Lexicographic Beliefs Part II: Respect of Preferences

Christian W. Bach

EPICENTER & University of Liverpool

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

Introduction

- Cautious reasoning = not completely discarding any event, yet being able to consider some event much more likely, indeed infinitely more likely, than some other event
- Modelling tool: lexicographic beliefs
- A particular way of cautious reasoning is based on primary belief in rationality: restrictions concentrate mainly on the first lexicographic level
- However, it can also be plausible to impose conditions on deeper lexicographic levels!

< 同 > < 三 > < 三 >

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

Algorithm

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

Taking the Opponent's Preferences Seriously

Motivating Idea:

If player *i* believes that his opponent *j* prefers some choice *c_j* to some other choice *c'_j*, then he must deem *c_j* infinitely more likely than *c'_j*.

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

A (10) A (10) A (10)

Motivating Example: Where to read my book?

Story

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- Your only objective is to avoid *Barbara*, since *you* would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Question: Which pub should you go to?

< 同 > < 三 > < 三 >

Motivating Example: Where to read my book?

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

-

< A

Motivating Example: Where to read my book?

Type Spaces: $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B\}$

- Beliefs for You: $b_{you}^{lex}(t_y) = ((A, t_B); (C, t_B); (B, t_B))$
- Beliefs for Barbara: $b_{Barbara}^{lex}(t_B) = ((B, t_y); (C, t_y); (A, t_y))$
- Your type t_v primarily believes in Barbara's rationality.
- However, *ty*'s secondary and tertiary belief seem counter-intuitive.
- For Barbara, B is better than C, hence it can be plausible to deem Barbara choosing B infinitely more likely than her picking C.

э.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Respecting the Opponent's Preferences

Definition

A cautious type t_i of player *i* **respects the opponent's preferences**, whenever for every opponent's type t_j deemed possible by t_i , if t_j prefers some choice c_j to some other choice c'_j , then t_i deems (c_j, t_j) infinitely more likely than (c'_i, t_j) .

Intuition:

A player deems better choices of his opponent infinitely more likely than worse choices.

Remark: Respect of preferences can only be defined for cautious types.

< 同 > < 三 > < 三 >

Example: Where to read my book?

		Barbara					
		Α	B	С			
	Α	0,3	1,2	1,1			
You	В	1,3	0, 2	1,1			
	С	1,3	1,2	0,1			

Type Spaces:
$$T_{you} = \{t_y, t'_y\}$$
 and $T_{Barbara} = \{t_B\}$

- Beliefs for You: $b_{you}^{lex}(t_y) = ((A, t_B); (C, t_B); (B, t_B))$ and $b_{you}^{lex}(t'_y) = ((A, t_B); (B, t_B); (C, t_B))$
- Beliefs for Barbara: $b_{Barbara}^{lex}(t_B) = ((B, t_y); (C, t_y); (A, t_y))$
- Your type ty does not respect Barbara's preferences.
- Your type t'_v does respect Barbara's preferences.
- Note that if you respect Barbara's preferences, then your unique optimal choice is C.

э.

・ロト ・四ト ・ヨト ・ヨト

Respect of Preferences and Primary Belief in Rationality

Observation. If *Alice* is cautious and respects *Bob*'s preferences, then she also primarily believes in *Bob*'s rationality.

- Suppose that t_{Alice} is cautious and respects *Bob*'s preferences.
- Now, consider some pair (c_{Bob}, t_{Bob}) that is deemed possible by t_{Alice} such that c_{Bob} is not optimal for t_{Bob} .
- Then, there exists some choice c_{Bob}^* that t_{Bob} prefers to c_{Bob} , and t_{Alice} must deem (c_{Bob}^*, t_{Bob}) infinitely more likely than (c_{Bob}, t_{Bob}) .
- Thus, t_{Alice} 's primary belief must assign probability-0 to (c_{Bob}, t_{Bob}) .

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

Common Full Belief in (Caution & Respect of Preferences)

Definition

A cautious type *t_i* of player *i* expresses *common full belief in (caution & respect of preferences)*, if

- t_i expresses 1-fold full belief in caution and respect of preferences, i.e. t_i only deems possible cautious opponent j's types and respects j's preferences,
- t_i expresses 2-fold full belief in caution and respect of preferences, i.e. t_i only deems possible opponent j's types that only deem possible cautious i's types and that respect i's preferences,

Relation to Common Full Belief in (Caution & Primary Belief in Rationality)

Proposition

If a cautious type t_i expresses common full belief in (caution & respect of preferences), then t_i entertains common full belief in (caution & primary belief in rationality).

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

• (1) • (1) • (1)

Example: Where to read my book?

			Barbara	
		Α	В	С
	Α	0,3	1,2	1,1
You	B	1,3	0, 2	1,1
	С	1,3	1,2	0,1

- **Type Spaces:** $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B\}$
- Beliefs for You: $b_{you}^{lex}(t_y) = ((A, t_B); (B, t_B); (C, t_B))$
- Beliefs for Barbara: $b_{Barbara}^{lex}(t_B) = ((C, t_y); (B, t_y); (A, t_y))$
- Your type *t_y* is cautious, and respects Barbara's preferences.
- Barbara's type t_B is cautious, and respects your preferences.
- Thus, ty expresses common full belief in caution and respect of preferences.
- As choice C is optimal for type ty, you can rationally and cautiously go to Pub C under common full belief in (caution & respect of preferences).
- Note that under common full belief in (caution & primary belief in rationality), you can rationally and cautiously choose B as well as C.

http://www.epicenter.name/bach

э.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Example: Dividing a Pizza

Story

- You have ordered a four-sliced pizza with Barbara.
- Both simultaneously write down the desired number of slices or simply "the rest".
- It is agreed that if the numbers' sum exceeds four, both will give the pizza to charity and neither gets any slice.
- If both write "the rest", then the pizza is divided equally among the two.

< 同 > < 三 > < 三 >

Example: Dividing a Pizza

			Barbara						
		0	1	2	3	4	rest		
	0	0,0	0,1	0,2	0,3	0,4	0,4		
	1	1,0	1,1	1,2	1,3	0,0	1,3		
Vou	2	2,0	2, 1	2,2	0,0	0,0	2,2		
100	3	3,0	3,1	0,0	0,0	0,0	3,1		
	4	4,0	0,0	0,0	0,0	0,0	4,0		
	rest	4,0	3,1	2,2	1,3	0,4	2,2		

.

http://www.epicenter.name/bach

Example: Dividing a Pizza

		Barbara						
		0	1	2	3	4	rest	
	0	0,0	0, 1	0, 2	0, 3	0,4	0,4	
	1	1,0	1, 1	1, 2	1, 3	0,0	1,3	
Vou	2	2,0	2, 1	2, 2	0,0	0,0	2, 2	
100	3	3,0	3, 1	0,0	0,0	0,0	3,1	
	4	4,0	0,0	0,0	0,0	0,0	4,0	
	rest	4,0	3, 1	2, 2	1, 3	0,4	2, 2	

- What choices can you rationally and cautiously make under common full belief in (caution & respect of preferences)?
- Your choices 0, 1, and 2 are weakly dominated by claiming the rest.
- Hence, if you are cautious, then the *rest* is better for you than 0, 1, or 2.
- Similarly, if you believe Barbara to be cautious, then you believe the rest to be better for her than 0, 1, or 2.
- As you respect Barbara's preferences, you deem her choice rest infinitely more likely than 0, 1, and 2.
- It is now shown that 4 is then better for you than 3.

э

Example: Dividing a Pizza

		Barbara						
		0	1	2	3	4	rest	
	0	0,0	0, 1	0, 2	0, 3	0,4	0,4	
	1	1,0	1,1	1, 2	1,3	0,0	1,3	
Vou	2	2,0	2,1	2, 2	0,0	0,0	2,2	
100	3	3,0	3,1	0,0	0,0	0,0	3,1	
	4	4,0	0,0	0,0	0,0	0,0	4,0	
	rest	4,0	3,1	2, 2	1, 3	0,4	2, 2	

Existence

- Indeed, suppose that you deem Barbara's choice rest infinitely more likely than 0, 1, and 2.
- There are four possible ways to do so:
 - 1

You deem *rest* infinitely more likely than her other choices. Then, 4 is better for you than 3.

- 2 You deem 4 and rest infinitely more likely than her other choices. Then, 4 is better for you than 3.
- 3 4

You deem 3 and rest infinitely more likely than her other choices. Then, 4 is better for you than 3.

- You deem 3, 4 and rest infinitely more likely than her other choices. Then, 4 is better for you than 3.
- Thus, if you are cautious, believe in Barbara's caution, and respect Barbara's preferences, then you prefer rest to 0, 1, and 2 and you prefer 4 to 3.
- Consequently, under common full belief in (caution & respect of preferences) only 4 and rest can possibly be optimal for you!

Example: Dividing a Pizza

		Barbara						
		0	1	2	3	4	rest	
	0	0,0	0,1	0, 2	0, 3	0,4	0,4	
	1	1,0	1,1	1,2	1,3	0,0	1,3	
Vou	2	2,0	2,1	2, 2	0,0	0,0	2,2	
100	3	3,0	3,1	0,0	0,0	0,0	3,1	
	4	4,0	0,0	0,0	0,0	0,0	4,0	
	rest	4,0	3,1	2, 2	1, 3	0,4	2, 2	

Existence

Consider the following lexicographic epistemic model:

Type Spaces:

 $T_{you} = \{t_y^4, t_y^r\}$ and $T_{Barbara} = \{t_B^4, t_B^r\}$

Beliefs for You:

$$\begin{split} b^{lex}_{you}(t^4_y) &= ((\textit{rest}, t^r_B); (1, t^r_B); (4, t^r_B); (3, t^r_B); (2, t^r_B); (0, t^r_B)) \\ b^{lex}_{you}(t^r_y) &= ((4, t^4_B); (3, t^4_B); (\textit{rest}, t^4_B); (2, t^3_B); (1, t^4_B); (0, t^4_B)) \end{split}$$

Beliefs for Barbara:

$$\begin{split} b_B^{lex}(t_B^{A}) &= ((\textit{rest}, t_y^{r}); (1, t_y^{r}); (4, t_y^{r}); (3, t_y^{r}); (2, t_y^{r}); (0, t_y^{r})) \\ b_B^{lex}(t_B^{r}) &= ((4, t_y^{4}); (3, t_y^{4}); (\textit{rest}, t_y^{4}); (2, t_y^{4}); (1, t_y^{4}); (0, t_y^{4})) \end{split}$$

- Both your types are cautious and express common full belief in (caution & respect of preferences).
- As 4 is optimal for t⁴_y and rest is optimal for t⁷_y, you can rationally as well as cautiously choose 4 and rest under common full belief in (caution & respect of preferences)!

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

An Important Question

Is it always possible – for any given game – that a player cautiously reasons in line with common full belief in (caution & respect of preferences)?

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

• (1) • (1) • (1)

Example: Hide and Seek

Story

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- Your only objective is to avoid *Barbara*, since *you* would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C, and she would also like to talk to you.
- Question: Which pub should you go to?

• (1) • (1) • (1)

Example: Hide and Seek

http://www.epicenter.name/bach

크

< 172 ▶

Example: Hide and Seek

		Barbara						
		A_B	$A_B \qquad B_B \qquad C_B$					
	A_y	0, 5	1,2	1, 1				
You	B_y	1,3	0,4	1, 1				
	C _y	1,3	1, 2	0,3				

Is common full belief in (caution & respect of preferences) possible in this game?

- Consider some arbitrary cautious lexicographic belief about Barbara's choice, e.g. (A_B; B_B; C_B).
- Given this belief, your preferences are $(C_y; B_y; A_y)$.
- Consider a cautious lexicographic belief for Barbara that respects these preferences, e.g. $(C_y; B_y; A_y)$.
- Given this belief, Barbara's preferences are $(A_B; C_B; B_B)$.
- Consider a cautious lexicographic belief for you that respects these preferences, e.g. (A_B; C_B; B_B).
- Given this belief, your preferences are $(B_{y}; C_{y}; A_{y})$.
- Consider a cautious lexicographic belief for Barbara that respects these preferences, e.g. $(B_{y}; C_{y}; A_{y})$.
- Given this belief, Barbara's preferences are $(B_B; A_B; C_B)$.
- Consider a cautious lexicographic belief for you that respects these preferences, e.g. (*B_B*; *A_B*; *C_B*).
- Given this belief, your preferences are $(C_y; A_y; B_y)$.
- Consider a cautious lexicographic belief for Barbara that respects these preferences, e.g. $(C_y; A_y; B_y)$.
- Given this belief, Barbara's preferences are $(A_B; C_B; B_B)$.
- Consider a cautious lexicographic belief for you that respects these preferences, e.g. $(A_B; C_B; B_B)$.

2

Example: Hide and Seek

			Barbara					
		A_B	$A_B \qquad B_B \qquad C_B$					
	A_y	0, 5	1, 2	1, 1				
You	B_y	1,3	0,4	1, 1				
	$\dot{C_y}$	1,3	1, 2	0, 3				

- A sequence of lexicographic beliefs has thus been formed: $(A_B; B_B; C_B) \rightarrow (C_y; B_y; A_y) \rightarrow (A_B; C_B; B_B) \rightarrow (B_y; C_y; A_y) \rightarrow (B_B; A_B; C_B) \rightarrow (C_y; A_y; B_y) \rightarrow (A_B; C_B; B_B)$
- It has entered into a cylce:

 $(A_B; C_B; B_B) \rightarrow (B_y; C_y; A_y) \rightarrow (B_B; A_B; C_B) \rightarrow (C_y; A_y; B_y) \rightarrow (A_B; C_B; B_B)$

- This cycle is now transformed into a lexicographic epistemic model.
- **Type Spaces:** $T_{you} = \{t_y, t'_y\}$ and $T_{Barbara} = \{t_B, t'_B\}$
- Beliefs for You: $b_y^{lex}(t_y) = ((A_B, t_B); (C_B, t_B); (B_B, t_B))$ and $b_y^{lex}(t'_y) = ((B_B, t'_B); (A_B, t'_B); (C_B, t'_B))$
- Beliefs for Barbara: $b_B^{lex}(t_B) = ((C_y, t'_y); (A_y, t'_y); (B_y, t'_y))$ and $b_B^{lex}(t'_B) = ((B_y, t_y); (C_y, t_y); (A_y, t_y))$
- All types in the epistemic model are cautious and respect the opponent's preferences.
- Hence, all express common full belief in (caution & respect of preferences).
- Concluding, caution and common full belief in (caution & respect of preferences) is indeed possible in the Hide and Seek game.

Generalizing the Construction for Existence

- Fix some finite game and consider an arbitrary cautious lexicographic belief b_i^{lex1} for player i about j's choice.
- Let R_i^1 be the induced preference relation on C_i for player *i* given this belief.
- Consider some cautious lexicographic belief b_j^{lex2} for player j about i's choice that respects the preference relation R₁¹.
- Let R_i^2 be the induced preference relation on C_j for player j given this belief.
- Consider some cautious lexicographic belief b_i^{lex3} for player i about j's choice that respects the preference relation R_i².
- Let R_i^3 be the induced preference relation on C_j for player *j* given this belief.
- etc.
- The sequence of lexicographic beliefs thus constructed bears the following property: Any element of the sequence satisfies respect of preferences given the preference relation induced by the immediate predecessor lexicographic belief in the sequence.
- Since there are only finitely many choices and the same lexicographic belief can be specified for any recurring preference relation, the sequence of lexicographic beliefs must eventually enter into a cycle of lexicographic beliefs.

From Lexicographic Beliefs to Types

- Suppose some cycle of lexicographic beliefs: $b_i^{lex^1} \rightarrow b_j^{lex^2} \rightarrow b_i^{lex^3} \rightarrow \ldots \rightarrow b_j^{lexK} \rightarrow b_i^{lex1}$
- This cycle can be transformed into an lexicographic epistemic model:

$$b_i(t_i^1) = (b_i^{lex1}, t_j^K)$$

$$b_j(t_j^2) = (b_j^{lex2}, t_i^1)$$

$$b_i(t_i^3) = (b_i^{lex3}, t_j^2)$$

$$b_j(t_j^4) = (b_j^{lex4}, t_i^3)$$

$$etc.$$

- In such an epistemic model, every type is cautious and respects the opponent's preferences.
- Hence, all types express common full belief in (caution & respect of preferences)!

Existence

Theorem

Let Γ be some finite two player game. Then, there exists a lexicographic epistemic model such that

- every type in the model is cautious and expresses common full belief in (caution & respect of preferences),
- every type in the model deems possible only one opponent's type, and assigns at each lexicographic level probability-1 to one of the opponent's choices.

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

Towards an Algorithm: Elimination of Choices?

- It is very convenient to have an algorithm which computes the choices that can be made rationally under caution and common full belief in (caution & respect of preferences).
- So far algorithms have been presented that iteratively eliminate choices from the game.
- It is now shown that such an algorithm cannot work for common full belief in (caution & respect of preferences).

Story

- *You* would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- Your only objective is to avoid *Barbara*, since *you* would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, Barbara suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from *Pub A* to *Pub C*, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

э.

æ

★ 聞 ▶ ★ 国 ▶ ★ 国 ▶

- Which pubs can you rationally and cautiously pick under common full belief in (caution & respect of preferences)?
- Barbara prefers A_B to B_B.
- Therefore, you must deem A_B infinitely more likely than B_B.
- Then, you prefer B_y to A_y.
- Hence, you believe that Barbara deems B_{y} infinitely more likely than A_{y} .
- Thus, you believe that Barbara prefers B_B to C_B.
- Consequently, you must deem Barbara's choice B_B infinitely more likely than C_B.
- As you deem A_B infinitely more likely than B_B and B_B infinitely more likely than C_B, you can only rationally choose C_y!

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

			Barbara						
		A_B	$A_B \qquad B_B \qquad C_B$						
	A_y	0, 3	1, 2	1,4					
You	B_y	1,3	0, 2	1,1					
	C_y	1,6	1, 2	0,1					

Consider the following lexicographic epistemic model:

Type Spaces:

 $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B\}$

Beliefs for You:

 $b_{you}(t_y) = ((A_B, t_B); (B_B, t_B); (C_B, t_B))$

Beliefs for Barbara:

 $b_{Barbara}(t_B) = ((C_y, t_y); (B_y, t_y); (A_y, t_y))$

- Both your types are cautious and express common full belief in (caution & respect of preferences).
- As C_y is optimal for t_y, you can indeed rationally and cautiously choose C_y under common full belief in (caution & respect of preferences)!

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- But: choice C_y cannot be uniquely filtered out by iteratively deleting strictly or weakly dominated choices!
- At a first step, only B_B could be eliminated.
- But then choice B_{y} could never be eliminated in the resulting reduced game!

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Likelihood Orderings

Definition

A *likelihood ordering* for player *i* on *j*'s choice set is a sequence $L_i = (L_i^1; L_i^2; ...; L_i^K)$, where $\{L_i^1; L_i^2; ...; L_i^K\}$ forms a partition of C_j .

Interpretation:

- Player *i* deems all choices in L¹_i infinitely more likely than all choices in L²_i; deems all choices in L²_i infinitely more likely than all choices in L³_i; etc.
- Moreover, a likelihood ordering L_i for player i is said to assume a set of choices D_j for the opponent j, whenever L_i deems all choices inside D_j infinitely more likely than all choices outside D_j.
- In other words, an assumed set of choices equals the union of some first *l* levels of a likelihood ordering.

Preference Restrictions

Definition

A *preference restriction* for player *i* is a pair (c_i, A_i) , where $c_i \in C_i$ and $A_i \subseteq C_i$.

Interpretation:

- Player *i* "prefers" at least one choice in A_i to c_i.
 (Note that "prefer" is used intuitively here, it does not correspond to the well-defined notion prefer!)
- Besides, a likelihood ordering L_i for player i is said to respect a preference restriction (c_j, A_j) for the opponent j, whenever L_i deems at least one choice in A_j infinitely more likely than c_j

Story

- *You* would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- Your only objective is to avoid *Barbara*, since *you* would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, Barbara suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from *Pub A* to *Pub C*, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

э.

æ

★ 聞 ▶ ★ 国 ▶ ★ 国 ▶

			Barbara	
		A_B	BB	C_B
	A_y	0, 3	1, 2	1,4
You	B_y	1,3	0, 2	1, 1
	C_y	1,6	1, 2	0,1

- Barbara prefers A_B to B_B.
- It has been shown above that eliminating choice B_B leads to a dead end.
- However, it can be noted that $(B_B, \{A_B\})$ is a preference restriction for Barbara.
- If you respect Barbara's preference restriction (*B_B*, {*A_B*}), then you must deem *A_B* infinitely more likely than *B_B*.
- Thus, your likelihood ordering should be one of the followng:

- If your likelihood ordering is $(\{A_B\}, \{B_B\}, \{C_B\})$ or $(\{A_B\}, \{C_B\}, \{B_B\})$ or $(\{A_B\}, \{B_B, C_B\})$, then you assume Barbara's choice A_B , i.e. you deem A_B infinitely more likely than her other choices.
- In this case, you prefer B_y to A_y , since B_y weakly dominates A_y on $\{A_B\}$.

э.

Example: Spy Game

Your likelihood ordering should be one of the followng:

- If your likelihood ordering is $(\{C_B\}, \{A_B\}, \{C_B\})$ or $(\{A_B, C_B\}, \{B_B\})$, then you assume Barbara's choice set $\{A_B, C_B\}$, i.e. you deem A_B and C_B infinitely more likely than her choice B_B .
- In this case, you prefer B_y to A_y , since B_y weakly dominates A_y on $\{A_B, C_B\}$.
- Indeed, every likelihood ordering for you that respects Barbara's preference restriction $(B_B, \{A_B\})$ assumes either $\{A_B\}$ or $\{A_B, C_B\}$, and on both sets your choice A_v is weakly dominated by B_v .
- Hence, Barbara's preference restriction (B_B, {A_B}) induces the new preference restriction (A_y, {B_y}) for you.

Example: Spy Game

			Barbara						
		A_B	$A_R \qquad B_R \qquad C_R$						
	A_y	0, 3	1, 2	1,4					
You	B_y	1,3	0, 2	1,1					
	C_y	1,6	1, 2	0, 1					

- So far there are two preference restrictions: $(A_y, \{B_y\})$ and $(B_B, \{A_B\})$.
 - If Barbara respects your preference restriction $(A_y, \{B_y\})$, then she must deem B_y infinitely more likely than A_y .
 - Hence, her likelihood ordering must assume either your choice B_y or the set $\{B_y, C_y\}$.
 - On B_y as well as on $\{B_y, C_y\}$, Barbara's choice C_B is weakly dominated by B_B .
 - Thus, Barbara prefers B_B to C_B , and $(C_B, \{B_B\})$ results as a new preference restriction for Barbara.
- Now the preference restrictions are as follows: $(A_y, \{B_y\}), (B_B, \{A_B\}), \text{ and } (C_B, \{B_B\}).$
 - If you respect Barbara's preference restrictions (B_B, {A_B}) and (C_B, {B_B}), then your likelihood ordering must be (A_B; B_B; C_B).
 - Hence, you assume the set $\{A_B, B_B\}$.
 - On $\{A_B, B_B\}$, your choice B_y is weakly dominated by C_y .
 - Thus, you prefer C_y to B_y , and $(B_y, \{C_y\})$ results as a new preference restriction for you.
- The resulting preference restrictions are: $(A_y, \{B_y\}), (B_y, \{C_y\}), (B_B, \{A_B\}), \text{ and } (C_B, \{B_B\}).$
- Then, your only optimal choice is C_y.
- Indeed, C_y also constitutes the only choice you can rationally and cautiously make under common full belief in (caution & respect of preferences).

Remark

Recall that

$$u_i^k(c_i, b_i^{lex}) \leq V_i^k(r_i, b_i^{lex})$$

\Leftrightarrow

$$\sum_{c_j \in C_j} b_i^k(c_j) U_i(c_i, c_j) \le \sum_{c_j \in C_j} b_i^k(c_j) \Big(\sum_{c_i' \in C_i} r_i(c_i') U_i(c_i', c_j) \Big)$$
$$\Leftrightarrow$$

$$\sum_{c_j \in C_j} b_i^k(c_j) U_i(c_i, c_j) \le \sum_{c_i' \in C_i} r_i(c_i') \Big(\sum_{c_j \in C_j} b_i^k(c_j) U_i(c_i', c_j) \Big) = \sum_{c_i' \in C_i} r_i(c_i') u_i^k(c_i', b_i^{lex})$$

æ

Implications of Assuming a Set of Choices

Lemma

Suppose that player *i* assumes a set of choices $D_j \subseteq C_j$ for opponent *j* and let $A_i \subseteq C_i$ be some set of choices for *i*. If a choice c_i is weakly dominated on D_j by some randomized choice r_i on A_i , then *i* prefers some choice $c_i^* \in A_i$ to c_i .

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

Proof

- Suppose that *i* entertains lexicographic belief $b_i^{lex} = (b_i^1; \ldots; b_i^K)$ on C_i , and assumes $D_i \subseteq C_i$.
- Then, i deems all choices inside D_i infinitely more likely than all choices outside D_i.
- Consequently, there exists some level k* such that
 - 1 for every $d_j \in D_j$ there exists $k \leq k^*$ such that $d_j \in supp(b_i^k)$,
 - **2** for every $c_j \in C_j \setminus D_j$ there exists no $k \le k^*$ such that $c_j \in supp(b_i^k)$.
- Hence, the first k^* levels of b_i^{lex} form a cautious lexicographic belief $b_i^{lex} D_j = (b_i^1; \dots; b_i^{k^*})$ on D_j .
- As r_i weakly dominates c_i on D_j , it follows that for all $k \le k^*$ $u_i^k(c_i, b_i^{lexD_j}) = \sum_{c_j \in D_j} b_i^k(c_j) U_i(c_i, c_j) \le \sum_{c_j \in D_j} b_i^k(c_j) V_i(r_i, c_j) = v_i^k(r_i, b_i^{lexD_j})$, and, since $b_i^{lexD_j}$ is cautious, there exists some for some $l \le k^*$ such that $u_i^l(c_i, b_i^{lexD_j}) = \sum_{c_j \in D_j} b_i^l(c_j) U_i(c_i, c_j) \le \sum_{c_j \in D_j} b_i^l(c_j) V_i(r_i, c_j) = v_i^l(r_i, b_i^{lexD_j})$.
- Since $u_k^i(c_i, b_i^{(exD_j)}) \le v_i^k(r_i, b_i^{(exD_j)})$ for all $k \le k^*$, it is by Basic-Lemma II the case for all $k \le k^*$ that either $u_k^i(c_i, b_i^{(exD_j)}) = u_i^k(a_i, b_i^{(exD_j)})$ for all $a_i \in A_i$ or there exists $\hat{a}_i \in A_i$ such that $u_k^i(c_i, b_i^{(exD_j)}) < u_k^i(\hat{a}_i, b_i^{(exD_j)})$.
- Moreover, as $u_i^l(c_l, b_i^{lexD_j}) < v_i^l(r_l, b_i^{lexD_j})$ for some $l \le k^*$, there must be some $l^* \le k^*$ and by Basic-Lemma I some $a_i^* \in A_i$ such that $u_i^{l^*}(c_i, b_i^{lexD_j}) < u_i^{l^*}(a_i^*, b_i^{lexD_j})$, and denote the smallest such level by l^{min} .
- As $u_i^k(c_i, b_i^{lexD_j}) = u_i^k(a_i^*, b_i^{lexD_j})$ for all $k < l^{min}$ and $u_i^{min}(c_i, b_i^{lexD_j}) < u_i^{min}(a_i^*, b_i^{lexD_j})$, player *i* prefers choice a_i^* to c_i , which concludes the proof.

Respecting the Opponent's Preferences

Common Full Belief in (Caution & Respect of Preferences)

Existence

Towards an Algorithm

Algorithm

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

Story

- You are attending *Barbara's* wedding.
- However, when Barbara was supposed to say "yes", she suddenly changed her mind and ran away with light speed.
- You would like to find her and know that she is hiding in one of the following houses:

$$a \Rightarrow b \Rightarrow c \Rightarrow d \Rightarrow e$$

- Barbara's mother and grandmother live at a and e, respectively, and will definitely not open the door.
- *Your* utility is 1 if you find her, and 0 otherwise.
- Barbara's utility equals simply the distance away from you.

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

æ

(4月) (4日) (4日)

		Barbara					
		a _B	b_B	c_B	d_B	eB	
	a_Y	0,0	0, 1	0, 2	0, 3	0,4	
	b_Y	0, 1	1,0	0, 1	0, 2	0, 3	
You	c_Y	0, 2	0, 1	1,0	0, 1	0, 2	
	d_Y	0, 3	0, 2	0, 1	1,0	0, 1	
	e_Y	0,4	0, 3	0, 2	0, 1	0,0	

- What locations can you rationally and cautiously choose under common full belief in (caution & respect of preferences)?
- Observe that c_B is weakly dominated by $\frac{1}{2}b_B + \frac{1}{2}d_B$ on C_Y .
- Thus, Barbara prefers some choice from $\{b_B, d_B\}$ to c_B by the Lemma, and the preference restriction $(c_B, \{b_B, d_B\})$ for Barbara results.
- Preference restrictions: $(c_B, \{b_B, d_B\})$
 - If you respect Barbara's preference restriction $(c_B, \{b_B, d_B\})$, then you must deem either b_B or d_B infinitely more likely than c_B .
 - Hence, you will assume some set $D_B \subseteq C_B$ which includes b_B or d_B but not c_B .
 - On every such set D_B , your choice c_Y is weakly dominated by $\frac{1}{2}b_Y + \frac{1}{2}d_Y$.
 - Thus, you prefer some choice from $\{b_Y, d_Y\}$ to c_Y by the Lemma, and the preference restriction $(c_Y, \{b_Y, d_Y\})$ for you results.
 - Also, a_Y and e_Y are weakly dominated by c_Y on C_B yielding additional preference restrictions $(a_Y, \{c_Y\})$ and $(e_Y, \{c_Y\})$.

		Barbara								
		a _B	b_B	c_B	d_B	e _B				
You	a _Y	0,0	0, 1	0, 2	0, 3	0,4				
	b_Y	0, 1	1,0	0, 1	0, 2	0, 3				
	cy	0, 2	0, 1	1,0	0, 1	0, 2				
	d_Y	0, 3	0, 2	0, 1	1,0	0, 1				
	e_Y	0,4	0, 3	0, 2	0, 1	0, 0				

Preference restrictions: $(c_Y, \{b_Y, d_Y\}), (a_Y, \{c_Y\}), (e_Y, \{c_Y\}), \text{and } (c_B, \{b_B, d_B\})$

- Note that b_B and d_B are weakly dominated by $\frac{3}{4}a_B + \frac{1}{4}e_B$ and $\frac{1}{4}a_B + \frac{3}{4}e_B$, respectively, on C_Y , yielding preference restrictions $(b_B, \{a_B, e_B\})$ and $(d_B, \{a_B, e_B\})$ for Barbara.
- Preference restrictions: $(c_Y, \{b_Y, d_Y\}), (a_Y, \{c_Y\}), (e_Y, \{c_Y\}), as well as <math>(c_B, \{b_B, d_B\}), (b_B, \{a_B, e_B\}), and (d_B, \{a_B, e_B\}).$
- Therefore, only b_Y and d_Y can possibly be optimal for you, and only a_B and e_B can possibly be optimal for Barbara.

э

Example: Runaway Bride

		Barbara							
		a _B	b_B	c_B	d_B	e _B			
You	a_Y	0,0	0, 1	0, 2	0, 3	0, 4			
	b_Y	0, 1	1,0	0, 1	0, 2	0, 3			
	c_Y	0, 2	0, 1	1,0	0, 1	0, 2			
	d_Y	0, 3	0, 2	0, 1	1,0	0, 1			
	e_Y	0,4	0, 3	0, 2	0, 1	0,0			

Preference restrictions: $(c_Y, \{b_Y, d_Y\}), (a_Y, \{c_Y\}), (e_Y, \{c_Y\}), as well as <math>(c_B, \{b_B, d_B\}), (b_B, \{a_B, e_B\}), and (d_B, \{a_B, e_B\}).$

Consider the following lexicographic epistemic model:

Type Spaces: $T_{you} = \{t_y^b, t_y^d\}$ and $T_{Barbara} = \{t_B^a, t_B^e\}$

Beliefs for You:

$$\begin{split} b_{you}^{lex}(t_y^d) &= ((a_B, t_B^a); (b_B, t_B^a); (e_B, t_B^a); (c_B, t_B^a); (d_B, t_B^a)) \\ b_{you}^{lex}(t_y^d) &= ((e_B, t_B^e); (d_B, t_B^e); (a_B, t_B^e); (c_B, t_B^e); (b_B, t_B^e)) \end{split}$$

Beliefs for Barbara:

 $b_B^{lex}(t_B^a) = ((d_Y, t_y^d); (c_Y, t_y^d); (b_Y, t_y^d); (a_Y, t_y^d); (e_Y, t_y^d))$ $b_B^{lex}(t_B^a) = ((b_Y, t_y^b); (c_Y, t_y^b); (d_Y, t_y^b); (a_Y, t_y^b); (e_Y, t_y^b))$

		Barbara								
		a_B	b_B	c_B	d_B	eB				
	a _Y	0,0	0, 1	0, 2	0, 3	0,4				
You	b_Y	0, 1	1,0	0, 1	0, 2	0, 3				
	cy	0, 2	0, 1	1,0	0, 1	0, 2				
	d_Y	0, 3	0, 2	0, 1	1,0	0, 1				
	ey	0,4	0, 3	0, 2	0, 1	0 , 0				

- All four types are cautious and express common full belief in (caution & respect of preferences).
- As b_Y is optimal for t^b_y and d_Y is optimal for t^d_y, you can rationally as well as cautiously choose house b and d under common full belief in (caution & respect of preferences)!

http://www.epicenter.name/bach

(4月) (4日) (4日)

An Algorithm

Basic Idea: iteratively add preference restrictions to the game!

Perea-Procedure

- Round 1. For every player i, add a preference restriction (c_i, A_i), if in the full game c_i is weakly dominated by some randomized choice on A_i.
- Round 2. For every player i, restrict to likelihood orderings L_i that respect all preference restrictions for the opponent in round 1. If every such likelihood ordering L_i assumes a set of opponent choices D_j on which c_i is weakly dominated by some randomized choice on A_i, then add a preference restriction (c_i, A_i) for player i, .
- etc, until no further preference restrictions can be added.

The choices that survive this algorithm are the ones that are not part of any preference restriction generated during the complete algorithm.

Note: The order and speed in which preference restrictions are added is not relevant for the choices it returns.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Algorithmic Characterization

Theorem

For all $k \ge 1$, the choices that can rationally be made by a cautious type that expresses up to *k*-fold full belief in caution and respect of preferences are exactly those choices that survive the first k + 1 steps of the Perea-Procedure.

Corollary

The choices that can rationally be made by a cautious type that expresses common full belief in (caution & respect of preferences) are exactly those choices that survive the Perea-Procedure.

http://www.epicenter.name/bach

A (10) A (10) A (10)

Story

- Barbara and you are the only ones to take an exam.
- Both must choose a seat.
- If both choose the same seat, then with probability 0.5 you get the seat you want, and with probability 0.5 you get the one horizontally next to it.
- In order to pass the exam you must be able copy from Barbara, and the same applies to her.
- A person can only copy from the other person if seated horizontally next or diagonally behind the latter.

• (1) • (1) • (1)

Story (continued)

The probabilities of successful copying for the respective seats are given in percentages:

a = 0, b = 10, c = d = 20, e = f = 45, g = h = 95

- The objective is to maximize the expected percentage of successful copying.
- Question: What seats can you rationally and cautiously choose under common full belief in (caution & respect of preferences)?

		Bubulu							
		a_B	b_B	c_B	d_B	e_B	f _B	8B	h _B
Veu	a _B	5, 5	0 , 10	0,0	0, 20	0, 0	0 , 0	0, 0	0,0
	b_Y	10, <mark>0</mark>	5,5	<mark>0</mark> , 20	0, 0	0 , 0	<mark>0</mark> , 0	0, 0	0,0
	c_Y	0, 0	20, <mark>0</mark>	20, 20	20, 20	0 , 0	0 , 45	0, 0	0,0
	d_Y	20, 0	0,0	20, 20	20, 20	0 , 45	<mark>0</mark> , 0	0, 0	0,0
100	e _Y	0, 0	0,0	0,0	45,0	45, 45	45, 45	0, 0	<mark>0</mark> , 95
	f_Y	0, 0	0,0	45,0	0, 0	45, 45	45, 45	<mark>0</mark> , 95	0,0
	g _Y	0, 0	0,0	0,0	0, 0	0, 0	95, 0	95, 95	95, 95
	h_Y	0,0	0,0	0,0	0, 0	95, 0	<mark>0</mark> , 0	95, 95	95, 95

Barbara

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

			Barbara							
		a_B	b_B	c_B	d_B	e_B	f _B	8B	h _B	
	a _B	5, 5	0, 10	0,0	0, 20	0, 0	0, 0	0, 0	0,0	
	b_Y	10, <mark>0</mark>	5, 5	<mark>0</mark> , 20	0, 0	0 , 0	0, 0	0, 0	0,0	
	c_Y	0,0	20 , 0	20, 20	20, 20	0 , 0	0 , 45	0, 0	0,0	
Vou	d_Y	20, <mark>0</mark>	0, 0	20, 20	20, 20	0 , 45	0, 0	0, 0	0,0	
100	e _Y	0,0	0,0	0,0	45,0	45, 45	45, 45	0, 0	0 , 95	
	f_Y	0,0	0,0	45,0	0, 0	45, 45	45, 45	<mark>0</mark> , 95	0,0	
	g _Y	0,0	0,0	0,0	0, 0	0 , 0	95, <mark>0</mark>	95, 95	95, 95	
	h_Y	0,0	0,0	0,0	0, 0	95, <mark>0</mark>	0, 0	95, 95	95, 95	

Round 1.

- a_Y is weakly dominated by b_Y on C_B .
- by is weakly dominated by $\frac{1}{2}c_Y + \frac{1}{2}d_Y$ on C_B .
- With symmetry the preference restrictions $(a_Y, \{b_Y\})$ and $(b_Y, \{c_Y, d_Y\})$ as well as $(a_B, \{b_B\})$ and $(b_B, \{c_B, d_B\})$ obtain.

EPICENTER Spring Course 2016: Respect of Preferences

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

			Barbara							
		a_B	b_B	c_B	d_B	e_B	f _B	8B	h _B	
	a _B	5,5	<mark>0</mark> , 10	0,0	<mark>0</mark> , 20	0, 0	<mark>0</mark> , 0	0, 0	0,0	
	b_Y	10, <mark>0</mark>	5,5	<mark>0</mark> , 20	0 , 0	0, 0	0 , 0	0, 0	0,0	
	c_Y	0, 0	20, <mark>0</mark>	20, 20	20, 20	0, 0	0 , 45	0, 0	0,0	
Vou	d_Y	20, 0	0,0	20, 20	20, 20	0 , 45	0, 0	0, 0	0,0	
100	e _Y	0, 0	0,0	0,0	45,0	45, 45	45, 45	0, 0	0 , 95	
	f_Y	0,0	0,0	45, <mark>0</mark>	0 , 0	45, 45	45, 45	<mark>0</mark> , 95	<mark>0</mark> , 0	
	g _Y	0,0	0,0	0,0	0 , 0	0 , 0	95, 0	95, 95	95, 95	
	h_Y	0, 0	0,0	0,0	0, 0	95, <mark>0</mark>	0, 0	95, 95	95, 95	

Round 2. preference restrictions: $(a_Y, \{b_Y\}), (b_Y, \{c_Y, d_Y\}), (a_B, \{b_B\}), (b_B, \{c_B, d_B\})$

- If you respect preference restriction $(a_B, \{b_B\})$, then you must assume some set $D_B \subseteq C_B$ which _____ contains b_B but not a_B .
- For every such set D_B it holds that d_Y is weakly dominated by c_Y .

Moreover, if you respect preference restrictions $(a_B, \{b_B\})$ and $(b_B, \{c_B, d_B\})$, then you must assume some set $D_B \subseteq C_B$ which contains c_B or d_B but not a_B and not b_B .

For every such set D_B it holds that c_Y is weakly dominated by $\frac{1}{2}e_Y + \frac{1}{2}f_Y$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

			Barbara							
		a_B	b_B	c_B	d_B	e_B	f _B	8B	h _B	
	a _B	5, 5	0 , 10	0,0	<mark>0</mark> , 20	0 , 0	0, 0	0 , 0	0,0	
	b_Y	10, 0	5, 5	<mark>0</mark> , 20	0, 0	0 , 0	0, 0	0 , 0	0,0	
	c_Y	<mark>0</mark> , 0	20, <mark>0</mark>	20, 20	20, 20	0 , 0	<mark>0</mark> , 45	0 , 0	0,0	
Vou	d_Y	20, 0	0,0	20, 20	20, 20	0, 45	0, 0	0, 0	0,0	
100	e _Y	0, 0	0,0	0,0	45,0	45, 45	45, 45	0, 0	0 , 95	
	f_Y	<mark>0</mark> , 0	0 , 0	45, <mark>0</mark>	0, 0	45, 45	45, 45	<mark>0</mark> , 95	0,0	
	g _Y	<mark>0</mark> , 0	0,0	0,0	0, 0	0 , 0	95, <mark>0</mark>	95, 95	95, 95	
	h_Y	0 , 0	0,0	0,0	0, 0	95, 0	0, 0	95, 95	95, 95	

Round 3. preference restrictions: $(a_Y, \{b_Y\})$, $(b_Y, \{c_Y, d_Y\})$, $(d_Y, \{c_Y\})$, $(c_Y, \{e_Y, f_Y\})$, $(a_B, \{b_B\})$, $(b_B, \{c_B, d_B\})$, $(d_B, \{c_B\})$, $(c_B, \{e_B, f_B\})$

- If you respect preference restriction $(d_B, \{c_B\})$, then you must assume some set $D_B \subseteq C_B$ which _____ contains c_B but not d_B .
- For every such set D_B^- it holds that e_Y is weakly dominated by f_Y .

Moreover, if you respect preference restrictions $(a_B, \{b_B\}), (b_B, \{c_B, d_B\}), (d_B, \{c_B\}), (c_B, \{e_B, f_B\}),$ then you must assume some set $D_B \subseteq C_B$ which contains e_B or f_B but not any choice from $\{a_B, b_B, c_B, d_B\}$.

For every such set D_B it holds that f_Y is weakly dominated by $\frac{1}{2}g_Y + \frac{1}{2}h_Y$.

EPICENTER Spring Course 2016: Respect of Preferences

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example: Take a Seat

			Barbara							
		a_B	b_B	c_B	d_B	e_B	f _B	8B	hB	
Ver	a _B	5,5	<mark>0</mark> , 10	<mark>0</mark> , 0	<mark>0</mark> , 20	0, 0	0, 0	0 , 0	0,0	
	b_Y	10, 0	5, 5	<mark>0</mark> , 20	0, 0	0, 0	0, 0	0, 0	0,0	
	c_Y	0, 0	20, <mark>0</mark>	20, 20	20, 20	0, 0	<mark>0</mark> , 45	0 , 0	0,0	
	d_Y	20, 0	<mark>0</mark> , 0	20, 20	20, 20	<mark>0</mark> , 45	0, 0	0 , 0	0,0	
100	e _Y	0, 0	0 , 0	0, 0	45,0	45, 45	45, 45	0, 0	<mark>0</mark> , 95	
	f_Y	0, 0	0, 0	45,0	0, 0	45, 45	45, 45	<mark>0</mark> , 95	0,0	
	g _Y	0, 0	0, 0	0, 0	0, 0	0, 0	95, 0	95, 95	95, 95	
	h_Y	0, 0	<mark>0</mark> , 0	0 , 0	0 , 0	95, 0	0, 0	95, 95	95, 95	

Round 4. preference restrictions: $(a_Y, \{b_Y\})$, $(b_Y, \{c_Y, d_Y\})$, $(d_Y, \{c_Y\})$, $(c_Y, \{e_Y, f_Y\})$, $(e_Y, \{f_Y\})$, $(f_Y, \{g_Y, h_Y\})$, $(a_B, \{b_B\})$, $(b_B, \{c_B, d_B\})$, $(d_B, \{c_B\})$, $(c_B, \{e_B, f_B\})$, $(e_B, \{g_B, h_B\})$, $(f_B, \{g_B, h_B\})$

- If you respect preference restriction $(e_B, \{f_B\})$, then you must assume some set $D_B \subseteq C_B$ which contains f_B but not e_B .
- For every such set D_B it holds that h_Y is weakly dominated by g_Y .

However, note that with preference restrictions $(a_Y, \{b_Y\}), (b_Y, \{c_Y, d_Y\}), (d_Y, \{c_Y\}), (c_Y, \{e_Y, f_Y\}), (e_Y, \{f_Y\}), (f_Y, \{g_Y, h_Y\}), (h_Y, \{g_Y\}), only your choice <math>g_Y$ can be optimal!

Under common full belief in (caution & respect of preferences), you can thus only rationally and cautiously take seat g.

Example: Take a Seat

			Barbara							
		a_B	b_B	c_B	d_B	e_B	f _B	g_B	h _B	
	a _B	5,5	<mark>0</mark> , 10	0,0	<mark>0</mark> , 20	0 , 0	<mark>0</mark> , 0	0, 0	0,0	
	b_Y	10, <mark>0</mark>	5,5	<mark>0</mark> , 20	0, 0	0 , 0	0 , 0	0, 0	0,0	
	c_Y	0,0	20, <mark>0</mark>	20, 20	20, 20	0 , 0	0 , 45	0, 0	0,0	
Vou	d_Y	20, <mark>0</mark>	0,0	20, 20	20, 20	0 , 45	0, 0	0, 0	0,0	
100	e_Y	0,0	0,0	0,0	45, <mark>0</mark>	45, 45	45, 45	<mark>0, 0</mark>	<mark>0</mark> , 95	
	f_Y	0,0	0,0	45, <mark>0</mark>	<mark>0, 0</mark>	45, 45	45, 45	<mark>0</mark> , 95	0,0	
	g_Y	0,0	0,0	0,0	0, 0	0, 0	95, 0	95, 95	95, 95	
	h_Y	0,0	0,0	0,0	0, 0	95, 0	0 , 0	95, 95	95, 95	

Consider the following lexicographic epistemic model:

Type Spaces: $T_{you} = \{t_Y\}$ and $T_{Barbara} = \{t_B\}$ Beliefs for You: $b_{you}(t_Y) = ((g_B, t_B); (h_B, t_B); (f_B, t_B); (e_B, t_B); (c_B, t_B); (d_B, t_B); (b_B, t_B); (a_B, t_B))$ Beliefs for Barbara: $b_B(t_B) = ((g_Y, t_Y); (h_Y, t_Y); (f_Y, t_Y); (e_Y, t_Y); (c_Y, t_Y); (d_Y, t_Y); (a_Y, t_Y))$

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

∃ 990

Thank you!

EPICENTER Spring Course 2016: Respect of Preferences

http://www.epicenter.name/bach

ъ

< 冊