EpiCenter Spring Course on Epistemic Game Theory Chapter 4: Simple Belief Hierarchies

Andrés Perea

Maastricht University

July 2016

Simple belief hierarchies

- Previously, we have discussed the idea of common belief in rationality.
- So, we focus on belief hierarchies in which you believe that
- your opponents choose rationally,
- your opponents believe that their opponents choose rationally,
- your opponents believe that their opponents believe that their opponents choose rationally,
- and so on.
- Can we still distinguish between such belief hierarchies?
- We will look at psychological factors beyond common belief in rationality.

Story

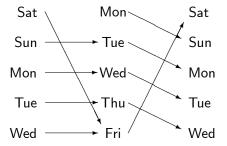
- It is Friday, and your biology teacher tells you that he will give you a surprise exam next week.
- You must decide on what day you will start preparing for the exam.
- In order to pass the exam, you must study for at least two days.
- To write the perfect exam, you must study for at least six days. In that case, you will get a compliment by your father.
- Passing the exam increases your utility by 5.
- Failing the exam increases the teacher's utility by 5.
- Every day you study decreases your utility by 1, but increases the teacher's utility by 1.
- A compliment by your father increases your utility by 4.

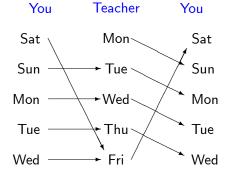
Teacher

× .		
Y	O	ш
	~	ч

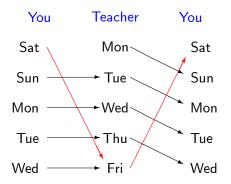
	Mon	Tue	Wed	Thu	Fri
Sat	3, 2	2, 3	1,4	0, 5	3,6
Sun	-1,6	3, 2	2, 3	1,4	0, 5
Mon	0, 5	-1,6	3, 2	2, 3	1,4
Tue	0, 5	0, 5	-1,6	3, 2	2,3
Wed	0, 5	0, 5	0, 5	-1,6	3,2

You

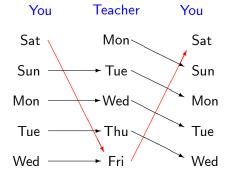




- Under common belief in rationality, you can rationally choose any day to start studying.
- Is there still a way to distinguish between your various choices?
- Yes! Some choices are supported by a simple belief hierarchy, whereas other choices are not.

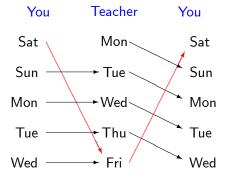


- Consider the belief hierarchy that supports your choices Saturday and Wednesday.
- This belief hierarchy is entirely generated by the belief σ_2 that the teacher puts the exam on Friday, and the belief σ_1 that you start studying on Saturday.

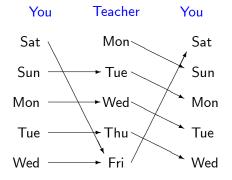


- Let σ_2 be the belief that the teacher chooses *Friday*, and let σ_1 be the belief that you choose *Saturday*.
- Then, in the belief hierarchy that supports your choices *Saturday* and *Wednesday*,
- your belief about the teacher's choice is σ_2 ,
- you believe, with probability 1, that the teacher's belief about your choice is σ_1 ,

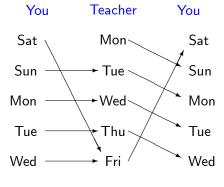
•



- ... you believe, with prob. 1, that the teacher believes, with prob. 1, that your belief about the teacher's choice is indeed σ₂,
- you believe, with prob. 1, that the teacher believes, with prob. 1, that you believe, with prob. 1, that the teacher's belief about your choice is indeed σ_1 ,
- and so on.
- So, this belief hierarchy is completely generated by the beliefs σ_1 and σ_2 . We call such a belief hierarchy simple.



- The belief hierarchies that support your choices Sunday, ..., Tuesday are certainly not simple. Consider, for instance, the belief hierarchy that supports your choice Sunday. There,
- you believe that the teacher puts the exam on Tuesday,
- but you believe that the teacher believes that you believe that the teacher will put the exam on Wednesday.

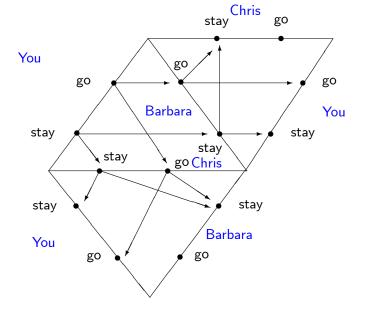


Summarizing

- Within this beliefs diagram:
- You can rationally make every choice under common belief in rationality.
- Your choices Saturday and Wednesday are supported by a simple belief hierarchy.
- Your other choices are supported by non-simple belief hierarchies.

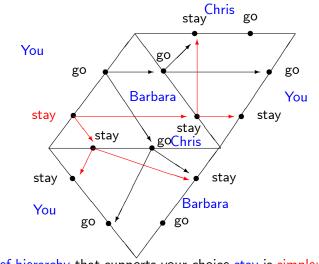
Story

- You have been invited to a party this evening, together with Barbara and Chris. But this evening, your favorite movie Once upon a time in America, starring Robert de Niro, will be on TV.
- Having a good time at the party gives you utility 3, watching the movie gives you utility 2, whereas having a bad time at the party gives you utility 0. Similarly for Barbara and Chris.
- You will only have a good time at the party if Barbara and Chris both join.
- Barbara and Chris had a fierce discussion yesterday. Barbara will only have a good time at the party if you join, but not Chris.
- Chris will only have a good time at the party if you join, but not Barbara.
- What should you do: Go to the party, or stay at home?



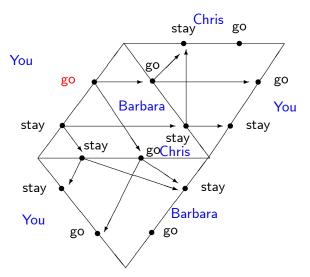
• Under common belief in rationality, you can go to the party or stay at home.

Andrés Perea (Maastricht University)

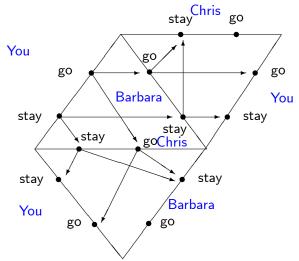


• The belief hierarchy that supports your choice stay is simple: It is completely generated by the beliefs

 $\sigma_1 =$ You stay, $\sigma_2 =$ Barbara stays, $\sigma_3 =$ Chris stays.



- The belief hierarchy that supports your choice go is not simple:
- You believe that Chris will go to the party.
- You believe that Barbara believes that Chris will stay at home.



- Summarizing: Under common belief in rationality, you can rationally choose go or stay.
- In this beliefs diagram, stay is supported by a simple belief hierarchy, but go is not.

In general, a belief hierarchy is called simple if it is generated by a combination of beliefs σ₁, ..., σ_n.

Definition (Belief hierarchy generated by $(\sigma_1, ..., \sigma_n)$)

For every player *i*, let σ_i be a probabilistic belief about *i*'s choice.

The belief hierarchy for player *i* that is generated by $(\sigma_1, ..., \sigma_n)$ states that

(1) player *i* has belief σ_j about player *j*'s choice,

(2) player *i* believes that player *j* has belief σ_k about player *k*'s choice,

(3) player *i* believes that player *j* believes that player *k* has belief σ_l about player *l*'s choice,

and so on.

Definition (Simple belief hierarchy)

Consider an epistemic model, and a type t_i within it.

Type t_i has a simple belief hierarchy, if its belief hierarchy is generated by some combination of beliefs $(\sigma_1, ..., \sigma_n)$.

- Observation 1: A type with a simple belief hierarchy always believes that his opponents are correct about his entire belief hierarchy.
- Proof. Take a type t_i with a simple belief hierarchy. Then, its belief hierarchy is generated by some combination of beliefs $(\sigma_1, ..., \sigma_n)$.
- Fix an opponent j. Then, t_i has belief σ_j about j's choice. But also, t_i believes that every opponent believes that he (player i) has indeed belief σ_j about j's choice.
- Fix an opponent j, and some player k ≠ j. Then, t_i believes that player j has belief σ_k about k's choice. But also, t_i believes that every opponent believes that he (player i) indeed believes that player j has belief σ_k about k's choice.
- And so on.

Definition (Simple belief hierarchy)

Consider an epistemic model, and a type t_i within it.

Type t_i has a simple belief hierarchy, if its belief hierarchy is generated by some combination of beliefs $(\sigma_1, ..., \sigma_n)$.

- Observation 2: In a game with three players or more, a type t_i with a simple belief hierarchy believes that his opponents share his beliefs about other players.
- Proof. Suppose that t_i 's belief hierarchy is generated by $(\sigma_1, ..., \sigma_n)$.
- Fix two different opponents j and k. Then, t_i 's belief about k's choice is σ_k . But t_i also believes that j has belief σ_k about k's choice.
- Take some player *l* ≠ *k*. Then, *t_i* believes that *k*'s belief about *l*'s choice is σ₁. But *t_i* also believes that *j* believes that *k*'s belief about *l*'s choice is σ₁.
- And so on.

- Previously we have focused on belief hierarchies that express common belief in rationality.
- So far in this chapter, we have focused on belief hierarchies that are simple.
- Can we characterize, in an easy way, those belief hierarchies that express common belief in rationality and are simple?

- Consider a type t_i with a simple belief hierarchy. Then, t_i 's belief hierarchy is generated by some combination $(\sigma_1, ..., \sigma_n)$ of beliefs. Hence:
- t_i 's belief about the opponents' choices is σ_{-i} ,
- t_i believes that player j's has belief σ_{-i} about his opponents' choices,
- t_i believes that player j believes that player k has belief σ_{-k} about his opponents' choices,
- and so on.
- Suppose that, in addition, type *t_i* expresses common belief in rationality.
- Take some opponent's choice c_j with $\sigma_j(c_j) > 0$.
- Then, t_i assigns positive probability to c_j .
- As t_i believes in j's rationality, choice c_j must be optimal for player j under the belief σ_{-j} about the opponents' choices.

- Now, take some own choice c_i with $\sigma_i(c_i) > 0$.
- Then, type t_i believes that every opponent j assigns positive probability to c_i .
- As t_i believes that j believes in i's rationality, choice c_i must be optimal for player i under the belief σ_{-i} about the opponents' choices.
- Conclusion: If t_i is a type that
- has a simple belief hierarchy, generated by the combination of beliefs $(\sigma_1, ..., \sigma_n)$, and
- expresses common belief in rationality,
- then, for every player j, the belief σ_j only assigns positive probability to choices c_j that are optimal under the belief σ_{-j} .

Definition (Nash equilibrium)

The combination of beliefs $(\sigma_1, ..., \sigma_n)$ is a Nash equilibrium if for every player *j*, the belief σ_j only assigns positive probability to choices c_j that are optimal under the belief σ_{-j} .

Theorem

Consider a type t_i which

(1) has a simple belief hierarchy, generated by the combination $(\sigma_1, ..., \sigma_n)$ of beliefs, and

(2) expresses common belief in rationality.

Then, the combination of beliefs $(\sigma_1, ..., \sigma_n)$ must be a Nash equilibrium.

• We can show that also the opposite direction is true.

Theorem

Consider a type t_i with a simple belief hierarchy, generated by the combination $(\sigma_1, ..., \sigma_n)$ of beliefs.

If the combination of beliefs $(\sigma_1, ..., \sigma_n)$ is a Nash equilibrium, then type t_i expresses common belief in rationality.

- **Proof.** We first show that t_i believes in his opponents' rationality.
- Take an opponent *j*, and assume that *t_i* assigns positive probability to choice *c_j*.
- Then σ_j(c_j) > 0, and hence c_j must be optimal for player j under the belief σ_{-j}.
- Since t_i believes that j's belief about the opponents' choices is σ_{-j} , type t_i believes that c_i is optimal for player j.
- So, t_i only assigns positive probability to a choice c_j if he believes that c_j is optimal for player j.
- Hence, type t_i believes in his opponents' rationality.

- Proof continued. We next show that t_i believes that his opponents believe in their opponents' rationality.
- Take an opponent j, and some player $k \neq j$. Suppose, t_i believes that player j assigns positive probability to choice c_k .
- Then σ_k(c_k) > 0, and hence c_k must be optimal for player k under the belief σ_{-k}.
- Since t_i believes that player j believes that k's belief about his opponents' choices is σ_{-k} , type t_i believes that player j believes that c_k is optimal for player k.
- So, if t_i believes that player j assigns positive probability to choice c_k, then t_i believes that player j believes that c_k is optimal for player k.
- Hence, type t_i believes that player j believes in k's rationality.
- As such, type *t_i* believes that his opponents believe in their opponents' rationality.
- And so on.

• By combining the two theorems above, we obtain the following characterization.

Theorem (Simple belief hierarchies versus Nash equilibrium)

Consider a type t_i with a simple belief hierarchy, generated by the combination $(\sigma_1, ..., \sigma_n)$ of beliefs.

Then, type t_i expresses common belief in rationality, if and only if, the combination of beliefs $(\sigma_1, ..., \sigma_n)$ is a Nash equilibrium.

• Important consequence:

- Suppose that in a given game, we wish to find the simple belief hierarchies that express common belief in rationality.
- Then, it is sufficient to find all the Nash equilibria $(\sigma_1, ..., \sigma_n)$ in the game.

• Question: Can we always find simple belief hierarchies that express common belief in rationality?

• The answer is given by John Nash, in his PhD dissertation.

Theorem (Nash equilibrium always exists)

For every game with finitely many choices there is at least one Nash equilibrium $(\sigma_1, ..., \sigma_n)$.

Theorem (Common belief in rationality with simple belief hierarchies is always possible)

Consider a game with finitely many choices. Then, for every player i there is at least one simple belief hierarchy that expresses common belief in rationality.

- We wish to find those choices you can rationally make if you
- express common belief in rationality, and
- hold a simple belief hierarchy.
- Is there a method to find these choices?

- Consider a type t_i with a simple belief hierarchy, generated by the combination $(\sigma_1, ..., \sigma_n)$ of beliefs.
- Remember: Type t_i expresses common belief in rationality, if and only if, the combination $(\sigma_1, ..., \sigma_n)$ of beliefs is a Nash equilibrium.
- Moreover, choice c_i is optimal for t_i if c_i is optimal under the belief σ_{-i} about the opponents' choices.
- Hence, choice c_i can rationally be made under common belief in rationality with a simple belief hierarchy, if and only if, there is some Nash equilibrium $(\sigma_1, ..., \sigma_n)$ where c_i is optimal under σ_{-i} .

Definition (Nash choice)

A choice c_i is a Nash choice if there is some Nash equilibrium $(\sigma_1, ..., \sigma_n)$ where c_i is optimal for player *i* under the belief σ_{-i} .

Definition (Nash choice)

A choice c_i is a Nash choice if there is some Nash equilibrium $(\sigma_1, ..., \sigma_n)$ where c_i is optimal for player *i* under the belief σ_{-i} .

- Observation 1: If there is a Nash equilibrium $(\sigma_1, ..., \sigma_n)$ with $\sigma_i(c_i) > 0$, then c_i is a Nash choice.
- Proof: Take some choice c_i with $\sigma_i(c_i) > 0$. Since $(\sigma_1, ..., \sigma_n)$ is a Nash equilibrium, c_i is optimal under the belief σ_{-i} .
- Hence, c_i is a Nash choice.

Definition (Nash choice)

A choice c_i is a Nash choice if there is some Nash equilibrium $(\sigma_1, ..., \sigma_n)$ where c_i is optimal for player *i* under the belief σ_{-i} .

- Observation 2: A Nash choice *c_i* need not always receive positive probability in a Nash equilibrium.
- Proof: Consider the game

- Then, $(b, \frac{1}{2}c + \frac{1}{2}d)$ is a Nash equilibrium.
- Since a is optimal under the belief $\frac{1}{2}c + \frac{1}{2}d$, choice a is a Nash choice.
- However, there is no Nash equilibrium (σ_1, σ_2) with $\sigma_1(a) > 0$.
- Indeed, if $\sigma_1(a) > 0$, then only d is optimal for player 2, and hence $\sigma_2 = d$.
- But then, only b can be optimal for player 1, hence σ₁ = b. This is a contradiction.

Andrés Perea (Maastricht University)

Theorem (Simple belief hierarchies versus Nash choices)

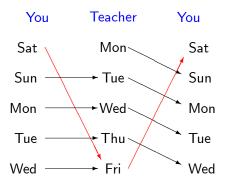
Player i can rationally make choice c_i under common belief in rationality with a simple belief hierarchy, if and only if, c_i is a Nash choice.

- Suppose we wish to find those choices that player *i* can make if
- he holds a simple belief hierarchy, and
- he expresses common belief in rationality.
- Then, it is sufficient to compute all Nash choices for player *i* in the game.
- Bad news: There is no simple algorithm for computing all Nash equilibria in a game.
- In some games, this is a difficult task.

Teacher

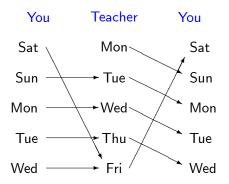
		Mon	Tue	Wed	Thu	Fri
You	Sat	3, 2	2, 3	1,4	0, 5	3,6
	Sun	-1,6	3, 2	2,3	1,4	0,5
	Mon	0, 5	2,3 3,2 -1,6	3, 2	2,3	1,4
			0, 5			
	Wed	0,5	0,5	0,5	-1,6	3,2

• On what days can you rationally start to study if you hold a simple belief hierarchy, and express common belief in rationality?



[•] We have seen:

- You can rationally choose Saturday or Wednesday under common belief in rationality with a simple belief hierarchy.
- Namely, the belief hierarchy that supports your choices Saturday and Wednesday is simple, as it is generated by the beliefs $\sigma_1 =$ Sat and $\sigma_2 =$ Fri.



- Are there any other choices you can rationally make under common belief in rationality with a simple belief hierarchy?
- The beliefs diagram does not help here.
- Compute all Nash equilibria (σ_1, σ_2) in the game.

	Mon	Tue	Wed	Thu	Fri
Sat	3, 2	2,3	1,4	0,5	3,6
Sun	—1,6	3, 2	2,3	1,4	0,5
Mon	0, 5	-1,6	3, 2	2,3	1,4
Tue	0, 5	0, 5	-1,6	3, 2	2,3
Wed	0, 5	0,5	0, 5	-1,6	3,2

- Suppose that (σ_1, σ_2) is a Nash equilibrium.
- Step 1. Show that $\sigma_2(Thu) = 0$.
- Suppose that $\sigma_2(Thu) > 0$. Then, *Thu* must be optimal for the teacher under the belief σ_1 about your choice.
- This is only possible if $\sigma_1(Wed) > 0$.
- So, *Wed* must be optimal for you under the belief σ_2 .
- This is only possible if $\sigma_2(Fri) = 1$. Contradiction.

	Mon	Tue	Wed	Thu	Fri
Sat	3, 2	2,3	1,4	0, 5	3,6
Sun	—1,6	3, 2	2,3	1,4	0,5
Mon	0, 5	-1,6	3, 2	2,3	1,4
Tue	0, 5	0, 5	-1,6	3, 2	2,3
Wed	0, 5	0, 5	0, 5	-1,6	3, 2

- Step 2. Show that $\sigma_2(Wed) = 0$.
- Suppose that σ₂(Wed) > 0. Then, Wed must be optimal for the teacher under the belief σ₁.
- This is only possible if $\sigma_1(Tue) > 0$.
- Then, *Tue* must be optimal for you under the belief σ_2 .
- This is only possible if $\sigma_2(Thu) > 0$. Contradiction.

	Mon	Tue	Wed	Thu	Fri
Sat	3, 2	2, 3	1,4	0,5	3,6
Sun	—1,6	3, 2	2,3	1,4	0,5
Mon	0, 5	-1,6	3, 2	2,3	1,4
Tue	0, 5	0,5	-1,6	3, 2	2,3
Wed	0, 5	0,5	0, 5	-1,6	3,2

- Step 3. Show that $\sigma_2(Tue) = 0$.
- Suppose that $\sigma_2(Tue) > 0$. Then, *Tue* must be optimal for the teacher under the belief σ_1 .
- This is only possible if σ₁(Mon) > 0. Otherwise, Tue would be strictly dominated for the teacher by (0.9) · Wed + (0.1) · Thu.
- So, *Mon* must be optimal for you under the belief σ_2 .
- This is only possible if $\sigma_2(Wed) > 0$ or $\sigma_2(Thu) > 0$. Contradiction.

	Mon	Tue	Wed	Thu	Fri
Sat	3, 2	2,3	1,4	0, 5	3,6
Sun	-1,6	3, 2	2, 3	1,4	0,5
Mon	0, 5	-1,6	3, 2	2,3	1,4
Tue	0, 5	0, 5	-1,6	3, 2	2,3
Wed	0, 5	0, 5	0, 5	-1,6	3,2

- Step 4. Show that $\sigma_2(Mon) = 0$.
- Suppose that $\sigma_2(Mon) > 0$. Then, *Mon* must be optimal for the teacher under the belief σ_1 .
- This is only possible if σ₁(Sun) > 0. Otherwise, Mon would be strictly dominated for the teacher by
 (0.9) · Tue + (0.09) · Wed + (0.01) · Thu.
- So, *Sun* must be optimal for you under the belief σ_2 .
- This is only possible if $\sigma_2(Tue) > 0$. Contradiction.

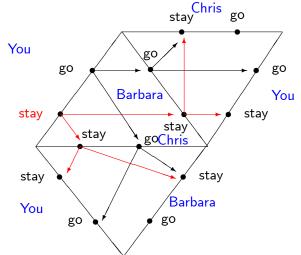
	Mon	Tue	Wed	Thu	Fri
Sat	3, 2	2, 3	1,4	0, 5	3,6
Sun	—1,6	3, 2	2,3	1,4	0,5
Mon	0, 5	-1,6	3, 2	2,3	1,4
Tue	0, 5	0,5	-1,6	3, 2	2,3
Wed	0, 5	0, 5	0, 5	-1, 6	3,2

- So, if (σ_1, σ_2) is a Nash equilibrium, then σ_2 must assign probability 0 to Mon, Tue, Wed and Thu. Hence, $\sigma_2 = Fri$.
- But then, your optimal choices under the belief σ_2 are Sat and Wed.
- Hence, your only Nash choices in this game are Sat and Wed.
- These are the only choices you can rationally make under common belief in rationality with a simple belief hierarchy.

	Mon	Tue	Wed	Thu	Fri		
Sat	3, 2	2,3	1,4	0, 5	3,6		
Sun	—1,6	3, 2	2, 3	1,4	0,5		
Mon	0, 5	-1, 6	3, 2	2,3	1,4		
Tue	0, 5	0,5	-1,6	3, 2	2,3		
Wed	0, 5	0,5	0, 5	-1,6	3,2		
Summarizing							

- Under common belief in rationality, you can rationally start to study on any day between Saturday and Wednesday.
- However, if you hold a simple belief hierarchy in addition, then under common belief in rationality you can only rationally start to study on Saturday or Wednesday.
- Crucial difference: With a simple belief hierarchy, you believe that the teacher is correct about your beliefs.

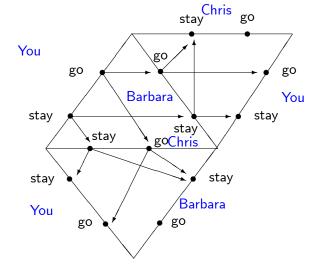
- Having a good time at the party gives you utility 3, watching the movie gives you utility 2, whereas having a bad time at the party gives you utility 0. Similarly for Barbara and Chris.
- You will only have a good time at the party if Barbara and Chris both join.
- Barbara will only have a good time at the party if you join, but not Chris.
- Chris will only have a good time at the party if you join, but not Barbara.
- What choice(s) can you rationally make if you hold a simple belief hierarchy, and express common belief in rationality?



• The belief hierarchy that supports your choice stay is simple: It is completely generated by the beliefs

σ₁ = You stay, σ₂ = Barbara stays, σ₃ = Chris stays.
So, you can rationally stay at home under common belief in rationality with a simple belief hierarchy.

Andrés Perea (Maastricht University)



- In this beliefs diagram, your choice to go the party is not supported by a simple belief hierarchy.
- But can your choice go be supported by a simple belief hierarchy that expresses common belief in rationality?

• Let us try to find all Nash equilibria in this game, and see whether your choice go is a Nash choice.

You stay	C stays	C goes	You go	C stays	C goes
B stays	2, 2, 2	2, 2, 0	B stays	s 0, 2, 2	0, 2, 3
B goes	2, 0, 2	2,0,0	B goes	s 0, 3, 2	3, 0, 0

- Suppose that $(\sigma_1, \sigma_2, \sigma_3)$ is a Nash equilibrium in this game.
- We first show that $\sigma_1(go) = 0$.
- Assume that σ₁(go) > 0. Then, go must be optimal for you under the belief (σ₂, σ₃).
- For you, $u_1(go) = 3 \cdot \sigma_2(go) \cdot \sigma_3(go)$, whereas $u_1(stay) = 2$.
- Hence, $\sigma_2(go) \cdot \sigma_3(go) \ge 2/3$, which implies $\sigma_2(go) \ge 2/3$ and $\sigma_3(go) \ge 2/3$. This implies $\sigma_3(stay) \le 1/3$.
- So, go must be optimal for Barbara under the belief (σ_1, σ_3) .
- But for Barbara,

$$u_2(\mathit{go}) = 3 \cdot \sigma_1(\mathit{go}) \cdot \sigma_3(\mathit{stay}) \leq 1 < u_2(\mathit{stay})$$
,

which means that go is not optimal for Barbara. Contradiction.

You stay	C stays	C goes	You go	C stays	C goes
	2, 2, 2		B stays	0, 2, 2	0, 2, 3
B goes	2, 0, 2	2,0,0	B goes	0, 3, 2	3, 0, 0

- So we conclude that $\sigma_1(stay) = 1$.
- But then, for Barbara only stay can be optimal under the belief (σ_1, σ_3) . Hence, $\sigma_2 = stay$.
- Similarly, for Chris only stay can be optimal under the belief (σ_1, σ_2) . Consequently, $\sigma_3 = stay$.
- So, the only Nash equilibrium is

$$\sigma_1 = stay, \ \sigma_2 = stay, \ \sigma_3 = stay.$$

• Under the belief (σ_2, σ_3) , your only optimal choice is to stay at home. Hence, your only Nash choice is to stay at home.

You stay				You go	C stays	C goes	
B stays	2, 2, 2	2, 2, 0		B stays	0, 2, 2	0, 2, 3	
B goes	2,0,2	2,0,0		B goes	0, 3, 2	3, 0, 0	
Summarizing							

- Under common belief in rationality you can either stay at home, or go to the party.
- However, if you hold a simple belief hierarchy, then under common belief in rationality your only rational choice is to stay at home.
- Crucial difference: With a simple belief hierarchy, you believe that Barbara has the same belief about Chris' choice as you do.

- We have concentrated on simple belief hierarchies.
- But which epistemic conditions lead to a simple belief hierarchy?
- We focus on the case of two players only.

- In a two-player game, a simple belief hierarchy for player *i* is completely generated by a pair of beliefs (σ_i, σ_i) . That is:
- player *i* holds belief σ_j about *j*'s choice,
- player *i* believes that player *j* holds belief σ_i about *i*'s choice,
- player *i* believes that player *j* believes that, indeed, player *i* holds belief σ_j about *j*'s choice,
- player *i* believes that player *j* believes that player *i* believes that, indeed, player *j* holds belief σ_i about *i*'s choice,
- and so on.
- So, if player *i* holds a simple belief hierarchy, then he believes that his opponent is correct about his belief hierarchy. We say that player *i* believes that player *j* holds correct beliefs.
- Moreover, if player *i* holds a simple belief hierarchy, he also believes that player *j* believes that *i* has correct beliefs.

Definition (Belief that opponents hold correct beliefs)

A type t_i believes that his opponent holds correct beliefs if he believes that his opponent believes that, indeed, his type is t_i .

- We have seen that in a two-player game, a type with a simple belief hierarchy believes that his opponent holds correct beliefs, and believes that his opponent believes that he himself holds correct beliefs too.
- In fact, the other direction is also true: If in a two-player game a type believes that his opponent holds correct beliefs, and believes that his opponent believes that he himself holds correct beliefs too, then this type has a simple belief hierarchy.

Theorem (Characterization of types with a simple belief hierarchy in two-player games)

Consider a game with two players.

A type t_i for player *i* has a simple belief hierarchy, if and only if, t_i believes that his opponent holds correct beliefs, and believes that his opponent believes that he himself holds correct beliefs too.

- Proof. Suppose that type t_i believes that his opponent holds correct beliefs, and believes that his opponent believes that he himself holds correct beliefs too.
- Show: Type t_i assigns probability 1 to a single type t_j for player j.
- Suppose that t_i would assign positive probability to two different types t_j and t'_j for player j.

• Then, t_j would not believe that *i* holds correct beliefs. Contradiction.

Theorem (Characterization of types with a simple belief hierarchy in two-player games)

Consider a game with two players.

A type t_i for player *i* has a simple belief hierarchy, if and only if, t_i believes that his opponent holds correct beliefs, and believes that his opponent believes that he himself holds correct beliefs too.

- So, we know that t_i assigns probability 1 to some type t_j for player j, and t_j assigns probability 1 to t_i .
- Let σ_j be the belief that t_i has about j's choice, and let σ_i be the belief that t_i has about i's choice.

$$t_i \xrightarrow{\sigma_j} t_j \xrightarrow{\sigma_i} t_i$$

But then, t_i's belief hierarchy is generated by (σ_i, σ_j). So, t_i has a simple belief hierarchy.

- Be careful: If we have more than two players, then these conditions are no longer enough to induce simple belief hierarchies.
- In a game with more than two players, we need to impose the following extra conditions:
- you believe that player *j* has the same belief about player *k* as you do;
- your belief about player *j*'s choice must be independent from your belief about player *k*'s choice.

How reasonable is Nash equilibrium?

- We have seen that a Nash equilibrium makes the following assumptions:
- you believe that your opponents are correct about the beliefs that you hold;
- you believe that player *j* holds the same belief about player *k* as you do;
- your belief about player *j*'s choice is **independent** from your belief about player *k*'s choice.
- Each of these conditions is actually very questionable.
- Therefore, Nash equilibrium is not such a natural concept after all.
- Common belief in rationality is a much more natural concept.