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1 Introduction

In games with incomplete information, players do not only face uncertainty about
their opponents’ choices but also about their utility functions. The analysis of
this class of games has been pioneered by Harsanyi (1967-68). In particular, his
framework is constructed on the basis of a one-person perspective. Accordingly,
the strategic situation is analyzed entirely from the viewpoint of a single player.
For instance, as Harsanyi (1967-68, p. 170) writes it is some

[. . .] player j (from whose point of view we are analyzing the game) [. . .],

and Harsanyi (1967-68, p. 175) states that

[. . .] we are interested only in the decision rules that player j himself will
follow [. . .].

Conceptually, a one-person perspective approach treats game theory as an
interactive extension of decision theory.

Here, we also take a one-person, hence strictly decision-theoretic, approach
to game theory, and model common belief in rationality within the mind of a
single player as well as define a corresponding non-equilibrium solution concept
– generalized iterated strict dominance – in terms of decision problems. The
formal framework is kept as simple and parsimonious as possible, to render the
theory of incomplete information games accessible to a potentially vast field of
applications beyond economics.

The standard solution concept for static games with incomplete informa-
tion has been Harsanyi’s (1967-68) Bayesian equilibrium. 1 Recently, the idea of
rationalizability – due to Bernheim (1984) and Pearce (1984) – has been gener-
alized to incomplete information games. In particular, the solution concepts of
weak and strong ∆-rationalizability have been introduced by Battigalli (2003)
for dynamic games, and further analyzed by Battigalli and Siniscalchi (2003a)
and (2007), Battigalli et al. (2011), Battigalli and Prestipino (2013), as well as
Dekel and Siniscalchi (2015). Intuitively, ∆-rationalizability concepts iteratively
delete strategy utility pairs by some best response requirement, and allow for
exogenous restrictions on the first-order beliefs. ∆-rationalizability has been ap-
plied to auctions by Battigalli and Siniscalchi (2003b), to signaling games by
Battigalli (2006), as well as to static implementation by Ollar and Penta (2017).
Furthermore, a backward inductive variant of rationalizability for dynamic games
with incomplete information has been proposed by Penta (2017) and applied to
dynamic implementation by Penta (2015). A different incomplete information
generalization of rationalizability has been proposed by Ely and Pȩski (2006)’s
interim rationalizability as well as by Dekel et al. (2007)’s interim correlated ra-
tionalizability, respectively. The essential difference to ∆-rationalizability lies in
fixing the belief hierarchies on utilities. The robustness of interim correlated ra-
tionalizability with regards to perturbations of the belief hierarchies on utilities

1 The solution concept of Bayesian equilibrium is analyzed epistemically by Bach and
Perea (2017).
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is studied by Weinstein and Yildiz (2007) as well as by Penta (2013) for static
games and by Penta (2012) for dynamic games. Besides, note that all incomplete
information rationalizability concepts employ a modeller – and not a one-person
– perspective in their formal frameworks.

Generalized iterated strict dominance based on a one-person perspective aug-
ments the class of solution concepts for incomplete information games. Intu-
itively, the algorithm iteratively reduces decision problems by some strict dom-
inance requirement. In contrast to the ∆-rationalizability concepts in the liter-
ature, generalized iterated strict dominance is formulated in a one-person per-
spective by means of decision problems and uses strict dominance arguments
instead of best-response arguments. Moreover, it is attempted to keep the for-
malization as simple as possible. In fact, Battigalli and Siniscalchi (1999) as
well as Battigalli (2003) already indicate that ∆-rationalitzability concepts are
equivalent to iterated strict dominance procedures for the class of static games.
Also, Battigalli et al. (2011) point out that their belief-free rationalizability con-
cept can be characterized by an iterated strict dominance procedure. Besides,
we show that generalized iterated strict dominance is behaviourally equivalent
to iterated strict dominance once complete information is imposed. Hence, our
algorithm can be viewed as a direct generalization of iterated strict dominance
from complete to incomplete information games.

In epistemic game theory the central concept is common belief in rational-
ity. For static games with complete information common belief in rationality has
been extensively studied and is well understood. In the case of complete informa-
tion, rationalizability concepts occured first and were introduced by Bernheim
(1984) and Pearce (1984). Only later, common belief in rationality was spelled
out and connected to rationalizability by Brandenburger and Dekel (1987) as
well as by Tan and Werlang (1988). Similarly, for the more general class of
static games with incomplete information common belief in rationality has only
appeared after the generalized rationalizability concepts. Common belief in ra-
tionality has been formalized and employed in different forms for epistemic foun-
dations of the ∆-rationalizability variants by Battigalli and Siniscalchi (1999),
(2002), and (2007), Battigalli et al. (2011), as well as Battigalli and Prestipino
(2013). Besides, Battigalli et al. (2011) also give an epistemic foundation of
interim correlated rationalizability. Also, the literature on common belief in ra-
tionality for incomplete information games so far share the use of a modeller
perspective.

We propose a formalization of common belief in rationality based on Harsanyi’s
(1967-68) one-person perspective approach and which is algorithmically char-
acterized by generalized iterated strict dominance. If the belief hierarchies on
utilities are kept fixed, then common belief in rationality is behaviourally equiv-
alent to interim correlated rationalizability. In our model the restrictions only
concern the belief hierarchies of a single player – the reasoner. In particular, a
one-person perspective epistemic framework does not need to introduce states
as modeller perspective approaches do. Also, in line with Harsanyi (1967-68) we
treat strategic uncertainty and payoff uncertainty symmetrically. Furthermore,
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rational choice under common belief in rationality is lean in the sense that it
does not fix an epistemic model, but rather uses different epistemic models as a
way to encode different belief hierarchies. Besides, the epistemic model is kept
as basic and parsimonious as possible, in order to maximize accessibility for
potential applications.

From a conceptual point of view, we treat the reasoning as foundational and
hence prior to the corresponding algorithm which gives rise to a solution concept
in the classical sense. Accordingly, the reasoning concept of common belief in
rationality within the framework of an epistemic model is constructed first. Only
thereafter an incomplete information generalization of iterated strict dominance
in terms of decision problems is conducted and shown to characterize reasoning
in line with common belief in rationality.

The two notions for incomplete information considered here, i.e. common be-
lief in rationality and its algorithmic analogue generalized iterated strict domi-
nance, can be relevant for numerous applications. In particular, the formal frame-
work is kept as basic and lean as possible, to facilitate and stimulate the use of
the concepts for concrete economic problems. In particular, the illustration of the
concepts in our examples underlines the accessibility of our framework for ap-
plied work. For instance, in pricing games firms may have no information about
their competitors’ characteristics such as their cost structures. Furthermore, in
auctions participants can be uncertain about each others’ valuations, which is
indeed typically assumed in public auctions or internet auctions. More gener-
ally, incomplete information settings of mechanism design or implementation
could be considered with the non-equilibrium concept generalized iterated strict
dominance. Beyond applications in economics, a basic framework of analysis for
incomplete information could also be of use in other fields of strategic enquiry
such as management or political theory.

We proceed as follows. In Section 2, the epistemic framework for games with
incomplete information and a one-person perspective is formally defined as well
as some basic notation fixed. Section 3 then formalizes the reasoning concept
of common belief in rationality in this more general setting that admits payoff
uncertainty. In Section 4, a solution concept for incomplete information games
called generalized iterated strict dominance is constructed as a procedure on
decision problems using strict dominance arguments. Section 5 gives a charac-
terization of common belief in rationality by generalized iterated strict domi-
nance as well as in terms of best-response sets. Section 6 relates common belief
in rationality to interim correlated rationalizability. It turns out that, if the be-
lief hierarchies on utilities are fixed, then the two concepts are behaviourally
equivalent. Section 7 identifies epistemic conditions that characterize complete
information from a one person-perspective. Finally, Section 8 offers some con-
cluding remarks.
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2 Preliminaries

It is standard in game theory to model a static game by specifying the players,
their respective choices, as well as their respective utilities for every choice com-
bination. If these ingredients are assumed to be commonly known among the
players, the corresponding games are said to exhibit complete information. The
more general class of incomplete information games admits uncertainty about
the players’ utilities. Accordingly, a game with incomplete information can be
formally represented by a tuple

Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
where I denotes a finite set of players, Ci denotes player i’s finite choice set, and
Ui denotes the finite set of player i’s utility functions.2 Every utility function
ui ∈ Ui is of the form ui : ×j∈ICj → R. The decisive difference between a static
game with incomplete and complete information lies in the consideration of a
set of utility functions instead of a unique utility function for every player.

In order to formally express beliefs and interactive beliefs about choices and
utility functions an epistemic structure needs to be added to the game. The
following epistemic model enables a compact representation of epistemic men-
tal states of players with regards to choices, utility functions, and higher-order
beliefs.

Definition 1. Let Γ =
(
I, (Ci)i∈I , Ui)i∈I

)
be a game with incomplete informa-

tion. An epistemic model of Γ is a tuple MΓ =
(
(Ti)i∈I , (bi)i∈I

)
, where for

every player i ∈ I

– Ti is a finite set of types,
– bi : Ti → ∆(C−i×T−i×U−i) assigns to every type ti ∈ Ti a probability mea-

sure bi[ti] on the set of opponents’ choice type utility function combinations.

Note that for every type an infinite belief hierarchy about the respective oppo-
nents’ choices and utility functions can be derived. Also, marginal beliefs can
be inferred from a type. For instance, every type ti ∈ Ti induces a belief on the
opponents’ choice combinations by marginalizing the probability measure bi[ti]
on the space C−i. For simplicity sake, no additional notation is introduced for
marginal beliefs. In the sequel, it should always be clear from the context which
belief bi[ti] refers to. Similarly, marginal belief hierarchies can be derived from
a type. For instance, a type’s marginal belief hierarchy on choices specifies a
belief about the opponents’ choice combinations, a belief about the opponents’
beliefs about their respective opponents’ choice combinations, etc, where all be-
liefs are obtained by marginalization of the type’s full belief hierarchy. For every
type ti ∈ Ti the marginal belief hierarchy on choices is denoted by tCi and the
marginal belief hierarchy on utilities is denoted by tUi .

Here, payoff uncertainty is treated symmetrically to strategic uncertainty. As
the latter concerns the respective opponents’ choices, the former is also defined

2 For simplicity sake, attention is restricted to finite games and finite epistemic models.
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with respect to the respective opponents’ utility functions only. This treatment
is in line with Harsanyi (1967-68), who also assumes that each player knows
his own utility function, and more generally, that the uncertainty concerns the
opponents of the player from whose point of view the game is analyzed.3 How-
ever, the special case of players being uncertain about their own payoffs could be
accommodated in Definition 1 by extending the space of uncertainty for every
player i ∈ I from C−i × T−i × U−i to C−i × T−i × (×j∈IUj). Alternatively, a
reasoner’s actual utility function could be defined as the expectation over the
set Ui. This modelling choice does not affect the subsequent results.

Note that in our treatment, a type only specifies the epistemic mental state
of a player, not his utility function. In this sense we follow Harsanyi’s (1967-68)
approach, which separates the utility component from the epistemic component.4

Moreover, due to the symmetric treatment of uncertainty about choices and
payoffs, types are – analogous to complete information epistemic structures –
simply compact ways of representing belief hierarchies. In general, a type holds
a belief about the basic space of uncertainty and the opponents’ types. In the
case of complete information games the basic space of uncertainty consists of
the players’ choice combinations, while in the more general case of incomplete
information games the basic space of uncertainty is extended to the players’
choice utility function combinations. Alternatively, for every type ti ∈ Ti the
probability measure bi[ti] could be defined exactly as in the case of complete
information, i.e. on the space C−i×T−i, and payoff uncertainty be injected into
the epistemic model by assigning a utility function to every type. Again, the
subsequent results are essentially independent of this modelling choice.

Note that our epistemic model follows Harsanyi’s (1967-68) one-person per-
spective approach. Accordingly, game theory can be conveived of as an inter-
active extension of decision theory. Indeed, all epistemic concepts – including
iterated ones – are understood and defined as mental states inside the mind of a
single person. A one-person perspective approach seems natural in the sense that
reasoning is formally represented by epistemic concepts and any reasoning pro-
cess prior to choice does indeed take place entirely within the reasoner’s mind.
Formally, this approach is parsimonious in the sense that states, describing the
beliefs of all players, do not have to be introduced.

Since the epistemic model according to Definition 1 treats the sources of
uncertainty – choices and utilities – symmetrically, our approach is more general
than Ely and Pȩski (2006) as well as Dekel et al. (2007). Indeed, the latter models
formalize incomplete information by fixing the belief hierarchies on the utilities
before reasoning about choice is considered.

Some further notions and notation are now introduced. For that purpose
consider a game Γ , an epistemic modelMΓ of it, and fix two players i, j ∈ I such
that i 6= j. A type ti ∈ Ti of i is said to deem possible some choice type utility
function combination (c−i, t−i, u−i) of his opponents, if bi[ti] assigns positive
probability to (c−i, t−i, u−i). Analogously, ti deems possible some type tj of his

3 Cf. Harsanyi (1967-68), p. 163 and p. 170.
4 Cf. Harsanyi (1967-68), pp. 169-171.
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opponent, if bi[ti] assigns positive probability to tj . For each choice-type-utility
function combination (ci, ti, ui), the expected utility is given by

vi(ci, ti, ui) =
∑

c−i∈C−i

(
bi[ti](c−i) · ui(ci, c−i)

)
.

Optimality can now be formally defined.

Definition 2. Let Γ =
(
I, (Ci)i∈I , Ui)i∈I

)
be a game with incomplete informa-

tion, MΓ some epistemic model of it, i ∈ I some player, ui ∈ Ui some utility
function for player i, and ti ∈ Ti some type of player i. A choice ci ∈ Ci is
optimal for the type utility function pair (ti, ui), if vi(ci, ti, ui) ≥ vi(c′i, ti, ui) for
all c′i ∈ Ci.

In contrast to standard epistemic models for static games, optimality of a choice
is not defined relative to a type, but to a type-utility function pair here. This is
due to the existence of payoff uncertainty in addition to strategic uncertainty, as
optimality of a choice depends on the respective player’s utility function as well
as on his first-order belief about his opponents’ choices induced by his type.

3 Common Belief in Rationality

In the usual way, interactive reasoning can be constructed based on epistemic
models. In fact, conditions are inductively imposed on the different layers of a
belief hierarchy. Intuitively, a player believes his opponents to be rational, if – for
each of his opponents – he only assigns positive probability to choice type utility
function combinations such that the choice is optimal for the respective type
utility function pair. Formally, belief in rationality can be defined as follows.

Definition 3. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete infor-

mation, MΓ some epistemic model of it, and i ∈ I some player. A type ti ∈ Ti
believes in the opponents’ rationality, if ti only deems possible choice type utility
function combinations (c−i, t−i, u−i) such that cj is optimal for (tj , uj) for every
opponent j ∈ I \ {i}.

As in the special case of complete information, belief in the opponents’ ratio-
nality puts a restriction on a type’s induced beliefs. However, with incomplete
information the opponents’ utility functions are part of the uncertainty space of
the induced belief of a player’s type.

Interactive reasoning about rationality can then be defined by iterating belief
in rationality.

Definition 4. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion, MΓ some epistemic model of it, and i ∈ I some player.

– A type ti ∈ Ti expresses 1-fold belief in rationality, if ti believes in the
opponents’ rationality.
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– A type ti ∈ Ti expresses k-fold belief in rationality for some k > 1, if ti only
assigns positive probability to types tj ∈ Tj for all j ∈ I \ {i} such that tj
expresses k − 1-fold belief in rationality.

– A type ti ∈ Ti expresses common belief in rationality, if ti expresses k-fold
belief in rationality for all k ≥ 1.

Intuitively, if a player expresses common belief in rationality, then there exists no
layer in his belief hierarchy in which the rationality of any player is questioned.
Note that the only difference to the complete information case is the generaliza-
tion of belief in the opponents’ rationality. Yet, the way that interactive beliefs
are constructed is identical with and without payoff uncertainty. Besides, belief
in the opponents’ rationality and its iterations purely concern an agent’s rea-
soning and are thus properties of the agent’s epistemic set-up – formally, his
type – only. Thus, Definition 4 provides a one-person perspective formalization
of common belief in rationality.

Finally, the decision rule of rational choice under common belief in rationality
can be defined with incomplete information as well.

Definition 5. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete infor-

mation, i ∈ I some player, and ui ∈ Ui some utility function of player i. A
choice ci ∈ Ci of player i is rational for utility function ui under common belief
in rationality, if there exists an epistemic model MΓ of Γ with a type ti ∈ Ti
of player i such that ci is optimal for (ti, ui) and ti expresses common belief in
rationality.

Note that in our incomplete information framework rational choice under
common belief in rationality does not fix a particular epistemic model. Thus no
exogenous restrictions are put on the belief hierarchies and no belief hierarchies
are excluded a priori. Yet only the existence of some epistemic model is needed
to construct a belief hierarchy expressing common belief in rationality that sup-
ports the given choice. This frugality is enabled by construction of the formal
framework using the one-person perspective approach.

An illustration of the concept of common belief in rationality is provided by
the following example.

Example 1. Consider a two player game with incomplete information between
Alice and Bob, where the choices sets are CAlice = {a, b, c} as well as CBob =
{d, e, f}, respectively, and the sets of utility functions are UAlice = {uA, u′A}
as well as UBob = {uB , u′B}, respectively. In Figure 1, the utility functions are
spelled out in detail.

An interactive – more classical – representation of the game is provided in
Figure 2.

Suppose the epistemic model MΓ of Γ given by the sets of types TAlice =
{tA, t′A}, TBob = {tB , t′B}, and the following induced belief functions

– bAlice[tA] = (e, tB , uB),
– bAlice[t

′
A] = (d, t′B , u

′
B),
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uA

d e f
a 3 2 1
b 2 1 3
c 0 0 0

u′
A

d e f
a 1 3 1
b 2 1 1
c 0 0 0

uB

a b c
d 3 2 1
e 2 1 3
f 0 0 0

u′
B

a b c
d 1 3 1
e 2 1 1
f 0 0 0

Fig. 1. Utility functions of Alice and Bob.

Alice

Bob
d e f

a 3, 3 2, 2 1, 0
b 2, 2 1, 1 3, 0
c 0, 1 0, 3 0, 0

Alice

Bob
d e f

a 3, 1 2, 2 1, 0
b 2, 3 1, 1 3, 0
c 0, 1 0, 1 0, 0

Alice

Bob
d e f

a 1, 3 3, 2 1, 0
b 2, 2 1, 1 1, 0
c 0, 1 0, 3 0, 0

Alice

Bob
d e f

a 1, 1 3, 2 1, 0
b 2, 3 1, 1 1, 0
c 0, 1 0, 1 0, 0

Fig. 2. Interactive representation of the two-player game with incomplete information
and utility functions as specified in Figure 1.

– bBob[tB ] = (a, tA, uA),
– bBob[t

′
B ] = 1

2 (a, t′A, uA) + 1
2 (b, t′A, u

′
A).

Accordingly, type tA assigns probability 1 to the choice type utility function
combination (e, tB , uB). Analogeously, the induced beliefs of types t′A and tB are
obtained. Bob’s type t′B assigns probability 1

2 to the choice type utility function
combination (a, t′A, uA) and probability 1

2 to the choice type utility function
combination (b, t′A, u

′
A). Note that Alice’s type tA does not believe in Bob’s

rationality, as e is not optimal for the type utility function pair (tB , uB) she
believes him to be characterized by. In particular, it follows that tA does not
express common belief in rationality. However, Alice’s type t′A expresses common
belief in rationality. Indeed, t′A believes in Bob’s rationality, as d is optimal for
Bob’s type utility function pair (t′B , u

′
B). Also, t′B believes in Alice’s rationality,

since a is optimal for Alice’s type utility function pair (t′A, uA) and b is optimal
for Alice’s type utility function pair (t′A, u

′
A). As t′A only deems possible Bob’s

type t′B , and t′B only deems possible Alice’s type t′A, it follows inductively that t′A
expresses common belief in rationality. Hence, a is rational for uA under common
belief in rationality, b is rational for u′A under common belief in rationality, and
d is rational for u′B under common belief in rationality. ♣

A special case that could be of relevance in some applications ensues if the
reasoner’s beliefs about his opponents’ types and about his opponents’ utilities
are assumed to be independent. Intuitively, a person is made up of two compo-
nents: doxastic mental states and preferences. Given such a modular notion of a
person, it can be of interest to consider beliefs that treat the two components as
independent. This issue of independence is also discussed by Dekel et al. (2007).
In fact, the following example shows that such an independence condition can
refine the set of optimal choices under common belief in rationality.

Example 2. Consider a two player game with incomplete information between
Alice and Bob, where the choices sets are CAlice = {a, b, c} as well as CBob =
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{d, e, f}, respectively, and the utility functions are UAlice = {uA} as well as
UBob = {uB , u′B}, respectively. In Figure 1, the utility functions are spelled out
in detail.

uA

d e f
a 2 0 2
b 0 2 2
c 1 1 0

uB

a b c
d 1 0 0
e 0 0 0
f 1 1 1

u′
B

a b c
d 0 0 0
e 0 1 0
f 1 1 1

Fig. 3. Utility functions of Alice and Bob.

An interactive representation of the game is provided in Figure 4.

Alice

Bob
d e f

a 2, 1 0, 0 2, 1
b 0, 0 2, 0 2, 1
c 1, 0 1, 0 0, 1

Alice

Bob
d e f

a 2, 0 0, 0 2, 1
b 0, 0 2, 1 2, 1
c 1, 0 1, 0 0, 1

Fig. 4. Interactive representation of the two-player game with incomplete information
and utility functions as specified in Figure 3.

Consider the epistemic model MΓ of Γ given by the sets of types TAlice =
{tA, t′A, t′′A}, TBob = {tB , t′B}, and the following induced belief functions

– bAlice[tA] = 1
2 (d, tB , uB) + 1

2 (e, t′B , u
′
B),

– bAlice[t
′
A] = (d, tB , uB),

– bAlice[t
′′
A] = (e, t′B , u

′
B),

– bBob[tB ] = (a, t′A, uA),
– bBob[t

′
B ] = (b, t′′A, uA).

Observe that all types in this epistemic model believe in the opponents’ rational-
ity. In particular, type tA thus expresses common belief in rationality. As choice
c is optimal for type tA, Alice can rationally choose c under common belief in ra-
tionality given her utility function uA. However, the belief 1

2d+ 1
2e is the unique

first-order belief on choices supporting choice c. Since d is only optimal for Bob
if his utility function is uB and he assigns probability 1 to Alice’s choice a, and
e is only optimal for him if his utility function is u′B and he assigns probabil-
ity 1 to Alice’s choice b, it follows that c can only be optimal for Alice under
common belief in rationality, if she assigns probability 1

2 to Bob being equipped
with utility function uB and to Bob assigning probability 1 to her choosing a
as well as probability 1

2 to Bob being equipped with utility function u′B and
to Bob assigning probability 1 to her choosing b. Since this belief violates the
independence of beliefs on types and utilities, c can be concluded to be ruled
out under common belief in rationality with the independence assumption. ♣



11

4 Generalized Iterated Strict Dominance

An algorithm is now introduced as a solution concept, which extends iterated
strict dominance to games with incomplete information with a one-person per-
spective. The algorithm is built on the notion of a decision problem. Given a
game Γ =

(
I, (Ci)i∈I , (Ui)i∈I

)
, a player i ∈ I, and a utility function ui ∈ Ui, a

decision problem
Γi(ui) = (Di, D−i, ui)

for player i consists of choices Di ⊆ Ci for i, choice combinations D−i ⊆ C−i
for i’s opponents, as well as the utility function ui restricted to Di × D−i. A
decision problem describes a game-theoretic choice problem from a one-person
perspective, namely the perspective of the reasoner. In a decision problem, choice
rules such as strict dominance can be formally defined. Indeed, given a utility
function ui ∈ Ui for player i and his corresponding decision problem Γi(ui) =
(Di, D−i, ui), a choice ci ∈ Di is called strictly dominated, if there exists a
probability measure ri ∈ ∆(Di) such that ui(ci, c−i) <

∑
c′i∈Di

ri(c
′
i) ·ui(c′i, c−i)

for all c−i ∈ D−i.
With the notions of decision problem and strict dominance on decision prob-

lems the standard solution concept iterated strict dominance for complete in-
formation games can be extended to payoff uncertainty with a one-person per-
spective. Indeed, the algorithm generalized iterated strict dominance is defined
as follows.

Definition 6. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion.

Round 1. For every player i ∈ I and for every utility function ui ∈ Ui consider
the initial decision problem Γ 0

i (ui) :=
(
C0
i (ui), C

0
−i(ui), ui

)
, where C0

i (ui) :=
Ci and C0

−i(ui) := C−i.
Step 1.1 Set C1

−i(ui) := C0
−i(ui).

Step 1.2 Form Γ 1
i (ui) :=

(
C1
i (ui), C

1
−i(ui), ui

)
, where C1

i (ui) ⊆ C0
i (ui)

only contains choices ci ∈ Ci for player i that are not strictly dominated
in the decision problem

(
C0
i (ui), C

1
−i(ui), ui

)
.

Round k > 1. For every player i ∈ I and for every utility function ui ∈ Ui
consider the reduced decision problem Γ k−1i (ui) :=

(
Ck−1i (ui), C

k−1
−i (ui), ui

)
.

Step k.1 Form Ck−i(ui) ⊆ Ck−1−i (ui) by eliminating from Ck−1−i (ui) every

opponents’ choice combination c−i ∈ Ck−1−i (ui) that contains for some
opponent j ∈ I \ {i} a choice cj ∈ Cj for which there exists no utility
function uj ∈ Uj such that cj ∈ Ck−1j (uj).

Step k.2 Form Γ ki (ui) :=
(
Cki (ui), C

k
−i(ui), ui

)
, where Cki (ui) ⊆ Ck−1i (ui)

only contains choices ci ∈ Ck−1i (ui) for player i that are not strictly
dominated in the decision problem

(
Ck−1i (ui), C

k
−i(ui), ui

)
.

The set GISD := ×i∈IGISDi ⊆ ×i∈I(Ci × Ui) is the output of generalized
iterated strict dominance, where for every player i ∈ I the set GISDi ⊆ Ci×Ui
only contains choice utility function pairs (ci, ui) ∈ Ci×Ui such that ci ∈ Cki (ui)
for all k ≥ 0.
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The algorithm iteratively eliminates strictly dominated choices from decision
problems for all players. In every round a decision problem for a player is formed
by first eliminating all opponents’ choices that are strictly dominated in every
decision problem for that opponent in the previous round, and subsequently
eliminating the player’s choices that are strictly dominated. In fact, for every
player the algorithm yields a set of choice utility function pairs as output. Due
to the presence of incomplete information the algorithm thus identifies choices
relative to payoffs. With generalized iterated strict dominance a non-equilibrium
and one-person perspective solution concept is thus added to the theory of games
with incomplete information.

Note that generalized iterated strict dominance can be viewed as a direct
generalization of iterated strict dominance to incomplete information with a one
person-perspective approach. It also closely corresponds to the iterative strict
dominance procedures for static games considered by Battigalli (2003, Proposi-
tion 3.8) and by Battigalli and Siniscalchi (1999, p. 215), as well as to the interim
iterated dominance procedure by Battigalli et al. (2011, p. 14). Some differences
to ∆-rationalizability concepts are the use of decision problems in our algorithm
as well as of strict dominance – instead of best response – arguments.

The following remark draws attention to some useful properties of the gen-
eralized iterated strict dominance algorithm, that directly follow from its defini-
tion.

Remark 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete information.

The algorithm generalized iterated strict dominance is non-empty, i.e. GISD 6=
∅, finite, i.e. there exists n ∈ N such that Γ ki (ui) = Γni (ui) for all k ≥ n, for all
utility functions ui ∈ Ui, and for all players i ∈ I, as well as order-independent,
i.e. the final output of generalized iterated strict dominance does not depend on
the specific order of elimination.

The non-emptiness of the algorithm follows from the fact that at no round it is
possible to delete all choices for a given player by definition of strict dominance.
As there are only finitely many choices for every player, the algorithm stops
after finitely many rounds. As a choice remains strictly dominated if a decision
problem is reduced, the order of elimination does not affect the eventual output
of the algorithm.

Finally, generalized iterated strict dominance is illustrated by applying the
algorithm to the two player game introduced in Example 1.

Example 3. Consider again the two player game with incomplete information
from Example 1. In order to apply GISD to this game decision problems for
the two players for each of their respective utility functions need to be formed
as in Figure 5, where the choices of the respective decision making player are
represented as rows and the opponent’s choices as columns.

In both Γ 0
A(uA) and Γ 0

A(u′A) the choice c is strictly dominated by b. For Bob
the choice f is strictly dominated by e in his decision problems Γ 0

B(uB) and
Γ 0
B(u′B). There are no further choices that can be ruled out for Alice or Bob
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Γ 0
A(uA)

d e f
a 3 2 1
b 2 1 3
c 0 0 0

Γ 0
A(u′

A)

d e f
a 1 3 1
b 2 1 1
c 0 0 0

Γ 0
B(uB)

a b c
d 3 2 1
e 2 1 3
f 0 0 0

Γ 0
B(u′

B)

a b c
d 1 3 1
e 2 1 1
f 0 0 0

Fig. 5. Initial decision problems for Alice and Bob.

with strict dominance given either of their utility functions. The 1-fold reduced
decision problems Γ 1

A and Γ 1
B result as in Figure 6.

Γ 1
A(uA)

d e f
a 3 2 1
b 2 1 3

Γ 1
A(u′

A)

d e f
a 1 3 1
b 2 1 1

Γ 1
B(uB)

a b c
d 3 2 1
e 2 1 3

Γ 1
B(u′

B)

a b c
d 1 3 1
e 2 1 1

Fig. 6. 1-fold reduced decision problems for Alice and Bob.

In both Γ 1
A(uA) and Γ 1

A(u′A) those choices of Bob are eliminated that are
strictly dominated in all initial decision problems Γ 0

B for Bob, i.e. choice f .
Then, the choice b can be deleted for Alice given uA as it is strictly dominated
by a in ({a, b}, {d, e}, uA), but not given u′A as it is not strictly dominated in
({a, b}, {d, e}, u′A). Moreover, in both Γ 1

B(uB) and Γ 1
B(u′B) those choices of Alice

are eliminated that are strictly dominated in all initial decision problems Γ 0
A for

Alice, i.e. choice c. Then, the choice e can be deleted for Bob given uB as it
is strictly dominated by d in ({d, e}, {a, b}, uB), but not given u′B as it is not
strictly dominated in ({d, e}, {a, b}, u′B). The 2-fold reduced decision problems
Γ 2
A and Γ 2

B result as in Figure 7.

Γ 2
A(uA)

d e
a 3 2 Γ 2

A(u′
A)

d e
a 1 3
b 2 1

Γ 2
B(uB)

a b
d 3 2 Γ 2

B(u′
B)

a b
d 1 3
e 2 1

Fig. 7. 2-fold reduced decision problems for Alice and Bob.

Since there are no strict dominance relations in any of the 2-fold reduced
decision problems Γ 2

A and Γ 2
B , the algorithm stops and returns the set GISD =

GISDAlice × GISDBob = {(a, uA), (a, u′A), (b, u′A)} × {(d, uB), (d, u′B), (e, u′B)}
as a solution to this two player game with incomplete information. ♣
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5 Characterization

Next it is shown that for the class of incomplete information games, common
belief in rationality can be characterized by generalized iterated strict domi-
nance. A fundamental result in game theory – so-called Pearce’s Lemma – due
to Pearce (1984) connects strict dominance and optimality of choice. Accordingly,
a choice in a two-player game with complete information is strictly dominated,
if and only if, it is not optimal for any belief about the opponent’s choices.5

Note that a choice ci ∈ Ci of some player i ∈ I is called optimal for a be-
lief p ∈ ∆(C−i) about the opponents’ choices, if

∑
c−i∈C−i

p(c−i) · ui(ci, c−i) ≥∑
c−i∈C−i

p(c−i) ·ui(c′i, c−i) for all c′i ∈ Ci. Similarly, in a game with incomplete
information, a choice ci ∈ Ci is said to be optimal for a belief utility function
pair (pi, ui), where pi ∈ ∆(C−i) and ui ∈ Ui, if

∑
c−i∈C−i

p(c−i) · ui(ci, c−i) ≥∑
c−i∈C−i

p(c−i) · ui(c′i, c−i) for all c′i ∈ Ci.
A slight generalization of Pearce’s Lemma to finite incomplete information

games is given by the following result.

Lemma 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion, i ∈ I some player, ui ∈ Ui some utility function of player i, and Γi(ui) =(
Di, D−i, ui

)
some decision problem of player i. A choice ci ∈ Di is strictly dom-

inated in Γi(ui), if and only if, there exists no probability measure p ∈ ∆(D−i)
such that ci is optimal for (p, ui) in Γi(ui).

Proof. Consider the two player game Γ ′ =
(
{i, j}, {D′i, D′j}, {u′i, u′j}

)
, where

D′i = Di, D
′
j = {dd−i

j : d−i ∈ D−i}, u′i(di, d
d−i

j ) = ui(di, d−i) for all di ∈ D′i and

for all d
d−i

j ∈ D′j , as well as u′j(di, d
d−i

j ) = 0 for all di ∈ D′i and for all d
d−i

j ∈ D′j .
Note that a choice ci ∈ Di is strictly dominated in the decision problem Γi(ui),
if and only if, it is strictly dominated in the two person game Γ ′. By Pearce’s
Lemma applied to Γ ′, it then follows that ci is strictly dominated in Γi(ui),
if and only if, there exists no probability measure p ∈ ∆(D−i) such that ci is
optimal for (p, ui) in Γi(ui). �

Note that optimality in epistemic models according to Definition 2 is defined
relative to a type utility function pair, while in the algorithmic setting optimality
is defined relative to a pair consisting of a belief about the opponents’ choices
and a utility function. Of course these two notions of optimality are semantically
equivalent, as the relevant belief by the type in an epistemic model is its marginal
belief about the opponents’ choices.

Equipped with a generalized version of Pearce’s Lemma an algorithmic char-
acterization of the epistemic concept of common belief in rationality can be
established for games with incomplete information by generalized iterated strict
dominance.

5 Besides the original proof in Pearce (1984) a more elementary proof of Pearce’s
Lemma is provided by Perea (2012).
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Theorem 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion, i ∈ I some player, ci ∈ Ci some choice for player i, and ui ∈ Ui some
utility function of player i. The choice ci is rational for ui under common belief
in rationality, if and only if, (ci, ui) ∈ GISDi.

Proof. For the only if direction of the theorem define a set (Ci × Ui)CBR :=
{(ci, ui) ∈ Ci × Ui : ci is rational for ui under common belief in rationality} for
every player i ∈ I. It is shown, by induction on k ≥ 0, that for every player i ∈ I
and for every choice utility function pair (ci, ui) ∈ (Ci×Ui)CBR, it is the case that
ci ∈ Cki (ui). Note that ci ∈ C0

i (ui) directly holds for all (ci, ui) ∈ (Ci × Ui)CBR
and for all i ∈ I, as C0

i (ui) = Ci for all ui ∈ Ui and for all i ∈ I. Now
consider some k ≥ 0 and suppose that ci ∈ Cki (ui) holds for every player i ∈ I
and for every choice utility function pair (ci, ui) ∈ (Ci × Ui)

CBR. Let i ∈ I
be some player, and take some (ci, ui) ∈ (Ci × Ui)CBR. Then, there exists an
epistemic model MΓ of Γ with a type ti ∈ Ti that expresses common belief in
rationality such that ci is optimal for (ti, ui). Take some (cj , tj , uj) ∈ Cj × Tj ×
Uj such that bi[ti](cj , tj , uj) > 0. As ti expresses common belief in rationality,
tj expresses common belief in rationality too, and cj is optimal for (tj , uj).
Thus, (cj , uj) ∈ (Cj × Uj)CBR, and, by the inductive assumption, cj ∈ Ckj (uj).

Hence, for every choice cj ∈ supp(bi[ti]) it is the case that cj ∈ Ckj (uj) for
some utility function uj ∈ Uj , and thus ti only assigns positive probability to
choices cj contained in a decision problem Γ kj (uj) for some uj ∈ Uj for every
opponent j ∈ I \ {i}. Consequently, ti only assigns positive probability to choice
combinations in Ck+1

−i (ui). Since ci is optimal for (ti, ui), it follows from Lemma

1 that ci ∈ Ck+1
i (ui). Therefore, by induction, (ci, ui) ∈ GISDi obtains.

For the if direction of the theorem, suppose that the algorithm stops after
k ≥ 0 rounds. Then, for every (ci, ui) ∈ GISDi it is the case that ci ∈ Cki (ui).
By Lemma 1, ci is optimal for (pi, ui), where pi ∈ ∆

(
Ck−i(ui)

)
. Observe that

every c−i ∈ Ck−i(ui) only contains, for every player j ∈ I \ {i}, choices cj ∈ Cj
such that (cj , u

cj
j ) ∈ GISDj for some u

cj
j ∈ Uj . Define a probability measure

p
(ci,ui)
i ∈ ∆(GISD−i) by

p
(ci,ui)
i (c−i, u−i) =

{
pi(c−i), if c−i ∈ Ck−i(ui) and u−i = u

c−i

−i
0, otherwise

for all (c−i, u−i) ∈ C−i×U−i. Construct an epistemic modelMΓ = {(Ti)i∈I , (bi)i∈I}
of Γ , where

Ti := {t(ci,ui)
i : (ci, ui) ∈ GISDi}

for all i ∈ I, and

bi[t
(ci,ui)
i ](c−i, t−i, u−i) ={

p
(ci,ui)
i (c−i, u−i), if (c−i, u−i) ∈ GISD−i and tj = t

(cj ,uj)
j for all j ∈ I \ {i}

0, otherwise

for all (c−i, t−i, u−i) ∈ C−i × T−i × U−i, for all t
(ci,ui)
i ∈ Ti and for all i ∈ I.

Observe that, by construction, for every player i ∈ I and for every (ci, ui) ∈
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GISDi, the choice ci is optimal for (t
(ci,ui)
i , ui). Hence, every type t

(ci,ui)
i believes

in the opponents’ rationality. It then directly follows inductively that every such

type t
(ci,ui)
i also expresses common belief in rationality. Therefore, for every

choice utility function pair (ci, ui) ∈ GISDi, there exists a type t
(ci,ui)
i within

MΓ such that t
(ci,ui)
i expresses common belief in rationality and ci is optimal

for
(
t
(ci,ui)
i , ui

)
. Hence, ci is rational for ui under common belief in rationality.

�

Similar algorithmic characterizations of common belief in rationality in incom-
plete information games can be found in Battigalli and Siniscalchi (1999, Propo-
sition 4), Battigalli (2003, Proposition 3.8) and Battigalli et al. (2011, Section
3.1).

Besides the algorithmic characterization of common belief in rationality, the
resulting choice utility function pairs can also be characterized by means of
best-response sets. For the case of complete information the notion of best-
response set is analyzed by Pearce (1984), and can be formulated in the context
of incomplete information as follows.

Definition 7. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete infor-

mation, and Di ⊆ Ci × Ui a set of choice utility function pairs for every player
i ∈ I. A tuple (Di)i∈I is called best-response-set-tuple, if there exists, for every
player i ∈ I and for every choice utility function pair (ci, ui) ∈ Di, a probability
measure µi ∈ ∆(D−i) such that ci is optimal for (µi, ui).

In fact, the best-response property enables a characterization of the choice
utility function pairs selected by common belief in rationality.

Theorem 2. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion, i ∈ I some player, ci ∈ Ci some choice of player i, and ui ∈ Ui some
utility function of player i. There exists a best-response-set-tuple (Di)i∈I such
that (ci, ui) ∈ Di, if and only if, ci is rational for ui under common belief in
rationality.

Proof. For the only if direction of the theorem it is shown, by induction on
k ≥ 0, that ci ∈ Cki (ui) for all (ci, ui) ∈ Di, for all k ≥ 0, and for all i ∈ I.
Let i ∈ I be some player and (ci, ui) ∈ Di. It then holds that ci ∈ C0

i (ui) = Ci.
Now, consider some (ci, ui) ∈ Di and assume that k ≥ 0 is such that cj ∈ Ckj (uj)
for every j ∈ I and for every (cj , uj) ∈ Dj . Fix some (ci, ui) ∈ Di, and note
that ci is optimal for (µi, ui), where µi ∈ ∆(D−i) is some probability measure.
By the inductive assumption, cj ∈ Ckj (uj) for every (cj , uj) ∈ Dj and for every
j ∈ I \ {i}. Hence, µi only assigns positive probability to opponents’ choices
cj ∈ Cj which are contained in Ckj (uj) for some uj ∈ Uj . Therefore, µi only

assigns positive probability to opponents’ choice combinations c−i ∈ Ck+1
−i (ui).

It follows, by Lemma 1, that ci is not strictly dominated in the decision problem(
Cki (ui), C

k+1
−i (ui), ui

)
. Thus, ci ∈ Ck+1

i (ui), and, by induction on k ≥ 0, it holds
that (ci, ui) ∈ GISDi. Hence, by Theorem 1, ci is rational for ui under common
belief in rationality.
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For the if direction of the theorem, it is shown that (GISDi)i∈I is a best-
response-set-tuple. For every uj ∈ Uj , let C∗j (uj) := {cj ∈ Cj : (cj , uj) ∈
GISDj} and C∗j := {cj ∈ Cj : (cj , uj) ∈ GISDj for some uj ∈ Uj}. Fix
(ci, ui) ∈ GISDi. Consequently, ci is not strictly dominated in the decision
problem

(
C∗i (ui), C

∗
−i, ui

)
. By Lemma 1, ci is optimal for (pi, ui) for some pi ∈

∆(C∗−i). Hence, ci is optimal for (µi, ui) for some µi ∈ ∆(GISD−i). Therefore
(GISDi)i∈I is a best-response-set-tuple. Now, take some (ci, ui) ∈ Ci ×Ui such
that ci is rational for ui under common belief in rationality. Then, by Theorem
1, it is the case that (ci, ui) ∈ GISDi. �

Besides, it is actually the case that the algorithm generalized iterated strict
dominance always yields the largest best-response-set-tuple as output.

Corollary 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion. The set GISD ⊆ ×i∈I(Ci × Ui) is the largest best-response-set-tuple.

Proof. Let i ∈ I be some player. By the proof of the if -direction of Theorem 2,
(GISDj)j∈I is a best-response-set-tuple. Consider some element (ci, ui) ∈ Di of
a best-response-set-tuple (Dj)j∈I for player i. By Theorems 1 and 2, it follows
that (ci, ui) ∈ GISDi. Hence, GISDi is the largest best-response-set-tuple for
player i. �

6 Interim Rationalizability

Rather recently, interim rationalizability has been proposed in the literature by
Ely and Pȩski (2006) as well as by Dekel et al. (2007) as a non-equilibrium
solution concept for static games with incomplete information. Intuitively, the
belief hierarchies on utilities are first fixed and then non-optimal choices are
iteratively deleted. In contrast, common belief in rationality does not put any
restrictions on the belief hierarchies on utilities. In the specific case of fixed belief
hierarchies on utilities, it turns out that the optimal choices under common
belief in rationality and Dekel et al.’s (2007) interim correlated rationalizability
coincide.

In order to relate common belief in rationality and the associated algorithm
generalized iterated strict dominance to interim correlated rationalizability the
latter needs to be formally defined. First of all, the necessary framework is in-
troduced.

Definition 8. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion. A Dekel-Fudenberg-Morris model of Γ is a tuple RΓ =
(
(Ri)i∈I , (τi)i∈I

)
,

where for every player i ∈ I

– Ri is a finite set of Dekel-Fudenberg-Morris types,
– τi : Ri → ∆(R−i×U−i) assigns to every Dekel-Fudenberg-Morris type ri ∈ Ri

a probability measure on the set of opponents’ Dekel-Fudenberg-Morris type
utility function combinations.
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Note that a Dekel-Fudenberg-Morris model significantly differs from standard
epistemic models, as strategic uncertainty is not formally represented via belief
hierarchies in the former. Originally, Dekel et al. (2007) also admit own payoff
uncertainty, i.e. the induced belief function assigns to every Dekel-Fudenberg-
Morris type a probability measure on combinations of opponents’ Dekel-Fudenberg-
Morris types and all players’ utility functions. In order to enable comparability
with our model, Definition 8 only considers uncertainty about the opponents’
utility functions.6

Within the framework of a Dekel-Fudenberg-Morris model the non-equilibrium
solution concept of interim correlated rationalizability can be defined next.

Definition 9. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion, RΓ some Dekel-Fudenberg-Morris model of it, i ∈ I some player, ri ∈ Ri
some Dekel-Fudenberg-Morris type of player i, and ui ∈ Ui some utility func-
tion of player i. The set of player i’s interim correlated rationalizable choices
ICRi(ri, ui) given the Dekel-Fudenberg-Morris type ri and the utility function
ui is inductively defined as follows.

– ICR0
i (ri, ui) := Ci,

–
ICRki (ri, ui) := {ci ∈ Ci : there exists νi ∈ ∆(C−i ×R−i × U−i)

such that (1), (2), and (3) are satisfied.},
where

(1) margR−i×U−i
νi = τi[ri],

(2) ci is optimal for
(
margC−i

νi, ui
)
,

(3) νi(c−i, r−i, u−i) > 0 implies cj ∈ ICRk−1j (rj , uj) for all j ∈ I \ {i},
for every k > 0,

– ICRi(ri, ui) :=
⋂
k≥0 ICR

k
i (ri, ui).

In fact, similarly to Battigalli et al. (2011, Theorem 1), it is shown that in-
terim correlated rationalizability can be epistemically characterized by common
belief in rationality for a fixed marginal belief hierarchy on utilities.

Theorem 3. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion, RΓ some Dekel-Fudenberg-Morris model of Γ , i ∈ I some player, ci ∈ Ci
some choice of player i, ri ∈ Ri some Dekel-Fudenberg-Morris type of player i
with marginal belief hierarchy rUi on utilities, and ui ∈ Ui some utility function
of player i. It is the case that ci ∈ ICRi(ri, ui), if and only if, there exists an
epistemic model MΓ of Γ with some type ti ∈ Ti of player i and belief hierarchy
tUi such that ti expresses common belief in rationality, ci is optimal for (ti, ui),
and tUi = rUi .
6 Alternatively, our model could be adapted to admit own payoff uncertainty. A type’s

expected utility function could then be defined as a convex combination of the respec-
tive player’s payoffs from the underlying game weighted with the type’s marginal
beliefs on his own payoffs. However, we intend to model epistemic structures for
incomplete information games as close as possible to Harsanyi’s original (1967-68)
model, and therefore do not admit own payoff uncertainty.
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Proof. For the only if direction of the theorem, consider ci ∈ ICRi(ri, ui).
Then, there exists a probability measure νci,ri,ui

i ∈ ∆(C−i × R−i × U−i) such
that margR−i×U−i

νci,ri,ui

i = τi[ri], ci is optimal for
(
margC−i

νci,ri,ui

i , ui
)
, and

νci,ri,ui

i (c−i, r−i, u−i) > 0 implies that cj ∈ ICRj(rj , uj) for all j ∈ I \ {i}.
Define the epistemic model MΓ =

(
(Ti)i∈I , (bi)i∈I

)
with

Ti := {tci,ri,ui

i : ri ∈ Ri, ui ∈ Ui, ci ∈ ICRi(ri, ui)}

and
bi[t

ci,ri,ui

i ](c−i, t
c−i,r−i,u−i

−i , u−i) := νci,ri,ui

i (c−i, r−i, u−i)

for all t
c−i,r−i,u−i

−i ∈ T−i and for all tci,ri,ui

i ∈ Ti. Note that any other choice
Dekel-Fudenberg-Morris type utility function tuple receives zero probability. As
ci is optimal for (margC−i

νci,ri,ui

i , ui), it follows directly by construction ofMΓ

that ci is optimal for (tci,ri,ui

i , ui).
It is now shown that every tci,ri,ui

i ∈ Ti believes in the opponents’ rationality.
Let tci,ri,ui

i ∈ Ti and (cj , t
cj ,rj ,uj

j , uj) ∈ Cj × Tj × Uj for some player j ∈ I \
{i} such that bi[t

ci,ri,ui

i ](cj , t
cj ,rj ,uj

j , uj) > 0. From the preceeding paragraph,

it follows that cj is optimal for (t
cj ,rj ,uj

j , uj). Hence, tci,ri,ui

i believes in the

opponents’ rationality. Since all types in the epistemic model MΓ believe in
the respective opponents’ rationality, every type tci,ri,ui

i ∈ Ti expresses common
belief in rationality.

In order to show that tUi = rUi for every type ti ∈ Ti and for every player
i ∈ I, we construct a type morphism (ψi)i∈I , where for every i ∈ I the function
ψi : Ti → Ri satisfies

τi[ψi(ti)](r−i, u−i) = bi[ti]
(
ψ−1−i (r−i)× {u−i}

)
for all (r−i, u−i) ∈ R−i × U−i and for all ti ∈ Ti. Towards this end define
ψi(t

ci,ri,ui

i ) := ri for all tci,ri,ui

i ∈ Ti and for all i ∈ I. Observe that

bi[t
ci,ri,ui

i ]
(
ψ−1−i (r−i)×{u−i}

)
= bi[t

ci,ri,ui

i ]
(
×j∈I\{i}{t

cj ,rj ,uj

j : cj ∈ ICRj(rj , uj)}
)

= νci,ri,ui

i (C−i × {r−i} × {u−i}) = τi[ri](r−i, u−i) = τi[ψi(t
ci,ri,ui

i )](r−i, u−i).

By Heifetz and Samet (1998), Proposition 5.1, it follows that ti and ψi(ti) induce
the same belief hierarchies on utilities for every type ti ∈ Ti and for every player

i ∈ I, and thus (tci,ri,ui

i )U =
(
ψi(t

ci,ri,ui

i )
)U

= rUi holds.
Now, take some player i ∈ I and some choice ci ∈ ICRi(ri, ui). Then, it has

been shown that ci is optimal for (tci,ri,ui

i , ui), as well as that tci,ri,ui

i expresses
common belief in rationality, and (tci,ri,ui

i )U = rUi .
The if direction of the theorem is addressed next. For every player j ∈ I, for

every Dekel-Fudenberg-Morris type rj ∈ Rj , for every utility function uj ∈ Uj ,
and for every k ≥ 0 define the set

Ckj (rj , uj) := {cj ∈ Cj : cj is optimal for (tj , uj)

for some tj ∈ Tj that expresses up to k-fold belief in rationality and tUj = rUj }.
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It is now shown by induction that Ckj (rj , uj) ⊆ ICRkj (rj , uj) holds for all k ≥
0, for every Dekel-Fudenberg-Morris type rj ∈ Rj , for every utility function
uj ∈ Uj , and for all j ∈ I. Consider some player i ∈ I. Note that C0

i (ri, ui) ⊆
ICR0

i (ri, ui) obtains directly, as ICR0
i (ri, ui) = Ci. Let k > 0 and suppose that

Ck−1j (rj , uj) ⊆ ICRk−1j (rj , uj) for every every Dekel-Fudenberg-Morris type
rj ∈ Rj , for all utility functions uj ∈ Uj , and for all j ∈ I. Take r∗i ∈ Ri,
ui ∈ Ui, and ci ∈ Cki (r∗i , ui). Then, ci is optimal for (t∗i , ui), where t∗i expresses
up to k-fold belief in rationality, and (t∗i )

U = (r∗i )U . By Perea (2014), Theorem
4, there exists a set-valued type morphism F = (Fi)i∈I between MΓ and RΓ ,
where Fj : Tj � Rj , for all j ∈ I with r∗i ∈ Fi(t∗i ). Hence, for all tj ∈ Tj it is
the case that

Fj(tj) = {rj ∈ Rj : bj [tj ]
(
C−j × F−1−j

(
F−j(t−j)

)
× {u−j}

)
= τj [rj ]

(
F−j(t−j)× {u−j}

)
for all t−j ∈ T−j and for all u−j ∈ U−j}.

Define ν
cj ,rj ,uj

j ∈ ∆(C−j×R−j×U−j) by ν
cj ,rj ,uj

j (c−j , r−j , u−j) := bj [tj ]
(
{c−j}×

F−1−j (r−j)×{u−j}
)

whenever rj ∈ Fj(tj). Without loss of generality assume that
Rj does not contain two different types inducing the same belief hierarchy on
utilities, which ensures that | Fj(tj) |= 1 for all tj ∈ Tj . Consequently,

ν
cj ,rj ,uj

j (C−j×{r−j}×{u−j}) = bj [tj ]
(
C−j×F−1−j (r−j)×{u−j}

)
= τj [rj ](r−j , u−j)

whenever rj ∈ Fj(tj). Besides, since ci is optimal for (t∗i , ui), and bi[t
∗
i ] has the

same marginal belief hierarchy on choices as ν
ci,r
∗
i ,ui

i , it follows that ci is optimal

for (ν
ci,r
∗
i ,ui

i , ui).

Moreover, assume that ν
ci,r
∗
i ,ui

i (c−i, r−i, u−i) > 0 and let j ∈ I \ {i} be some
opponent of player i. Then, bi[t

∗
i ]
(
{cj} × F−1j (rj)× {uj}

)
> 0, as

bi[t
∗
i ]
(
{c−i} × F−1−i (r−i)× {u−i}

)
= ν

ci,r
∗
i ,ui

i (c−i, r−i, u−i) > 0.

Consider some tj ∈ F−1j (rj) such that bi[t
∗
i ](cj , tj , uj) > 0. Since t∗i expresses

up to k-fold belief in rationality, cj is optimal for (tj , uj), where tj expresses
up to (k − 1)-fold belief in rationality, and by construction of F as well as by
Perea (2014), Theorem 4, it is the case that tUj = rUj . Hence, cj ∈ Ck−1j (rj , uj),

and by the inductive assumption it follows that cj ∈ ICRk−1j (rj , uj). There-

fore, it holds that margR−i×U−i
ν
ci,r
∗
i ,ui

i = τi[r
∗
i ], the choice ci is optimal for

(margC−i
ν
ci,r
∗
i ,ui

i , ui), and that ν
ci,r
∗
i ,ui

i (c−i, r−i, u−i) > 0 implies cj ∈ ICRk−1j (rj , uj)

for all j ∈ I \ {i}. Consequently, ci ∈ ICRki (r∗i , ui). It follows by induction
that

⋂
k≥0 C

k
j (rj , uj) ⊆ ICRj(rj , uj) for all j ∈ I, for all rj ∈ Rj , and for all

uj ∈ Uj . Now, take some type ti ∈ Ti that expresses common belief in rationality
such that tUi = rUi , and some chocie ci ∈ Ci that is optimal for (ti, ui). Then,
ci ∈

⋂
k≥0 C

k
i (ri, ui) and hence ci ∈ ICRi(ri, ui). �

This section is concluded with an illustration of interim correlated rationaliz-
ability by applying the concept to the incomplete information game of Example
1.
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Example 4. Consider again the two player game with incomplete information as
described in Figure 1.

Suppose the Dekel-Fudenberg-Morris model RΓ of Γ given by the sets of
Dekel-Fudenberg-Morris types RAlice = {rA, r′A}, RBob = {rB , r′B}, and the
following probability measures

– τAlice[rA] = 1
2 (rB , uB) + 1

2 (r′B , u
′
B),

– τAlice[r
′
A] = (rB , uB),

– τBob[rB ] = 1
2 (rA, uA) + 1

2 (r′A, u
′
A),

– τBob[r
′
B ] = (rA, uA).

Observe that

– ICR1
Alice(rA, uA) = ICR1

Alice(rA, u
′
A) = ICR1

Alice(r
′
A, uA) = ICR1

Alice(r
′
A, u

′
A) =

{a, b},
– ICR1

Bob(rB , uB) = ICR1
Bob(rB , u

′
B) = ICR1

Bob(r
′
B , uB) = ICR1

Bob(r
′
B , u

′
B) =

{d, e},
– ICR2

Alice(rA, uA) = ICR2
Alice(r

′
A, uA) = {a} and ICR2

Alice(rA, u
′
A) = ICR2

Alice(r
′
A, u

′
A) =

{a, b},
– ICR2

Bob(rB , uB) = ICR2
Bob(r

′
B , uB) = {d} and ICR2

Bob(rB , u
′
B) = ICR2

Bob(r
′
B , u

′
B) =

{d, e},
– ICR3

Alice(rA, uA) = ICR3
Alice(r

′
A, uA) = {a}, ICR3

Alice(rA, u
′
A) = {a, b},

and ICR3
Alice(r

′
A, u

′
A) = {b},

– ICR3
Bob(rB , uB) = ICR3

Bob(r
′
B , uB) = {d}, ICR3

Bob(rB , u
′
B) = {d, e}, and

ICR3
Bob(r

′
B , u

′
B) = {e}.

– ICR4
Alice(rA, uA) = ICR4

Alice(r
′
A, uA) = ICR4

Alice(rA, u
′
A) = {a}, and ICR4

Alice(r
′
A, u

′
A) =

{b},
– ICR4

Bob(rB , uB) = ICR4
Bob(r

′
B , uB) = ICR4

Bob(rB , u
′
B) = {d}, and ICR4

Bob(r
′
B , u

′
B) =

{e}.

The procedure of interim correlated rationalizability thus stops after 4 rounds
and the output is ICRAlice(rA, uA) = ICRAlice(r

′
A, uA) = ICRAlice(rA, u

′
A) =

{a}, and ICRAlice(r
′
A, u

′
A) = {b} for Alice as well as ICRBob(rB , uB) = ICRBob(r

′
B , uB) =

ICRBob(rB , u
′
B) = {d}, and ICRBob(r

′
B , u

′
B) = {e} for Bob. Note that the choice

Dekel-Fudenberg-Morris type utility function tuples selected by interim corre-
lated rationalizability induce the choice utility function pairs (a, uA) ,(a, u′A),
and (b, u′A) for Alice as well as (d, uB) , (d, u′B), and (e, u′B) for Bob. These are
exactly the choice utility function pairs selected by generalized iterated strict
dominance. Hence, the optimal choices under interim correlated rationalizabil-
ity and common belief in rationality are the same in this example. ♣

7 Complete Information

So far games with incomplete information have been considered. In particular,
a basic non-equilibrium way of strategic reasoning has been spelled out in the
face of payoff uncertainty. The construction has been conducted epistemically, i.e.
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with common belief in rationality, as well as algorithmically, i.e. with generalized
iterated strict dominance. Now, the question could be posed what conditions on
the interactive reasoning of players in incomplete information games actually
dissolve payoff uncertainty. In particular, such conditions would need to restrict
the marginal belief hierarchies with respect to the players’ utility functions.
Before this question can be tackled, the notion of complete information needs to
be formally defined in epistemic structures.

Intuitively, complete information means that there is no uncertainty about
any player’s utility function at any level of interactive reasoning. Given some
player i ∈ I, a type utility function pair (ti, ui) ∈ Ti × Ui can then be said to
express complete information, if there exists for every opponent j ∈ I \ {i} a
utility function uj ∈ Uj such that ti’s marginal belief hierarchy tUi on utilities is
generated by

(
ui, (uj)j∈I\{i}

)
, i.e. bi[ti]

(
(uj)j∈I\{i}

)
= 1, for every opponent j ∈

I\{i} player i only deems possible types tj ∈ Tj such that bj [tj ]
(
(uk)k∈I\{j}

)
= 1,

and for every opponent j ∈ I \ {i} player i only deems possible types tj ∈ Tj
that for every opponent k ∈ I \ {j} only deem possible types tk ∈ Tk such that
bk[tk]

(
(ul)l∈I\{k}

)
= 1, etc. Note that complete information is not defined simply

for a type but for a type utility function tuple with the reasoner’s actual utility
function.

Also, the notion of correct beliefs needs to be invoked in the context of the
players’ utility functions. A type utility function tuple (ti, ui) is said to believe
some opponent j to be correct about his utility function and marginal belief hi-
erarchy tUi on utilities, if ti only deems possible types tj such that bj [tj ](ui) = 1
and bj [tj ] assigns probability 1 to tUi . Compared to complete information cor-
rect beliefs are defined for a type utility function tuple instead of merely for
a type, since correct beliefs in the context of payoff uncertainty also concern
the reasoner’s utility function. With complete information and correct beliefs
formally defined, the following theorem characterizes complete information with
three doxastic correctness conditions.

Theorem 4. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a game with incomplete informa-

tion, MΓ some epistemic model of it, and i ∈ I some player. A type utility
function tuple (ti, ui) ∈ Ti × Ui of player i expresses complete information, if
and only if,

– for every opponent j ∈ I \ {i}, type ti only deems possible types tj ∈ Tj
that are correct about i′s utility function ui and marginal belief hierarchy on
utilities,

– for every opponent j ∈ I\{i}, type ti only deems possible type utility function
pairs (tj , uj) ∈ Tj ×Uj that only deem possible types t′i ∈ Ti that are correct
about j’s utilities and j’s marginal belief hierarchy on utilities,

– for all opponents j ∈ I \ {i} and k ∈ \{i, j}, type ti only deems possible
types tj ∈ Tj that have the same marginal belief on k’s utilities and on k’s
marginal belief hierarchies on utilities as ti has.

Proof. Since only ti’s marginal belief hierarchy on utilities is affected by incom-
plete information and the three doxastic conditions, attention can be restricted
to the induced marginal type tUi .
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For the if direction of the theorem suppose that i’s utility function is ui ∈ Ui
and that ti satisfies the three correctness of beliefs conditions. It is first shown
that ti’s marginal type tUi only deems possible a unique marginal type tUj and a
unique utility function uj ∈ Uj for every opponent j ∈ I \{i}. Towards a contra-
diction assume that tUi assigns positive probability to at least two marginal type

utility function pairs (tUj , uj) and (tUj
′
, u′j) for some opponent j ∈ I \ {i}. Since

ti believes that j is correct about his utility function and marginal belief hierar-
chy on utilities, ti believes that j only deems possible (tUi , ui). Consequently, the

marginal type utility function pairs (tUj , uj) and (tUj
′
, u′j) both only deem possible

(tUi , ui). Consider marginal type tUj and note that (tUj , uj) believes that i deems
it possible that j is characterized by the marginal type utility function tuple
(tUj
′
, u′j). Hence, (tUj , uj) does not believe that i is correct about his utility func-

tion and marginal belief hierarchy on utilities. It follows that ti deems it possible
that j does not believe that i is correct about his utility function and marginal
belief hierarchy on utilities, a contradiction. For every opponent j ∈ I \{i}, type
ti’s marginal type tUi thus assigns probability 1 to a single marginal type utility
function tuple (tUj , uj) and the corresponding type tj assigns probability 1 to

(tUi , ui). By the third condition in Theorem 4 it is ensured that for each oppo-
nent the respective other opponents share the same marginal belief on utilities,
and thus it follows, by induction, that ti’s marginal belief hierarchy on utilities
is generated by (uj)j∈I and therefore (ti, ui) expresses complete information.

For the only if direction of the theorem, suppose that (ti, ui) expresses com-
plete information and let (uj)j∈I ∈ ×j∈IUj be the tuple of utility functions
generating ti’s marginal belief hierarchy on utilities. Then, it directly follows
that the three doxastic conditions hold. �

From a conceptual point of view complete information can thus be modelled en-
tirely within the mind of the reasoner satsfying the three conditions of Theorem
4 instead of restricting the game specification. Accordingly, the specific case of
payoff certainty can be obtained subjectively or objectively.

The epistemic and algorithmic concepts of common belief in rationality ac-
cording to Definition 4 and generalized iterated strict dominance according to
Definition 6, respectively, can be considered in the special case of complete in-
formation. Indeed, both concepts are then equivalent to their natural complete
information analogues.

In epistemic models for complete information games the induced belief func-
tions assign to every type a probability measure on the set of opponents’ choice
type combinations and not choice type utility function combinations. Interactive
uncertainty about payoffs is not modelled, as it is absent from the underlying
game. However, common belief in rationality is defined in exactly the same way
as in Definition 4 with the only immediate difference that Γ is a game with
complete information. In the case of complete information, optimality and belief
in rationality are not defined with respect to type utility function pairs, but
only with respect to types. Common belief in rationality for incomplete infor-
mation games with a single utility function for every player is thus equivalent to
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the standard definition of common belief in rationality for complete information
games.

Generalized iterated strict dominance joins the class of solution concepts for
incomplete information games. For complete information games the algorithm is
equivalent to iterated strict dominance. To recall the definition of iterated strict
dominance, let Γ =

(
I, (Ci)i∈I , (ui)i∈I

)
be a complete information game, and

consider the sets C0
i := Ci and

Cki := Ck−1i \ {ci ∈ Ci : there exists ri ∈ ∆(Ck−1i )

such that ui(ci, c−i) <
∑
c′i∈Ci

ri(c
′
i) · ui(c′i, c−i) for all c−i ∈ Ck−1−i }

for all k > 0 and for all i ∈ I. The output of iterated strict dominance is then
defined as ISD := ×i∈IISDi ⊆ ×i∈ICi, where ISDi :=

⋂
k≥0 C

k
i for every

player i ∈ I. With complete information there is for every player i and for every
round k a unique decision problem Γ ki (ui) =

(
Cki (ui), C

k
−i(ui), ui

)
, as payoff

uncertainty vanishes. Thus, Ck−i(ui) = ×j∈I\{i}Ckj , Cki (ui) = Cki , and Definition
6 then becomes a formulation of iterated strict dominance in terms of decision
problems. Consequently, generalized iterated strict dominance for incomplete
information games with a single utility function for every player is equivalent to
iterated strict dominance for complete information games.

8 Conclusion

The basic epistemic notion of common belief in rationality has been considered
within a one-person perspective model of incomplete information static games
that is kept as parsimonious and simple as possible. The algorithmic charac-
terization of this concept in terms of decision problems and strict dominance
arguments has led to the non-equilibrium solution concept of generalized iter-
ated strict dominance, which can be seen as a direct incomplete information
analogue to iterated strict dominance. This rather natural and basic algorithm
provides a tool for economists when analyzing situations involving payoff uncer-
tainty. Due to its simplicity, generalized strict dominance seems suitable for a
broad spectrum of potential applications, including management and political
theory.
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