Pearce's Lemma EPICENTER Spring Course 2016

Christian W. Bach

EPICENTER & University of Liverpool

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Proof

Appendix 00000000000

Introduction

Definitions

Proof

Appendix: Weierstrass' extreme value theorem

EPICENTER Spring Course 2016: Pearce's Lemma

□ ▶ < 금 ▶ < 글 ▶ < 글 ▶ 글
 ○ <
 C. W. Bach (EPICENTER & University of Liverpool)

Definitions

Appendix 00000000000

A Characterization of Rationality

Pearce's Lemma:

The rational choices in a static game are exactly those choices that are not strictly dominated.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Application

Four ways to rationality:

- 1 Identify all rational choices: find a belief on the opponents' choices such that the respective choice is optimal.
- 2 Identify all irrational choices: show that the respective choice is not optimal for any belief on the opponents' choices.
- 3 Identify all choices that are not strictly dominated: find an opponents' choice-combination such that there is no choice that is better than the respective choice.
- Identify all choices that are strictly dominated: show that the respective choice fares worse than some other choice for all opponents' choice-combinations.

Note:

- For rational choices it is often easier to find a supporting belief.
- For irrational choices it is often easier to show strict dominance.

Definitions •ooooooooooooooo Proof

Appendix

Introduction

Definitions

Appendix: Weierstrass' extreme value theorem

EPICENTER Spring Course 2016: Pearce's Lemma

▲ □ ▶ 《 @ ▶ 《 필 ▶ 《 필 ▶ 결 ♥ ○ Q (
 C. W. Bach (EPICENTER & University of Liverpool)

Proof

Games

Definition

A static game is a tuple

$$\Gamma = \left(I, (C_i)_{i \in I}, (U_i)_{i \in I} \right),$$

where

- I denotes the finite set of players,
- C_i denotes the finite set of choices for player i,
- \blacksquare $U_i: \times_{i \in I} C_i \to \mathbb{R}$ denotes the *utility function* of player *i*.

-

Appendix 00000000000

Belief about the opponents' choices

Definition

Let Γ be a static game, and *i* be a player. A *belief for player i about the opponents' choices* is a probability distribution

$$b_i:C_{-i}\to[0;1]$$

over the set of opponents' choice-combinations $C_{-i} = \times_{j \in I \setminus \{i\}} C_j$.

Appendix 00000000000

Expected utility

Definition

Let Γ be a static game, and *i* be a player with utility function U_i . Suppose that player *i* entertains belief b_i and chooses c_i . The *expected utility for player i* is

$$u_i(c_i, b_i) = \sum_{c_{-i} \in C_{-i}} b_i(c_{-i}) \cdot U_i(c_i, c_{-i}),$$

where $(c_i, c_{-i}) = (c_1, ..., c_n) \in \times_{j \in I} C_j$.

Appendix 00000000000

Optimality

Definition

Let Γ be a static game, and *i* be a player with utility function U_i . Suppose that player *i* entertains belief b_i . A choice c_i for player *i* is *optimal*, iff

$$u_i(c_i, b_i) \ge u_i(c'_i, b_i)$$

holds for all choices $c'_i \in C_i$ of player *i*.

Definitions

Appendix

Rationality

Definition

Let Γ be a static game, and *i* be a player with utility function U_i . A choice c_i for player *i* is *rational*, iff there exists a belief b_i for player *i* about the opponents' choices such that c_i is optimal.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Appendix 00000000000

Randomizing

Definition

Let Γ be a static game, and *i* be a player. A *randomized choice* for player *i* is a probability distribution

$$r_i:C_i\to[0;1]$$

over the set C_i of player *i*'s choices

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

イロト イヨト イヨト イヨ

Appendix 00000000000

Utility with randomizing

Definition

Let Γ be a static game, and *i* be a player with utility function U_i . Suppose that player *i* chooses r_i , and that his opponents choose according to c_{-i} . The *randomizing-utility for player i* is

$$V_i(r_i, c_{-i}) = \sum_{c_i \in C_i} r_i(c_i) \cdot U_i(c_i, c_{-i}),$$

where $(c_i, c_{-i}) = (c_1, ..., c_n) \in \times_{j \in I} C_j$.

Expected utility with randomizing

Definition

Let Γ be a static game, and *i* be a player with utility function U_i . Suppose that player *i* entertains belief b_i and chooses r_i . The *expected randomizing-utility for player i* is

$$\begin{aligned} v_i(r_i, b_i) &= \sum_{c_{-i} \in C_{-i}} b_i(c_{-i}) \cdot V_i(r_i, c_{-i}) \\ &= \sum_{c_{-i} \in C_{-i}} b_i(c_{-i}) \cdot \Big(\sum_{c_i \in C_i} r_i(c_i) \cdot U_i(c_i, c_{-i})\Big), \end{aligned}$$
where $(c_i, c_{-i}) = (c_1, \dots, c_n) \in \times_{i \in I} C_i.$

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Appendix 00000000000

Strict Dominance: the pure case

Definition

Let Γ be a static game, and *i* be a player. A choice c_i for player *i* is *strictly dominated by another choice*, iff there exists some choice $c'_i \in C_i$ of player *i* such that

$$U_i(c_i, c_{-i}) < U_i(c'_i, c_{-i})$$

holds for every opponents' choice combination $c_{-i} \in C_{-i}$.

EPICENTER Spring Course 2016: Pearce's Lemma

< □ > < ঐ > < ই > < ই > < ই > < ই <
 C. W. Bach (EPICENTER & University of Liverpool)

Appendix 00000000000

Strict Dominance: the randomized case

Definition

Let Γ be a static game, and *i* be a player. A choice c_i for player *i* is *strictly dominated by a randomized choice*, iff there exists some randomized choice $r_i \in \Delta(C_i)$ of player *i* such that

$$U_i(c_i, c_{-i}) < V_i(r_i, c_{-i})$$

holds for every opponents' choice combination $c_{-i} \in C_{-i}$.

EPICENTER Spring Course 2016: Pearce's Lemma

< □ > < ঐ > < ই > < ই > < ই > < ই <
 C. W. Bach (EPICENTER & University of Liverpool)

Appendix 00000000000

Strict Dominance

Definition

Let Γ be a static game, and *i* be a player. A choice c_i for player *i* is *strictly dominated*, iff c_i is either strictly dominated by another choice or strictly dominated by a randomized choice.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

 Appendix

Introduction

Definitions

Proof

Appendix: Weierstrass' extreme value theorem

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A basic lemma

Basic-Lemma I

Let *I* be some index set, $0 \le \alpha_i \le 1$ for all $i \in I$ such that $\sum_{i \in I} \alpha_i = 1$, $x \in \mathbb{R}$, and $y_i \in \mathbb{R}$ for all $i \in I$. If $x < \sum_{i \in I} \alpha_i y_i$, then there exists $i^* \in I$ such that $x < y_{i^*}$.

Proof:

- Towards a contradiction suppose that x ≥ y_i for all i ∈ I.
- Then, $\alpha_i x \ge \alpha_i y_i$ holds for all $i \in I$.
- It directly follows that $1 \cdot x = \sum_{i \in I} \alpha_i x \ge \sum_{i \in I} \alpha_i y_i$, a contradiction.

▲ □ ▶ 《 @ ▶ 《 필 ▶ 《 필 ▶ 결 ♥ ○ Q (
 C. W. Bach (EPICENTER & University of Liverpool)

Proof

A second basic lemma

Basic-Lemma II

Let *I* be some index set, $0 < \alpha_i < 1$ for all $i \in I$ such that $\sum_{i \in I} \alpha_i = 1$, $x \in \mathbb{R}$, and $y_i \in \mathbb{R}$ for all $i \in I$. If $x \leq \sum_{i \in I} \alpha_i y_i$, then (there exists $i^* \in I$ such that $x < y_{i^*}$) or ($x = y_i$ for all $i \in I$).

Proof:

- By contraposition, suppose that $x \ge y_i$ for all $i \in I$ and that there exists $i' \in I$ such that $x \ne y_{i'}$.
- Then, $x > y_{i'}$.
- As $0 < \alpha_i < 1$ holds for all $i \in I$, it is the case that $\alpha_{i'}x > \alpha_{i'}y_{i'}$ and $\alpha_ix \ge \alpha_iy_i$ for all $i \in I \setminus \{i'\}$.

▲ □ ▶ < □ ▶ < 필 ▶ < 필 ▶ < 필 ▶ < 필 ◆ ○ C. W. Bach (EPICENTER & University of Liverpool)

EPICENTER Spring Course 2016: Pearce's Lemma

Two useful facts

Remark 1

If a choice c_i is strictly dominated by c_i^* , then $u_i(c_i, b_i) < u_i(c_i^*, b_i)$ for all beliefs $b_i \in \Delta(C_{-i})$.

Proof:

- By definition $U_i(c_i, c_{-i}) < U_i(c_i^*, c_{-i})$ holds for all $c_{-i} \in C_{-i}$.
- Let $b_i \in \Delta(C_{-i})$ be some belief for player *i*.
- Then,

$$b_i(c_{-i}) \cdot U_i(c_i, c_{-i}) \le b_i(c_{-i}) \cdot U_i(c_i^*, c_{-i})$$
 for all $c_{-i} \in C_{-i}$,

and

$$b_i(c'_{-i}) \cdot U_i(c_i, c'_{-i}) < b_i(c'_{-i}) \cdot U_i(c^*_i, c'_{-i})$$
 for all $c'_{-i} \in \text{supp}(b_i)$.

 $\blacksquare \text{ Hence, } u_i(c_i, b_i) = \sum_{c_{-i} \in C_{-i}} b_i(c_{-i}) \cdot U_i(c_i, c_{-i}) < \sum_{c_{-i} \in C_{-i}} b_i(c_{-i}) \cdot U_i(c_i^*, c_{-i}) = u_i(c_i^*, b_i)$

Remark 2

If a choice c_i is strictly dominated by r_i , then $u_i(c_i, b_i) < v_i(r_i, b_i)$ for all beliefs $b_i \in \Delta(C_{-i})$.

Proof:

Analogously to the pure case.

 Appendix

Pearce's Lemma

Theorem (Pearce's Lemma)

Let Γ be a static game, *i* be a player, and c_i be a choice for player *i*. c_i is rational, iff, c_i is not strictly dominated.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

イロト イヨト イヨト イヨ

Proof of the *only if* (\Rightarrow) **direction** ("strictly dominated implies irrational")

• Let c_i^{SD} be a choice of player *i* that is strictly dominated.

Case 1:

- Suppose that c_i^{SD} is strictly dominated by another choice c_i^* .
- Remark 1 then implies that $u_i(c_i^{SD}, b_i) < u_i(c_i^*, b_i)$ holds for all beliefs $b_i \in \Delta(C_{-i})$.
- Hence, there exists no belief $b_i \in \Delta(C_{-i})$ such that c_i^{SD} can be optimal, and c_i^{SD} therefore is irrational.

Case 2:

- Suppose that c_i^{SD} is strictly dominated by a randomized choice r_i.
- Remark 2 then implies that $u_i(c_i^{SD}, b_i) < v_i(r_i, b_i)$ holds for all beliefs $b_i \in \Delta(C_{-i})$.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Definitions

 Appendix 00000000000

Proof of the *only if* (\Rightarrow) direction ("strictly dominated implies irrational")

Observe that by associativity, commutativity, and distributivity it holds that

$$v_{i}(r_{i}, b_{i}) = \sum_{c_{-i} \in C_{-i}} b_{i}(c_{-i}) \cdot \left(\sum_{c_{i} \in C_{i}} r_{i}(c_{i}) \cdot U_{i}(c_{i}, c_{-i})\right) = \sum_{c_{i} \in C_{i}} r_{i}(c_{i}) \cdot \left(\sum_{c_{-i} \in C_{-i}} b_{i}(c_{-i}) \cdot U_{i}(c_{i}, c_{-i})\right) = \sum_{c_{i} \in C_{i}} r_{i}(c_{i}) \cdot u_{i}(c_{i}, b_{i})$$

Hence, $u_i(c_i^{SD}, b_i) < \sum_{c_i \in C_i} r_i(c_i) \cdot u_i(c_i, b_i)$ holds for all beliefs $b_i \in \Delta(C_{-i})$.

 Appendix 00000000000

Proof of the *only if* (\Rightarrow) direction ("strictly dominated implies irrational")

Let $b'_i \in \Delta(C_{-i})$ be some belief.

However, as $0 \le r_i(c_i) \le 1$ for all $c_i \in C_i$, the inequality

$$u_i(c_i^{SD}, b_i') < \sum_{c_i \in C_i} r_i(c_i) \cdot u_i(c_i, b_i')$$

implies – by Basic-Lemma I – that there exists some choice $c'_i \in C_i$ such that $u_i(c_i^{SD}, b'_i) < u_i(c'_i, b'_i)$.

Therefore, c_i^{SD} cannot be optimal given belief b'_i .

• As the belief b'_i has been chosen arbitrarily, c_i^{SD} is irrational.

Proof of the *if* (\Leftarrow) direction ("irrational implies strictly dominated")

• Let c_i^{IR} be a choice of player *i* that is irrational.

Step 1: fixing three basic building blocks d, d^+ and f

Define functions $d : C_i \times \Delta(C_{-i}) \to \mathbb{R}$ and $d^+ : C_i \times \Delta(C_{-i}) \to \mathbb{R}$ such that

$$d(c_i, b_i) := u_i(c_i, b_i) - u_i(c_i^{IR}, b_i)$$

and

$$d^+(c_i, b_i) := \max\{0, d(c_i, b_i)\}$$

for every choice-belief pair $(c_i, b_i) \in C_i \times \Delta(C_{-i})$ of player *i*.

< □ > < ঐ > < ই > < ই > < ই > < ই <
 C. W. Bach (EPICENTER & University of Liverpool)

Definitions

 Appendix 00000000000

Proof of the *if* (\Leftarrow) direction ("irrational implies strictly dominated")

■ Moreover, define a function $f : \Delta(C_{-i}) \rightarrow \mathbb{R}$ such that

$$f(b_i) := \sum_{c_i \in C_i} \left(d^+(c_i, b_i) \right)^2$$

for all $b_i \in \Delta(C_{-i})$.

■ As the function *f* is continuous and its domain $\Delta(C_{-i})$ is compact, it follows with **Weierstrass' extreme value theorem** that the function *f* attains a minimum, i.e. there exists a belief $b_i^{f-min} \in \Delta(C_{-i})$ such that $f(b_i^{f-min}) \leq f(b_i)$ for all $b_i \in \Delta(C_{-i})$.

Definitions

Proof of the *if* (⇐) direction ("irrational implies strictly dominated")

Step 2: building a randomized choice r_i^*

Define numbers

$$r_i^*(c_i) := \frac{d^+(c_i, b_i^{f-min})}{\sum_{c_i' \in C_i} d^+(c_i', b_i^{f-min})}$$

for every choice $c_i \in C_i$ of player *i*.

- **Remark**: the weight that r_i^* assigns to choices increases in the goodness of the respective choice relative to c_i^{IR} .
- Observe that the numbers r^{*}_i(c_i) for all c_i ∈ C_i constitute a randomized choice r^{*}_i ∈ Δ(C_i).

Proof of the *if* direction ("irrational implies strictly dominated")

- **1** Well-definedness of r_i^* :
 - As c_i^{IR} is irrational, it cannot be optimal given belief b_i^{f-min} .
 - Hence, there exists some choice $c_i^* \in C_i$ such that $u_i(c_i^*, b_i^{f-min}) > u_i(c_i^{IR}, b_i^{f-min})$.
 - Thus, $d^+(c_i, b_i^{f-min}) > 0$ for at least some choice $c_i \in C_i$.
 - As, by construction, $d^+(c_i, b_i^{f-min}) \ge 0$ for all $c_i \in C_i$, it follows that $\sum_{c'_i \in C_i} d^+(c'_i, b_i^{f-min}) > 0$ and therefore $r_i^*(c_i)$ is well-defined for every $c_i \in C_i$.

2 Since
$$d^+(c_i, b_i^{f-min}) \ge 0$$
 for every $c_i \in C_i$, it is the case that $r_i^*(c_i) \ge 0$ for every $c_i \in C_i$.

3 Also, it holds that
$$\sum_{c_i \in C_i} r_i^*(c_i) = \sum_{c_i \in C_i} \frac{d^+(c_i, b_i^{f-\min})}{\sum_{c_i' \in C_i} d^+(c_i', b_i^{f-\min})} = 1.$$

Proof of the *if* (⇐) direction ("irrational implies strictly dominated")

- Next, it is shown that c_i^{IR} is **strictly dominated** by the randomized choice r_i^* , i.e. $U_i(c_i^{IR}, c_{-i}) < V_i(r_i^*, c_{-i})$ for all $c_{-i} \in C_{-i}$, or equivalently, $V_i(r_i^*, c_{-i}) U_i(c_i^{IR}, c_{-i}) > 0$ for all $c_{-i} \in C_{-i}$.
- Let $c_{-i}^* \in C_{-i}$ be some opponents' choice-combination.
- Consider the belief $b_i^{c_{-i}^*} \in \Delta(C_{-i})$ of player *i* that assigns probability-1 to the opponents' choice-combination c_{-i}^* .

(日)

Definitions

 Appendix 00000000000

Proof of the *if* (⇐) direction ("irrational implies strictly dominated")

Step 3: reformulating strict dominance in terms of d and d^+

• Observe that, $V_i(r_i^*, c_{-i}^*) - U_i(c_i^{IR}, c_{-i}^*) = v_i(r_i^*, b_i^{c_{-i}^*}) - u_i(c_i^{IR}, b_i^{c_{-i}^*})$

$$= \sum_{c_i \in C_i} r_i^*(c_i) \cdot u_i(c_i, b_i^{c_{-i}^*}) - \sum_{c_i \in C_i} r_i^*(c_i) \cdot u_i(c_i^{IR}, b_i^{c_{-i}^*})$$

$$=\sum_{c_i\in C_i}r_i^*(c_i)\cdot\left(u_i(c_i,b_i^{c_{i-i}^*})-u_i(c_i^{I\!R},b_i^{c_{i-i}^*})\right)=\sum_{c_i\in C_i}r_i^*(c_i)\cdot d(c_i,b_i^{c_{i-i}^*})$$

• As
$$r_i^*(c_i) = \frac{d^+(c_i, b_i^{f-min})}{\sum_{c_i' \in C_i} d^+(c_i', b_i^{f-min})}$$
 for all $c_i \in C_i$, and as
 $\sum_{c_i' \in C_i} d^+(c_i', b_i^{f-min}) > 0$, the inequality
 $V_i(r_i^*, c_{-i}^*) - U_i(c_i^{IR}, c_{-i}^*) > 0$ is **equivalent** to the inequality
 $\sum_{c_i \in C_i} d^+(c_i, b_i^{f-min}) \cdot d(c_i, b_i^{c_{-i}^*}) > 0$.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Proof of the *if* (\Leftarrow) direction ("irrational implies strictly dominated")

Step 4: building a belief b_i^{λ} in terms of the *f*-minimal belief b_i^{f-min} and the probability-1 belief $b_i^{c^{-i}}$

- For every $\lambda \in [0; 1]$ define $b_i^{\lambda} := (1 \lambda) \cdot b_i^{f-min} + \lambda \cdot b_i^{c^*_{-i}}$ such that $b_i^{\lambda}(c_{-i}) = (1 \lambda) \cdot b_i^{f-min}(c_{-i}) + \lambda \cdot b_i^{c^*_{-i}}(c_{-i})$ for all $c_{-i} \in C_{-i}$.
- Observe that $b_i^{\lambda} \in \Delta(C_{-i})$ for all $\lambda \in [0, 1]$ is indeed a belief for player *i*. ("a convex combination of two beliefs always is a belief")
 - Note that for all $\lambda \in [0; 1]$, it is the case that $0 \le b_i^{\lambda}(c_{-i}) \le 1$ for all $c_{-i} \in C_{-i}$.

Note that for all $\lambda \in [0; 1]$, it is the case that $\sum_{c_{-i} \in C_{-i}} b_i^{\lambda}(c_{-i})$ = $(1 - \lambda) \cdot \sum_{c_{-i} \in C_{-i}} b_i^{c_{-min}}(c_{-i}) + \lambda \cdot \sum_{c_{-i} \in C_{-i}} b_i^{c_{-i}^*}(c_{-i}) = 1.$

Proof of the *if* (\Leftarrow) direction ("irrational implies strictly dominated")

Step 5: fixing a small number ϵ to make *d* negative in b_i^{λ} if so in b_i^{f-min}

Now, choose a real number $\epsilon > 0$ such that for all $c_i \in C_i$, if $d(c_i, b_i^{f-min}) < 0$, then $d(c_i, b_i^{\lambda}) < 0$ for all $\lambda \in [0; \epsilon]$.

Observe that such an ϵ exists for all $c_i \in C_i$.

Let $c_i \in C_i$ be a choice for player *i* such that $d(c_i, b_i^{f-min}) < 0$.

If $\lambda = 0$, then $b_i^{\lambda} = b_i^{f-min}$ and thus $d(c_i, b_i^{\lambda}) < 0$ immediately holds.

Note that
$$d(c_i, b_i^{\lambda}) = u_i(c_i, b_i^{\lambda}) - u_i(c_i^{IR}, b_i^{\lambda}) =$$

 $\sum_{\substack{c_{-i} \in C_{-i} \\ i \in c$

is linear – and hence continuous – in λ .

By continuity of $d(c_i, b_i^{\lambda})$ in λ there exists $\epsilon_{c_i} > 0$ such that $d(c_i, b_i^{\lambda}) < 0$ also holds for all $\lambda < \epsilon_{c_i}$.

Choose
$$\epsilon = \min\{\epsilon_{c_i} : c_i \in C_i\}.$$

▲ □ ▶ 《 @ ▶ 《 필 ▶ 《 필 ▶ 결 ♥ ○ Q (
 C. W. Bach (EPICENTER & University of Liverpool)

Proof of the *if* (\Leftarrow) direction ("irrational implies strictly dominated")

Step 6: establishing an inequality about d^+ and d

It is shown for all $c_i \in C_i$ that the inequality

$$\left(d^+(c_i, b_i^{\lambda})\right)^2 \le \left((1-\lambda) \cdot d^+(c_i, b_i^{f-\min}) + \lambda \cdot d(c_i, b_i^{c^*_{-i}})\right)^2 \qquad (\circ)$$

holds for all $\lambda \in (0; \epsilon]$.

- Let $c_i^{\circ} \in C_i$ be some choice for player *i* and $\lambda^{\circ} \in (0; \epsilon]$ some "small" positive number.
- **Case 1:** Suppose that $d(c_i^{\circ}, b_i^{\lambda^{\circ}}) < 0$. Then, $d^+(c_i^{\circ}, b_i^{\lambda^{\circ}}) = 0$, and the inequality (\circ) holds.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definitions

Proof of the *if* (⇐) direction ("irrational implies strictly dominated")

 $\text{Required to show: } \left(d^+(c_i^{\circ}, b_i^{\lambda^{\circ}})\right)^2 \leq \left((1-\lambda^{\circ}) \cdot d^+(c_i^{\circ}, b_i^{f-\min}) + \lambda^{\circ} \cdot d(c_i^{\circ}, b_i^{c_i^{\mathfrak{S}}})\right)^2 \qquad (\circ)$

■ **Case 2:** Suppose that $d(c_i^{\circ}, b_i^{\lambda^{\circ}}) \ge 0$. The appropriate choice of ϵ assures that $d(c_i^{\circ}, b_i^{f-min}) \ge 0$, and therefore $d^+(c_i^{\circ}, b^{\lambda^{\circ}}) = d(c_i^{\circ}, b_i^{\lambda^{\circ}})$ as well as $d^+(c_i^{\circ}, b_i^{f-min}) = d(c_i^{\circ}, b_i^{f-min})$.

Thus,
$$d^+(c_i^{\circ}, b_i^{\lambda^{\circ}}) = d(c_i^{\circ}, (1-\lambda^{\circ}) \cdot b_i^{f-min} + \lambda^{\circ} \cdot b_i^{c_{-i}^*}).$$

■ As c_i° and λ° are fixed, $d(c_i^{\circ}, (1 - \lambda^{\circ}) \cdot b_i^{f-min} + \lambda^{\circ} \cdot b_i^{c_{-i}^{*}})$ is a linear function in *i*'s beliefs b_i , thus $d(c_i^{\circ}, (1 - \lambda^{\circ}) \cdot b_i^{f-min} + \lambda^{\circ} \cdot b_i^{c_{-i}^{*}}) = (1 - \lambda^{\circ}) \cdot d(c_i^{\circ}, b_i^{f-min}) + \lambda^{\circ} \cdot d(c_i^{\circ}, b_i^{c_{-i}^{*}}).$

■ Consequently, $d^+(c_i^{\circ}, b_i^{\lambda^{\circ}}) = (1 - \lambda^{\circ}) \cdot d^+(c_i^{\circ}, b_i^{f-min}) + \lambda^{\circ} \cdot d(c_i^{\circ}, b_i^{c^*-i})$ results, which directly implies the inequality (\circ).

■ Hence, (◦) holds for all $c_i^{\circ} \in C_i$ and for all $\lambda^{\circ} \in (0; \epsilon]$.

Definitions

 Appendix 00000000000

Proof of the *if* (⇐) direction ("irrational implies strictly dominated")

Step 7: deriving consequences for f in b_i^{λ}

Then,

$$f(b_i^{\lambda}) = \sum_{c_i \in C_i} \left(d^+(c_i, b_i^{\lambda}) \right)^2$$

$$\leq \sum_{c_i \in C_i} \left((1-\lambda) \cdot d^+(c_i, b_i^{f-min}) + \lambda \cdot d(c_i, b_i^{c^*_{-i}}) \right)^2$$

$$= (1-\lambda)^2 \cdot \sum_{c_i \in C_i} \left(d^+(c_i, b_i^{f-min}) \right)^2 + 2\lambda(1-\lambda) \cdot \left(\sum_{c_i \in C_i} d^+(c_i, b_i^{f-min}) \cdot d(c_i, b_i^{c^*-i}) \right) \\ + \lambda^2 \cdot \sum_{c_i \in C_i} \left(d(c_i, b_i^{c^*-i}) \right)^2 \text{ for all } \lambda \in (0; \epsilon]$$

■ Recall that $f(b_i^{f-min}) \leq f(b_i)$ for all $b_i \in \Delta(C_{-i})$.

□ ▶ < 금 ▶ < 글 ▶ < 글 ▶ 글
 ○ <
 C. W. Bach (EPICENTER & University of Liverpool)

Definitions

 Appendix 00000000000

Proof of the *if* (⇐) direction ("irrational implies strictly dominated")

Thus,
$$\sum_{c_i \in C_i} (d^+(c_i, b_i^{f-min}))^2 = f(b_i^{f-min}) \le f(b_i^{\lambda})$$

 $\le (1-\lambda)^2 \cdot \sum_{c_i \in C_i} (d^+(c_i, b_i^{f-min}))^2 + 2\lambda(1-\lambda) \cdot (\sum_{c_i \in C_i} d^+(c_i, b_i^{f-min}) \cdot d(c_i, b_i^{c^*-i}))$
 $+ \lambda^2 \cdot \sum_{c_i \in C_i} (d(c_i, b_i^{c^*-i}))^2 \text{ for all } \lambda \in (0; \epsilon].$

It follows for all
$$\lambda \in (0; \epsilon]$$
 that
 $(1 - (1 - \lambda)^2) \sum_{c_i \in C_i} (d^+(c_i, b_i^{f-min}))^2$
 $= (2\lambda - \lambda^2) \sum_{c_i \in C_i} (d^+(c_i, b_i^{f-min}))^2$

$$\leq 2\lambda(1-\lambda)\cdot \left(\sum_{c_i\in C_i} d^+(c_i, b_i^{f-min})\cdot d(c_i, b_i^{c^*_{-i}})\right) + \lambda^2 \cdot \sum_{c_i\in C_i} \left(d(c_i, b_i^{c^*_{-i}})\right)^2.$$

C. W. Bach (EPICENTER & University of Liverpool)

Definitions

 Appendix 00000000000

Proof of the *if* (⇐) direction ("irrational implies strictly dominated")

Dividing both sides of the inequality by $\lambda > 0$ yields $(2 - \lambda) \sum_{c_i \in C_i} \left(d^+(c_i, b_i^{f-min}) \right)^2$ $\leq 2(1 - \lambda) \cdot \left(\sum_{c_i \in C_i} d^+(c_i, b_i^{f-min}) \cdot d(c_i, b_i^{c^*_{-i}}) \right) + \lambda \cdot \sum_{c_i \in C_i} \left(d(c_i, b_i^{c^*_{-i}}) \right)^2$

for all $\lambda \in (0; \epsilon]$.

Let λ approach 0 and obtain

$$\sum_{c_i \in C_i} \left(d^+(c_i, b_i^{f-min}) \right)^2 \le \left(\sum_{c_i \in C_i} d^+(c_i, b_i^{f-min}) \cdot d(c_i, b_i^{c_{i-i}^*}) \right)$$

■ Recall that $\sum_{c_i \in C_i} d^+(c_i, b_i^{f-min}) > 0$ and thus $\sum_{c_i \in C_i} \left(d^+(c_i, b_i^{f-min}) \right)^2 > 0.$

Therefore, $\sum_{c_i \in C_i} d^+(c_i, b_i^{f-min}) \cdot d(c_i, b_i^{c_{-i}^*}) > 0$ obtains.

Definitions

Proof 00000000000000000000000000 Appendix 00000000000

Proof of the *if* (⇐) direction ("irrational implies strictly dominated")

Step 8: establishing that r_i^* strictly dominates c_i^{IR}

Recall that

$$\sum_{c_i \in C_i} d^+(c_i, b_i^{f-min}) \cdot d(c_i, b_i^{c^*_{-i}}) > 0$$

is equivalent to

$$V_i(r_i^*, c_{-i}^*) > U_i(c_i^{IR}, c_{-i}^*).$$

As the opponents' choice combination c_{-i}^* has been chosen arbitrarily, it can be concluded that $U_i(c_i^{IR}, c_{-i}) < V_i(r_i^*, c_{-i})$ holds for all $c_{-i} \in C_{-i}$, and the irrational choice c_i^{IR} is thus strictly dominated by the randomized choice r_i^* .

A D N A D N A D N A D

Proof

Appendix •ooooooooooo

Introduction

Definitions

Appendix: Weierstrass' extreme value theorem

EPICENTER Spring Course 2016: Pearce's Lemma

▲ □ ▶ 《 @ ▶ 《 필 ▶ 《 필 ▶ 결 ♥ ○ Q (
 C. W. Bach (EPICENTER & University of Liverpool)

Topology, topological space, and open sets

Definition

A topology on some set *X* is a set $T \subseteq \mathcal{P}(X)$ of subsets of *X* such that

 $\blacksquare \ \emptyset, X \in \mathcal{T},$

If $T, T' \in \mathcal{T}$, then $T \cap T' \in \mathcal{T}$,

• if $T_i \in \mathcal{T}$ for all $i \in I$, then $\cup_{i \in I} T_i \in \mathcal{T}$.

A set *X* for which a topology \mathcal{T} has been specified is called a topological space. A set $T \in \mathcal{T}$ is called open set.

Definitions

Proof

Appendix

Standard topology

Definition

A set $O \subseteq \mathbb{R}$ is called open, if for all $o \in O$ there exists $\epsilon > 0$ such that $(o - \epsilon; o + \epsilon) \subseteq O$. The set containing all such sets O is called standard topology of \mathbb{R} .

▲ □ ▶ 《 @ ▶ 《 필 ▶ 《 필 ▶ 결 ♥ ○ Q (
 C. W. Bach (EPICENTER & University of Liverpool)

Open sets in \mathbb{R} with the standard topology

Remark

Let $a, b \in \mathbb{R}$ and \mathbb{R} be equipped with the standard topology. The open interval (a; b) is an open set.

Argument:

- Let $x \in (a; b)$ and $\epsilon < \min\{|x a|, |b x|\}$.
- Then, $(x \epsilon; x + \epsilon) \subseteq (a; b)$.
- Therefore, (*a*; *b*) is open.

Remark

Let $a \in \mathbb{R}$ and \mathbb{R} be equipped with the standard topology. The open intervals $(a; +\infty)$ and $(-\infty; a)$ are open sets.

Argument:

- Note that $(a; +\infty) = \cup_{r>a}(a; r)$ and that $(-\infty; a) = \cup_{r < a}(r; a)$.
- As unions of open sets (a; +∞) and (-∞; a) are therefore open sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Definitions

Appendix

Continuity

Definition

Let *X* and *Y* be topological spaces with topologies \mathcal{T}_X and \mathcal{T}_Y , respectively. A function $X \to Y$ is continuous, if for every open set $V \in \mathcal{T}_Y$, the set $f^{-1}(V) = \{x \in X : f(x) \in V\} \in \mathcal{T}_X$ is open.

EPICENTER Spring Course 2016: Pearce's Lemma

< □ > < ঐ > < ই > < ই > < ই > < ই <
 C. W. Bach (EPICENTER & University of Liverpool)

Appendix

Definition

Let *X* be a topological space. A set $C \subseteq \mathcal{P}(X)$ is a cover of *X*, if the union of the elements of *C* is a superset of *X*. If all elements of *C* are open, then *C* is called open cover of *X*.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Proof

Compactness

Definition

Let *X* be a topological space. The space *X* is compact, if every open cover of *X* contains a finite number of sets that also cover *X*.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Continuity preserves compactness

Theorem

Let *X* and *Y* be topological spaces, and $f : X \to Y$ be a function. If *X* is compact and *f* is continuous, then the image f(X) is compact.

Proof:

- Let C be an open cover of f(X).
- Note that every $C \in C$ is open in *Y*.
- As C covers Y and $f(X) \subseteq Y$, it follows that $X \subseteq \{f^{-1}(C) : C \in C\}$, i.e. $\{f^{-1}(C) : C \in C\}$ covers X.
- Continuity of *f* ensures that every such set $f^{-1}(C)$ is open in *X*.
- By compactness of *X* a finite number of these sets, say $f^{-1}(C_1), \ldots, f^{-1}(C_n)$, cover *X*.
- Then, the sets C_1, \ldots, C_n cover f(X).

A D N A D N A D N A D

Appendix 0000000000000

Weierstrass' extreme value theorem

Theorem (Weierstrass' extreme value theorem)

Let *X* be a compact topological space, and $f : X \to \mathbb{R}$ be a continuous function, where \mathbb{R} is equipped with the standard topology. Then, there exist $a, b \in X$ such that $f(a) \le f(x) \le f(b)$ for all $x \in X$.

EPICENTER Spring Course 2016: Pearce's Lemma

C. W. Bach (EPICENTER & University of Liverpool)

Proof of Weierstrass' extreme value theorem

Proof:

- Since *X* is compact and *f* is continuous, the image *f*(*X*) is compact.
- Suppose f(X) has no smallest element, i.e. there exists no $m \in f(X)$ such that $m \leq y$ for all $y \in f(X)$.
- Then, the set $\{(y; +\infty) : y \in f(X)\}$ forms an open cover of f(X).
- By compactness of f(X) a finite number of these sets, say $(y_i; +\infty), \ldots, (y_n; +\infty)$ cover f(X), and consider $\min\{y_1, \ldots, y_n\}$.
- Note that $\min\{y_1, \ldots, y_n\} \le y$ for all $y \in f(X)$, a contradiction.
- As $\min\{y_1, \ldots, y_n\} \in f(X)$ there exists $a \in X$ such that $f(a) = \min\{y_1, \ldots, y_n\}.$
- Analogously for b.

Proof

Thank you!

C. W. Bach (EPICENTER & University of Liverpool)

< 2 > < 2

EPICENTER Spring Course 2016: Pearce's Lemma