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∗Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa,
Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Mexico City, Mexico; and EpiCenter,
School of Business and Economics, Maastricht University, P.O. Box 616, 6200 MD, Maas-
tricht, The Netherlands. Email: becerril@epicenter.name
†EpiCenter and Department of Quantitative Economics, School of Business and Eco-

nomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. Email:
a.perea@maastrichtuniversity.nl

1



1 Introduction

Epistemic game theory deals with the reasoning processes of an individual about
his opponents before he makes a decision. This requires a belief about the
choices of his opponents, but also a belief about the opponents’ beliefs about
their opponents’ choices, and so on.

Such reasoning processes have been studied thoroughly in the framework of
static games, in various forms of the concept of common belief in rationality.
However, the extension of these concepts to the framework of dynamic games
is not entirely trivial. One possible way to extend the idea of common belief
in rationality would require that the players believe their opponents make only
rational choices, in particular that past choices have been rational, which in
most cases is not possible to do.

To solve this problem some alternative concepts have been proposed. Bat-
tigalli and Siniscalchi (2002) propose the concept of common strong belief in
rationality, in which players, whenever possible, must believe that their oppo-
nents are implementing rational strategies. Perea (2014) proposed the concept
of common belief in future rationality, in which at each decision point a player
must believe that all players are rational in the present and in the future, but
allows players to believe that irrational choices have been made in the past. This
concept is similar to sequential rationalizability, proposed by Dekel, Fudenberg
and Levine (1999, 2002), and Asheim and Perea (2005).

Reny (1992, 1993) studies the idea of common belief in past and future
rationality at all information sets, coming to the conclusion that in most games,
it is not possible to reason under such concept.

However, taking as a starting point the concept of common belief in future
rationality in which we allow players to believe that past choices were irrational,
we consider a concept in which a restricted notion of belief in past rationality is
assumed. The example that follows will be used to illustrate the concepts that
are being discussed, while it also serves as one of the motivations for developing
a new rationality concept.

The key idea in the new concept we propose is that a player does not only
believe that his opponents choose rationally in the future, but also that the
decisions made in the past were rational among a restricted set of choices. In
Figure 1 we can see that at ∅ the optimal choice for player 1 is c. However, if
the game were to reach h1, player 2 must believe that a suboptimal choice was
made at ∅. Under the concept of common belief in future rationality player 2
can assume either a or b was chosen at ∅, as there is no restriction on the beliefs
about choices made in the past. We propose that player 2 should reason about
the choice made at ∅ by considering only those choices that reach h1 and from
those find which are optimal: in this case, we can see that a is the best choice
for player 1 from those that reach h1 assuming he would choose f afterwards.
Hence, under the new concept, player 2 must believe at h1 that player 1 chose
a in the past.

The concept proposed here, which we call “common belief in future and
restricted past rationality” is a refinement of common belief in future rationality.
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Figure 1. Example of a dynamic game.

The difference is that common belief in future rationality does not reason about
the choices made in the past, while the addition of “restricted past rationality”
makes players consider the subset of past choices that reach an information set
and find the optimal choice in this subset.

Moreover, besides proposing the concept we show the connection between
the concepts of proper rationalizability, proposed by Schuhmacher (1999) and
Asheim (2001), for the normal form of a dynamic game and common belief in
future and restricted past rationality for a dynamic game, namely, that prop-
erly rationalizable strategies in the normal form can rationally be chosen under
common belief in future and restricted past rationality. And since we know that
there are properly rationalizable strategies for every finite normal form game,
then we have that there are strategies that can rationally be chosen under com-
mon belief in future and restricted past rationality for every finite dynamic
game. In addition we propose an algorithm for this concept, and we show that
after its full implementation we get exactly the strategies that can rationally be
chosen under common belief in future and restricted past rationality.

It was shown by Asheim (2001) that every choice that has positive prob-
ability in some proper equilibrium is optimal for some properly rationalizable
type. The converse is in general not true, as there are choices that are optimal
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for some type that is properly rationalizable, yet no proper equilibrium assigns
them positive probability. Therefore, proper equilibrium is a more restrictive
concept than proper rationalizability. It can be shown that to obtain proper
equilibrium from proper rationalizability we need to add two requirements in
the case of two players: every player fully believes that the opponent has correct
beliefs; and every player fully believes that every opponent believes that he has
correct beliefs (cf. Perea (2012)). A player i believes that the opponent has
correct beliefs if for a given ti and its corresponding belief about the opponent’s
choices, type ti believes that his opponent believes that i holds precisely the
corresponding belief for type ti about the opponent’s choices.

Van Damme (1984) proves that for every dynamic game, the proper equilib-
ria of its normal form induce quasi-perfect equilibria of the dynamic game. In
this way he shows that it is possible to reason about a dynamic game in terms
of the normal form and obtain equilibria of the dynamic game by looking at the
normal form only. This is precisely the driving idea behind the present paper,
in which the concept of proper rationalizability, which is less restrictive than
proper equilibrium, is linked to a concept for dynamic games that, in contrast
to common belief in future rationality, takes into account a restricted version of
rationality in the past. Also in contrast to strong belief in rationality, it makes
players reason about the optimality of choices at every information set, even if
an information set can only be reached by past choices that are suboptimal.

The structure of the paper is as follows. In Section 2 we introduce dynamic
games. In Section 3 we present the concept of proper rationalizability for the
normal form of a dynamic game. In Section 4 we introduce the notion of com-
mon belief in future and restricted past rationality for a dynamic game. In
Section 5 both of these rationalizability concepts are connected, by showing
that the strategies that are proper rationalizable can also be made under com-
mon belief in future and restricted past rationality. In Section 6 we describe an
algorithm and show that it yields precisely those strategies that can be made
under common belief in future and restricted past rationality. Section 7 has
some concluding remarks and Section 8 contains all the proofs of this paper.

2 Dynamic games

In this section we define the dynamic games we consider, and some general
notions that will be used throughout the paper. In what follows we assume the
players have perfect recall.

Definition 1 (Dynamic game).
A dynamic game G is a tuple

G = (I, (Ci)i∈I , X, Z, (Hi)i∈I , (Ci(h))i∈I,h∈Hi
, (ui)i∈I)

where

• I is the finite set of players;
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• Ci is the finite set of choices for each player i ∈ I;

• X is the set of non-terminal histories, which are sequences of profiles of
choices x = (x1, . . . , xk), with xm = (ci)i∈Î in ×i∈Î Ci for some non-empty

Î ⊆ I, and for all ` < k, (x1, . . . , x`) is also a history. As Î may contain
more than one player, simultaneous moves are allowed.

• Z is the set of terminal histories of the game. In this case, if z =
(x1, . . . , xk) ∈ Z, then for every ` < k, (x1, . . . , x`) ∈ X;

• Hi is a finite collection of information sets for player i. The information
sets h ∈ Hi are non-empty sets of non-terminal histories. If h contains
more than one history, then player i does not know with certainty which
history was realized to arrive at h.

• Ci(h) ⊆ Ci is the finite set of choices available for player i at the infor-
mation set h ∈ Hi. We say c ∈ Ci(h) if there is a history x ∈ X and
xm = (cj)j∈Î such that x ∈ h, i ∈ Î, ci = c and (x, xm) = x′ ∈ X ∪ Z.

• ui : Z → R is player i’s utility function.

Example 1. In Figure 1 we have a dynamic game in its extensive form. This
two-player game has the sets of histories X = {∅, (a), (b), (a, d)} and Z =
{(c), (a, e), (b, d), (b, e), (a, d, f), (a, d, g)}; the collections of information setsH1 =
{∅, h2} and H2 = {h1}, where h1 = {(a), (b)} and h2 = {(a, d)}; and the sets
of choices C1(∅) = {a, b, c}, C1(h2) = {f, g}, C2(h1) = {d, e}.

We define a partial order on the information sets of a game. An information
set h′ immediately follows h, or h immediately precedes h′, if there exist a non-
empty Î ⊆ I, ci ∈ Ci(h) for every i ∈ Î, and x ∈ h such that (x, (ci)i∈Î) ∈ h′.

An information set h′ weakly follows h, or h weakly precedes h′, if h = h′ or
there is a sequence h0, h1, h2, . . . , h` such that ht immediately follows ht−1 for
t ∈ {1, 2, . . . , `}, where h0 = h and h` = h′. If h 6= h′, we say h strictly precedes
h′.

During the game, each player makes one or more choices, sometimes de-
pending on his previous choices or on the choices of other players. However,
if a player’s choice prevents himself from making some other choices, there is
no point in him making a plan that includes both the former choice and any
of the latter ones. Therefore, we restrict ourselves to studying those plans that
only prescribe choices at information sets that are reachable under the earlier
choices: a “plan of action”, as described in Rubinstein (1991). These plans we
will call strategies. We also identify those strategies that can potentially reach
an information set.

Looking at Example 1, the sets of strategies for each player are S1 =
{(a, f), (a, g), (b), (c)}, and S2 = {(d), (e)}. In classical game theory, other se-
quences such as (b, f) would also qualify as strategies, however, player 1 prevents
himself from choosing f by choosing b at an earlier information set, rendering
the choice f unnecessary.
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Let h ∈ H, h′ ∈ Hi, where h′ strictly precedes h. We say a choice ci ∈ Ci(h
′)

leads to h if there exist x ∈ h′, Î ⊆ I with i ∈ Î, and cj ∈ Cj(h
′) for every

j ∈ Î \ {i} such that (x, (cj)j∈Î) weakly precedes h.

A history h ∈ H is reachable via si : H̃i → ∪h∈H̃i
Ci(h), with H̃i ⊆ Hi, if at

every history h′ ∈ H̃i that strictly precedes h, the choice si(h
′) leads to h. We

say si is a strategy if H̃i contains exactly those histories in Hi that are reachable
via si. A strategy si leads to h ∈ H if h is reachable via si.

The set of strategies for player i is denoted by Si. The set of strategy
combinations for the opponents of i is denoted by S−i = ×j 6=i Sj . A strategy
combination for all players is given by (si, s−i) where si ∈ Si and s−i ∈ S−i.

The set of strategies for player i that lead to h is denoted by Si(h). In
Example 1, S1(h1) = {(a, f), (a, g), b}, S1(h2) = {(a, f), (a, g)}, S2(h2) = {d}.

The set of strategy combinations for the opponents of i that lead to h is
denoted by S−i(h). The set of information sets for player i that strategy si
leads to is denoted by Hi(si).

Finally we identify those strategy combinations that reach a particular in-
formation set. Let (si, s−i) ∈ Si×S−i be a strategy combination for all players.
We define H(si, s−i) as the class of information sets h such that si ∈ Si(h) and
s−i ∈ S−i(h). H(si, s−i) are the information sets that can be reached with the
strategy combination (si, s−i).

3 Proper rationalizability

To connect the rationalizability concepts in dynamic games with related ratio-
nalizability concepts in normal form games, we also need to connect a dynamic
game with a related game in its normal form.

Definition 2 (Normal form of a dynamic game).
Let G be a dynamic game. The normal form of G is the game G′ =

(I, (Si)i∈I , (vi)i∈I) in which all players i choose simultaneously a strategy si ∈
Si, and each player i receives the utility vi(si, s−i) = ui(z(si, s−i)) where
z(si, s−i) is the terminal history reached by (si, s−i).

We define a structure called an epistemic model, which serves as a compact
way to encode belief hierarchies, so we can easily check the levels of belief
for each player by looking at the epistemic model. Then we define strategy-
type combinations, which are the objects on which beliefs are constructed, and
lexicographic beliefs.

A lexicographic belief bi for player i on a finite set A is a sequence (b1i ; . . . ; bmi )
where each bki is a probability distribution on A. The belief bki is called the level
k of the lexicographic belief.

Definition 3 (Epistemic model for a normal form game).
An epistemic modelM = (Ti, bi)i∈I for a normal form gameG′ = (I, (Si)i∈I , (vi)i∈I)

consists of a finite set of types Ti for each player i, and for each type ti ∈ Ti
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we define a lexicographic belief bi(ti) = (b1i (ti); . . . ; b
m
i (ti)) on S−i × T−i =

×k 6=i(Sk × Tk), which is the set of strategy-type combinations of i’s opponents.

To derive a lexicographic belief hierarchy for every type, consider a type ti
and its lexicographic belief bi(ti) = (b1i (ti); · · · ; bmi (ti)).

For the first order of the lexicographic belief hierarchy of ti, we have that
player i deems the strategies in the support of b1i (ti) infinitely more likely than
the strategies that are in the support of b2i (ti) but not in the support of b1i (ti);
and deems the strategies in the support of b2i (ti) infinitely more likely than the
strategies that are in the support of b3i (ti) but not in the supports of b1i (ti) or
b2i (ti); and so on.

On the second order of the lexicographic belief hierarchy of ti, we have
that player i deems the lexicographic beliefs of each type that appears in b1i (ti)
infinitely more likely than the lexicographic beliefs of each type that appears in
b2i (ti) but didn’t appear in b1i (ti); and deems the lexicographic beliefs of each
type that appears in b2i (ti) but didn’t appear in b1i (ti) infinitely more likely than
the lexicographic beliefs of each type that appears in b3i (ti) but didn’t appear
in a previous level; and so on. Continuing this way it is possible to obtain the
full lexicographic belief hierarchy.

We say type tj is deemed possible by type ti for the lexicographic belief
bi(ti) = (b1i (ti); . . . ; b

m
i (ti)) if there exists a strategy-type combination (s−i, t−i) ∈

(Sj × {tj}) × ×k 6=i,j(Sk × Tk) such that b`i(ti)(s−i, t−i) > 0 for some ` ∈
{1, . . . ,m}. The set of types for player j deemed possible by bi(ti) is denoted
by Tj(ti).

If positive probability is assigned to a strategy-type combination in level `,
earlier than another strategy-type combination in a level k, with ` < k, we say
that the first combination is deemed infinitely more likely than the second one.

Definition 4 (Strategy-type combinations deemed infinitely more likely).
Let bi(ti) = (b1i (ti); . . . , b

m
i (ti)) be a lexicographic belief for type ti for player

i. We say ti deems a strategy-type combination (s−i, t−i) infinitely more likely
than (s′−i, t

′
−i) if there exists k ∈ {1, . . . ,m} such that

1. for all ` ≤ k, b`i(ti)(s
′
−i, t

′
−i) = 0; and

2. bki (ti)(s−i, t−i) > 0.

We focus on a particular type of lexicographic beliefs, which are such that for
every type combination for i’s opponents that is deemed possible in the belief,
every strategy combination for i’s opponents must receive positive probability
at some level k.

Definition 5 (Cautious lexicographic belief).
Consider an epistemic modelM = (Ti, bi)i∈I . Let bi(ti) = (b1i (ti); . . . ; b

m
i (ti))

be a lexicographic belief for type ti ∈ Ti for player i. We say bi(ti) is cautious
if for each (s−i, t−i) ∈ ×j 6=i(Sj × Tj(ti)) there is a k ∈ {1, . . . ,m} such that

bki (ti)(s−i, t−i) > 0.
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In order to compare strategies for a player we define the expected utility for a
given lexicographic belief. Note that it is defined by levels, and the comparison
is made at the first level in which two strategies disagree in their expected utility.

Given a type ti for player i and a lexicographic belief bi(ti) = (b1i (ti); . . . ; b
m
i (ti))

we define the expected utility of choosing strategy si at level k as

vki (si, bi(ti)) =
∑

(s−i,t−i)∈S−i×T−i

bki (ti)(s−i, t−i)vi(si, s−i).

A type ti with a lexicographic belief bi(ti) = (b1i (ti); . . . , b
m
i (ti)) for player i

prefers strategy si to s′i if there exists k ∈ {1, . . . ,m} such that

1. for all ` < k, v`i (si, bi(ti)) = v`i (s
′
i, bi(ti)); and

2. vki (si, bi(ti)) > vki (s′i, bi(ti)).

Given a lexicographic belief bi(ti) for type ti, a strategy si is optimal for ti
if there is no other s′i ∈ Si such that ti prefers s′i to si.

Now we define the notion of rationalizability that will be used for normal
form games: respect of preferences, due to Asheim (2001), which in turn defines
the concept of proper rationalizability.

Definition 6 (Respect of preferences).
Consider an epistemic modelM = (Ti, bi)i∈I . Let bi(ti) = (b1i (ti); . . . ; b

m
i (ti))

be a lexicographic belief for type ti for player i. We say ti respects j’s preferences
if for every type tj of player j deemed possible by ti, and strategies sj , s

′
j ∈ Sj

such that tj prefers sj to s′j , ti deems at least one strategy-type combination in
×k∈I\{i,j}(Sk×Tk(ti))×{(sj , tj)} infinitely more likely than every strategy-type
combination in ×k∈I\{i,j}(Sk × Tk(ti))× {(s′j , tj)}.

We say ti respects the opponents’ preferences if ti respects j’s preferences
for all j ∈ I \ {i}.

Definition 7 (k-fold and common full belief in caution).

1. Type ti expresses 1-fold full belief in caution if ti only deems possible
opponents’ types that are cautious.

2. For every k > 1, type ti expresses k-fold full belief in caution if ti only
deems possible opponents’ types that express (k − 1)-fold full belief in
caution.

3. Type ti expresses common full belief in caution if ti expresses k-fold full
belief in caution for all k ∈ N.

In a similar way we can define k-fold and common full belief in respect of
preferences. Now we can define proper rationalizability, which was introduced
by Schuhmacher (1999) and Asheim (2001).
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T1 = {t1}, T2 = {t2}

b1(t1) = ((d, t2); (e, t2))

b2(t2) = ((c, t1); ((a, f), t1); (b, t1); ((a, g), t1))

Table 1. An epistemic model for the normal form of Example 1.

Definition 8 (Proper rationalizability).
Type ti is properly rationalizable if ti is cautious, respects the opponents’

preferences and expresses common full belief in caution and common full belief
in respect of preferences.

A strategy si for player i is properly rationalizable if there exists an epis-
temic model M = (Ti, bi)i∈I and some type ti ∈ Ti such that ti is properly
rationalizable, and strategy si is optimal for type ti.

For Example 1, consider the epistemic model given in Table 1. We shall
check that each type is properly rationalizable.

Type t1 only deems possible type t2, and the strategy-type combinations
(d, t2) and (e, t2) appear at some level of b1(t1), so t1 is cautious. Similarly
t2 only deems possible type t1, and the strategy-type combinations ((a, f), t1),
((a, g), t1), (b, t1) and (c, t1) appear at some level of b2(t2), so t2 is cautious.

Type t1 believes player 2 is of type t2, which believes at the first level of
b2(t2) that player 1 will choose c, and at the second level that player 1 will
choose (a, f), in which case the order of preference for player 2 is d, then e, so
t1 respects the opponent’s preferences.

Type t2 believes player 1 is of type t1, which believes at the first level of b1(t1)
that player 2 will choose d, in which case the order of preference for player 1
is c, then (a, f), followed by b and finally (a, g), so t2 respects the opponent’s
preferences.

Since all the types in the epistemic model are cautious and respect the
opponent’s preferences, all the types are properly rationalizable. For player 1,
c is a strategy that is optimal for t1, and for player 2, d is a strategy that is
optimal for t2. Therefore c and d are properly rationalizable.

4 Common belief in future and restricted past
rationality

Now we turn to dynamic games, and we will define the concept of common
belief in future and restricted past rationality. In Section 5 we will connect the
concept to proper rationalizability of the normal form.

We first define an epistemic model for a dynamic game, which is rather
similar to the definition for normal form games, except the beliefs depend on
the information set.
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Definition 9 (Epistemic model for a dynamic game).
An epistemic model M̂ = (T̂i, βi)i∈I for a dynamic game G consists of a

finite set of types T̂i for each player i, and for each type t̂i ∈ T̂i and each infor-
mation set h ∈ Hi of player i we define a conditional belief βi(t̂i, h) which is a
probability distribution over S−i(h)×T̂−i, the set of strategy-type combinations
of i’s opponents that lead to h ∈ Hi.

Given a type t̂i, an information set h for player i, and a conditional belief
βi(t̂i, h) we define the expected utility of choosing strategy si ∈ Si(h) as

ui(si, βi(t̂i, h)) =
∑

(s−i,t̂−i)∈S−i×T̂−i

βi(t̂i, h)(s−i, t̂−i)ui(z(si, s−i)),

where z(si, s−i) is the terminal history reached by (si, s−i).
Given a conditional belief βi(t̂i, h) for type t̂i at the information set h, a

strategy si ∈ Si(h) is optimal for t̂i at h if for all s′i ∈ Si(h)

ui(si, βi(t̂i, h)) ≥ ui(s′i, βi(t̂i, h))

Now we define the key conditions that will be used: belief in future ratio-
nality as has been defined in Perea (2014), and a new notion that we propose,
which requires players to think about the past rationality of the opponents, in-
sofar as it concerns the strategies that reach the information set at which the
player is. We define both notions separately, then we define common belief in
future rationality and common belief in restricted past rationality in an itera-
tive way, to combine them into one concept that refines common belief in future
rationality.

Definition 10 (Belief in the opponents’ future rationality).
We say that a type t̂i believes in j’s future rationality if at every h ∈ Hi,

βi(t̂i, h)(sj , t̂j) > 0 only if for every h′ ∈ Hj(sj) that weakly follows h:

uj(sj , βj(t̂j , h
′)) ≥ uj(s′j , βj(t̂j , h′))

for every s′j ∈ Sj(h
′).

Type t̂i believes in the opponents’ future rationality if t̂i believes in j’s future
rationality for all players j ∈ I \ {i}.

Definition 11 (k-fold and common belief in future rationality).

1. Type t̂i expresses 1-fold belief in future rationality if t̂i believes in the
opponents’ future rationality.

2. For every k > 1, type t̂i expresses k-fold belief in future rationality if
at every information set h ∈ Hi, t̂i only assigns positive probability to
opponents’ types that express (k − 1)-fold belief in future rationality.

3. Type t̂i expresses common belief in future rationality if t̂i expresses k-fold
belief in future rationality for every k ∈ N.
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T̂1 = {t̂1}, T̂2 = {t̂2}

b1(t̂1,∅) = (d, t̂2)
b1(t̂1, h2) = (d, t̂2)

b2(t̂2, h1) = ((a, f), t̂1)

Table 2. An epistemic model for the dynamic form of Example 1.

Definition 12 (Belief in the opponents’ restricted past rationality).
We say that a type t̂i believes in j’s restricted past rationality if at every

h ∈ Hi, βi(t̂i, h)(sj , t̂j) > 0 only if for every h′ ∈ Hj(sj) such that h′ weakly
precedes h:

uj(sj , βj(t̂j , h
′)) ≥ uj(s′j , βj(t̂j , h′))

for every s′j ∈ Sj(h
′) ∩ Sj(h).

Type t̂i believes in the opponents’ restricted past rationality if t̂i believes in
j’s restricted past rationality for all players j ∈ I \ {i}.

The previous definition establishes that type t̂i must reason at h about those
strategies of his opponents that can be chosen at a previous information set, h′,
but only if those strategies can reach the information set h too. That is, i
considers at h only those strategies at h′ that give the highest utility to the
opponent at h′ from those strategies that actually reach h.

We can define k-fold and common belief in restricted past rationality in an
analogous way to the definition of k-fold and common belief in future rationality.

A strategy si for player i can rationally be chosen under common belief in
future and restricted past rationality if there exists an epistemic model M̂ =
(T̂i, βi)i∈I and some type t̂i ∈ T̂i such that t̂i expresses common belief in future
and restricted past rationality, and strategy si is optimal for type t̂i at every
information set h ∈ Hi(si).

Returning to Example 1, consider the epistemic model given in Table 2, for
which we check that every type expresses common belief in future and restricted
past rationality.

At ∅ ∈ H1, t̂1 believes that player 2 chooses d and is of type t̂2. Type
t̂2 believes at h1, which weakly follows ∅, that player 1 chooses (a, f), so the
optimal strategy in S2(h1) = {d, e} for player 2 is d. Therefore t̂1 believes in
the opponent’s future rationality at ∅. Since there are no information sets for
player 2 that weakly precede ∅, t̂1 believes in the opponent’s restricted past
rationality at ∅.

At h2 ∈ H1 there are no information sets for player 2 that weakly follow h2,
so t̂1 believes in the opponent’s future rationality at h2. Now, type t̂1 believes
at h2 that player 2 chooses d and is of type t2; in fact S2(h1) ∩ S2(h2) = {d}.
Therefore t̂1 believes in the opponent’s restricted past rationality at h2.
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At h1 ∈ H2, t̂2 believes that player 1 chooses (a, f) and is of type t̂1. Type
t̂1 believes at h2, which weakly follows h1, that player 2 chooses d at h1, so
the optimal strategy in S1(h2) for player 1 is (a, f). Therefore t̂2 believes in
the opponent’s future rationality. Type t̂1 believes at ∅, which weakly precedes
h1, that player 2 chooses d at h1, so the optimal strategy in S1(∅) ∩ S1(h1) =
{(a, f), (a, g), b} for player 1 is (a, f). Therefore t̂2 believes in the opponent’s
restricted past rationality. We can see that among all strategies in S1(∅), (a, f)
is not optimal for t̂1 at ∅, as c gives a higher utility.

Since all the types in the epistemic model believe in the opponent’s future
and restricted past rationality, then all the types express common belief in
future and restricted past rationality. For player 1, c is optimal for type t̂1 at
information set ∅, and for player 2, d is optimal for type t̂2 at information set
h1. Therefore c and d can rationally be chosen under common belief in future
and restricted past rationality.

5 Connection with proper rationalizability

In this section we prove one of our main theorems, which states that proper
rationalizability of a strategy in the normal form implies optimality of the same
strategy under common belief in future and restricted past rationality in the
dynamic game.

In order to do so, we break down the proof into four smaller parts. We start
by showing that optimality of a strategy for a cautious type in the normal form
of the game implies optimality of the same strategy for the induced type in the
dynamic game. Then we go on to show that respect of the opponent’s preferences
in the normal form implies belief in the opponent’s future and restricted past
rationality in the dynamic game. As a consequence, proper rationalizability in
the normal form implies common belief in future and restricted past rationality
in the dynamic game. This finally implies that every strategy which is properly
rationalizable in the normal form can rationally be chosen under common belief
in future and restricted past rationality in the dynamic game.

Theorem 1. Consider a dynamic game G. If a strategy si is properly rational-
izable in the normal form of G, then si can rationally be chosen under common
belief in future and restricted past rationality in the dynamic game G.

This result has a connection with van Damme (1984), in which proper equi-
libria in the normal form are shown to imply quasi-perfect equilibria in the
dynamic game. The theorem above makes a similar link between proper ratio-
nalizability and common belief in future and restricted past rationality.

As a first step, we define a way to transform an epistemic model of the
normal form into an epistemic model for the dynamic game.

Let M = (Ti, bi)i∈I be an epistemic model for the normal form of the game
where every type ti ∈ Ti is cautious for all i ∈ I. We define the induced
epistemic model for the dynamic game M̂ = (T̂i, βi)i∈I in the following way:
for each player i take the bijective mapping fi : Ti → T̂i, effectively a renaming

12



T1 = {t1, t′1}, T2 = {t2, t′2}

b1(t1) = ((d, t2); (e, t2))
b1(t′1) = (1

4 (d, t′2) + 3
4 (e, t′2))

b2(t2) = ((c, t′1); ((a, f), t′1); (b, t′1); ((a, g), t′1)))
b2(t′2) = (1

4 (c, t1) + 1
4 (b, t1) + 1

2 ((a, f), t1); ((a, g), t1))

Table 3. An epistemic model for the normal form.

T̂1 = {t̂1, t̂′1}, T̂2 = {t̂2, t̂′2}

b1(t̂1,∅) = (d, t̂2)
b1(t̂1, h2) = (d, t̂2)
b1(t̂′1,∅) = ( 1

4 (d, t̂′2) + 3
4 (e, t̂′2))

b1(t̂′1, h2) = ((d, t̂′2))

b2(t̂2, h1) = ((a, f), t̂′1)
b2(t̂′2, h1) = (1

3 (b, t̂1) + 2
3 ((a, f), t̂1))

Table 4. The epistemic model of the dynamic game induced by Table 3.

of the types, and let the conditional belief of type fi(ti) at the information set
h ∈ Hi be defined as

βi(fi(ti), h)(s−i, f−i(t−i)) =
bki (ti)(s−i, t−i)

bki (ti)(S−i(h)× T−i)

where k is the smallest number for which bki (ti)(S−i(h)× T−i) > 0. Here,

bki (ti)(S−i(h)× T−i) =
∑

(s−i,t−i)∈S−i(h)×T−i

bki (s−i, t−i),

that is, we take the first level k of the lexicographic belief for ti in which there is
at least one strategy combination for i’s opponents that reaches h, and normalize
the probabilities accordingly.

To illustrate how to transform cautious lexicographic beliefs into conditional
beliefs, we the game from Figure 1. Suppose the epistemic model for its normal
form is the one in Table 3, then the epistemic model induced for the dynamic
game is the one in Table 4.

Now that we have a way to relate epistemic models of the normal form with
those of the dynamic game, we will see how the rationalizability concepts relate
to each other. First we show that optimality of a strategy for a cautious type
in the normal form of the game implies optimality of the same strategy for the
induced type in the dynamic game. This is presented in the following lemma.
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Lemma 1. Let M be an epistemic model of the normal form in which all
types are cautious, h ∈ Hi, h

′ an information set that weakly follows or weakly
precedes h, and ti a type for player i in M . If si ∈ Si(h) ∩ Si(h

′) is not
optimal for fi(ti) among strategies in Si(h)∩Si(h

′) at h ∈ Hi, then there exists
ŝi ∈ Si(h) ∩ Si(h

′) such that ti prefers ŝi to si.

The optimality implication described above will be very useful to show the
relations between the rationalizability concepts that we are studying. The next
step is to show that respect of preferences in the normal form of the game implies
belief in future and restricted past rationality.

Lemma 2. If ti respects player j’s preferences, then fi(ti) believes in j’s future
and restricted past rationality.

And also, the notion of proper rationalizability implies common belief in
future and restricted past rationality.

Lemma 3. If ti is properly rationalizable, then fi(ti) expresses common belief
in future and restricted past rationality.

Since we know that for every normal form game there exists at least one
properly rationalizable type for every player (cf. Asheim (2001), Perea (2012)),
then Lemma 3 implies the following result.

Corollary 1. For every dynamic game G there exists for every player i an
epistemic model M and a type t̂i in it that expresses common belief in future
and restricted past rationality.

Once we have all of these results, Lemma 1 and Lemma 3 imply Theorem 1.
Therefore, if we transform a dynamic game into its normal form and proceed to
find an epistemic model in which the types express proper rationalizability, we
can find an induced epistemic model for the dynamic game in which the types
express common belief in future and restricted past rationality.

We can check that the epistemic model in Table 2 is induced by the epistemic
model in Table 1 via the transformation described before, and we have seen that
all types in Table 1 are properly rationalizable. Since strategy c is optimal for
type t1 and strategy d is optimal for type t2, both strategies can rationally be
chosen under common belief in future and restricted past rationality by Theorem
1.

As we can see, at information sets ∅ and h2, type t1 of player 1 believes
type t2 of player 2 will be and has been rational. However, if the game reaches
information set h1, this means player 1 was not rational before, nevertheless,
player 2 believes that if h1 was reached, then player 1 is choosing optimally
among strategies that lead to h1, therefore, type t2 believes that player 1 will
choose (a, f). Hence, player 2 can only rationally choose d under common belief
in future and restricted past rationality.

Under common strong belief in rationality, if player 2 sees that h1 has been
reached, then, if possible, he must believe that player 1 made a choice that is
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rational at ∅. But choosing c at ∅ gives the highest utility for player 1, so it is
not possible for player 2 to believe that player 1 made a rational choice under
common strong belief in rationality. Therefore, player 2 can believe player 1
chose any strategy that leads to h1, so both d and e can rationally be chosen at
h1 under common strong belief in rationality.

Under common belief in future rationality, if player 2 sees that h1 was
reached, then he may believe that player 1 chose irrationally at ∅, but he must
believe that from now on, player 1 will choose rationally. Therefore, player 2
can believe player 1 chose a or b at ∅, so both d and e can rationally be chosen
under common belief in future rationality.

6 Algorithm

In order to find the strategies that can rationally be chosen under common belief
in future and restricted past rationality, we propose an algorithm based on the
backward dominance procedure proposed in Perea (2014). Then we show that
the strategies that survive the full implementation of the algorithm are exactly
those strategies that can be chosen under common belief in future and restricted
past rationality.

Definition 13 (Full and reduced decision problems at an information set).
Let h ∈ Hi be an information set for player i. The pair Γ0(h) = (S0

i (h), S0
−i(h))

is called the full decision problem for player i at h, where S0
i (h) = Si(h) and

S0
−i(h) = S−i(h). A pair Γk(h) = (Sk

i (h), Sk
−i(h)) is a reduced decision problem

for player i at h, with Sk
i (h) ⊆ S0

i (h) and Sk
−i(h) ⊆ S−i(h).

Definition 14 (Strict dominance by a randomization).
Let h ∈ Hi be an information set for player i, and Γk(h) = (Sk

i (h), Sk
−i(h))

be a reduced decision problem for player i at h. A strategy si ∈ Sk
i is strictly

dominated on Sk
−i(h) by a randomization on Ai ⊆ Sk

i (h) if there is ρi ∈ ∆(Ai)
such that ∑

s′i∈Ai

ρi(s
′
i)ui(z(s

′
i, s−i)) > ui(z(si, s−i))

for all s−i ∈ Sk
−i(h).

Algorithm 1. Set S0
i (h) = Si(h) and S0

−i(h) = S−i(h) for all i ∈ I and all
h ∈ Hi. For every k ≥ 1 we have:

Step k: For every player i and every information set h ∈ Hi, we define

Sk
i (h) = {si ∈ Sk−1

i (h) | si is not strictly dominated on Sk−1
−i (h)

by a randomization on Si(h)},
Sk
−i(h) = {(sj)j 6=i ∈ Sk−1

−i (h) | for all j 6= i, sj is not strictly dominated

on Sk−1
−j (h′) by a randomization on Sj(h

′)
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for every h′ ∈ Hj(sj) weakly following h,

and sj is not strictly dominated on Sk−1
−j (h′′)

by a randomization on Sj(h) ∩ Sj(h
′′)

at every h′′ ∈ Hj(sj) weakly preceding h}.

The algorithm ends after K steps if SK+1
i (h) = SK

i (h) and SK+1
−i (h) =

SK
−i(h) for every i ∈ I and every h ∈ Hi.

Now we have the following result showing that the algorithm identifies the
strategies that can be chosen under k-fold belief in future and restricted past
rationality, and those that can be chosen under common belief in future and
restricted past rationality.

Theorem 2. For every k ≥ 1 the strategies that can rationally be chosen by a
type that expresses up to k-fold belief in future and restricted past rationality
are exactly the strategies si such that si ∈ Sk+1

i (h) for all h ∈ Hi(si), surviving
the first k + 1 steps of the algorithm.

The strategies that can rationally be chosen by a type that expresses common
belief in future and restricted past rationality are exactly the strategies that
survive the full algorithm, that is, the strategies si such that si ∈ Sk

i (h) for all
k ≥ 1 and all h ∈ Hi(si).

To illustrate the algorithm, we use the game from Figure 1. We have that
H1 = {∅, h2} and H2 = {h1} and the initial sets of strategies:

S0
1(∅) = {(a, f), (a, g), b, c} S0

−1(∅) = {d, e}
S0
2(h1) = {d, e} S0

−2(h1) = {(a, f), (a, g), b}
S0
1(h2) = {(a, f), (a, g)} S0

−1(h2) = {d}

After the first step is applied, we obtain the following reduced decision prob-
lems:

S1
1(∅) = {c} S1

−1(∅) = {d, e}
S1
2(h1) = {d, e} S1

−2(h1) = {(a, f)}
S1
1(h2) = {(a, f)} S1

−1(h2) = {d}

Observe that at ∅, b is strictly dominated by (a, f) ∈ S0
1(h1) ∩ S0

1(∅). We
also have that at h2, (a, g) is strictly dominated by (a, f) ∈ S0

1(h2). Therefore
the only strategy that remains in S1

−2(h1) is (a, f).
At the second iteration of the algorithm we obtain:

S2
1(∅) = {c} S2

−1(∅) = {d}
S2
2(h1) = {d} S2

−2(h1) = {(a, f)}
S2
1(h2) = {(a, f)} S2

−1(h2) = {d}
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We see that at h1, e is strictly dominated on S1
−2(h1) by d, so the only

strategy in S2
−1(∅) and S2

2(h1) is d.
Since all the sets are singletons, the algorithm stops. Therefore the surviving

strategies are c for player 1 and d for player 2, which are exactly the strategies
that we found in Section 4 as those that can be chosen under common belief in
future and restricted past rationality.

7 Concluding Remarks

A new reasoning concept for dynamic games was introduced, which not only
assumes rationality of the opponents in the future, but also assumes players
reason about what happened in the past in the following way: if the game
reaches an information set, players should consider only those strategies that
actually reach that information set and believe that the opponent has chosen
rationally in the past among that restricted set of strategies. In this way, players
are reasoning at every information set about the past, but only a restricted
part of it. We have also presented the fact that common belief in future and
restricted past rationality can be obtained from using proper rationalizability
in the normal form of the dynamic game, which shows that some reasoning
concepts for dynamic games can be obtained if we study particular concepts
used for normal form games. Additionally, it was possible to define a procedure
that starts from the decision problems in the dynamic game, and using strict
dominance, selects the strategies that can be chosen under common belief in
future and restricted past rationality.

Some future research that can stem from the results obtained here would
include the application of this concept to other classes of games such as includ-
ing infinite games, repeated games and stochastic games, as well as finding an
algorithm in each case that finds the choices that can be made under common
belief in future and restricted past rationality.

Another problem that could be investigated in future work is whether we
can find an equilibrium analogue to common belief in future and restricted past
rationality, and how it would relate to existing equilibrium concepts for dynamic
games. Such a search for an equilibrium analogue could be based on Perea
and Predtetchinski (2017) who have shown that for stochastic dynamic games
with perfect information, subgame perfect equilibrium is equivalent to common
belief in future rationality with a correct beliefs assumption. Since players have
perfect information, the addition of restricted past rationality does not affect
the result, so a natural extension would be to study the case of dynamic games
with imperfect information.

Perea (2017) has proven that for finite dynamic games, the outcomes ob-
tained under common strong belief in rationality are also reachable under com-
mon belief in future rationality, proving that common strong belief in rationality
is a more restrictive concept in terms of outcomes. It would be interesting to
study the relation in terms of outcomes of the concept of common strong belief
in rationality and common belief in future and restricted past rationality.
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8 Proofs

8.1 Proofs for Section 5

Proof (Lemma 1). Let si ∈ Si(h) ∩ Si(h
′) be a suboptimal choice for fi(ti)

among strategies in Si(h) ∩ Si(h
′) at h. Then there is at least one s′i ∈ Si(h) ∩

Si(h
′) such that

ui(s
′
i, βi(fi(ti), h)) > ui(si, βi(fi(ti), h)). (∗)

Define ŝi as

ŝi(h
′′) = si(h

′′) for all h′′ ∈ Hi(si) if h′′ does not weakly follow h, (1a)

ŝi(h
′′) = s′i(h

′′) for all h′′ ∈ Hi(s
′
i) if h′′ weakly follows h. (1b)

First we show that ŝi ∈ Si(h) ∩ Si(h
′).

Since si ∈ Si(h), there is s−i ∈ S−i(h) such that (si, s−i) reaches h. Then
at every h′′ ∈ H(si, s−i) such that h follows h′′, we have ŝi(h

′′) = si(h
′′). Hence

h ∈ H(ŝi, s−i) and ŝi ∈ Si(h).
To show that ŝi ∈ Si(h

′) we distinguish two cases: whether h′ weakly pre-
cedes h or h′ weakly follows h.

If h′ weakly precedes h, then ŝi ∈ Si(h
′) since ŝi ∈ Si(h).

Assume now that h′ weakly follows h. Since s′i ∈ Si(h
′), there is s−i ∈

S−i(h
′) such that (s′i, s−i) reaches h′. Then at every h′′ ∈ H(s′i, s−i) weakly

following h and weakly followed by h′ we have by definition ŝi(h
′′) = s′i(h

′′), and
at every h′′ ∈ H(s′i, s−i) such that h follows h′′ we know that ŝi(h

′′) = si(h
′′).

But by perfect recall of player i, there exists a unique choice c∗i (h′′) at the
information set h′′ such that h can be reached. Since both si, s

′
i ∈ Si(h), both

strategies must choose c∗i (h′′). Therefore si(h
′′) = s′i(h

′′) for all h′′ such that h
follows h′′.

Hence, ŝi(h
′′) = s′i(h

′′) at every h′′ ∈ H(s′i, s−i) such that h weakly follows
h′′. Since we have seen that ŝi(h

′′) = s′i(h
′′) for all h′′ ∈ H(s′i, s−i) weakly

following h and weakly preceding h′, the strategy combination (ŝi, s−i) reaches
h′, and ŝi ∈ Si(h

′).
By the two results above, we have that ŝi ∈ Si(h) ∩ Si(h

′).
Now we will show that ti prefers ŝi to si. Let bi(ti) = (b1i (ti); b

2
i (ti); . . . ; b

m
i (ti))

be the cautious lexicographic belief for type ti. Let k be the smallest number
such that bki (ti)(S−i(h)× T−i) > 0.

For ` < k, b`i(ti)(S−i(h)) = 0. Hence by (1a):

v`i (ŝi, bi(ti)) = v`i (si, bi(ti))

for all ` < k. Moreover

vki (ŝi, bi(ti)) =
∑

(s−i,t−i)∈S−i×T−i

bki (ti)(s−i, t−i)vi(ŝi, s−i)

=
∑

(s−i,t−i)∈S−i(h)×T−i

bki (ti)(s−i, t−i)vi(ŝi, s−i)
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+
∑

(s−i,t−i)∈(S−i\S−i(h))×T−i

bki (ti)(s−i, t−i)vi(ŝi, s−i)

=
∑

(s−i,t−i)∈S−i(h)×T−i

bki (ti)(s−i, t−i)vi(s
′
i, s−i)

+
∑

(s−i,t−i)∈(S−i\S−i(h))×T−i

bki (ti)(s−i, t−i)vi(si, s−i)

= bki (ti)(S−i(h)× T−i)

×
∑

(s−i,t−i)∈S−i(h)×T−i

βi(fi(ti), h)(s−i, f−i(t−i))ui(z(s
′
i, s−i))

+
∑

(s−i,t−i)∈(S−i\S−i(h))×T−i

bki (ti)(s−i, t−i)vi(si, s−i)

= bki (ti)(S−i(h)× T−i)ui(s′i, βi(fi(ti), h))

+
∑

(s−i,t−i)∈(S−i\S−i(h))×T−i

bki (ti)(s−i, t−i)vi(si, s−i)

> bki (ti)(S−i(h)× T−i)ui(si, βi(fi(ti), h))

+
∑

(s−i,t−i)∈(S−i\S−i(h))×T−i

bki (ti)(s−i, t−i)vi(si, s−i)

=
∑

(s−i,t−i)∈S−i(h)×T−i

bki (ti)(s−i, t−i)vi(si, s−i)

+
∑

(s−i,t−i)∈(S−i\S−i(h))×T−i

bki (ti)(s−i, t−i)vi(si, s−i)

= vki (si, bi(ti)).

where (1a) and (1b) have been used in the third equality, and the inequality is
obtained using (∗) and the fact that bki (ti)(S−i(h) × T−i) > 0. Hence we have
the result we wanted to prove. �

Proof (Lemma 2). First we prove that respect of preferences implies belief in
future rationality.

Let h ∈ Hi. Suppose fi(ti) does not believe at h in player j’s future ratio-
nality. Then

βi(fi(ti), h)(sj , fj(tj)) > 0

for some sj ∈ Sj(h
′) that is a suboptimal strategy for fj(tj) at some h′ that

weakly follows h.
By Lemma 1 there exists ŝj ∈ Sj(h) ∩ Sj(h

′) such that tj prefers ŝj to sj .
By the hypothesis, ti respects j’s preferences, so it must deem (ŝj , tj) infinitely
more likely than (sj , tj). Since ŝj ∈ Sj(h) then

βi(fi(ti), h)(sj , fj(tj)) = 0

by construction of the conditional belief at h. But this is a contradiction. There-
fore, fi(ti) believes at h in player j’s future rationality for all h ∈ Hi.
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Now we prove with a similar argument that respect of preferences implies
belief in restricted past rationality.

Let h ∈ Hi. Suppose fi(ti) does not believe at h in player j’s restricted past
rationality. Then

βi(fi(ti), h)(sj , fj(tj)) > 0

for some sj ∈ Sj(h) ∩ Sj(h
′′) that is a suboptimal strategy for fj(tj) among

strategies in Sj(h) ∩ Sj(h
′′) at h′′ that weakly precedes h. By Lemma 1 there

exists ŝj ∈ Sj(h) ∩ Sj(h
′′) such that tj prefers ŝj to sj . By the hypothesis,

ti respects j’s preferences, so it must deem (ŝj , tj) infinitely more likely than
(sj , tj). Since ŝj ∈ Sj(h), then by construction of the conditional belief at h

βi(fi(ti), h)(sj , fj(tj)) = 0

which is a contradiction. Therefore fi(ti) believes at h in player j’s restricted
past rationality. �

We define the set T ∗(ti) as the set of types in ti’s belief hierarchy in the
normal form, that is, T ∗(ti) is the smallest set with the property that ti ∈ T ∗(ti),
and for every tj ∈ T ∗(ti), if tj deems possible tk, then tk ∈ T ∗(ti).

Similarly we define T̂ ∗(t̂i) as the set of types in t̂i’s belief hierarchy in the
dynamic form. More precisely, T̂ ∗(t̂i) is the smallest set such that t̂i ∈ T̂ ∗(t̂i) and
for every t̂j ∈ T̂ ∗(t̂i), if βj(t̂j , h)(sk, tk) > 0 for some h ∈ Hj , then tk ∈ T̂ ∗(t̂i).

Proof (Lemma 3). Let ti ∈ Ti and construct the set T ∗(ti). Since ti is prop-
erly rationalizable, every type in T ∗(ti) is cautious and respects the opponents’
preferences.

By construction, every type in T ∗(ti) induces a type in T̂ ∗(fi(ti)). It then
follows, by Lemma 2, that all types in T̂ ∗(fi(ti)) believe in the opponents’ future
and restricted past rationality.

Then by definition, since all of the types in T̂ ∗(fi(ti)) only refer to types in
T̂ ∗(fi(ti)), all express common belief in future and restricted past rationality.

Hence, in particular, fi(ti) expresses common belief in future and restricted
past rationality. �

Proof (Theorem 1). Since si is properly rationalizable, there is a type ti that
is properly rationalizable such that si is optimal for ti. By Lemma 3, fi(ti)
expresses common belief in future and restricted past rationality.

Now we show that si is also optimal for type fi(ti) at every information set
h ∈ Hi(si).

Suppose that si is suboptimal for fi(ti) at information set h. By Lemma
1, choosing h′ = h, there is a strategy ŝi ∈ Si(h) such that ti prefers ŝi to si.
Then si is not an optimal strategy for ti, which is a contradiction. �

8.2 Proofs for Section 6

Before we prove Theorem 2 we require some auxiliary results, and the con-
struction of an epistemic model according to the algorithm, which will have the
desired properties.

20



We state the following result, first proved in Pearce (1984) for games with
two players. A general proof can be found in Perea (2012).

Theorem 3 (Pearce’s lemma). Consider a reduced decision problem Γk(h) =
(Sk

i (h), Sk
−i(h)), Ai ⊆ Sk

i (h) and si ∈ Ai. Then si is optimal among strategies
in Ai for some belief bi ∈ ∆(Sk

−i(h)) if and only if si is not strictly dominated
on Sk

−i(h) by a randomization on Ai.

For i ∈ I, h ∈ Hi and k ≥ 1 let Bk
−i(h) be the set of opponents’ strategy

combinations (sj)j 6=i ∈ S−i(h) such that there is some type ti expressing up to
k-fold belief in future and restricted past rationality that at h assigns positive
probability to s−i.

Lemma 4. For every player i ∈ I, every information set h ∈ Hi and every
k ≥ 1 we have that Bk

−i(h) ⊆ Sk
−i(h).

Proof. We prove this statement by induction on k.
Let k = 1. Consider a player i ∈ I, an information set h ∈ Hi and let

(sj)j 6=1 ∈ B1
−i(h). Then there is a type ti expressing up to 1-fold belief in future

and restricted past rationality such that ti assigns positive probability to (sj)j 6=i

at h.
Now consider an opponent j 6= i. Since ti believes in j’s future and restricted

past rationality, then for every h′ ∈ Hj(sj) weakly following h we can find a
conditional belief βj(tj , h

′) for which sj is optimal among strategies in Sj(h
′),

and for every h′′ ∈ Hj(sj) weakly preceding h we can find a conditional belief
βj(tj , h

′′) for which sj is optimal among strategies in Sj(h) ∩ Sj(h
′′).

Then by Pearce’s lemma, for every h′ ∈ Hj(sj) weakly following h, sj is
not strictly dominated on S0

−j(h
′) by a randomization on Sj(h

′) and for every

h′′ ∈ Hj(sj) weakly preceding h, sj is not strictly dominated on S0
−j(h

′′) by

a randomization on Sj(h) ∩ Sj(h
′′). Therefore s−i ∈ S1

−i(h). Hence B1
−i(h) ⊆

S1
−i(h), and this is true for all players i ∈ I and every information set h ∈ Hi.

Now we proceed with the induction step. Fix k ≥ 2 and assume that for
every player i ∈ I and every information set h ∈ Hi, B

k−1
−i (h) ⊆ Sk−1

−i (h).

Consider a player i, and let (sj)j 6=i ∈ Bk
−i(h). Then there is a type ti that

expresses up to k-fold belief in future and restricted past rationality such that
ti assigns positive probability to (sj)j 6=i at h.

Take an opponent j 6= i. Then there must be some type tj expressing up to
(k−1)-fold belief in future and restricted past rationality such that sj is optimal
for tj at every h′ ∈ Hj(sj) weakly following h among strategies in Sj(h

′), and
at every h′′ ∈ Hj(sj) weakly preceding h among strategies in Sj(h) ∩ Sj(h

′′).
By the induction assumption, since tj assigns at every h′ ∈ Hj positive prob-

ability only to opponents’ strategies in Bk−1
−j (h′), then tj must assign, at every

h′ ∈ Hj positive probability only to opponents’ strategies in Sk−1
−j (h′). Then sj

is optimal at every h′ ∈ Hj(sj) weakly following h among strategies in Sj(h
′)

for some conditional belief βj(tj , h
′) on Sk−1

−j (h′), and at every h′′ ∈ Hj(sj)
weakly preceding h among strategies in Sj(h)∩Sj(h

′′) for some conditional be-
lief βj(tj , h

′′) on Sk−1
−j (h′′). Therefore by Pearce’s lemma, at every h′ ∈ Hj(sj)
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weakly following h, sj is not strictly dominated on Sk−1
−j (h′) by a randomization

on Sj(h
′), and at every h′′ ∈ Hj(sj) weakly preceding h, sj is not strictly domi-

nated on Sk−1
−j (h′′) by a randomization on Sj(h)∩Sj(h

′′). Hence, s−i ∈ Sk
−i(h).

Then Bk
−i(h) ⊆ Sk

−i(h) and this is true for every player i ∈ I and every infor-
mation set h ∈ Hi. �

For i ∈ I and k ≥ 1 let BRk
i be the set of strategies for player i that are

optimal for some type that expresses up to k-fold belief in future and restricted
past rationality. We also define Sk

i = {si ∈ Si | si ∈ Sk
i (h) for all h ∈ Hi(si)}.

Lemma 5. For every player i ∈ I and every k ≥ 1, BRk
i ⊆ Sk+1

i .

Proof. Fix i ∈ I and k ≥ 1. Let si ∈ BRk
i , then there is a type ti that expresses

up to k-fold belief in future and restricted past rationality such that si is optimal
for ti at every h ∈ Hi(si). By definition, at every h ∈ Hi(si), ti assigns positive
probability to s−i only if s−i ∈ Bk

−i(h). By Lemma 4, at every h ∈ Hi(si), ti
assigns positive probability to s−i only if s−i ∈ Sk

−i(h). Therefore, si is optimal
at h ∈ Hi(si) for some conditional belief βi(ti, h) on Sk

−i(h). Hence by Pearce’s
lemma, si is not strictly dominated at h ∈ Hi(si) on Sk

−i(h) by a randomization
on Si(h). This implies that si survives step k + 1 of the algorithm, that is,
si ∈ Sk+1

i . Then BRk
i ⊆ Sk+1

i and this holds for every player i ∈ I and every
k ≥ 1. �

For every i ∈ I, h ∈ H and k ≥ 1 we define Rk
i (h) as the set of strategies

si ∈ Si(h) such that si is not strictly dominated on Sk−1
−i (h′) at every h′ ∈ Hi(si)

weakly following h among strategies in Si(h
′), and si is not strictly dominated

on Sk−1
−i (h′′) at every h′′ ∈ Hi(si) weakly preceding h among strategies in Si(h)∩

Si(h
′′). Notice that Rk

i (h) ⊆ Sk
i (h) for all i ∈ I, h ∈ Hi and k ≥ 1.

Suppose that the algorithm ends after K steps, that is SK+1
i (h) = SK

i (h)
and SK+1

−i (h) = SK
−i(h) for every player i ∈ I and every information set h ∈ Hi.

In order to prove that Sk+1
i ⊆ BRk

i we construct an epistemic model with the
following characteristics:

1. For every information set h, every player i and every strategy si ∈ R1
i (h)

there is a type tsi,hi such that si is optimal for tsi,hi at every h′ ∈ Hi(si)
weakly following h among strategies in Si(h

′) and at every h′′ ∈ Hi(si)
weakly preceding h among strategies in Si(h) ∩ Si(h

′′).

2. For every k ≥ 2, if si ∈ Rk
i (h) then the associated type tsi,hi expresses up

to (k − 1)-fold belief in future and restricted past rationality.

3. If si ∈ RK
i (h) then the associated type tsi,hi expresses common belief in

future and restricted past rationality.

Construction of the epistemic model
We start with the construction of beliefs for the model. For i ∈ I take an

information set h ∈ H and let Dk
i (h) = Rk

i (h) \Rk+1
i (h) for all k ≥ 1.
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Consider k ∈ {1, 2, . . . ,K − 1} and si ∈ Dk
i (h). By definition and Pearce’s

lemma, for every h′ ∈ Hi(si) weakly following h there is a conditional belief

βsi,h
i (h′) on Sk−1

−i (h′) such that si is optimal for βsi,h
i (h′) among strategies in

Si(h
′), and for every h′′ ∈ Hi(si) weakly preceding h there is a conditional belief

βsi,h
i (h′′) on Sk−1

−i (h′′) such that si is optimal for βsi,h
i (h′′) among strategies

in Si(h) ∩ Si(h
′′). For every other h′′′ ∈ Hi, define βsi,h

i (h′′′) on Sk−1
−i (h′′′)

arbitrarily.
Consider si ∈ RK

i (h). Then si ∈ RK+1
i (h) as well. By definition of RK+1

i (h),

for every h′ ∈ Hi(si) weakly following h there is a conditional belief βsi,h
i (h′) on

SK
−i(h

′) such that si is optimal for βsi,h
i (h′) among strategies in Si(h

′), and for

every h′′ ∈ Hi(si) weakly preceding h there is a conditional belief βsi,h
i (h′′) on

SK
−i(h

′′) such that si is optimal for βsi,h
i (h′′) among strategies in Si(h)∩Si(h

′′).

For every other h′′′ ∈ Hi, define βsi,h
i (h′′′) on SK

−i(h
′′′) arbitrarily.

Now we proceed with the construction of types for the epistemic model. For
player i ∈ I we define the set of types Ti = {tsi,hi | h ∈ H and si ∈ R1

i (h)}. For
every player i ∈ I, every information set h ∈ H and every k ∈ {1, . . . ,K} let

T k
i (h) = {tsi,hi | si ∈ Rk

i (h)}. Since RK
i (h) ⊆ RK−1

i (h) ⊆ · · · ⊆ R2
i (h) ⊆ R1

i (h),
then TK

i (h) ⊆ TK−1
i (h) ⊆ · · · ⊆ T 2

i (h) ⊆ T 1
i (h) for every player i ∈ I and every

information set h ∈ H.
For every player i ∈ I and every information set h ∈ H we now construct

the beliefs for each type in T 1
i (h).

Consider tsi,hi with si ∈ D1
i (h), that is, tsi,hi ∈ T 1

i (h) \ T 2
i (h). We define the

conditional belief vector βi(t
si,h
i ) in the following way: For each j 6= i take an

arbitrary type t̂j and consider an information set h′ ∈ Hi. Let

βi(t
si,h
i , h′)((sj , tj)j 6=i) =

{
βsi,h
i (h′)((sj)j 6=i) if tj = t̂j for every j 6= i,

0 otherwise.

Then at every h′ ∈ Hi, type tsi,hi holds the same belief about the opponents’

strategy choices as βsi,h
i . By construction of the beliefs, si is optimal for βsi,h

i (h′)
at every h′ ∈ Hi(si) weakly following h among strategies in Si(h

′) and si is

optimal for βsi,h
i (h′′) at every h′′ ∈ Hi(si) weakly preceding h among strategies

in Si(h) ∩ Si(h
′′).

Therefore si is optimal for type tsi,hi at every h′ ∈ Hi(si) weakly following h
among strategies in Si(h

′) and at every h′′ ∈ Hi(si) weakly preceding h among
strategies in Si(h) ∩ Si(h

′′).

Now consider tsi,hi with si ∈ Dk
i (h) for some k ∈ {2, 3, . . . ,K − 1}. Hence

tsi,hi ∈ T k
i (h) \ T k+1

i (h). We define the conditional belief vector βi(t
si,h
i ) as

follows: For every information set h′ ∈ Hi let βi(t
si,h
i , h′) be the conditional

belief at h′ about the opponents’ strategy-type pairs given by:

βi(t
si,h
i , h′)((sj , tj)j 6=i) =

{
βsi,h
i (h′)((sj)j 6=i) if tj = t

sj ,h
′

j for every j 6= i,

0 otherwise.
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By construction of the beliefs, strategy si is optimal for βsi,h
i (h′) at every

h′ ∈ Hi(si) weakly following h among strategies in Si(h
′) and si is optimal

for βsi,h
i (h′′) at every h′′ ∈ Hi(si) weakly preceding h among strategies in

Si(h)∩Si(h
′′). Therefore si is optimal for type tsi,hi at every h′ ∈ Hi(si) weakly

following h among strategies in Si(h
′) and at every h′′ ∈ Hi(si) weakly preceding

h among strategies in Si(h) ∩ Si(h
′′).

Since at every h′ ∈ Hi the belief βsi,h
i (h′) ∈ ∆(Sk−1

−i (h′)) and Sk−1
−i (h′) =

×j 6=iR
k−1
j (h′), then βsi,h

i (h′) assigns positive probability only to opponents’

strategies in Rk−1
j (h′). Hence type tsi,hi assigns at every h′ ∈ Hi positive prob-

ability only to opponents’ types t
sj ,h

′

j where sj ∈ Rk−1
j (h′). That is, type

tsi,hi assigns at every h′ ∈ Hi positive probability only to opponents’ types in
T k−1
j (h′).

Finally, consider types tsi,hi with si ∈ RK
i (h), that is, tsi,hi ∈ TK

i (h). We

define the conditional belief vector βi(t
si,h
i ) as follows: For every h′ ∈ Hi let

βi(t
si,h
i , h′) be the conditional belief at h′ about the opponents’ strategy-type

pairs given by:

βi(t
si,h
i , h′)((sj , tj)j 6=i) =

{
βsi,h
i (h′)((sj)j 6=i) if tj = t

sj ,h
′

j for every j 6= i,

0 otherwise.

This way, for every h′ ∈ Hi, type tsi,hi holds the same belief about the

opponents’ strategy choices as βsi,h
i . By construction, strategy si is optimal

for βsi,h
i (h′) at every h′ ∈ Hi(si) weakly following h among strategies in Si(h

′)

and si is optimal for βsi,h
i (h′′) at every h′′ ∈ Hi(si) weakly preceding h among

strategies in Si(h) ∩ Si(h
′′). Therefore si is optimal for type tsi,hi at every h′ ∈

Hi(si) weakly following h among strategies in Si(h
′) and at every h′′ ∈ Hi(si)

weakly preceding h among strategies in Si(h) ∩ Si(h
′′).

We also have that for every h′ ∈ Hi the belief βsi,h
i (h′) ∈ ∆(SK

−i(h
′)) and

SK
−i(h

′) = ×j 6=iR
K
j (h′). So βsi,h

i (h′) assigns positive probability only to op-

ponents’ strategies in RK
j (h′). Therefore type tsi,hi assigns at every h′ ∈ Hi

positive probability only to opponents’ types t
sj ,h

′

j where sj ∈ RK
j (h′). Then

type tsi,hi assigns at every h′ ∈ Hi positive probability only to opponents’ types
in TK

j (h′). �

Now we proceed to prove some properties of this epistemic model.

Lemma 6. For the epistemic model constructed above, every type ti ∈ T k
i (h)

expresses up to (k − 1)-fold belief in future and restricted past rationality.

Proof. We prove the result by induction on k.
Let k = 2, and consider a player i ∈ I and an information set h ∈ H. Take

ti ∈ T 2
i (h), then ti = tsi,hi for some si ∈ R2

i (h). By construction, type tsi,hi

assigns at every h′ ∈ Hi positive probability only to opponents’ strategy-type

pairs (sj , t
sj ,h

′

j ) where sj ∈ R1
j (h′) and t

sj ,h
′

j ∈ T 1
j (h′).
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For every such strategy-type pair (sj , t
sj ,h

′

j ), strategy sj is optimal for type

t
sj ,h

′

j at every h′′ ∈ Hj(sj) weakly following h′ among strategies in Sj(h
′′)

and at every h′′′ ∈ Hj(sj) weakly preceding h′ among strategies in Sj(h
′) ∩

Sj(h
′′′). Therefore type tsi,hi assigns at every h′ ∈ Hi positive probability only

to opponents’ strategy-type pairs (sj , t
sj ,h

′

j ) where sj is optimal for type t
sj ,h

′

j at
every h′′ ∈ Hj(sj) weakly following h′ among strategies in Sj(h

′′), and at every
h′′′ ∈ Hj(sj) weakly preceding h′ among strategies in Sj(h

′) ∩ Sj(h
′′′). This

means that tsi,hi believes in the opponents’ future and restricted past rationality.

Then tsi,hi expresses up to 1-fold belief in future and restricted past rationality.
Now the induction step. Fix k ≥ 3 and assume that for every player i ∈ I

and every information set h ∈ H, every type ti ∈ T k−1
i (h) expresses up to

(k − 2)-fold belief in future and restricted past rationality.
Consider a player i ∈ I and an information set h ∈ H. Take ti ∈ T k

i (h),

which means ti = tsi,hi for some si ∈ Rk
i (h). Type tsi,hi assigns at every h′ ∈

Hi positive probability only to opponents’ strategy-type pairs (sj , t
sj ,h

′

j ) where

sj ∈ Rk−1
j (h′) and t

sj ,h
′

j ∈ T k−1
j (h′). For every such strategy-type pair, sj is

optimal for type t
sj ,h

′

j at every h′′ ∈ Hj(sj) weakly following h′ among strategies
in Sj(h

′′) and at every h′′′ ∈ Hj(sj) weakly preceding h′ among strategies in
Sj(h

′) ∩ Sj(h
′′′).

By the induction assumption, since type t
sj ,h

′

j ∈ T k−1
j (h′) then t

sj ,h
′

j ex-
presses up to (k − 2)-fold belief in future and restricted past rationality. Then

type tsi,hi assigns at every h′ ∈ Hi positive probability only to opponents’

strategy-type pairs (sj , t
sj ,h

′

j ) where sj is optimal for type t
sj ,h

′

j at every h′′ ∈
Hj(sj) weakly following h′ among strategies in Sj(h

′′), and at every h′′′ ∈ Hj(sj)

weakly preceding h′ among strategies in Sj(h
′) ∩ Sj(h

′′′), and type t
sj ,h

′

j ∈
T k−1
j (h′) expresses up to (k − 2)-fold belief in future and restricted past ratio-

nality. Hence, tsi,hi expresses up to (k−1)-fold belief in future and restricted past
rationality. This holds for all players i ∈ I and all information sets h ∈ H, so
every type ti ∈ T k

i (h) expresses up to (k− 1)-fold belief in future and restricted
past rationality. By induction, the result is true for every k ≥ 2. �

Lemma 7. Given the epistemic model constructed above, for every k ≥ K− 1,
every type ti ∈ TK

i (h) expresses up to k-fold belief in future and restricted past
rationality.

Proof. This result is proven by induction on k.
Let k = K − 1. By Lemma 6 we know that every type ti ∈ TK

i (h) expresses
up to (K − 1)-fold belief in future and restricted past rationality, so the result
is true for k = K − 1.

Now we do the induction step. Fix k ≥ K and assume that for every player
i ∈ I and every information set h ∈ H, every type ti ∈ TK

i (h) expresses up to
(k − 1)-fold belief in future and restricted past rationality. Consider a player

i ∈ I, an information set h ∈ H and a type ti ∈ TK
i (h), that is ti = tsi,hi
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for some si ∈ RK
i (h). By construction, tsi,hi assigns, at every h′ ∈ Hi positive

probability only to opponents’ strategy-type pairs (sj , t
sj ,h

′

j ) where sj ∈ RK
j (h′)

and t
sj ,h

′

j ∈ TK
j (h′). Then for every such pair (sj , t

sj ,h
′

j ) the strategy sj is

optimal for type t
sj ,h

′

j at every h′′ ∈ Hj(sj) weakly following h′ among strategies
in Sj(h

′′) and at every h′′′ ∈ Hj(sj) weakly preceding h′ among strategies in
Sj(h

′) ∩ Sj(h
′′′).

By the induction assumption, every type t
sj ,h

′

j ∈ TK
j (h′) expresses up to

(k − 1)-fold belief in future and restricted past rationality. Therefore, type

tsi,hi assigns at every h′ ∈ Hi positive probability only to opponents’ strategy-

type pairs (sj , t
sj ,h

′

j ) where sj is optimal for type t
sj ,h

′

j at every h′′ ∈ Hj(sj)
weakly following h′ among strategies in Sj(h

′′) and at every h′′′ ∈ Hj(sj) weakly

preceding h′ among strategies in Sj(h
′) ∩ Sj(h

′′′), and type t
sj ,h

′

j ∈ TK
j (h′)

expresses up to (k−1)-fold belief in future and restricted past rationality. Then

type tsi,hi expresses up to k-fold belief in future and restricted past rationality,
and this holds for every player i ∈ I and every information set h ∈ H. Hence,
every type ti ∈ TK

i (h) expresses up to k-fold belief in future and restricted past
rationality. By induction, the result holds for every k ≥ K − 1. �

The next result follows from Lemma 7 and the definition of common belief
in future and restricted past rationality.

Corollary 2. Given the epistemic model constructed above, every type ti ∈
TK
i (h) expresses common belief in future and restricted past rationality.

Now we proceed with the proof for Theorem 2.

Proof (Theorem 2). The first part of the theorem can be stated as BRk
i = Sk+1

i

for every player i and every k. We show this holds by dividing the proof in two
parts.

First we prove that Sk+1
i ⊆ BRk

i for every player i and every k. Consider
a player i ∈ I and k ≥ 1. Take some si ∈ Sk+1

i . Then si ∈ Sk+1
i (h) for all

h ∈ Hi(si). This implies that si ∈ Rk+1
i (∅). Hence, type tsi,∅i is in T k+1

i (∅),
so by Lemma 6, tsi,∅i expresses up to k-fold belief in future and restricted past
rationality. Moreover, si is optimal for tsi,∅i at every h ∈ Hi(si) weakly following

∅ among strategies in Si(h). Therefore si ∈ BRk
i . So every strategy si ∈ Sk+1

i is

also in BRk
i , that is Sk+1

i ⊆ BRk
i , and this holds for all players i ∈ I and k ≥ 1.

Moreover, from Lemma 5 we know that BRk
i ⊆ Sk+1

i . Hence BRk
i = Sk+1

i .
For the second part of the theorem, consider a strategy si that can ratio-

nally be chosen by a type that expresses common belief in future and restricted
past rationality. Then si ∈ BRk

i = Sk+1
i for all k, so si survives the full algo-

rithm. Hence, every strategy si that can rationally be chosen by a type that
expresses common belief in future and restricted past rationality survives the
full algorithm.

Now, take a strategy si that survives the full algorithm. Hence, si ∈ SK
i (h)

for all h ∈ Hi(si). Then si ∈ RK
i (∅), and by Corollary 2 we know type
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tsi,∅i ∈ TK
i (∅) expresses common belief in future and restricted past ratio-

nality. Moreover, by the construction of the epistemic model, the strategy si
is optimal for the type tsi,∅i at every h ∈ Hi(si) weakly following ∅ among
strategies in Si(h). Hence si is optimal for a type that expresses common full
belief in future and restricted past rationality. Therefore, every strategy si that
survives the full algorithm is optimal for a type that expresses common belief
in future and restricted past rationality. �
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