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Abstract. This note considers generalized Nash equilibrium as an in-
complete information analogue of Nash equilibrium and provides an epis-
temic characterization of it. It is shown that the epistemic conditions do
not imply common belief in rationality. For the special case of complete
information, an epistemic characterization of Nash equilibrium ensues as
a corollary.
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1 Introduction

In game theory Nash’s (1950) and (1951) notion of equilibrium constitutes one
of the most prevalent solution concepts for static games with complete informa-
tion. In order to unveil the reasoning assumptions underlying Nash equilibrium,
epistemic foundations have been provided for this solution concept by, for in-
stance, Aumann and Brandenburger (1995), Perea (2007), Barelli (2009), Bach
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and Tsakas (2014), as well as Bonnano (2017). In each of these epistemic founda-
tions some correct-beliefs assumption is needed to obtain Nash equilibrium. As
correct-beliefs seems to be a rather demanding requirement, Nash equilibrium
imposes strong conditions on the players’ reasoning.

In static games with incomplete information, players face uncertainty about
the opponents’ utility functions. For this more general class of games the most
widespread solution concept is Harsanyi’s (1967-68) Bayesian equilibrium. In
fact, as Bach and Perea (2017) show, Bayesian equilibrium does not generalize
Nash equilibrium but correlated equilibrium to incomplete information. How-
ever, an incomplete information analogue to Nash equilibrium can be defined,
by extending the mutual-optimality property to payoff uncertainty. Accordingly,
a tuple consisting of beliefs about each player’s choice and utility function is
called a generalized Nash equilibrium, whenever each belief only assigns positive
probability to choice utility function pairs such that the choice is optimal for the
utility function and the product measure of the beliefs on the opponents’ choices.
Coinciding with the mutual-optimality property definition of Nash equilibrium
in the case of complete information with mixed strategies interpreted as beliefs,
the notion of generalized Nash equilibrium thus provides a direct generalization
of Nash equilibrium to incomplete information.

As an illustration of the incomplete information solution concept of general-
ized Nash equilibrium, suppose a game between two players Alice and Bob who
are both invited to a party. They need to – simultaneously and independently –
choose the colour of their outfits black or pink, or alternatively, to stay at home.
Alice prefers wearing the same colour as Bob to staying at home, but prefers
staying at home to attending the party with a different colour than Bob. Alice is
not sure about Bob’s preferences. She thinks that he either entertains the same
preferences as her or that he prefers atttending the party with a different colour
than her to staying at home, but prefers staying at home to attending the party
with the same colour as her. The utility functions for Alice and Bob are provided
in Figure 1, and an interactive representation of the game is given in Figure 2.

uA

black pink stay
black 3 0 0
pink 0 3 0
stay 2 2 2

uB

black pink stay
black 3 0 0
pink 0 3 0
stay 2 2 2

u′B

black pink stay
black 0 3 0
pink 3 0 0
stay 2 2 2

Fig. 1. Utility functions of Alice and Bob.

Consider the two beliefs (black, uA) about Alice’s choice and utility function as
well as 3

4 · (black, uB) + 1
4 · (pink, u

′
B)
)

about Bob’s choice and utility function.
Note that black is optimal for Alice’s utility function uA, if she believes Bob
to wear black with probability 3

4 and pink with probability 1
4 . Also, black is

optimal for Bob’s utility function uB , if he believes Alice to wear black, and
pink is optimal for Bob’s utility function u′B , if he believes her to wear black.



3

Alice

Bob
black pink stay

black 3, 3 0, 0 0, 2
pink 0, 0 3, 3 0, 2
stay 2, 0 2, 0 2, 2

Alice

Bob
black pink stay

black 3, 0 0, 3 0, 2
pink 0, 3 3, 0 0, 2
stay 2, 0 2, 0 2, 2

Fig. 2. Interactive representation of the two-player game with incomplete information
and utility functions as specified in Figure 1.

The two beliefs (black, uA) and
(
3
4 · (black, uB) + 1

4 · (pink, u
′
B)
)

thus form a
generalized Nash equilibrium.

This note provides an epistemic characterization of the incomplete informa-
tion solution concept of generalized Nash equilibrium. Also, it is shown that the
conditions actually do not imply common belief in rationality. Indeed, as in the
complete information case of Nash equilibrium, the decisive property for players
to reason in line with generalized Nash equilibrium is a correct-beliefs assump-
tion. Besides, for complete information games an epistemic characterization of
Nash equilibrium ensues as a corollary.

2 Generalized Nash Equilibrium

A game with incomplete information is modelled as a tuple Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
,

where I is a finite set of players, Ci denotes player i’s finite choice set, and
the finite set Ui contains player i’s utility functions, where a utility function
ui : ×j∈ICj → R from Ui assigns a real number ui(c) to every choice combina-
tion c ∈ ×j∈ICj . Complete information obtains as a special case, if the set Ui is
a singleton for every player i ∈ I.

Before the solution concept of generalized Nash equilibrium for games with
incomplete information is defined, attention is restricted to complete information
and the classical solution concept of Nash equilibrium is recalled. For a given
game Γ =

(
I, (Ci)i∈I , ({ui})i∈I

)
with complete information, a tuple (σi)i∈I ∈

×i∈I∆(Ci) of probability measures constitutes a Nash equilibrium, whenever for
all i ∈ I and for all ci ∈ Ci, if σi(ci) > 0, then

∑
c−i∈C−i

σ−i(c−i) ·ui(ci, c−i)
)
≥∑

c−i∈C−i
σ−i(c−i) · ui(c′i, c−i)

)
for all c′i ∈ Ci.1 A direct generalization of Nash

equilibrium to incomplete information obtains as follows.

Definition 1. Let Γ be a game with incomplete information, and (βi)i∈I ∈
×i∈I

(
∆(Ci×Ui)

)
be a tuple of probability measures. The tuple (βi)i∈I constitutes

a generalized Nash equilibrium, whenever for all i ∈ I and for all (ci, ui) ∈
Ci × Ui, if βi(ci, ui) > 0, then∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i)·ui(ci, c−i) ≥
∑

(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i)·ui(c′i, c−i)

1 Given collection {Xi : i ∈ I} of sets and probability measures pi ∈ ∆(Xi) for all
i ∈ I, the set X−i refers to the product set ×j∈I\{i}Xj and the probability measure
p−i refers to the product measure Πj∈I\{i}pj ∈ ∆(X−i) on X−i.
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for all c′i ∈ Ci.

Intuitively, the mutual-optimality property of the players’ supports required by
the complete information solution concept of Nash equilibrium is extended to
the augmented uncertainty space of choices and utility functions. Note that in
the specific case of complete information, i.e. Ui = {ui} for all i ∈ I, the notion
of generalized Nash equilibrium reduces to Nash equilibrium. In other words,
generalized Nash equilibrium imposes the analogous condition on the – due to
payoff uncertainty extended – space ×i∈I

(
∆(Ci × Ui)

)
that Nash equilibrium

imposes on the space ×i∈I∆(Ci). Furthermore, Bach and Perea (2017) show that
generalized Nash equilibrium is a refinement of Harsanyi’s (1967-68) solution
concept of Bayesian equilibrium. Note that for the game represented in Figure
2, the tuple

(
(black, uA), 34 · (black, uB) + 1

4 · (pink, u
′
B)
)

indeed constitutes a
generalized Nash equilibrium.

In order to characterize decision-making in line with generalized Nash equi-
librium, the notion of optimal choice in a generalized Nash equilibrium is defined
next.

Definition 2. Let Γ be a game with incomplete information, i ∈ I a player,
and ui ∈ Ui some utility function of player i. A choice ci ∈ Ci of player i is
optimal for the utility function ui in a generalized Nash equilibrium, if there
exists a generalized Nash equilibrium (βi)i∈I ∈ ×i∈I

(
∆(Ci × Ui)

)
such that∑

(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i)·ui(ci, c−i)
)
≥

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i)·ui(c′i, c−i)

for all c′i ∈ Ci.

3 Common Belief in Rationality

From the perspective of a single player there exist two basic sources of uncer-
tainty with respect to Γ . A player faces strategic uncertainty, i.e. what choices
his opponents make, as well as payoff uncertainty, i.e. what utility functions rep-
resent the opponents’ preferences. The notion of an epistemic model provides the
framework to formally describe the players’ reasoning about these two sources
of uncertainty.

Definition 3. Let Γ be a game with incomplete information. An epistemic
model of Γ is a tuple MΓ =

(
(Ti)i∈I , (bi)i∈I

)
, where for every player i ∈ I

– Ti is a finite set of types,
– bi : Ti → ∆(C−i×T−i×U−i) assigns to every type ti ∈ Ti a probability mea-

sure bi[ti] on the set of opponents’ choice type utility function combinations.

Given a game and an epistemic model of it, belief hierarchies, marginal beliefs, as
well as marginal belief hierarchies can be derived from every type. For instance,
every type ti ∈ Ti induces a belief on the opponents’ choice combinations by
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marginalizing the probability measure bi[ti] on the space C−i. For simplicity
sake, no additional notation is introduced for marginal beliefs. It should always
be clear from the context which belief bi[ti] refers to.

Some further notions are now introduced. For that purpose consider a game
Γ , an epistemic model MΓ of it, and fix two players i, j ∈ I such that i 6= j. A
type ti ∈ Ti of i is said to deem possible some choice type utility function combi-
nation (c−i, t−i, u−i) ∈ C−i×T−i×U−i of his opponents, if bi[ti](c−i, t−i, u−i) >
0. Analogously, a type ti ∈ Ti deems possible some opponent j’s type tj ∈ Tj ,
if bi[ti](tj) > 0. For each choice type utility function combination (ci, ti, ui) ∈
Ci × Ti × Ui, the expected utility is given by

vi(ci, ti, ui) =
∑

c−i∈C−i

(
bi[ti](c−i) · ui(ci, c−i)

)
for every player i ∈ I.

Intuitively, an optimal choice yields at least as much payoff as all other
choices, given what the player believes his opponents to select and given his
utility function. Formally, optimality is a property of choices given a type utility
function pair.

Definition 4. Let Γ be a game with incomplete information, MΓ an epistemic
model of it, i ∈ I some player, ui ∈ Ui some utility function of player i, and ti ∈
Ti some type of player i. A choice ci ∈ Ci is optimal for (ti, ui), if vi(ci, ti, ui) ≥
vi(c

′
i, ti, ui) for all c′i ∈ Ci.

A player believes in his opponents’ rationality, if he only deems possible
choice type utility function triples – for each of his opponents – such that the
choice is optimal for the type utility function pair, respectively. Formally, a type
ti ∈ Ti believes in the opponents’ rationality, if ti only deems possible choice type
utility function combinations (c−i, t−i, u−i) ∈ C−i × T−i × U−i such that cj is
optimal for (tj , uj) for every opponent j ∈ I \ {i}.

Iterating belief in rationality gives rise to the interactive reasoning concept
of common belief in rationality.

Definition 5. Let Γ be a game with incomplete information, MΓ an epistemic
model of it, and i ∈ I some player.

– A type ti ∈ Ti expresses 1-fold belief in rationality, if ti believes in the
opponents’ rationality.

– A type ti ∈ Ti expresses k-fold belief in rationality for some k > 1, if ti
only deems possible types tj ∈ Tj for all j ∈ I \ {i} such that tj expresses
k − 1-fold belief in rationality.

– A type ti ∈ Ti expresses common belief in rationality, if ti expresses k-fold
belief in rationality for all k ≥ 1.

A player satisfying common belief in rationality entertains a belief hierarchy
in which the rationality of all players is not questioned at any level. Observe
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that if an epistemic model for every player only contains types that believe
in the opponents’ rationality, then every type also expresses common belief in
rationality. This fact is useful when constructing epistemic models with types
expressing common belief in rationality.

4 Epistemic Characterization of Generalized Nash
Equilibrium

Before the incomplete information solution concept of generalized Nash equilib-
rium can be characterized epistemically, some further epistemic notions need to
be invoked. For this purpose, consider a game with incomplete information Γ ,
some epistemic model MΓ of it, and fix some player i ∈ I.

A type ti ∈ Ti of player i is said to have projective beliefs, if for every opponent
j ∈ I\{i} it is the case that bi[ti](tj) > 0 implies that bi[ti](ck, uk) = bj [tj ](ck, uk)
for all ck ∈ Ck×Uk and for all k ∈ I \{i, j}. Intuitively, a player with projective
beliefs thinks that every opponent shares his belief on every other player’s choice
utility function combination.

Moreover, a type ti ∈ Ti of player i is said to have independent beliefs, if
bi[ti](c−i, u−i, t−i) = Πj∈I\{i}bi[ti](cj , uj , tj) for all (c−i, t−i, u−i) ∈ C−i×T−i×
U−i. Intuitively, a player with independent beliefs excludes the possibility that
his opponents’ choice utility function pairs could be correlated.

In addition, for every opponent j ∈ I \ {i}, a type ti ∈ Ti believes that j is
correct about i’s belief about the opponents’ choice utility function combinations,
if bi[t

′
i](c−i, u−i) = bi[ti](c−i, u−i) for all t′i ∈ supp(bj [tj ]), for all tj ∈ supp(bi[ti]),

and for all (c−i, u−i) ∈ C−i × U−i.
Furthermore, a type ti ∈ Ti of player i is said to have connected beliefs, if for

two opponents j, k ∈ I \ {i} such that j 6= k, it is the case that tk ∈ supp(bj [tj ])
or tj ∈ supp(bk[tk]) for all tj , tk ∈ supp(bi[ti])

Besides, for every opponent j ∈ I \ {i}, a type ti ∈ Ti of player i is said to
believe that j expresses a certain property, if ti only deems possible types tj ∈ Tj
of player j that express the property.

Using these epistemic notions, the following epistemic characterization of
generalized Nash equilibrium ensues.

Theorem 1. Let Γ be a game with incomplete information, i ∈ I some player,
and u∗i ∈ U some utility function of player i. A choice c∗i ∈ Ci is optimal for u∗i
in a generalized Nash equilibrium, if and only if, there exists an epistemic model
MΓ of Γ with a type ti ∈ Ti of player i such that c∗i is optimal for (ti, u

∗
i ) and

ti satisfies the following conditions:

(i) ti has projective beliefs,
(ii) ti believes that every opponent j ∈ I \ {i} has projective beliefs,
(iii) ti has independent beliefs,
(iv) ti believes that every opponent j ∈ I \ {i} has independent beliefs,
(v) ti believes in the opponents’ rationality,
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(vi) ti believes that every opponent j ∈ I \ {i} believes in the opponents’ ratio-
nality,

(vii) ti believes that every opponent j ∈ I \ {i} deems possible ti,
(viii) ti believes that every opponent j ∈ I \ {i} is correct about i’s belief about

the opponents’ choice utility function combinations,
(ix) ti believes that every opponent j ∈ I \ {i} believes that i is correct about
j’s belief about the opponents’ choice utility function combinations.

(x) ti has connected beliefs.

Proof. For the only if direction of the theorem, let c∗i be optimal for u∗i in
a generalized Nash equilibrium (βj)j∈I . Construct an epistemic model MΓ =(
(Tj)j∈I , (bj)j∈I

)
of Γ , where Tj := {tj} and bj [tj ](c−j , t−j , u−j) := β−j(c−j , u−j)

for all (c−j , u−j) ∈ C−j × U−j and for all j ∈ I.
As

vi(c
∗
i , ti, u

∗
i ) =

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · u∗i (c∗i , c−i)

≥
∑

(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · u∗i (ci, c−i) = vi(ci, ti, u
∗
i )

for all ci ∈ Ci, it is the case that c∗i is optimal for (ti, u
∗
i ).

Observe that by definition of the marginal beliefs of bk[tk] about the op-
ponents’ choice type utility function combinations to be the product measure
Πl∈I\kβl for all k ∈ I, it directly holds that every type has projective and in-
dependent beliefs. It thus also directly follows that every type believes every
opponent to have projective and independent beliefs.

Consider some opponent j ∈ I \ {i} of player i and a choice type utility
function tuple (cj , tj , uj) ∈ Cj×{tj}×Uj of player j such that bi[ti](cj , tj , uj) >
0. Then, βj(cj , uj) > 0 and

vj(cj , tj , uj) =
∑

(c−j ,u−j)∈C−j×U−j

β−j(c−j , u−j) · uj(cj , c−j)

≥
∑

(c−j ,u−j)∈C−j×U−j

β−j(c−j , u−j) · uj(c′j , c−j) = vj(c
′
j , tj , uj)

for all c′j ∈ Cj , by construction of bi[ti] and by virtue of (βj)j∈I being a gen-
eralized Nash equilibrium. Thus, cj is optimal for (tj , uj). Therefore, ti believes
in the opponents’ rationality. Analogeously, it can be shown that every type
tj of every player j ∈ I \ {i} also believes in the opponents’ rationality. As
bi[ti](tj) = 1 for all j ∈ I \{i}, it follows that ti believes his opponents to believe
in the opponents’ rationality.

Note that it directly holds that ti believes every opponent j ∈ I \{i} to deem
possible his true type ti, as there exists only this single type of i in the epistemic
model MΓ .

Moreover, ti’s marginal belief on C−i×U−i coincides with Πj∈I\{i}βj . Since
bi[ti](tj) = 1 and bj [tj ](ti) = 1 holds for every opponent j ∈ I \ {i} of player
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i, type ti believes that every opponent j believes that i’s marginal belief on
C−i × U−i is indeed given by Πj∈I\{i}βj . Analogeously, it can be shown that
the single type tj ∈ Tj for every player j ∈ I \ {i} believes that every respective
opponent k ∈ I \{j} is correct about j’s marginal belief on C−j×U−j . As for all
j ∈ I \ {i} it is the case that bi[ti](tj) = 1 and tj believes that i is correct about
j’s marginal beliefs on C−j × U−j , it follows that ti believes every opponent j
to believe that i is correct about j’s marginal belief on C−j × U−j .

Finally, as there exists only one type for each player, every type must have
connected beliefs.

For the if direction of the theorem, consider an epistemic model MΓ of Γ
with a type ti ∈ Ti of player i that satisfies conditions (i) − (x) and such that
c∗i is optimal for (ti, u

∗
i ).

Construct a tuple (βj)j∈I ∈ ∆
(
×j∈I (Cj ×Uj)

)
of probability measures such

that βj(cj , uj) := bi[ti](cj , uj) for all (cj , uj) ∈ Cj × Uj and for all j ∈ I \ {i},
and βi(ci, ui) := bm[t̂m](ci, ui) for all (ci, ui) ∈ Ci ×Ui and for some m ∈ I \ {i}
and for some t̂m ∈ Tm with bi[ti](t̂m) > 0.

We first show that for all players j, k ∈ I \ {i}, for every type tj ∈ Tj such
that bi[ti](tj) > 0 and for every type tk ∈ Tk such that bi[ti](tk) > 0, it is the
case that bj [tj ](ci, ui) = bk[tk](ci, ui) for all (ci, ui) ∈ Ci×Ui. Fix some (ci, ui) ∈
Ci × Ui. Suppose that j = k and consider tj , t

′
j ∈ Tj with bi[ti](tj) > 0 and

bi[ti](t
′
j) > 0. Towards a contradiction assume that bj [tj ](ci, ui) 6= bj [t

′
j ](ci, ui).

By condition (vii), it is the case that bj [tj ](ti) > 0. Hence, tj deems it possible
that i is not correct about j’s belief about i’s choice utility function combination,
a contradiction with condition (ix). Now, suppose that j 6= k and consider tj ∈ Tj
as well as tk ∈ Tk with bi[ti](tj) > 0 and bi[ti](tk) > 0. By condition (x) and
without loss of generality, it is the case that bj [tj ](tk) > 0. By condition (ii), it
follows that bj [tj ](ci, ui) = bk[tk](ci, ui).

Next, we show that (βj)j∈I constitutes a generalized Nash equilibrium. Con-
sider player i and suppose that βi(ci, ui) > 0. Then, bm[t̂m](ci, ui) > 0, and there
thus exists a type t′i ∈ Ti of player i such that bm[t̂m](ci, t

′
i, ui) > 0. By conditions

(viii) and (iii), it follows that bi[t
′
i](c−i, u−i) = bi[ti](c−i, u−i) = β−i(c−i, u−i).

By condition (vi), ci is optimal for (t′i, ui), and hence ci is optimal for (ti, ui).
Therefore, ∑

(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · ui(ci, c−i) = vi(ci, ti, ui)

≥ vi(c′i, ti, ui) =
∑

(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · ui(c′i, c−i)

for all c′i ∈ Ci.
Now, consider some player j ∈ I\{i} and suppose that βj(cj , uj) > 0 for some

(cj , uj) ∈ Cj × Uj . Then, bi[ti](cj , uj) > 0, and consequently bi[ti](cj , tj , uj) > 0
for some type tj ∈ Tj of player j with bi[ti](tj) > 0. By condition (i), it holds
that bj [tj ](ck, uk) = bi[ti](ck, uk) = βk(ck, uk) for all (ck, uk) ∈ Ck × Uk and for
all k ∈ I \ {i, j}. Since βi(ci, ui) = bm[t̂m](ci, ui) for all (ci, ui) ∈ Ci×Ui, and as
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bi[ti](tj) > 0, it follows from above that bj [tj ](ci, ui) = bm[t̂m](ci, ui) = βi(ci, ui)
for all (ci, ui) ∈ Ci × Ui. By condition (iv), it thus holds that bj [tj ](c−j , u−j) =
β−j(c−j , u−j). Moreover, by condition (v), the choice cj is optimal for (tj , uj),
and thus ∑

(c−j ,u−j)∈C−j×U−j

β−j(c−j , u−j) · uj(cj , c−j) = vj(cj , tj , uj)

≥ vj(c′j , tj , uj) =
∑

(c−j ,u−j)∈C−j×U−j

β−j(c−j , u−j) · uj(c′j , c−j)

holds for all c′j ∈ Cj . Consequently, (βj)j∈I constitutes a generalized Nash equi-
librium.

Since bi[ti](c−i) = β−i(c−i) and c∗i is optimal for (ti, u
∗
i ), it is the case that∑

(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · u∗i (c∗i , c−i) = vi(c
∗
i , ti, u

∗
i )

≥ vi(ci, ti, u∗i ) =
∑

(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · u∗i (ci, c−i)

for all ci ∈ Ci. As (βj)j∈I constitutes a generalized Nash equilibrium, c∗i is
optimal for u∗i in a generalized Nash equilibrium. �

The preceeding theorem shows that correct-beliefs conditions are inherently
linked to the incomplete information solution concept of generalized Nash equi-
librium. In fact, conditions (vii)− (ix) together form the correct-beliefs assump-
tion that is needed. Intuivitely, with the presence of incomplete information the
correct-beliefs assumption naturally does not only apply to strategic but also to
payoff uncertainty.

However, only two layers of common belief in rationality are needed for the
epistemic characterization of generalized Nash equilibrium. In fact, the epistemic
conditions of Theorem 1 do not even imply common belief in rationality.

Remark 1. There exists a game Γ with incomplete information, an epistemic
model MΓ of Γ , i ∈ I some player, and some type ti ∈ Ti of player i such that
ti satisfies conditions (i) − (x) of Theorem 1, but ti does not express common
belief in rationality.

As complete information is a special case of incomplete information, the following
example of a two person complete information game establishes Remark 1.

Example 1. Consider the two player game between Alice in Bob represented in
Figure 3.

Construct an epistemic model MΓ of Γ given by TAlice = {tA, t′A, t′′A} and
TBob = {tB , t′B} with bAlice[tA] = (c, tB), bAlice[t

′
A] = (c, t′B), and bAlice[t

′′
A] =

(d, tB), as well as bBob[tB ] = 0.5 · (a, tA) + 0.5 · (a, t′A), and bBob[t
′
B ] = (a, t′′A).

Observe that tA satisfies conditions (i) − (x) of Theorem 1. However, tA does
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Alice

Bob
c d

a 0, 0 0, 0
b 0, 0 1, 0

Fig. 3. A two player game between Alice and Bob.

not express common belief in rationality, as tA believes that tB deems possible
that Alice is of type t′A, which believes that Bob is of type t′B , which in turn
believes Alice to be of type t′′A and to choose a, i.e. which believes Alice to choose
irrationally. ♣

Restricting attention to the specific class of complete information games, the
epistemic characterization of generalized Nash equilibrium provides an epistemic
characterization of its complete information analogue, i.e. of Nash equilibrium.
The result is a direct consequence of Theorem 1, if payoff uncertainty is elimi-
nated.

Corollary 1. Let Γ be a game with complete information, and i ∈ I some
player. A choice ci ∈ Ci is optimal in a Nash equilibrium, if and only if, there
exists an epistemic model MΓ of Γ with a type ti ∈ Ti of player i such that ci
is optimal for ti and ti satisfies the conditions (i)− (x) of Theorem 1.

With Corollary 1 a new characterization is added to the epistemic analysis of
Nash equilibrium. In particular, its conditions do not imply common belief in
rationality.
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