces a z-th order expectation that is equal to bc
ap

2 . By construction choice ca
p

is optimal given

ba
p

2 . Hence choice ca
p

is optimal given type tc̄,a
p´a

2 rc̄s. Since from type tc̄2rc̄s there follows a sequence

of probability one beliefs up to type tc̄,a
p´a´1

1 rc̄s and b1rt
c̄,ap´a´1
1 rc̄sspca

p
, tc̄,a

p´a
2 rc̄sq “ 1, we have

that type tc̄2rc̄s expresses pap ´ aq-fold belief in rationality.
Following exactly the same argument, we have that type tc̄,yz2 rc̄1s for each c̄, c̄1 and each y P

t1, ..., k˚ ´ 1u expresses both z-fold belief in rationality as well pap´ aq-fold belief in rationality for
every order ap.

Each type tc̄2rc̄s and each type tc̄,yz2 rc̄1s in their z-th order beliefs only assign positive probability
to choice-type combinations where the types are characterized as before. Hence, each type tc̄2rc̄s and
each type tc̄,yz2 rc̄1s only assign positive probability in their z-th order beliefs to type that express
both z-fold belief in rationality and pap ´ aq-fold belief in rationality for every order ap. It then
follows that each type tc̄2rc̄s and each type tc̄,yz2 rc̄1s then also expresses pap ´ a ` zq-fold belief in
rationality for every order ap, 2z-fold belief in rationality, pap´ a` 2zq-fold belief in rationality for
every order ap 3z-fold belief in rationality, and so on.
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We started off with type tc11 rc1s. In the a-th order belief, the belief hierarchy induced by tc11 rc1s

exclusively assigns positive probability to the choice-type combinations pca, tc̄2rc̄sq where c̄ starts
with ca. By construction choice ca is optimal given type tc̄2rc̄s, hence type tc11 rc1s expresses a-fold
belief in rationality. Moreover, each such type tc̄2rc̄s expresses pap ´ a` zq-fold belief in rationality
for every order ap, 2z-fold belief in rationality, pap ´ a ` 2zq-fold belief in rationality for every
order ap 3z-fold belief in rationality, and so on. It follows that type tc11 rc1s then also expresses
pap ` zq-fold belief in rationality for every order ap, a ` z-fold belief in rationality, pap ` 2zq-fold
belief in rationality for every order ap, a ` 2z-fold belief in rationality, and so on. Then, type
tc11 rc1s expresses on-path belief in rationality. Additionally, tc11 rc1s was constructed such that c1

was optimal given the type.
Hence, we have constructed an epistemic model in which c1 is optimal given a type that expresses

on-path belief in rationality.

Step 2
We will now develop a similar recursive, backward construction for scenario piiiq as we did earlier
for scenarios piq and piiq.

In Step 1 we have shown that for choice c1 P C
8
1 we can always construct a partial epistemic

model with a type tc11 rc1s for which c1 is optimal and that expresses on-path belief in rationality. In
Step 2 we will now do the following. We will show that if there exists a belief hierarchy expressing
on-path belief in rationality for which c1 is optimal, then there is also a belief hierarchy expressing
common belief in rationality for which c1 is optimal.

Consider a partial epistemic model M̄ “ pTi, birtisqiPt1,2u as constructed in Step 1. We had here

for each combination of choices c̄ “ pca, ca
b
, ..., ca

x
q a type tc̄2rc̄s that expressed pap´a`yzq-fold belief

in rationality and py`1qz-fold belief in rationality for any y P N. By means of a backward, recursive
procedure we transform this epistemic model such that we get to a new, complete epistemic model
that includes a type tm2 rc̄, c̄, 0s that expresses common belief in rationality and induces the same
yz-th order expectation and pap ´ a` yzq-th order expectation for every y P N as type tc̄2rc̄s does.
The recursive procedure here defines choices and types at the same time in each iteration.

The recursive procedure is as follows.

Iteration 0: For each combination of choices c̄ “ pca, ca
b
, ..., ca

x
q P Ca,8

2 ˆ Cab,8
2 ˆ ...ˆ Cax,8

2 ,
define

d0rc̄, c̄, 0s :“ ca.

Also define for each order ap

d0rc̄, c̄, ap ´ as :“ ca
p
.

Moreover, for each k P t1, 2, ..., z ´ 1u with k ‰ ap ´ a for any order ap, define d0rc̄, c̄, ks randomly:

d0rc̄, c̄, ks :“ c1, for some c1 P C82 if k is even or some c1 P C81 if k is odd.

For each y P t1, ..., k˚ ´ 1u, define for each c̄, c̄1 P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax,8
2 with c̄1 “ pca1, ..., ca

x 1q

d0rc̄, c̄1, yzs :“ ca1,

and for each order ap

d0rc̄, c̄1, ap ´ a` yzs :“ ca
p 1,

and finally for each k P t1, 2, ..., z ´ 1u with k ‰ ap ´ a for any order ap

d0rc̄, c̄1, yz ` ks :“ c1, for some c1 P C82 if k is even or some c1 P C81 if k is odd.
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Take a sequence of types pt02rc̄, c̄, 0s, ..., t
0
1rc̄, c̄, z ´ 1sq for every combination of choices c̄. Simi-

larly, for each y P t1, ..., k˚ ´ 1u and each pair c̄, c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 take a sequence of types
pt02rc̄, c̄

1, yzs, ..., t01rc̄, c̄
1, py ` 1qz ´ 1sq.

Now, for each combination of choices c̄, define type t02rc̄, c̄, 0s such that

b2rt
0
2rc̄, c̄, 0ss :“ pd0rc̄, c̄, 1s, t01rc̄, c̄, 1sq.

Then, define for each k P t1, 2, ..., z ´ 2u type t0i rc̄, c̄, ks with i P t1, 2u to be such that

birt
0
i rc̄, c̄, kss :“ pd0rc̄, c̄, k ` 1s, t0j rc̄, c̄, k ` 1sq,

where j ‰ i. Finally, we define type t01rc̄, c̄, z ´ 1s to be such that

b1rt
0
1rc̄, c̄, z ´ 1sspca1, t02rc̄, c̄

1, zsq :“ bc̄pc̄1q, @c̄1 “ pca1, ca
b 1, ..., ca

x 1q P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax,8
2 .

Similarly, for each pair c̄, c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 and each y P t1, ..., k˚ ´ 1u, define type
t02rc̄, c̄

1, yzs to be such that

b2rt
0
2rc̄, c̄

1, yzss :“ pd0rc̄, c̄1, yz ` 1s, t01rc̄, c̄
1, yz ` 1sq.

And define for each k P t1, 2, ..., z ´ 2u type t0i rc̄, c̄
1, yz ` ks with i P t1, 2u to be such that

birt
0
i rc̄, c̄

1, yz ` kss :“ pd0rc̄, c̄1, yz ` k ` 1s, t0j rc̄, c̄
1, yz ` k ` 1sq,

where j ‰ i. Finally, we define type t01rc̄, c̄
1, py ` 1qz ´ 1s for y P t1, ..., k˚ ´ 1u to be such that

b1rt
0
1rc̄, c̄

1, py`1qz´1sspca2, t02rc̄, c̄
2, py`1qzsq :“ bc̄

1

pc̄2q, @c̄2 “ pca2, ..., ca
x2q P Ca,8

2 ˆ Cab,8
2 ˆ ...ˆ Cax,8

2 .

If y “ k˚ ´ 1, define type t01rc̄, c̄
1, k˚z ´ 1s to be such that

b1rt
0
1rc̄, c̄

1, k˚z ´ 1sspca2, t02rc̄
2, c̄2, 0sq :“ bc̄

1

pc̄2q, @c̄2 “ pca2, ..., ca
x2q P Ca,8

2 ˆ Cab,8
2 ˆ ...ˆ Cax,8

2 .

Note that by construction of Step 1, we have for each y P 1, ..., k˚ that bc̄
1

pc̄2q “ b1rt
0
1rc̄, c̄

1, yz ´
1sspc̄2, t02rc̄, c̄

1, yzsq for each c̄2. And for each order ap we have that b1rt
0
1rc̄, c̄

1, ap´a´1`py´1qzss “
pd0rc̄, c̄1, ap ´ a` py ´ 1qzs, t02rc̄, c̄

1ap ´ a` py ´ 1qzsq. Moreover, all other types induce probability
one beliefs. So for Iteration 0 we essentially take a copy of the epistemic model M̄ created in Step
1, but fill in the beliefs that were still incomplete from this step.

Iteration n ě 1 : For each pair c̄, c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 , take a sequence of types ptn2 rc̄, c̄
1, pk˚ ´

1qzs, ..., tn1 rc̄, c̄
1, k˚z ´ 1sq. Then, define type tn1 rc̄, c̄

1, k˚z ´ 1s to be such that

b1rt
n
1 rc̄, c̄

1, k˚z ´ 1sspca2, tn´1
2 rc̄2, c̄2, 0sq :“ bc̄

1

pc̄2q, @c̄2 “ pca2, ..., ca
x2q P Ca,8

2 ˆ ...ˆ Cax,8
2 .

We then also define

dnrc̄, c̄1, k˚z ´ 1s :“ c11, with c11 optimal given the type tn1 rc̄, c̄
1, k˚z ´ 1s.

We also define for each order ap

dnrc̄, c̄1, pk˚ ´ 1qz ` pap ´ aqs :“ ca
p 1.
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Now, for each pair c̄, c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 , define recursively for each even k P t2, ..., z ´ 2u
starting at k “ z ´ 2, type tn2 rc̄, c̄

1, pk˚ ´ 1qz ` ks to be such that

b2rt
n
2 rc̄, c̄

1, pk˚ ´ 1qz ` kss :“ pdnrc̄, c̄1, pk˚ ´ 1qz ` k ` 1s, tn1 rc̄, c̄
1, pk˚ ´ 1qz ` k ` 1sq.

Second, if k ‰ ap ´ a also define

dnrc̄, c̄1, pk˚ ´ 1qz ` ks :“ c˚2 , with c˚2 optimal given the type tn2 rc̄, c̄
1, pk˚ ´ 1qz ` ks.

Third, define type tn1 rc̄, c̄
1, pk˚ ´ 1qz ` k ´ 1s to be such that

b1rt
n
1 rc̄, c̄

1, pk˚ ´ 1qz ` k ´ 1ss :“ pdnrc̄, c̄1, pk˚ ´ 1qz ` ks, tn1 rc̄, c̄
1, pk˚ ´ 1qz ` k ´ 1s.

Fourth, also define

dnrc̄, c̄1, pk˚ ´ 1qz ` k ´ 1s :“ c˚1 , with c˚1 optimal given the type tn1 rc̄, c̄
1, pk˚ ´ 1qz ` k ´ 1ss.

Finally, define type tn2 rc̄, c̄
1, pk˚ ´ 1qzs to be such that

b2rt
n
2 rc̄, c̄

1, pk˚ ´ 1qzss :“ pdnrc̄, c̄1, pk˚ ´ 1qz ` 1s, tn1 rc̄, c̄
1, pk˚ ´ 1qz ` 1sq,

and define
dnrc̄, c̄1, pk˚ ´ 1qzss :“ ca1.

Next, for each y P t2, ..., k˚ ´ 2u, do the following iteratively, going backwards starting at y “ k˚´2:
For each pair c̄, c̄1 P Ca,8

2 ˆ ...ˆ Cax,8
2 , take a sequence of types ptn2 rc̄, c̄

1, yzs, ..., tn1 rc̄, c̄
1, py`1qz´1sq.

Then, define type tn1 rc̄, c̄
1, py ` 1qz ´ 1s to be such that

b1rt
n
1 rc̄, c̄

1, py ` 1qz ´ 1sspca2, tn2 rc̄, c̄
2, py ` 1qzsq :“ bc̄

1

pc̄2q, @c̄2 “ pca2, ..., ca
x2q P Ca,8

2 ˆ ...ˆ Cax,8
2 .

We then also define

dnrc̄, c̄1, py ` 1qz ´ 1s :“ c11, with c11 optimal given the type tn1 rc̄, c̄
1, py ` 1qz ´ 1s.

We also define for each order ap

dnrc̄, c̄1, yz ` pap ´ aqs :“ ca
p 1.

Now, for each pair c̄, c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 , define recursively for each even k P t2, ..., z ´ 2u
starting at k “ z ´ 2, type tn2 rc̄, c̄

1, yz ` ks to be such that

b2rt
n
2 rc̄, c̄

1, yz ` kss :“ pdnrc̄, c̄1, yz ` k ` 1s, tn1 rc̄, c̄
1, yz ` k ` 1sq.

Second, if k ‰ ap ´ a also define

dnrc̄, c̄1, yz ` ks :“ c˚2 , with c˚2 optimal given the type tn2 rc̄, c̄
1, yz ` ks.

Third, define type tn1 rc̄, c̄
1, yz ` k ´ 1s to be such that

b1rt
n
1 rc̄, c̄

1, yz ` k ´ 1ss :“ pdnrc̄, c̄1, yz ` ks, tn1 rc̄, c̄
1, yz ` k ´ 1s.

Fourth, also define

dnrc̄, c̄1, yz ` k ´ 1s :“ c˚1 , with c˚1 optimal given the type tn1 rc̄, c̄
1, yz ` k ´ 1ss.
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Finally, define type tn2 rc̄, c̄
1, yzs to be such that

b2rt
n
2 rc̄, c̄

1, yzss :“ pdnrc̄, c̄1, yz ` 1s, tn1 rc̄, c̄
1, yz ` 1sq,

and define
dnrc̄, c̄1, yzss :“ ca1.

We do this iteratively for each p P t0, ..., k˚ ´ 2u, starting at p “ k˚ ´ 2.

Finally, for y “ 1, we again do the following: For each pair c̄, c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 , take a
sequence of types ptn2 rc̄, c̄, 0s, ..., t

n
1 rc̄, c̄

1, z ´ 1sq. Then, define type tn1 rc̄, c̄, z ´ 1s to be such that

b1rt
n
1 rc̄, c̄, z ´ 1sspca2, tn2 rc̄, c̄

2, zsq :“ bc̄pc̄2q, @c̄2 “ pca2, ..., ca
x2q P Ca,8

2 ˆ ...ˆ Cax,8
2 .

We then also define

dnrc̄, c̄, z ´ 1s :“ c11, with c11 optimal given the type tn1 rc̄, c̄
1, z ´ 1s.

We also define for each order ap

dnrc̄, c̄, pap ´ aqs :“ ca
p
.

Now, for each c̄ P Ca,8
2 ˆ ...ˆ Cax,8

2 , define recursively for each even k P t2, ..., z ´ 2u starting at
k “ z ´ 2, type tn2 rc̄, c̄, ks to be such that

b2rt
n
2 rc̄, c̄, kss :“ pdnrc̄, c̄, k ` 1s, tn1 rc̄, c̄, k ` 1sq.

Second, if k ‰ ap ´ a also define

dnrc̄, c̄, ks :“ c˚2 , with c˚2 optimal given the type tn2 rc̄, c̄, ks.

Third, define type tn1 rc̄, c̄, k ´ 1s to be such that

b1rt
n
1 rc̄, c̄, k ´ 1ss :“ pdnrc̄, c̄, ks, tn1 rc̄, c̄, k ´ 1s.

Fourth, also define

dnrc̄, c̄, k ´ 1s :“ c˚1 , with c˚1 optimal given the type tn1 rc̄, c̄, k ´ 1ss.

Finally, define type tn2 rc̄, c̄, 0s to be such that

b2rt
n
2 rc̄, c̄, 0ss :“ pdnrc̄, c̄, 1s, tn1 rc̄, c̄, 1sq,

and define
dnrc̄, c̄, 0ss :“ ca.

We have that C81 and C82 are finite sets. Additionally, z and k˚ are finite orders of belief and

thus k˚z is a finite order of belief as well. Finally, we have that Ca,8
2 ˆ ...ˆCax,8

2 is a finite set as
well. Together, we then have that there are iterations m,n with m ą n such that:

dmrc̄, c̄, ks “ dnrc̄, c̄, ks, @c̄ P Ca,8
2 ˆ ...ˆ Cax,8

2 , k P t0, 1, ..., z ´ 1u,
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and
dmrc̄, c̄1, yz ` ks “ dnrc̄, c̄1, yz ` ks, @c̄, c̄1 P Ca,8

2 ˆ ...ˆ Cax,8
2 , y P t1, ..., k˚ ´ 1u.

When we find such iterations m and n, we stop the recursive procedure.

Now we create the epistemic model M˚ from the types we have constructed in our recursive
procedure. Define

T2plq :“ttl2rc̄, c̄, ks : c̄ P Ca,8
2 ˆ ...ˆ Cax,8

2 , k P t0, ..., z ´ 2u evenuY

ttl1rc̄, c̄
1, yz ` ks : c̄, c̄1 P Ca,8

2 ˆ ...ˆ Cax,8
2 , y P t1, ..., k˚ ´ 1u, k P t0, ..., z ´ 2u evenu

and

T1plq :“ttl1rc̄, c̄, ks : c̄ P Ca,8
2 ˆ ...ˆ Cax,8

2 , k P t0, 1, ..., z ´ 1u odduY

ttl1rc̄, c̄
1, yz ` ks : c̄, c̄1 P Ca,8

2 ˆ ...ˆ Cax,8
2 , y P t1, ..., k˚ ´ 1u, k P t0, ..., z ´ 1u odd.u

Then, let T plq :“ T1plq Y T2plq. Do this for every l P tn, ...,mu.

In T pn` 1q specifically, we re-define for each c̄, c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 the type tn`1
1 rc̄, c̄1, k˚z ´ 1s

to be such that

b1rt
n`1
1 rc̄, c̄1, k˚z ´ 1sspca2, tm2 rc̄

2, c̄2, 0sq :“ bc̄
1

pc̄2q,@c̄2 “ pca2, ..., ca
x2q P Ca,8

2 ˆ ...ˆ Cax,8
2 .

So instead of assigning positive probability to types in T pnq, each type tn`1
1 rc̄, c̄1, k˚z ´ 1s now

assigns positive probability to types in T pmq. Then define M˚ :“ p
Ť

lPtn`1,...,mu Tiplq, brtisqiPt1,2u.

We will show that each type in M˚ expresses common belief in rationality. We will do so in
steps.

First, for the epistemic modelM˚, we can note that for each combination of choices c̄ “ pca, ca
b
, ..., ca

x
q

and each l P tn` 1, ...,mu, choice ca is optimal for type tl2rc̄, c̄, 0s. We can also say that for each

c̄ “ pca, ca
b
, ..., ca

x
q, c̄1 “ pca1, ca

b 1, ..., ca
x 1q, each l P tn` 1, ...,mu and each y P t1, ..., k˚ ´ 1u that

choice ca1 is optimal for type tl2rc̄, c̄
1, yzs.

Namely, from type tl2rc̄, c̄, 0s there follows a sequence of probability one beliefs, induced by the
sequence of types ptl2rc̄, c̄, 0s, ..., t

l
2rc̄, c̄, z´2sqq. This sequence of probability one beliefs ends at type

tl1rc̄, c̄, z ´ 1s. By our recursive backwards construction and the way we defined bc̄ in Step 1, we
have that

margC82 b1rt
l
1rc̄, c̄, z ´ 1ss “ bc

a

2 .

It follows then that type tl2rc̄, c̄, 0s induces a z-th order expectation that is equal to bc
a

2 . We
constructed bc

a

2 such that ca is optimal given bc
a

2 . Hence ca is optimal given type tl2rc̄, c̄, 0s. This
goes for every l P tn` 1, ...,mu.

Similarly, for each y P t1, ..., k˚ ´ 1u, from type tl2rc̄, c̄
1, yzs there follows a sequence of probability

one beliefs, induced by the sequence of types ptl2rc̄, c̄
1, yzs, ..., tl2rc̄, c̄

1, py ` 1qz ´ 2sqq. This sequence
ends at type tl1rc̄, c̄

1, py ` 1qz ´ 1s. By construction, we have that

margC82 b1rt
l
1rc̄, c̄

1, py ` 1qz ´ 1ss “ bc
a1

2 .
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It follows then that type tl2rc̄, c̄
1, yzs induces a z-th order expectation that is equal to bc

a1

2 . We
constructed bc

a1

2 such that ca1 is optimal given bc
a1

2 . Hence ca1 is optimal given type tl2rc̄, c̄
1, yzs.

This goes for every l P tn` 1, ...,mu.

Second, we can also note that for each combination of choices c̄, each order ap and each l P
tn` 1, ...,mu we have that choice ca

p
is optimal for type tl2rc̄, c̄, a

p ´ as. Moreover, for each pair
c̄, c̄1, each order ap, each l P tn` 1, ...,mu and each y P t1, ..., k˚ ´ 1u we have that choice ca

p 1 is
optimal for the type tl2rc̄, c̄

1, ap ´ a` yzs.
Namely, from type tl2rc̄, c̄, 0s there follows a sequence of probability one beliefs, induced by the

sequence of types ptl2rc̄, c̄, 0s, ..., t
l
2rc̄, c̄, z´ 2sq. This sequence of probability one beliefs ends at type

tl1rc̄, c̄, z ´ 1s. By our recursive backwards construction, we have that

b1rt
l
1rc̄, c̄, z´1spdlrc̄, c̄1, zs, tl´1

2 rc̄, c̄1, zsq “ bc̄pc̄1q,@c̄1 “ pca1, ca
b 1, ..., ca

x 1q1 P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax,8
2 .

By Step 1 we defined bc̄ as the joint probability distribution of the z-th order expectations bc
ap

2 for
all orders ap. Now, from each type tl´1

2 rc̄, c̄1, 0s there again follows a sequence of probability one
beliefs up to at least type tl´1

2 rc̄, c̄1, ap ´ a ´ 1 ` zs. And type tl´1
2 rc̄, c̄1, ap ´ a ´ 1 ` zs assigns by

construction of our recursive procedure probability one to choice ca
p 1. Taken together, it follows

that type tl2rc̄, c̄, a
p ´ as induces a z-th order expectation that is equal to bc

ap

2 . By construction of

Step 1, we have that choice ca
p

is optimal given bc
ap

2 . Hence, choice ca
p

is also optimal given type
tl2rc̄, c̄, a

p ´ as.
Similarly, for each y P t1, ..., k˚ ´ 1u, from type tl2rc̄, c̄

1, yzs there follows a sequence of probability
one beliefs, induced by the sequence of types ptl2rc̄, c̄

1, yzs, ..., tl2rc̄, c̄
1, py`1qz´2sq. This sequence of

probability one beliefs ends at type tl1rc̄, c̄
1, py` 1qz´ 1s. By our recursive backwards construction,

we have that

b1rt
l
1rc̄, c̄

1, py ` 1qz ´ 1spdlrc̄, c̄2, py ` 1qzs, tl´1
2 rc̄, c̄2, py ` 1qzsq “ bc̄

1

pc̄2q,

@c̄2 “ pca2, ca
b2, ..., ca

x2q1 P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax,8
2 .

By Step 1 we defined bc̄
1

as the joint probability distribution of the z-th order expectations bc
ap 1

2 for
all orders ap. Now, from each type tl´1

2 rc̄, c̄2, py` 1qzs there again follows a sequence of probability
one beliefs up to at least type tl´1

2 rc̄, c̄2, ap´a´1`py`1qzs. And type tl´1
2 rc̄, c̄2, ap´a´1`py`1qzs

assigns by construction of our recursive procedure probability one to choice ca
p2. Taken together,

it follows that type tl2rc̄, c̄
1, ap ´ a` yzs induces a z-th order expectation that is equal to bc

ap 1

2 . By

construction of Step 1, we have that choice ca
p 1 is optimal given bc

ap 1

2 . Hence, choice ca
p 1 is also

optimal given type tl2rc̄, c̄
1, ap ´ a` yzs.

Third, we can also show the following is true.

Claim 4. Consider the epistemic model M˚. For each l P tn` 1, ...,mu, each k P t1, 2, ..., z ´ 1u

for k ‰ ap ´ a for any order ap and each combination of choices c̄ P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax,8
2 ,

each choice dlrc̄, c̄, ks is optimal given the type tlirc̄, c̄, ks with i P t1, 2u. Moreover, for each y P
t1, ..., k˚ ´ 1u, for each l P tn` 1, ...,mu, each k P t1, 2, ..., z ´ 1u for k ‰ ap ´ a for any order ap

and each pair c̄, c̄1 P Ca,8
2 ˆ Cab,8

2 ˆ ...ˆ Cax,8
2 , each choice dlrc̄, c̄1, yz ` ks is optimal given the

type tlirc̄, c̄
1, yz ` ks with i P t1, 2u.

Proof of claim. We start of with the epistemic model we created when ending the recursive proce-
dure, but before M˚ was created.
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For each k P t0, 1, ..., z ´ 2u and each c̄1 we have by construction that

birt
n
i rc̄

1, c̄1, kspdnrc̄1, c̄1, k ` 1s, tnj rc̄
1, c̄1, k ` 1sq “ 1 “ birt

m
i rc̄

1, c̄1, kspdmrc̄1, c̄1, k ` 1s, tmj rc̄
1, c̄1, k ` 1sq,

with dnrc̄1, c̄1, k` 1s “ dmrc̄1, c̄1, k` 1s. Note that these were the n and m that determined when to
stop our recursive procedure. Moreover, for each k P t0, 1, ..., a´ 2u, each c̄1, c̄˚ P Ca,8

2 ˆ ...ˆ Cax,8
2

and each y P t1, ..., k˚ ´ 1u we also have by construction

birt
n
i rc̄

1, c̄˚, yz ` kspdnrc̄1, c̄˚, yz ` k ` 1s, tnj rc̄
1, c̄˚, yz ` k ` 1sq “ 1 “

birt
m
i rc̄

1, c̄˚, yz ` kspdmrc̄1, c̄˚, yz ` k ` 1s, tmj rc̄
1, c̄˚, yz ` k ` 1sq,

with dnrc̄1, c̄˚, yz ` k ` 1s “ dmrc̄1, c̄˚, yz ` k ` 1s. Additionally, we have by construction that

b1rt
n
1 rc̄

1, c̄1, z ´ 1spdnrc̄1, c̄2, zs, tn2 rc̄
1, c̄2, zsq “ bc̄

1

rc̄2s “ b1rt
m
1 rc̄

1, c̄1, z ´ 1spdmrc̄1, c̄2, zs, tm2 rc̄
1, c̄2, zsq,

for each c̄2 P Ca,8
2 ˆ ...ˆ Cax,8

2 . For each y P t1, ..., k˚ ´ 2u we also have that

b1rt
n
1 rc̄

1, c̄˚, yz ´ 1spdnrc̄1, c̄2, yzs, tn2 rc̄
1, c̄2, yzsq “ bc̄

˚

rc̄2s “

b1rt
m
1 rc̄

1, c̄˚, yz ´ 1spdmrc̄1, c̄2, yzs, tm2 rc̄
1, c̄2, yzsq,

for each c̄2 P Ca,8
2 ˆ ...ˆ Cax,8

2 . Finally, we have that

b1rt
n
1 rc̄

1, c̄˚, k˚z ´ 1spdn´1rc̄2, c21, 0s, t
n´1
2 rc̄2, c̄2, 0sq “ bc̄

˚

rc̄2s “

b1rt
m
1 rc̄

1, c̄˚, k˚z ´ 1spdm´1rc̄2, c̄2, 0s, tm´1
2 rc̄2, c̄2, 0sq,

for each c̄2 P Ca,8
2 ˆ ...ˆ Cax,8

2 .

Then, for each c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 , the pair of types tm2 rc̄
1, c̄1, 0s and tn2 rc̄

1, c̄1, 0s induce the same
k˚z-th order belief. To see why this is the case, we can employ a recursive argument, for each
y P t1, ..., k˚ ´ 1u starting at y “ k˚ ´ 1.

We can first note that the pair of types tm2 rc̄
1, c̄˚, pk˚ ´ 1qzs and tn2 rc̄

1, c̄˚, pk˚ ´ 1qzs for each c̄1, c̄˚

induce the same z-th order belief. Namely, from the beginning of the proof of this claim we know
that types tmi rc̄

1, c̄˚, pk˚´1qz`ks and tni rc̄
1, c̄˚, pk˚´1qz`ks with i P t1, 2u for each k P t1, ..., z ´ 2u

induce a probability one belief. Moreover, the first-order belief induced by type tmi rc̄
1, c̄˚, pk˚´1qz`

ks for each k P t1, ..., z ´ 1u is equal to the first-order belief induced by type tni rc̄
1, c̄˚, pk˚´1qz`ks.

As a result, types tmi rc̄
1, c̄˚, pk˚ ´ 1qz ` ks and tni rc̄

1, c̄˚, pk˚ ´ 1qz ` ks induce the same z-th order
belief.

Now recall, for each c̄1, c̄˚ P Ca,8
2 ˆ ...ˆ Cax,8

2 , we have that

b1rt
n
1 rc̄

1, c̄˚, pk˚ ´ 1qa´ 1spdnrc̄1, c̄2, pk˚ ´ 1qzs, tn2 rc̄
1, c̄2, pk˚ ´ 1qzsq “ bc̄

˚

1 rc̄
2s “

b1rt
m
1 rc̄

1, c̄˚, pk˚ ´ 1qz ´ 1spdmrc̄1, c̄2, pk˚ ´ 1qzs, tm2 rc̄
1, c̄2, pk˚ ´ 1qzsq.

Both types tm1 rc̄
1, c̄˚, pk˚´1qz´1s and tn1 rc̄

1, c̄˚, pk˚´1qz´1s thus assign exactly the same probability
to choice-type combinations where the choice is equal and the type induces the same z-th order
belief. Hence, both types induce the same pz ` 1q-th order belief.
Now we can employ our recursive argument, starting at y “ k˚ ´ 2. For y P t1, ..., k˚ ´ 2u, assume
that types tm1 rc̄

1, c̄˚, py ` 1qz ´ 1s and tn1 rc̄
1, c̄˚, py ` 1qz ´ 1s induce the same ppk˚ ´ y ´ 1qz ` 1q-

th order belief. Then types tm2 rc̄
1, c̄˚, yzs and tn2 rc̄

1, c̄˚, yzs induce the same pk˚ ´ pqa-th order
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belief. Namely, from the beginning of the proof of this claim we have that types tmi rc̄
1, c̄˚, yz ` ks

and tni rc̄
1, c̄˚, yz ` ks with i P t1, 2u for each k P t1, ..., z ´ 2u induce a probability one belief and

moreover induce the same first-order belief. Therefore, they induce the same pz´1q-th order belief.
Additionally, types tm2 rc̄

1, c̄˚, py` 1qz´ 2s and tn2 rc̄
1, c̄˚, py` 1qz´ 2s assign probability one to types

that by assumption induce the same ppk˚ ´ yqz ` 1q-th order belief. It follows then that types
tm2 rc̄

1, c̄˚, yzs and tn2 rc̄
1, c̄˚, yzs induce the same pk˚ ´ yqz-th order belief.

Now recall that for each c̄1, c̄˚ P Ca,8
2 ˆ ...ˆ Cax,8

2 , we have that

b1rt
n
1 rc̄

1, c̄˚, pa´ 1sspdnrc̄1, c̄2, yzs, tn2 rc̄
1, c̄2, yzsq “ bc̄11 rc

2
1s “

b1rt
m
1 rc̄

1, c̄˚, pa´ 1sspdmrc̄1, c̄2, yzs, tm2 rc̄
1, c̄2, yzsq

Both types tm1 rc̄
1, c̄˚, pa´1s and tn1 rc̄

1, c̄˚, pa´1s thus assign exactly the same probability to choice-
type combinations where the choice is equal and the type induces the same pk˚´yqz-th order belief.
Hence, both types induce the same ppk˚ ´ yqz ` 1q-th order belief.

Following the same argument, we can establish that types tm2 rc̄
1, c̄1, 0s and tn2 rc̄

1, c̄1, 0s induce the
same k˚z-th order belief. From the above we know that types tm1 rc̄

1, c̄1, z ´ 1s and tn1 rc̄
1, c̄1, z ´ 1s

induce the same ppk˚ ´ 1qy ` 1q-th order belief. From the beginning of the proof of this claim
we have that types tmi rc̄

1, c̄1, ks and tni rc̄
1, c̄1, ks with i P t1, 2u for each k P t1, ..., z ´ 2u induce a

probability one belief and moreover induce the same first-order belief. Therefore, they induce the
same pz´1q-th order belief. Additionally, types tm2 rc̄

1, c̄1, z´2s and tn2 rc̄
1, c̄1, z´2s assign probability

one to types that by the above recursive argument induce the same ppk˚ ´ 1qz ` 1q order belief. It
follows then that types tm2 rc̄

1, c̄1, 0s and tn2 rc̄
1, c̄1, 0s induce the same k˚z-th order belief. This goes

for each c̄1 P Ca,8
2 ˆ ...ˆ Cax,8

2 .

Denote type tn`1
1 rc̄, c̄˚, k˚z ´ 1s that results from our recursive backwards procedure but before

constructing M˚ by t̄n`1
1 rc̄, c̄˚, k˚z ´ 1s. In contrast, let the same type that does result from con-

structing M˚ still be denoted as tn`1
1 rc̄, c̄˚, k˚z ´ 1s. Now, we have for each c̄ P Ca,8

2 ˆ ...ˆ Cax,8
2

b1rt̄
n`1
1 rc̄, c̄˚, k˚z ´ 1sspca1, tn2 rc̄

1, c̄1, 0sq “ b1rt
n`1
1 rc̄, c̄˚, k˚z ´ 1sspca1, tn1 rc̄

1, c̄1, 0sq,

@c̄1 “ pca1, ..., cx1q P Ca,8
2 ˆ ...ˆ Cax,8

2 .

It thus follows that each such type tn`1
1 rc̄, c̄˚, k˚z´ 1s induces the same pk˚z` 1q-th order belief in

M˚ as it did before M˚ was constructed. All the remaining types in
Ť

lPtn`1,...,mu T plq remained
unchanged whenM˚ was constructed: they induce exactly the same belief over choice-type combi-
nations as before. As a result, all types in

Ť

lPtn`1,...,mu T plq induce at least the same pk˚z ` 1q-th
order belief in M˚ as before M˚ was constructed.

In our backward construction procedure of types and choices, before creating M˚, we con-
structed each dlrc̄, c̄1, ks for each l P tn` 1, ...,mu, k P t1, ..., k˚z ´ 1u and c̄, c̄1 P Ca,8

2 ˆ ...ˆ Cax,8
2

such that it is optimal given type tlirc̄, c̄
1, ks. Now, we have that the maximum directly utility-

relevant order of belief for any player is k˚ and that each type tlirc̄, c̄
1, ks at least induces exactly

the same pk˚z` 1q-th order belief inM˚ as it did before constructingM˚. Hence, we also have in
M˚ that dlrc̄, c̄1, ks is optimal given tlirc̄, c̄

1, ks. This completes the proof of this claim.

Since each type in M˚ only assigns positive probability to choice-type combinations of the likes
of pdlrc̄, c̄1, ks, tlirc̄, c̄

1, kssq for k P t0, 1, ..., k˚a´ 1u, each type only assigns positive probability to
choice-type combinations where the choice is optimal given the type. Hence each type in M˚

59



expresses 1-fold belief in rationality. Therefore also each type in M˚ expresses common belief in
rationality.

We have now the following result. For each combination of choices c̄ “ pca, ca
b
, ..., ca

x
q, we have for

choice ca constructed type tm2 rc̄, c̄, 0s such that ca is optimal given that type. This type also expresses

common belief in rationality inM˚ Additionally, for each pair c̄, c̄1 with c̄1 “ pca1, ca
b 1, ..., ca

x 1q, the
type tm1 rc̄, c̄

1, ap ´ a´ 1` yzs always assigns probability one to choice ca
p 1.

As a final step, we extend this finite epistemic model in the following way. Consider again the
type tc11 rc1s we fixed in Step 1 of this proof. Choice c1 is optimal given some higher-order expecta-

tion bc11 P ∆pCa,8
2 ˆ Cb,8

2 ˆ ...ˆ Cx,8
2 q.

We have from Step 1 that tc11 rc1s is at the start of the following sequence of types: ptc11 rc1s, ..., t
c1,a´1
1 rc1sq.

Type tc11 rc1s is such that it assigns probability one to type tc1,12 rc1s and for each n P t1, 2, ..., a´ 2u

we have that type tc1,ni rc1s is such that it assigns probability one to type tc1,n`1
j rc1s.

Second, recall that each combination of choices c̄ “ pca, ca
b
, ..., ca

x
q was derived from a different

combination of choices in Ca,8
2 ˆ Cb,8

2 ˆ ... ˆ Cx,8
2 . Then, by construction of Step 1 we had for

each pca, cb, ..., cxq and each combination of choices c̄ that is derived from it, that type tc1,a´1
1 rc1s

is such that

b1rt
c1,a´1
1 rc1sspc

a, tm2 rc̄
1, c̄1, 0sq :“

#

bc11 pc
a, cb, ..., cxq, if c̄1 “ c̄,

0, otherwise,

where type tm2 rc̄
1, c̄1, 0s now replaces type tc̄2rc̄

1s from Step 1. Taken together, we have that type
tc1,a´1
1 rc1s is constructed such that choice c1 is optimal given type tc11 rc1s. Moreover, type tc1,a´1

1 rc1s,
by construction of M˚ only assigns positive probability to choice-type combinations where the
choice is optimal given the type and the type expresses common belief in rationality.

Finally, for each n P t1, 2, ..., a´ 2u, do the following in a stepwise manner, starting at n “ a´2.
Take type tc1,ni rc1s. Let birt

c1,n
i rc1ss :“ pc1, tc1,n`1

j rc1sq, with c1 being optimal given type tc1,n`1
i rc1s.

Likewise, let b1rt
c1
1 rc1s :“ pc1, tc1,12 rc1sq, with c1 such that it is optimal given tc1,12 rc1s. Then, type

tc1,ni rc1s for each n and type tc11 rc1s express belief in the opponent’s rationality. As such, we have
iteratively connected type tc11 rc1s exclusively to types that express common belief in rationality.
Hence, type tc11 rc1s expresses common belief in rationality. Call the resulting epistemic model
M˚˚.

Thus, we constructed a finite epistemic model with a type that expresses common belief in
rationality for which choice c1 is optimal.

In Step 1 we have shown that for every choice c1 P C81 we can construct a partial epistemic
model with a type that expresses on-path belief in rationality and that is such that choice c1 is
optimal. In Step 2 we showed that we are then also able to construct a finite, epistemic model with
a type that expresses common belief in rationality and that is such that choice c1 is optimal. This
concludes the proof for Scenario piiiq. This also concludes the proof for Lemma 4 as a whole.
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