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Abstract. In this note we explore agreeing to disagree with lexicographic prob-
ability systems. By means of a counterexample, it is shown that agents can agree
to lexicographically disagree on their posteriors. Based on this observation, we
propose the same excluding condition which essentially states that agents syn-
chronically either neglect or consider their private information. A lexicographic
agreement theorem ensues with equal posteriors at every level.
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1 Introduction

The impossibility for two agents to agree to disagree is established by Aumann (1976)’s
seminal agreement theorem. More precisely, if two Bayesian agents equipped with a
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common prior belief receive private information and have common knowledge of their
posterior beliefs, then these posteriors must be equal. In other words, distinct poste-
riors cannot be common knowledge among Bayesian agents with a common prior. In
this sense, agents cannot agree to disagree. A rather extensive literature on agreeing to
disagree has emerged. Most contributions reconsider Aumann’s impossibility theorem
in more general frameworks. Notably, Bonanno and Nehring (1997) as well as Ménager
(2012) provide comprehensive surveys on this literature. More recent contributions to
the agreeing to disagree literature include Dégrement and Roy (2012), Hellman and
Samet (2012), Bach and Perea (2013), Heifetz et al. (2013), Hellman (2013), Demey
(2014), Lehrer and Samet (2014), Chen et al. (2015), Bach and Cabessa (2017), Gizat-
ulina and Hellman (2018), Pacuit (2018), Tarbush (2018), as well as Tsakas (2018).

In game theory lexicographic beliefs play a prominent role. Intuitively, they per-
mit to model cautious reasoning of players that do not exclude any choice from con-
sideration yet deem some choices much more – indeed infinitely more – likely than
others. This kind of inclusion-exclusion challenge is identified by Samuelson (1992),
when showing that the solution concept of iterated weak dominance can be incon-
sistent with common knowledge. Notably lexicographic beliefs are used by Branden-
burger et al. (2008) to epistemically characterize iterated weak dominance, thereby
blocking inclusion-exclusion type problems. Further applications of lexicographic be-
liefs to games comprise Blume et al. (1991b), Brandenburger (1992), Börgers (1994),
Schumacher (1999), Asheim (2002), as well as Asheim and Perea (2005). Formally, lex-
icographic beliefs are modelled in their most general form by lexicographic probability
systems due to Blume et al. (1991a).

The natural question then emerges how the agreement theorem is affected if stan-
dard probabilities are replaced by lexicographic probability systems. Intuitively, the
issue becomes whether it is impossible for cautious agents to agree to disagree or not.
In fact, agreeing to disagree with a notion of lexicographic beliefs – simpler than lexi-
cographic probability systems – is considered by Bach and Perea (2013). They employ
a particular framework of cautious reasoning that admits lexicographic priors yet only
unique posteriors. Consequently, agreeing to disagree with both lexicographic priors
and lexicographic posteriors still remains to be investigated.

In this note we explore agreeing to disagree in generalized Aumann structures with
lexicographic probability systems, where all beliefs are expressed lexicographically.
More precisely, we formalize agents with a sequence of priors on the basis of which
they compute a sequence of posteriors in the style of Blume et al. (1991a). A weak
agreement theorem in the sense of merely identical first level posteriors obtains.

However, we show by means of a counterexample that agents can agree to disagree
on their posteriors beyond the first lexicographic level. Thus, the impossibility results
– neither of Aumann (1976) in the standard framework nor of Bach and Perea (2013)
with lexigraphic priors – do not directly generalize to full-fledged cautious reasoning.
Based on this observation, we introduce the same excluding condition which essentially
states that agents synchronically either neglect or consider their private information.
In fact, this condition can be seen as a variant of mutual absolute continuity from
probability theory. With the same excluding condition we provide a strong agreement
theorem which establishes the impossibility of agreeing to lexicographically disagree.
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Besides, agreement not only at but across all lexicographic posterior levels is consid-
ered. The locally meet constant condition, which basically ensures that the agent’s full
lexicographic reasoning is rigid in terms of the common prior and which is stronger
than a localized same excluding condition, gives rise to a universal agreement theo-
rem. Accordingly, agents cannot only agree to lexicographically disagree but they also
entertain identical posteriors across all levels.

2 Preliminaries

In set-based interactive epistemology knowledge and beliefs are modelled within the
framework of Aumann structures. Formally, an Aumann structure

A =
(
Ω, (Ii)i∈I , p

)
consists of a finite set Ω of possible worlds, a finite set I of agents, a possibility partition
Ii of Ω for every agent i ∈ I, and a common prior p : Ω → [0, 1] such that

∑
ω∈Ω p(ω) =

1. The cell of Ii containing the world ω is denoted by Ii(ω) and contains those worlds
deemed possible by agent i at world ω. It is also assumed that no information is excluded
a priori, i.e. p

(
Ii(ω)

)
> 0 for all i ∈ I and for all ω ∈ Ω.

Agents reason about events which are defined as sets of possible worlds. The com-
mon prior p naturally extends to a measure p : P(Ω) → [0, 1] on the event space by
setting p(E) =

∑
ω∈E p(ω) for all E ∈ P(Ω). Agents are Bayesians and consequently

update the common prior with their private information as follows: the posterior belief
of agent i in event E at world ω is given by

p
(
E | Ii(ω)

)
=
p
(
E ∩ Ii(ω)

)
p
(
Ii(ω)

) .

Knowledge is formalized in terms of events. The event of agent i knowing event E,
denoted by Ki(E), is defined as

Ki(E) := {ω ∈ Ω : Ii(ω) ⊆ E}.

If ω ∈ Ki(E), then i is said to know E at ω. Mutual knowledge of E is given by K(E) :=⋂
i∈I Ki(E). Setting K0(E) := E, higher-order mutual knowledge is inductively defined

by

Km(E) := K
(
Km−1(E)

)
for all m > 0. Accordingly, mutual knowledge can also be denoted as 1-order mu-
tual knowledge. The conjunction of all higher-order mutual knowledge yields common
knowledge, which is formally defined as

CK(E) :=
⋂
m>0

Km(E)
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for all E ∈ P(Ω). An equivalent formulation of common knowledge due to Aumann
(1976) is based on the meet of the agents’ possibility partitions.1 Accordingly, common
knowledge is defined as

CK(E) := {ω ∈ Ω : (
∧
i∈I
Ii)(ω) ⊆ E}

for all E ∈ P(Ω).

Lexicographic beliefs are modelled in line with Blume et al. (1991a)’s notion of
lexicographic probability systems. The following definition provides a direct adaptation
of Blume et al. (1991a, Definition 3.1) to the interactive setting with multiple agents.

Definition 1. Let Ω be a finite set of possible worlds and I be a finite set of agents. A
lexicographic probability system for agent i ∈ I (i-LPS) is a tuple ρi = (p1i , . . . , p

Mi
i ),

for some Mi ∈ N, where pmi ∈ ∆(Ω) for all m ∈ {1, . . . ,Mi}.

Lexicographic beliefs are thus sequences of standard beliefs. The index numbers of a
lexicographic probability system are also referred to as lexicographic levels.

Injecting lexicographic probability systems into Aumann structures gives rise to the
notion of lexicographic Aumann structures.

Definition 2. A lexicographic Aumann structure is a tuple ALPS =
(
Ω, I, (Ii)i∈I , (ρi)i∈I

)
,

where

– Ω is a set of possible worlds,

– I is a set of agents,

– Ii ⊆ 2Ω is a possibility partition of Ω for every agent i ∈ I,

– ρi is an i-LPS for evey agent i ∈ I,

– for every agent i ∈ I and for every world ω ∈ Ω, there exists a lexicographic level
m ∈ {1, . . . ,Mi} such that pmi

(
Ii(ω)

)
> 0.

The fifth item of Definition 2 ensures that no information is excluded a priori, and
formally reflects the idea of caution. Actually, this condition can be seen as the lex-
icographic analogue to Aumann (1976)’s requirement for all information cells to be
non-null events in the framework of Aumann structures. Besides, caution could also
be modelled as follows: for all i ∈ I and for all ω ∈ Ω there exists mi > 0 such that
pmi
i (ω) > 0. Since such a condition is stronger than the fifth item of Definition 2, the

latter is preferable.

Agents use their information to reason lexicographically about events. Formally,
Blume et al. (1991a, Definition 4.2) is adjusted to the context of lexicographic Aumann
structures as follows.

1Given two partitions P1 and P2 of some set S, the partition P1 is called finer than the
partition P2 (or P2 coarser than P1), if each cell of P1 is a subset of some cell of P2. Given n
partitions P1,P2, . . . ,Pn of S, the finest partition that is coarser than P1,P2, . . . ,Pn is called
the meet of P1,P2, . . . ,Pn and is denoted by

∧n
i=1 Pi. Moreover, given x ∈ S, the cell of the

meet
∧n

i=1 Pi containing x is denoted by (
∧n

i=1 Pi)(x).
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Definition 3. Let ALPS be a lexicographic Aumann structure, ω ∈ Ω be some world,
and i ∈ I be some agent. The conditional lexicographic probability system of agent i
given his information at world ω (ω-conditional i-LPS) is the tuple

ρωi =
(
p
m1

i,ω

i

(
· | Ii(ω)

)
, . . . , p

m
Li,ω
i,ω

i

(
· | Ii(ω)

))
where

– the sequence (ml
i,ω)

Li,ω

l=1 of indices is given by m0
i,ω = 0, ml

i,ω = min
{
m ∈ {1, . . . ,Mi} :

pmi
(
Ii(ω)

)
> 0 and m > ml−1

i,ω

}
as well as Li,ω = length

(
(ml

i,ω)
)
,

– p
ml

i,ω

i

(
E | Ii(ω)

)
=

p
ml

i,ω
i

(
E∩Ii(ω)

)
p
ml

i,ω
i

(
Ii(ω)

) for all E ⊆ Ω and for all l ∈ {1, . . . , Li,ω}.

An essential difference between lexicographic Aumann structures and the standard
framework resides in the former equipping agents with multiple levels of – and not
unique – posteriors beliefs.

The common prior assumption in Aumann structures can be directly generalized
to the lexicographic setting as follows.

Definition 4. Let ALPS =
(
Ω, I, (Ii)i∈I , (ρi)i∈I

)
be a lexicographic Aumann struc-

ture. The lexicographic Aumann structure ALPS satisfies the common prior assumption
(CPA), if there exists M ∈ N such that Mi = Mj = M and pmi = pmj = pm for all

i, j ∈ I and for all m ∈ {1, . . . ,M}. In this case, the tuple ρ = (p1, . . . , pM ) is called
common prior and ACPALPS =

(
Ω, I, (Ii)i∈I , ρ

)
is called lexicographic Aumann structure

with a common prior.

3 Weak Agreement

Since the agents hold levels of posterior beliefs, agreement becomes a multifarious
notion. In fact, it is now shown that common knowledge of lexicographic posteriors
ensures the agents’ first level posterior beliefs to coincide.

Theorem 1 (WAT). Let ACPALPS be a lexicographic Aumann structure with a common
prior ρ. Let E ⊆ Ω be some event and ω ∈ Ω be some world. If

CK
(⋂
i∈I

⋂
l∈{1,...,Li,ω}

{ω′ ∈ Ω : pk
l
i,ω′
(
E | Ii(ω′)

)
= pk

l
i,ω
(
E | Ii(ω)

)
}
)
6= ∅,

then

pk
1
i,ω
(
E | Ii(ω)

)
= pk

1
j,ω
(
E | Ij(ω)

)
for all i, j ∈ I.

Proof. Let i∗ ∈ I be some agent, Ai∗ ⊆ Ω be some set such that (
∧
i∈I Ii)(ω) =⋃

ω′∈Ai∗
Ii∗(ω′) and Ii∗(ω1)∩Ii∗(ω2) for all ω1, ω2 ∈ Ai∗ , as well as m∗ ∈ {1, . . . ,M} be
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the first lexicographic level with pm
∗(

(
∧
i∈I Ii)(ω)

)
> 0. Consider some world ω∗ ∈ Ai∗ .

Hence, pm
∗(Ii∗(ω∗)) ≥ 0.

If pm
∗(Ii∗(ω∗)) > 0, then k1i∗,ω∗ = m∗, and by Bayesian updating,

pk
1
i∗,ω∗

(
E | Ii∗(ω∗)

)
· pm

∗(
Ii∗(ω∗)

)
= pm

∗(
E ∩ Ii∗(ω∗)

)
holds. Alternatively, if pm

∗(Ii∗(ω∗)) = 0, then pm
∗(Ii∗(ω∗)), thus pm

∗(
E ∩Ii∗(ω∗)

)
=

0. Since Li∗,ω∗ ≥ 1, the first lexicographic level posterior measure pk
1
i∗,ω∗ exists and

k1i∗,ω∗ > m∗. Consequently,

pk
1
i∗,ω∗

(
E | Ii∗(ω∗)

)
· pm

∗(
Ii∗(ω∗)

)
= pm

∗(
E ∩ Ii∗(ω∗)

)
holds trivially. Therefore,

pk
1
i∗,ω∗

(
E | Ii∗(ω∗)

)
· pm

∗(
Ii∗(ω∗)

)
= pm

∗(
E ∩ Ii∗(ω∗)

)
obtains for all ω∗ ∈ Ai∗ .

Besides, as

Ai∗ ⊆ CK
(⋂
i∈I

⋂
l∈{1,...,Li,ω}

{ω′ ∈ Ω : pk
l
i,ω′
(
E | Ii(ω′)

)
= pk

l
i,ω
(
E | Ii(ω)

)
}
)
,

it is the case that pk
l
i,ω∗ (E | Ii(ω∗)) = pk

l
i,ω (E | Ii(ω)) for all ω∗ ∈ Ai∗ , for all

l ∈ {1, . . . , Li,ω}, and for all i ∈ I. Thus,

pk
1
i∗,ω
(
E | Ii∗(ω)

)
· pm

∗(
Ii∗(ω∗)

)
= pm

∗(
E ∩ Ii∗(ω∗)

)
holds for all ω∗ ∈ Ai∗ . It follows that∑

ω∗∈Ai∗

pk
1
i∗,ω
(
E | Ii∗(ω)

)
· pm

∗(
Ii∗(ω∗)

)
=

∑
ω∗∈Ai∗

pm
∗(
E ∩ Ii∗(ω∗)

)
,

and by countable additivity,

pk
1
i∗,ω
(
E | Ii∗(ω)

)
· pm

∗(
(
∧
i∈I
Ii)(ω)

)
= pm

∗(
E ∩ (

∧
i∈I
Ii)(ω)

)
.

Since i∗ has been chosen arbitrarily,

pk
1
i∗,ω
(
E | Ii∗(ω)

)
=
pm
∗(
E ∩ (

∧
i∈I Ii)(ω)

)
pm∗

(
(
∧
i∈I Ii)(ω)

)
holds for all i∗ ∈ I. Therefore, pk

1
i,ω
(
E | Ii(ω)

)
= pk

1
j,ω
(
E | Ij(ω)

)
obtains for all

i, j ∈ I. �

Agents can thus not agree to disagree on their first lexicographic level posterior beliefs.
Yet, the preceding theorem does not furnish any insight on lexicographic level posteriors
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deeper than level one. Accordingly, WAT establishes a form of weak agreement for the
lexicographic framework.

For the special case of exclusively admitting the first level posteriors – formally,

only considering p
m1

i,ω

i

(
· | Ii(ω)

)
for all ω ∈ Ω and for all i ∈ I – our framework

of lexicographic Aumann structures becomes essentially equivalent to Bach and Perea
(2013)’s model, which only employs a lexicographic common prior but unique poste-
riors. In particular, their non-overlapping support condition across lexicographic prior
levels is not assumed in our framework. Actually, WAT can be seen as a generalization
of Bach and Perea (2013, Theorem 1). Moreover, if not only the posteriors but also the
common prior is restricted to a single probability measure, i.e. formally setting M = 1,
then Aumann (1976)’s framework is recovered in effect, and WAT becomes the original
agreement theorem.

4 Disagreement

With lexicographic probability systems weak agreement in the sense of equal first level
posteriors obtains. Attention is now shifted towards the deeper lexicographic levels.
In fact, it is possible for agents to agree to disagree on posteriors beyond the first
lexicographic level, as the following example illustrates.

Example 1. Let ACPALPS =
(
Ω, I, (Ii)i∈I , ρ

)
be a lexicographic Aumann structure with

a common prior, where

– Ω = {ω1, ω2, ω3, ω4},
– I = {Alice,Bob},
– IAlice =

{
{ω1, ω2}, {ω3, ω4}

}
,

– IBob = {Ω},
– and ρ = (p1, p2, p3) with p1(ω1) = 1, p2(ω2) = 1

3 , p2(ω3) = 2
3 , p3(ω4) = 1.

Consider the event E = {ω1, ω3}. Observe that

pk
1
Alice,ω

(
E | IAlice(ω)

)
= p1

(
E | IAlice(ω)

)
= 1

for all ω ∈ {ω1, ω2}, and

pk
1
Alice,ω

(
E | IAlice(ω)

)
= p2

(
E | IAlice(ω)

)
= 1

for all ω ∈ {ω3, ω4}. Consequently, pk
1
Alice,ω

(
E | IAlice(ω)

)
= 1 obtains at every world

ω ∈ Ω. Also, observe that

pk
1
Bob,ω

(
E | IBob(ω)

)
= p1

(
E | IBob(ω)

)
= 1

for all ω ∈ Ω. Therefore, Alice’s and Bob’s first level posteriors coincide.
Moreover, it is the case that

pk
2
Alice,ω

(
E | IAlice(ω)

)
= p2

(
E | IAlice(ω)

)
= 0
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for all ω ∈ {ω1, ω2}, and

pk
2
Alice,ω

(
E | IAlice(ω)

)
= p3

(
E | IAlice(ω)

)
= 0

for all ω ∈ {ω3, ω4}. Hence, pk
2
Alice,ω

(
E | IAlice(ω)

)
= 0 obtains at every world ω ∈ Ω.

Also,

pk
2
Bob,ω

(
E | IBob(ω)

)
= p2

(
E | IBob(ω)

)
=

2

3

holds at every world ω ∈ Ω. Therefore, Alice’s and Bob’s second level posteriors do
not coincide.

Taking ω = ω1 guarantees that

CK
(⋂
i∈I

⋂
l∈{1,...,Li,ω}

{
ω′ ∈ Ω : pk

l
i,ω′ (E | Ii(ω′)) = pk

l
i,ω (E | Ii(ω))

})
= CK(Ω) = Ω 6= ∅,

while

pk
2
Alice,ω (E | IAlice(ω)) = 0 6= 2

3
= pk

2
Bob,ω (E | IBob(ω))

obtains. ♣

A possibility result on agreeing to lexicographically disagree thus emerges.

Remark 1. There exist a lexicographic Aumann structure ACPALPS =
(
Ω, I, (Ii)i∈I , ρ

)
with a common prior, some event E ⊆ Ω, and some world ω ∈ Ω, such that

CK
(⋂
i∈I

⋂
l∈{1,...,Li,ω}

{
ω′ ∈ Ω : pk

l
i,ω′ (E | Ii(ω′)) = pk

l
i,ω (E | Ii(ω))

})
6= ∅

and
pk

l
i,ω (E | Ii(ω)) 6= pk

l
j,ω (E | Ij(ω))

for some i, j ∈ I and for some l ∈ {1, . . . ,mini,j{Li,ω, Lj,ω}}.

Accordingly, common knowledge of the agents’ lexicographic posteriors does not suffice
to establish agreement at all lexicographic levels. The agents can entertain distinct
posteriors at lexicographic levels beyond one, and at the same time acknowledge this
divergence.

5 Strong Agreement

The impossibility result of WAT is weak, since it only affects the first lexicographic
posterior level. A condition is now introduced that will then be used to derive a strong
impossibility result in the sense of equal posteriors at every lexicographic level.

Definition 5. Let ACPALPS be a lexicographic Aumann structure with a common prior ρ
and ω ∈ Ω be some world. The common prior ρ is same excluding, if it is the case that

pm
(
Ii(ω)

)
= 0, if and only if, pm

(
Ij(ω)

)
= 0

for all ω ∈ Ω for all i, j ∈ I, and for all m ∈ {1, . . . ,M}.
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Intuitively, the same excluding condition ensures that agents always either all consider
or all neglect their respective information at any lexicographic prior level. Since the
common prior assumption can be interpreted as some form of like-mindedness of the
agents, the same excluding condition reflects an intensified like-mindedness.

Formally, the same excluding condition is closely related to the notion of mutual
absolute continuity in probability theory. Let µ and ν be measures on some set Ω, and
define µ << ν, if ν(F ) = 0 implies µ(F ) = 0 for all F ∈ P(Ω). The two measures µ and
ν are called mutually absolutely continuous, whenever µ << ν and ν << µ. Observe
that the common prior ρ induces for every level m ∈ {1, . . . ,M} and for every player
i ∈ I a measure µmi : P(Ω)→ [0, 1] given by

µmi (F ) :=

0 if F = ∅∑
ω∈F

pm
(
Ii(ω)

)
|Ii(ω)| otherwise,

for all F ∈ P(Ω). Now, if µmi (F ) > 0 for some F ∈ P(Ω), i.e.
∑
ω∈F

pm
(
Ii(ω)

)
|Ii(ω)| > 0,

then there exists ω∗ ∈ F such that pm
(
Ii(ω∗)

)
> 0. By the same excluding condi-

tion, pm
(
Ij(ω∗)

)
> 0 thus holds too, and consequently µmj (F ) =

∑
ω∈F

pm
(
Ij(ω)

)
|Ij(ω)| > 0.

Conversely, if pm
(
Ii(ω)

)
> 0 for some ω ∈ Ω, then µmi ({ω}) > 0. By mutual absolute

continuity, µmj ({ω}) > 0 hence also obtains, and consequently pm
(
Ij(ω)

)
> 0. There-

fore, the following characterization of the same excluding condition in terms of mutual
absolute continuity from probability theory ensues.

Remark 2. LetACPALPS be a lexicographic Aumann structure with a common prior ρ. The
common prior ρ is same excluding, if and only if, µmi and µmj are mutually absolutely
continuous for all i, j ∈ I and for all m ∈ {1, . . . ,M}.

Hence, the same excluding condition can be seen as a variant of mutual absolute con-
tinuity.

Moreover, the same excluding condition is conceptually similar to Stuart (1997)’s
version of mutual absolute continuity.2 Accordingly, if some agent’s belief assigns a
positive probability to a state (which essentially corresponds to a possible world in our
framework), then so do all the other agents. Even though Stuart’s model in its general
form does not impose any prior, an agent’s belief can be interpreted as posterior. While
the underlying idea of Stuart’s mutual absolute continuity and our same excluding con-
dition is tantamount – some form of synchronicity in both consideration and omission
– mutual absolute continuity concerns posterior beliefs as well as possible worlds yet
same excludingness refers to prior beliefs as well as information.

It turns out that the same excluding condition together with the common prior
assumption and common knowledge of posteriors implies that the agents’ posterior
beliefs coincide at all lexicographic levels.

2In fact, mutual absolute continuity plays an important role in establishing all period
defection in the normal-form model of the finitely repeated prisoners’ dilemma (Stuart, 1997,
Proposition).
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Theorem 2 (SAT). Let ACPALPS be a lexicographic Aumann structure with a common
prior ρ that is same excluding. Let E ⊆ Ω be some event and ω ∈ Ω be some world. If

CK
(⋂
i∈I

⋂
l∈{1,...,Li,ω}

{ω′ ∈ Ω : pk
l
i,ω′
(
E | Ii(ω′)

)
= pk

l
i,ω
(
E | Ii(ω)

)
}
)
6= ∅,

then
pk

l
i,ω
(
E | Ii(ω)

)
= pk

l
j,ω
(
E | Ij(ω)

)
for all i, j ∈ I and for all l ∈

{
1, . . . ,mini∈I{Li,ω}

}
.

Proof. We first show that if ρ is same excluding, then (kli,ω)
Li,ω

l=1 = (klj,ω′)
Li,ω′

l=1 for
all ω′ ∈ (

∧
i∈I Ii)(ω) and for all i, j ∈ I. Let i∗ ∈ I and ω′ ∈ (

∧
i∈I Ii)(ω). Since

ω′ ∈ (
∧
i∈I Ii)(ω), the world ω′ is reachable from ω, i.e., there exists a sequence (P k)Nk=1

of information cells such that ω ∈ P 1, ω′ ∈ PN , and P k−1 ∩P k 6= ∅ for all 1 ≤ k < N .
Since ρ is same excluding, it is the case that, pm(P k−1) = 0 if and only if pm(P k) = 0 for
all m ∈ {1, . . . ,M} and for all 1 ≤ k < N . Thus, pm(P 1) = 0 if and only if pm(PN ) = 0
for allm ∈ {1, . . . ,M}. Since ω ∈ Ii∗(ω)∩P 1, ω′ ∈ Ii∗(ω′)∩PN and ρ is same excluding,
it follows that pm

(
Ii∗(ω)

)
= 0 if and only if pm

(
Ii∗(ω′)

)
= 0, for all m ∈ {1, . . . ,M}.

Consequently, (kli∗,ω)
Li∗,ω
l=1 = (kli∗,ω′)

Li∗,ω′

l=1 . Towards a contradiction, suppose that there

exist j∗ ∈ I and l ∈
{

1, . . . ,min{Li∗,ω′ , Lj∗,ω′}
}

such that kli∗,ω′ 6= klj∗,ω′ . Without

loss of generality suppose that l is the least such index. Then, either kli∗,ω′ < klj∗,ω′ , in

which case, pk
l
i∗,ω′

(
Ii∗(ω′)

)
> 0 and pk

l
i∗,ω′

(
Ij∗(ω′)

)
= 0, or kli∗,ω′ > klj∗,ω′ , in which

case, pk
l
j∗,ω′

(
Ii∗(ω′)

)
= 0 and pk

l
j∗,ω′

(
Ij∗(ω′)

)
> 0. In both cases, this contradicts the

same excludingness of ρ. Therefore, (kli,ω′)
Li,ω′

l=1 = (klj,ω′)
Lj,ω′

l=1 for all i, j ∈ I and for all
ω′ ∈ (

∧
i∈I Ii)(ω).

Let i∗ ∈ I and l∗ ∈
{

1, . . . ,mini∈I{Li,ω}
}

. Then, there exists Ai∗ ⊆ Ω such that
(
∧
i∈I Ii)(ω) =

⋃
ω′∈Ai∗

Ii∗(ω′) and Ii∗(ω1) ∩ Ii∗(ω2) for all ω1, ω2 ∈ Ai∗ . Note that
Ai∗ ⊆ (

∧
i∈I Ii)(ω) ⊆ CK(E′) ⊆ E′, where

E′ =
⋂
i∈I

⋂
l∈{1,...,Li,ω}

{
ω′ ∈ Ω : pk

l
i,ω′
(
E | Ii(ω′)

)
= pk

l
i,ω
(
E | Ii(ω)

)}
.

Since (klj,ω)
Lj,ω

l=1 = (klj′,ω′)
Lj′,ω′

l=1 holds for all ω′ ∈ (
∧
i∈I Ii)(ω) and for all j, j′ ∈ I, it

follows that

pk
l∗
i∗,ω
(
E | Ii∗(ω)

)
= pk

l∗
i∗,ω′

(
E | Ii∗(ω′)

)
=
pk

l∗
i∗,ω′

(
E ∩ Ii∗(ω′)

)
p
kl
∗

i∗,ω′
(
Ii∗(ω′)

) =
pk

l∗
i,ω
(
E ∩ Ii∗(ω′)

)
pk

l∗
i,ω
(
Ii∗(ω′)

)
for all ω′ ∈ Ai∗ and for all i ∈ I. Consequently,

pk
l∗
i∗,ω
(
E | Ii(ω)

)
· pk

l∗
i,ω
(
Ii∗(ω′)

)
= pk

l∗
i,ω
(
E ∩ Ii∗(ω′)

)
,

for all ω′ ∈ Ai∗ and for all i ∈ I. Summing over all ω′ ∈ Ai∗ , countable additivity yields

pk
l∗
i∗,ω
(
E | Ii∗(ω)

)
=
pk

l∗
i,ω
(
E ∩ (

∧
i∈I Ii)(ω)

)
pk

l∗
i,ω
(
(
∧
i∈I Ii)(ω)

)
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for all i ∈ I. Therefore, pk
l
i,ω
(
E | Ii(ω)

)
= pk

l
j,ω
(
E | Ij(ω)

)
for all i, j ∈ I and for all

l ∈
{

1, . . . ,mini∈I{Li,ω}
}

. �

Consequently, it is impossible for agents to agree to lexicographically disagree whenever
the same excluding condition is satisfied. In contrast to WAT that only ensures a weak
form of agreement at the first posterior level, SAT establishes strong agreement in the
sense of identity of posteriors at all lexicographic levels. The appropriate impossibility
result for cautious reasoning is thus given by SAT, because the full thinking range is
concerned.

Besides, observe that Example 1 actually suggests that SAT qualifies as tight with
respect to the same excluding condition.3 Indeed, the other two key assumptions, i.e.
common prior as well common knowledge of posteriors, but not the same excluding
condition hold, while the consequent, i.e. lexicographically identical posterior beliefs,
fails.

Moreover, continuity in agreeing to lexicographically disagree follows from SAT
in the sense that equal prior beliefs up to some lexicographic level imply equal pos-
terior beliefs up to a corresponding lexicographic level. Suppose that the common
prior assumption is weakened such that the agents’ priors coincide up to some level
M∗ < M , and modify the initial lexicographic Aumann structure by truncating the
agent’s lexicographic priors at M∗, which is equivalent to imposing a common prior ρ =
(p1, . . . , pM

∗
). By SAT it follows that common knowledge of lexicographic posteriors

at some world ω ∈ Ω implies equal posterior measures for every level l ∈ mini∈I{Li,ω}
in the truncated structure, and hence also up to level mini∈I{Li,ω} in the initial lexico-
graphic Aumann structure. In this sense, the lexicographic impossibility result of SAT
is continuous.

6 Universal Agreement

An utmost zealous form of agreement does require identical posteriors not only at – but
also across – all lexicographic levels. In fact, the conditions of SAT are not sufficient
for such an universal form of agreement. Consider the following slight variation of
Example 1, where only ρ is replaced by % = (q1, q2) where q1(ω1) = q1(ω3) = 1

2 and
q2(ω2) = q2(ω3) = 1

2 . Note that common knowledge of posteriors holds at all worlds
and the same excluding condition is satisfied, yet universal agreement does not obtain:
the level 1 and level 2 posteriors are distinct. In order to exclude agreeing to disagree
with lexicographic probability systems in the universal sense the following condition is
needed.

Definition 6. Let ACPALPS be a lexicographic Aumann structure with a common prior
ρ and ω ∈ Ω be some world. The common prior ρ is locally meet constant at ω, if
pm(ω′) = pm(ω), for all ω′ ∈ (

∧
i∈I Ii)(ω) and for all m ∈ {1, . . . ,M}.

Intuitively, the locally meet constant condition ensures that the probabilistic reasoning
of the agent about all reachable worlds remains rigid throughout the lexicographic

3Tightness is interpreted in the style of Aumann and Brandenburger (1995), i.e. whether
dropping only one assumption of a result were to already break its conclusion.
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levels. Note that if a common prior is locally meet constant at some world, then it
is also (locally) same excluding at that world. In this sense, local meet constancy is
stronger than same excludingness.

As a matter of fact, an impossibility result on agreeing to disagree across lexico-
graphic levels unfolds with the locally meet constant condition.

Theorem 3 (UAT). Let ACPALPS be a lexicographic Aumann structure with a common
prior ρ. Let E ⊆ Ω be some event and ω ∈ Ω be some world. If ρ is locally meet
constant at ω and

CK
(⋂
i∈I

⋂
l∈{1,...,Li,ω}

{
ω′ ∈ Ω : pk

l
i,ω′ (E | Ii(ω′)) = pk

l
i,ω (E | Ii(ω))

})
6= ∅,

then
pk

l
i,ω
(
E | Ii(ω)

)
= pk

l′
j,ω
(
E | Ij(ω)

)
for all i, j ∈ I and for all l, l′ ∈

{
1, . . . ,mini∈I{Li,ω}

}
.

Proof. Consider some agents i∗, j∗ ∈ I as well as some lexicographic prior level m ∈
{1, . . . ,M}. Observe that for all ω′ ∈ (

∧
i∈I Ii)(ω), by local meet constancy, it is the

case that pm
(
Ii∗(ω′)

)
> 0, if and only if, pm

(
Ij∗(ω′)

)
> 0. An analogous argument as

in the proof of SAT ensures that (kli∗,ω)
Li∗,ω
l=1 = (klj∗,ω′)

Lj∗,ω′

l=1 for all ω′ ∈ (
∧
i∈I Ii)(ω).

Consider some lexicographic posterior level l∗ ∈
{

1, . . . ,mini∈I{Li, ω}
}

. By a sim-
ilar argument as in the proof of SAT,

pk
l∗
i∗,ω
(
E | Ii∗(ω)

)
=
pk

l∗
j∗,ω
(
E ∩ (

∧
i′∈I Ii′)(ω)

)
pk

l∗
j∗,ω
(
(
∧
i′∈I Ii′)(ω)

)
holds. With local meet constancy, it follows that

pk
l∗
i∗,ω
(
E | Ii∗(ω)

)
=
| E ∩ (

∧
i′∈I Ii′)(ω) |

| (
∧
i′∈I Ii′)(ω) |

.

Therefore, pk
l
i,ω
(
E | Ii(ω)

)
= pk

l′
j,ω
(
E | Ij(ω)

)
for all i, j ∈ I and for all l, l′ ∈{

1, . . . ,mini∈I{Li,ω}
}

. �

Accordingly, agents cannot agree to lexicographically disagree across any level whenever
local meet constancy holds. Thus, UAT elevates the strong agreement of SAT to
universal agreement. Furthermore, the local meet constant condition in UAT is tight,
as in the slight variation of Example 1 all assumptions of UAT but local meet constancy
are satisfied and the consequent of UAT fails.

7 Conclusion

Within the set-based epistemic framework enriched by lexicographic probability sys-
tems three types of agreement theorems emerge. If the agents’ posteriors are common
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knowledge, weak agreement directly obtains. However, lexicographic disagreement can-
not be excluded without further assumptions. Imposing the same excluding condition
in addition to common knowledge of posteriors, a result of strong agreement, yielding
same posteriors at all lexicographic levels, ensues. Finally, the locally meet constant con-
dition enables a universal agreement theorem, where the posteriors coincide throughout
the full reasoning range.

In terms of applications, it might be intriguing to use our strong agreement the-
orem for epistemic foundations of solution concepts involving cautious reasoning. For
instance, Myerson (1978)’s proper equilibrium could be analyzed with analogous con-
ditions to Aumann and Brandenburger (1995) adapted to the lexicographic framework
used here, where the Strong Agreement Theorem forces equal conjectures. We leave
such issues for future research.
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