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Abstract
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1 Introduction

Backward induction and forward induction are two fundamentally di¤erent lines of reasoning
in dynamic games. In backward induction, a player believes throughout the game that his
opponents will choose rationally in the future, regardless of what these opponents have done
in the past. This principle is the basis for the well-known backward induction procedure in
dynamic games with perfect information, and the concept of common belief in future rationality
(Perea (2014), see also Penta (2016) and Baltag, Smets and Zvesper (2009) for related lines
of reasoning) for general dynamic games. The backward induction principle is also implicitly
present in equilibrium concepts like subgame perfect equilibrium (Selten (1965)) and sequential
equilibrium (Kreps and Wilson (1982)). A common feature of all these backward induction
concepts is thus that players are not required to reason about the opponents�past choices, but
instead are required to believe that the opponents will act rationally in the future independent
of what these opponents have done in the past.

Forward induction, on the other hand, does require the players to actively reason about
the opponents�past choices. Although there is no unique de�nition of forward induction in the
literature, the main idea is that a player, whenever possible, tries to interpret the opponent�s past
moves as being part of a rational strategy, and that he bases his belief about the opponent�s future
moves on this hypothesis. Extensive-form rationalizability (Pearce (1984), Battigalli (1997)) is
a very basic and natural forward induction concept, based on the idea that a player, whenever
possible, must believe that his opponents are implementing rational strategies. This idea can
be formalized by the epistemic condition of strong belief in the opponents�rationality (Battigalli
and Siniscalchi (2002)), which provides the basis for common strong belief in rationality � a
concept that characterizes extensive-form rationalizability on an epistemic level.

More precisely, extensive-form rationalizability is an inductive procedure that iteratedly
removes strategies and conditional belief vectors from the game. In the �rst round we remove
all strategies that can never be rational for any conditional belief vector, and subsequently
restrict to conditional belief vectors that �whenever possible � assign probability one to the
strategies that have survived this �rst elimination. This restriction thus mimicks the condition
of strong belief in the opponents�rationality. In the second round we then eliminate all strategies
that can never be rational for any conditional belief vector that has survived the �rst round,
and subsequently restrict the conditional belief vectors even further by focusing on those that
�whenever possible � assign probability one to the strategies that have survived the second
elimination, and so on.

Extensive-form rationalizability, being a forward induction concept, is based on a completely
di¤erent line of reasoning than backward induction. Indeed, extensive-form rationalizability
requires players to critically reason about the opponents� past choices in the game, whereas
backward induction does not. Despite this fundamental di¤erence, Battigalli (1997) shows in
his Theorem 4 that both lines of reasoning uniquely lead to the backward induction outcome in
dynamic games with perfect information and without relevant ties. This result is remarkable, as
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there is no obvious reason to expect that these two lines of reasoning �which are so fundamentally
di¤erent �would lead to exactly the same outcome in this class of games. The di¤erence is also
illustrated by the fact that both lines of reasoning may lead to di¤erent choices for the players
o¤ the backward induction path �something we will illustrate in Section 3. At the same time,
Battigalli�s theorem is crucial for the foundations of game theory, as backward induction and
forward induction both play a prominent role in the theory of dynamic games.

It therefore seems important for game theorists to not only know that Battigalli�s theorem
holds, but also to know why it holds. The purpose of this paper is to make a step forward in
that direction, by delivering a new proof for Battigalli�s theorem which �we hope �leads to an
even better understanding of why it holds.

Our proof consists of three parts. In the �rst part we present a recursive elimination proce-
dure which, at every round k; characterizes exactly those outcomes in the game that are possible
given the strategies that survive round k of the extensive-form rationalizability procedure. In
particular, the output of this procedure yields exactly the extensive-form rationalizable outcomes
in the game. In the second part we show that the output of our procedure is order independent �
that is, the �nal output does not depend on the order or speed by which we perform the elimina-
tions. In the third part we show that the backward induction procedure can be mimicked by our
procedure if we choose a speci�c order of elimination. By the order independence property, this
alternative order of elimination �which leads to the backward induction outcome �must lead
to the same outcome as the original procedure. Since the original procedure characterizes the
extensive-form rationalizable outcomes, it follows that the unique extensive-form rationalizable
outcome is the backward induction outcome. Hence, Battigalli�s theorem follows.

The elimination procedure that we use in the �rst part is based on the elimination of choice
sequences (von Stengel (1996)) �rather than strategies �from the game. A choice sequence for a
player is the sequence of choices for that player on the path from the root to some (non-terminal
or terminal) history in the game. It can thus be viewed as a partial description of a strategy,
by focusing only on those choices that lie on the same path from the root to some history in
the game. We say that a choice sequence �i for player i is strictly dominated at some history
h where player i is active, if the highest utility that i can obtain from h onwards by choosing
in accordance with �i is lower than the maximum utility that i can guarantee for himself if the
game were to start at h. In Theorem 4.1 we show that a choice sequence is part of a rational
strategy � that is, can be extended to a strategy that is optimal for some conditional belief
vector at every relevant history � if and only if the choice sequence is not strictly dominated.
This result turns out to be the key to our proof.

The elimination procedure that we develop in the �rst part works as follows. In the �rst round
we start by eliminating all strictly dominated choice sequences from the game, and subsequently
restrict the game to those histories that can still be reached under the choice sequences that have
survived the �rst round. We thus obtain a smaller, reduced game. Within this reduced game,
we again eliminate all strictly dominated choice sequences in round 2, and subsequently reduce
the game even further by restricting to those histories that can still be reached under the choice
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sequences that have survived the second round. We proceed in this way until no remaining
choice sequences are strictly dominated. We call this procedure the iterated elimination of all
strictly dominated choice sequences. In Section 5 we show, with the help of Theorem 4.1, that
the reduced game obtained in round k of the procedure contains exactly those outcomes that
are possible under the strategies that survive round k of the extensive-form rationalizability
procedure. As a consequence, the reduced game obtained at the end of the procedure contains
precisely the extensive-form rationalizable outcomes in the game.

In Section 6 we show that the iterated elimination of all strictly dominated choice sequences
is order independent. More precisely, we show the following: If we remove a strictly dominated
choice sequence �i from the game such that, at the last history where �i is de�ned there is at
least on other choice available, then it does not matter for the �nal output whether we apply the
procedure to the original game or to the reduced game that results from removing �i: Strictly
dominated choice sequences of this kind are called regular. By an iterated application of this
property, it thus follows that the output of the procedure remains una¤ected if we successively
eliminate regular and strictly dominated choice sequences in an arbitrary fashion.

In Section 7 we �nally show that the backward induction procedure can be mimicked by the
successive elimination of regular and strictly dominated choice sequences in a speci�c order. By
the order independence property above it then follows that the original procedure must yield the
same output as this alternative procedure, which obviously leads to the backward induction out-
come. Since the original procedure characterizes the extensive-form rationalizable outcomes, we
conclude that the unique extensive-form rationalizable outcome must be the backward induction
outcome. This proves Battigalli�s theorem.

This paper is not the �rst to prove Battigalli�s theorem. Much credit should of course go
to Battigalli (1997), who was the �rst to prove this result by relying on certain properties of
fully stable sets (Kohlberg and Mertens (1986)). The result also follows from Chen and Micali
(2013), who show that the outcomes that are selected by the iterated conditional dominance
procedure (Shimoji and Watson (1998)) do not depend on the speci�c order or speed of elimina-
tion. Since Shimoji and Watson (1998) show that the iterated conditional dominance procedure
characterizes the extensive-form rationalizable strategies, and the backward induction outcome
can be obtained by a speci�c order of elimination in this procedure, it follows from Chen and
Micali (2013) that extensive-form rationalizability uniquely leads to the backward induction
outcome. Heifetz and Perea (2015), �nally, prove Battigalli�s theorem via a di¤erent route. The
main step in their proof is to show that the extensive-form rationalizable outcomes of a game
do not change if we truncate the game, by eliminating the suboptimal choices at every last
non-terminal history. The main di¤erence between our proof and the proofs above is our use
of choice sequences, rather than strategies, and the fact that we use these choice sequences to
derive a characterization of the outcomes that are possible at every round of the extensive-form
rationalizability procedure.

The outline of this paper is as follows. In Section 2 we present the model of dynamic
games with perfect information. In Section 3 we de�ne the backward induction procedure and
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the extensive-form rationalizability procedure, and show that the strategies selected by the
extensive-form rationalizability procedure depend on the order and speed by which we eliminate
strategies from the game. In Section 4 we introduce the notion of a choice sequence, which
plays such a crucial role in this paper, and show that a choice sequence is part of rational
strategy if and only if the choice sequence is not strictly dominated. In Section 5 we present our
procedure called iterated elimination of all strictly dominated choice sequences, and prove that
this procedure characterizes, for every round k; the outcomes that are possible under round k of
the extensive-form rationalizability procedure. In Section 6 we show that this procedure is order
independent in the sense described above. In Section 7 we use all insights gathered in Sections
5 and 6 to prove Battigalli�s theorem. We provide some concluding remarks in Section 8. The
longer proofs are all gathered in the appendix, whereas the shorter proofs are given in the main
body of this paper. However, for each of the results requiring a longer proof we give a sketch of
the proof in the main body. By doing so, we hope that by reading the main body of this paper
the reader will get a clear intuition for why Battigalli�s theorem holds.

2 Dynamic Games with Perfect Information

As we assume most readers will be familiar with the model of a dynamic game with perfect
information, we only introduce the necessary notation here.

A �nite dynamic game with perfect information is a tuple

G = (I;H;Z; (Hi)i2I ; (Ci(h))i2I;h2Hi ; (ui)i2I)

where
(a) I = f1; 2; :::; ng is the �nite set of players;
(b) H is the �nite set of non-terminal histories, representing the situations where one of the

players must make a choice. By ; we denote the root of the game, which is the non-terminal
history where the game starts;

(c) Z is the �nite set of terminal histories, representing the possible outcomes of the game;
(d) Hi is the set of non-terminal histories where player i must make a choice. In a perfect

information game, exactly one player moves at every non-terminal history. Hence we require
that H = [i2IHi and Hi \Hj = ; whenever i 6= j;

(e) Ci(h) is the �nite set of choices available to player i at history h 2 Hi; and
(f) ui : Z ! R is player i�s utility function, assigning to every terminal history z 2 Z some

utility ui(z):

For every non-terminal history h 2 Hi and choice ci 2 Ci(h); we denote by hci the (terminal
or non-terminal) history that immediately follows choice ci at h: We say that a history h 2
H [ Z follows another history h0 2 H if there is a sequence of choices c1; c2; :::; cK such that
h = h0c1c2:::cK : A history h 2 H [ Z is said to weakly follow h0 2 H [ Z if either h follows h0
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Figure 1: Reny�s game

or h = h0: In the obvious way, we can then also de�ne what it means for h to (weakly) precede
another history h0: Often we identify a history h 2 H [Z with the sequence of choices c1c2:::cK
on the path from ; to h:

The game G is said to be without relevant ties (Battigalli (1997)) if for every player i; every
h 2 Hi, every two distinct choices ci; c0i 2 Ci(h); every z 2 Z weakly following hci; and every
z0 2 Z weakly following hc0i; it holds that ui(z) 6= ui(z0): Hence, two di¤erent choices for player
i always lead to di¤erent utilities for player i at the end.

We view a strategy for player i as a plan of action (Rubinstein (1991)), assigning choices
only to those histories h 2 Hi that are not precluded by previous choices. Formally, consider a
set of non-terminal histories Ĥi � Hi; and a mapping si : Ĥi ! [h2ĤiCi(h) assigning to every
history h 2 Ĥi some available choice si(h) 2 Ci(h): We say that a history h 2 H is reachable
under si if at every history h0 2 Ĥi preceding h; the choice si(h0) is the unique choice that
leads to h: The mapping si : Ĥi ! [h2ĤiCi(h) is called a strategy if Ĥi contains exactly those
histories in Hi that are reachable under si:

By Si we denote the set of strategies for player i: For every history h 2 H and player i; we
denote by Si(h) the set of strategies for player i under which h is reachable.

As an illustration, consider the game G in Figure 1, which is based on Figure 3 in Reny
(1992). It is easily seen that G is a �nite dynamic game with perfect information and without
relevant ties. The non-terminal histories are ;; h1; h2 and h3; the strategies for player 1 are
a; (b; e) and (b; f); whereas the strategies for player 2 are c; (d; g) and (d; h): We also have, for
instance, that S1(h1) = f(b; e); (b; f)g as h1 is only reachable if player 1 chooses b at ;:
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3 Backward Induction and Extensive-Form Rationalizability

In this section we will introduce the well-known backward induction procedure and the extensive-
form rationalizability procedure (Pearce (1984), Battigalli (1997)). The extensive-form ratio-
nalizability procedure recursively eliminates, at every round, some strategies and conditional
belief vectors for the players. We then provide a su¢ cient condition which guarantees that a
strategy will survive round k of the extensive-form rationalizability procedure. This condition
will be important for proving Battigalli�s theorem. At the end of this section we will illustrate,
by means of the example in Figure 1, that the �nal output of the extensive-form rationalizability
procedure depends on the order and speed by which we eliminate strategies from the game.

3.1 Backward Induction

Consider a �nite dynamic game G with perfect information and without relevant ties. For every
history h 2 H [ Z; let d(h) be the maximal number of consecutive choices between h and a
terminal history. We call d(h) the degree of history h: We de�ne for every h 2 H [ Z the
backward induction utilities ubii (h) and for every h 2 Hi the backward induction choice cbii (h);
by induction on the degree d(h):

Consider �rst a history h of degree 0, meaning that h is a terminal history. We de�ne, for
all players i;

ubii (h) := ui(h):

Now, let k � 1; and assume that ubii (h) has been de�ned for all players i and all histories
h 2 H [Z with degree d(h) � k� 1: Take an arbitrary history h 2 Hi with degree k: Let cbii (h)
be a choice in Ci(h) such that

ubii (hc
bi
i (h)) = max

ci2Ci(h)
ubii (hci):

For every player j 2 I; de�ne
ubij (h) := u

bi
j (hc

bi
i (h)):

Since the game G is without relevant ties, the backward induction choice cbii (h) is unique for
every player i and every h 2 Hi: By induction on k, this procedure then de�nes the unique
backward induction choice cbii (h) for every player i and every history h 2 Hi:

The terminal history zbi that is reached by the combination of backward induction choices
(cbii (h))i2I;h2Hi is called the backward induction outcome in G:

In the game of Figure 1, it is easily seen that the backward induction choices are a; c; e and
g; and that therefore the unique backward induction outcome is the terminal history a:
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3.2 Extensive-Form Rationalizability

The extensive-form rationalizability procedure has been de�ned by Pearce (1984), and later
simpli�ed by Battigalli (1997). It recursively eliminates strategies and conditional belief vectors
from the game, where in every step an elimination of strategies is followed by an elimination
of conditional belief vectors. In order to formally state this procedure for games with perfect
information, we need some additional de�nitions.

For a �nite set X; we denote by �(X) the set of probability distributions on X: For a player
i and history h 2 Hi; let S�i(h) := �j 6=iSj(h) be the set of opponents�strategy combinations
under which h is reachable.

A conditional belief vector for player i is tuple bi = (bi(h))h2Hi where bi 2 �(S�i(h)) for
every h 2 Hi: Here, bi(h) represents the conditional probabilistic belief that i holds at h about
the opponents�strategy choices. We say that the conditional belief vector bi satis�es Bayesian
updating is for every h; h0 2 Hi where h0 follows h and bi(h)(S�i(h0)) > 0; it holds that

bi(h
0)(s�i) =

bi(h)(s�i)

bi(h)(S�i(h0))
for all s�i 2 S�i(h0):

By Bi we denote the set of conditional belief vectors for player i that satisfy Bayesian updating.
For a given conditional belief vector bi and a set E � S�i of opponents�strategy combinations,

we say that bi strongly believes E if bi(h)(E) = 1 for all h 2 Hi where S�i(h) \ E 6= ;: That is,
bi assigns full probability to E at all histories h 2 Hi where E is logically consistent with the
event that h has been reached.

For a strategy combination s = (si)i2I we denote by z(s) the induced terminal history. For
a history h 2 Hi; a strategy si 2 Si(h); and a conditional belief bi(h) 2 �(S�i(h)) , we denote
by

ui(si; bi(h)) :=
X

s�i2S�i(h)
bi(h)(s�i) � ui(z(si; s�i))

the induced expected utility at h: We say that strategy si is rational for belief bi(h) at h if
ui(si; bi(h)) � ui(s

0
i; bi(h)) for all s

0
i 2 Si(h): That is, strategy si yields the highest possible

expected utility at h under the belief bi(h): We say that strategy si is rational for a conditional
belief vector bi = (bi(h))h2Hi if si is rational for the belief bi(h) at every h 2 Hi that is reachable
under si:

De�nition 3.1 (Extensive-Form Rationalizability) Consider a �nite dynamic gameG with
perfect information.

(Induction start) Set S0i := Si and B
0
i := Bi for all players i:

(Induction step) Let k � 1; and assume that Sk�1i and Bk�1i have already been de�ned for all
players i. Then, de�ne for all players i

Ski : = fsi 2 Si j si rational for some bi 2 Bk�1i g;
Bki : = fbi 2 Bk�1i j bi strongly believes Sk�ig:

8



A strategy si 2 Si is called extensive-form rationalizable if si 2 Ski for all k � 0:

Here, by Sk�i we denote the set �j 6=iSkj : By S1i := \k�0Ski we denote the set of extensive-form
rationalizable strategies for player i: We call an outcome z 2 Z extensive-form rationalizable if
there is a strategy combination (si)i2I in �i2IS1i that induces z:

As an illustration, consider again the game G from Figure 1. It may be veri�ed that

S11 = fa; (b; f)g and S12 = fc; (d; g)g:

Note that strategy (b; e) can never be rational for player 1 for any conditional belief vector,
since (b; e) yields player 1 at most utility 2 at ; whereas player 1 can guarantee utility 3 there
by choosing a: Similarly, strategy (d; h) is never rational for player 2 for any conditional belief
vector, as the choice h is suboptimal for player 2 at h3: By construction, we then have that

B11 = fb1 2 B01 j b1 strongly believes fc; (d; g)gg
= fb1 2 B01 j b1(;)(fc; (d; g)g) = 1 and b1(h2)(f(d; g)g) = 1g

and

B12 = fb2 2 B02 j b2 strongly believes fa; (b; f)gg
= fb2 2 B02 j b2(h1)(f(b; f)g) = b2(h3)(f(b; f)g) = 1g:

Note that a is the only strategy for player 1 that is rational for a conditional belief vector in
B11 : Similarly, (d; g) is the only strategy for player 2 that is rational for the unique conditional
belief vector in B12 : Hence,

S21 = fag and S22 = f(d; g)g;

which implies that

B21 = fb1 2 B11 j b1 strongly believes f(d; g)gg
= fb1 2 B01 j b1(;)(f(d; g)g) = b1(h2)(f(d; g)g) = 1g

and
B22 = fb2 2 B12 j b2 strongly believes fagg = B12 :

After this round the procedure terminates, as S31 = S21 and S
3
2 = S22 : Hence, the extensive-

form rationalizable strategies are a for player 1 and (d; g) for player 2, which implies that the
unique extensive-form rationalizable outcome is the terminal history a: We thus conclude that
the unique extensive-form rationalizable outcome is the same as the backward induction outcome
in this game G:

The �forward induction story�behind the eliminations above is as follows: If player 2 observes
at h1 that player 1 has chosen b; he tries to interpret b as being part of a rational strategy for
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player 1. Therefore, player 2 must believe at h1 that player 1 will choose f at h2; as that is the
only way for player 1 to obtain more than 3 �the utility he could have guaranteed by choosing
a at ;: This argument is mimicked by the set of beliefs B12 above. If player 2 reasons in this way,
his best strategy is to choose (d; g); which is player 2�s only strategy in S22 : Player 1, anticipating
on player 2 choosing (d; g); will therefore choose a:

Hence, the reason that player 1 chooses a in extensive-form rationalizability is that he expects
player 2 to choose d and g if he were to choose b instead of a at ;: In contrast, the reason that
player 1 chooses a in the backward induction procedure is that he expects player 2 to choose c
if he were to choose b instead of a at ;:We thus see that these two fundamentally di¤erent lines
of reasoning lead to the same outcome a in this game, but for di¤erent reasons.

3.3 Su¢ cient Condition for Optimality

Consider the extensive-form rationalizability procedure above. By de�nition, the set Ski at round
k consists of those strategies si that are rational for some conditional belief vector bi in Bk�1i :
That is, for every h 2 Hi that is reachable under si; it must hold that

ui(si; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Si(h):

In the following theorem we show that it is su¢ cient to check the above inequality for all
s0i 2 Sk�1i \ Si(h):

Theorem 3.1 (Su¢ cient condition for optimality) Let the sets Ski and B
k
i be de�ned as

in the extensive-form rationalizability procedure. Then, si 2 Ski ; if and only if, there is some
bi 2 Bk�1i such that

ui(si; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Sk�1i \ Si(h)

at all h 2 Hi that are reachable under si:

The proof can be found in the appendix. The key idea is the following. Suppose, contrary to
what we want to show, that ui(si; bi(h)) � ui(s0i; bi(h)) for all strategies s0i 2 Sk�1i \ Si(h); but
that ui(si; bi(h)) < ui(s

0
i; bi(h)) for some strategy s

0
i 2 Si(h): Then, we can construct another

strategy s00i 2 Si(h) that is rational for the conditional belief vector bi. Hence, by de�nition,
s00i will be in S

k
i �and therefore in S

k�1
i �and ui(s0i; bi(h)) � ui(s00i ; bi(h)): It thus follows that

ui(si; bi(h)) < ui(s
00
i ; bi(h)) where s

00
i 2 Sk�1i \ Si(h); which is a contradiction to the assumption

above.

Theorem 3.1 will play a crucial role in the proof of Theorem 5.1, where we characterize
for every k those outcomes that are reachable under the strategies that survive round k of the
extensive-form rationalizability procedure.

10



3.4 Order Dependence

Many elimination procedures in game theory have the property that the order or speed of
elimination do not a¤ect the �nal output. Examples are the iterated elimination of strictly
dominated choices in static games, or the backward dominance procedure for dynamic games,
which characterizes those strategies that can rationally be chosen if the players express common
belief in future rationality (see Perea (2014)).

Things are di¤erent for the extensive-form rationalizability procedure: We will show, by
means of the game in Figure 1, that the output of this procedure can change if we alter the
order or speed of elimination.

Consider again the game G from Figure 1. Suppose that in round 1 of the procedure we
would only eliminate strategy (d; h) for player 2, but not strategy (b; e) for player 1. That is,

Ŝ11 = S1 = fa; (b; e); (b; f)g and Ŝ12 = fc; (d; g)g:

Then, the induced sets of conditional belief vectors would be

B̂11 = fb1 2 B01 j b1 strongly believes fc; (d; g)gg
= fb1 2 B01 j b1(;)(fc; (d; g)g) = 1 and b1(h2)(f(d; g)g) = 1g

and
B̂12 = fb2 2 B02 j b2 strongly believes S1g = B02 :

Note that strategies (b; e) and (b; f) are never rational for player 1 for any conditional belief
vector in B̂11 : Suppose that in round 2, we only eliminate strategy (b; f) but not (b; e) for player
1, and that we do not eliminate any further strategy for player 2. This leads to strategy sets

Ŝ21 = fa; (b; e)g and Ŝ22 = fc; (d; g)g

which induces the sets of conditional belief vectors

B̂21 = fb1 2 B̂11 j b1 strongly believes fc; (d; g)gg = B̂11

and

B̂22 = fb2 2 B̂12 j b2 strongly believes fa; (b; e)gg
= fb2 2 B02 j b2(h1)(f(b; e)g) = 1g:

Note that (d; g) is not rational for player 2 at h1 for any conditional belief vector b2 in B̂22
, due to the fact that b2(h1)(f(b; e)g) = 1: As strategy (b; e) is not rational for player 1 for
any conditional belief vector in B̂21 ; we can eliminate strategies (b; e) and (d; g) in round 3, and
obtain

Ŝ31 = fag and Ŝ32 = fcg:
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Hence, the particular order of elimination we have chosen uniquely yields the strategy c for
player 2, which is di¤erent from the strategy (d; g) we obtained under the original extensive-form
rationalizability procedure. We thus conclude that changing the order and speed of elimination
may change the output of the extensive-form rationalizability procedure.

Recall that the objective of this paper is to prove Battigalli�s theorem, which states that
in every �nite dynamic game with perfect information and without relevant ties, the unique
extensive-form rationalizable outcome is the backward induction outcome. One di¢ culty in
proving this result is precisely the fact that the output of the extensive-form rationalizability
procedure is order dependent.

Indeed, suppose that the output of the extensive-form rationalizability procedure would not
depend on the order or speed of elimination. Then, we could use the following �backwards�
order of elimination: First, eliminate all strategies that are suboptimal at non-terminal histories
of degree 1, that is, at non-terminal histories that are only followed by terminal histories. Given
the induced conditional belief vectors in round 1, then eliminate in round 2 those strategies
that are suboptimal at non-terminal histories of degree 2, that is, at non-terminal histories
that are only followed by terminal histories and non-terminal histories of degree 1. And so
on. By doing so, we would generate a procedure that selects precisely the backward induction
strategies in the game. If the output of the extensive-form rationalizability procedure were order
independent, then the original procedure would yield the backward induction strategies as well,
and Battigalli�s theorem would immediately follow. However, we have seen that the output of
the extensive-form rationalizability procedure is order dependent, and hence this kind of proof
is not possible.

4 Choice Sequences

We have seen that the strategies that are �nally selected by the extensive-form rationalizabil-
ity procedure crucially depend on the order or speed of elimination we use. This obviously
complicates any attempt to prove Battigalli�s theorem. The approach we use in this paper is
the following: In Section 5 we will present a recursive elimination procedure that characterizes,
for every k; the terminal histories that are reachable under strategies that survive round k of
the extensive-form rationalizability procedure. In particular, this procedure characterizes the
extensive-form rationalizable outcomes in the game. We then show in Section 6 that this proce-
dure is order independent. Moreover, we will see in Section 7 that there is a �backwards�order
of elimination that �nally leads to the backward induction outcome in the game. As the set of
terminal histories selected by the procedure is order independent, the original procedure, which
characterizes the extensive-form rationalizable outcomes, must also uniquely yield the backward
induction outcome. Battigalli�s theorem thus follows.

The main building block of the procedure will be the notion of a choice sequence, which is
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the sequence of choices for a player on the path from the root to some (terminal or non-terminal)
history in the game. This notion is borrowed from von Stengel (1996), who introduced it to
enable a computationally e¢ cient analysis of large dynamic games. The procedure we present
in Section 5 will recursively eliminate choice sequences, instead of strategies, from the game.

In this section we will �rst provide a formal de�nition of choice sequences, and then we will
de�ne what it means for a choice sequence to be strictly dominated. We will �nally prove that
a choice sequence is part of a rational strategy �that is, part of a strategy that is rational for
some conditional belief vector �if and only if the choice sequence is not strictly dominated. The
latter result will be key to our proof of Battigalli�s theorem.

4.1 De�nition

For a (terminal or non-terminal) history h� 2 H [ Z and a player i; let �i[h�] = (�i(h))h2Ĥi
be the collection of player i choices on the path from the root to h�: That is, Ĥi is the set of
histories in Hi that precede h�; and for every h 2 Ĥi the choice �i(h) is the unique choice in
Ci(h) that leads to h�:

De�nition 4.1 (Choice sequence (von Stengel, 1996)) A choice sequence for player i
is a collection of choices �i = (�i(h))h2Ĥi ; where Ĥi � Hi and �i(h) 2 Ci(h) for all h 2 Ĥi; such
that �i = �i[h�] for some h� 2 H [ Z:

Note that for every player i the choice sequence �i[;] is empty, since there are no choices
on the path to ;: In that case, we denote the choice sequence by ;: In the game of Figure 1,
for instance, the choice sequences for player 1 are ;; a; b; (b; e) and (b; f); whereas the choice
sequences for player 2 are ;; c; d; (d; g) and (d; h):

4.2 Strictly Dominated Choice Sequences

Consider a choice sequence �i = (�i(h))h2Ĥi for player i; and a history h 2 H: By Z(�i; h) we
denote the set of terminal histories that can be reached if the game starts at h; and player i
chooses according to �i: By

ui(�i; h) := max
z2Z(�i;h)

ui(z)

we denote the maximum utility that player i can obtain if the game starts at h; and player i
chooses according to �i.

Fix a player i: We will now de�ne, for every history h 2 H [ Z; the max-min utility ui(h)
for player i at h. We also de�ne player i�s max-min choice cii(h) at every h 2 Hi; and for every
player j 6= i and history h 2 Hj we de�ne the punishment choice cij(h) for player j at h; viewed
from i�s perspective. We will do so by induction on the degree of h:

13



Consider �rst a history h of degree 0, which means that h is a terminal history. De�ne

ui(h) := ui(h):

Now, suppose that k � 1; and assume that ui(h) has already been de�ned for all h 2 H [ Z
with degree d(h) � k�1: Take a history h 2 H of degree k: If h 2 Hi; then let cii(h) be a choice
at h with

ui(hcii(h)) = max
ci2Ci(h)

ui(hci)

and let
ui(h) := ui(hcii(h)):

If h 2 Hj with j 6= i; then let cij(h) be a choice at h with

ui(hcij(h)) = min
cj2Cj(h)

ui(hcj) ;

and let
ui(h) := ui(hcij(h)):

In case there are several choices ĉj with ui(hĉj) = mincj2Cj(h) ui(hcj); then we choose cij(h)
according to a �xed tie-breaking rule.

Since the game G is without relevant ties, the max-min choices cii(h) are unique for every
h 2 Hi: By induction on k; this procedure then de�nes the max-min utility ui(h) for every
h 2 H [ Z; the max-min choice cii(h) at every h 2 Hi; and the punishment choice cij(h) for
every player j 6= i and every h 2 Hj :

For every h 2 H and every player i; let sii[h] be the unique strategy for player i which
at every h0 2 Hi preceding h selects the unique choice leading to h; and which at every other
h0 2 Hi reachable under sii[h] selects the max-min choice cii(h): We call sii[h] the max-min
strategy for player i at h:

Similarly, for every player j 6= i; let sij [h] be the unique strategy for player j which at every
h0 2 Hj preceding h selects the unique choice leading to h; and which at every other h0 2 Hj
reachable under sij [h] selects the punishment choice cij(h) from i�s perspective. We call sij [h]
the punishment strategy, from i�s perspective, for player j at h:

It is well-known that for every h 2 H and every player i;

ui(sii[h]; s�i) � ui(h) for all s�i 2 S�i(h); (4.1)

ui(si; (sij [h])j 6=i) � ui(h) for all si 2 Si(h); (4.2)

and that

ui(h) = max
si2Si(h)

min
s�i2S�i(h)

ui(si; s�i) = min
bi(h)2�(S�i(h))

max
si2Si(h)

ui(si; bi(h)): (4.3)
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Property (4.1) states that player i; by choosing his max-min strategy at h, can always
guarantee his max-min utility at h: On the other hand, (4.2) states that player i cannot hope
for more than his max-min utility at h if the opponents choose their punishment strategies.
Property (4.3) is a consequence of (4.1) and (4.2). All these properties follow from Chapter 15
in von Neumann and Morgenstern (1953).

We are now fully equipped to de�ne a strictly dominated choice sequence.

De�nition 4.2 (Strictly dominated choice sequence) A choice sequence �i = (�i(h))h2Ĥi
is strictly dominated at history h 2 Ĥi if ui(�i; h) < ui(h):

Recall that ui(�i; h) is the highest utility that player i can achieve from h onwards if he
chooses in accordance with �i: Moreover, by (4.1), player i can guarantee the utility ui(h) at
h by choosing in accordance with his max-min strategy at h. Hence, a choice sequence �i is
strictly dominated at h precisely when every strategy in Si(h) that is consistent with �i is strictly
dominated by i�s max-min strategy at h: This explains the name �strictly dominated� choice
sequence. We �nally say that a choice sequence �i = (�i(h))h2Ĥi is strictly dominated if it so

at some history h 2 Ĥi:

As an illustration, consider again the game G from Figure 1. The choice sequence (b; e) for
player 1 is strictly dominated at ; since u1((b; e); ;) = 2 and u1(;) = 3: For player 2, the choice
sequence (d; h) is strictly dominated at h3 since u2((d; h); h3) = 0 and u2(h3) = 4: In fact, (d; h)
is also strictly dominated at h1 since u2((d; h); h1) = 1 and u2(h1) = 2: It may be veri�ed that
all other choice sequences are not strictly dominated in this game.

4.3 Relation with Rational Strategies

We will now establish an important connection between undominated choice sequences and
rational strategies. In Theorem 4.1 below we prove that a choice sequence is part of a rational
strategy, if and only if, it is not strictly dominated. Here, we say that strategy si is rational if it
is rational for some conditional belief vector bi = (bi(h))h2Hi that satis�es Bayesian updating.
Moreover, we say that a choice sequence �i = (�i(h))h2Ĥi is part of a strategy si if �i(h) = si(h)

for all h 2 Ĥi:

Theorem 4.1 (Undominated choice sequences versus rational strategies) Let G be a
�nite dynamic game with perfect information and without relevant ties. Then, a choice sequence
�i is part of a rational strategy, if and only if, �i is not strictly dominated.

The proof can be found in the appendix. Hence, if we wish to verify whether a choice
sequence can be extended to a rational strategy, it is su¢ cient to verify whether the choice
sequence is strictly dominated or not. This result, which we believe is interesting in its own
right, plays a central role in proving Battigalli�s theorem.
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We now give a brief sketch of the proof. Suppose �rst that �i = (�i(h))h2Ĥi is part of a

rational strategy si: Then, at every h 2 Ĥi the strategy si is optimal for some conditional belief
bi(h): This implies that the expected utility ui(si; bi(h)) must be at least his max-min utility
ui(h): But then, the highest utility that player i can achieve at h by choosing in accordance with
�i can only be larger, and hence will also be at least his max-min utility ui(h): Therefore, �i is
not strictly dominated at h:

Assume next that the choice sequence �i = (�i(h))h2Ĥi is not strictly dominated. Suppose
player i believes, at every h 2 Hi; (a) that his opponents will make the �rewarding� choices
leading to ui(�i; h) as long as he chooses in accordance with �i; and (b) that his opponents will
make the punishment choices as soon as they discover that he has deviated from �i: Since �i
is not strictly dominated, it will be optimal for player i to always choose in accordance with
�i; and therefore �i can be extended to a strategy si that is rational for this conditional belief
vector. The proof in the appendix is essentially a formalization of this argument.

On the basis of Theorem 4.1 we can easily characterize those outcomes that are reachable
under rational strategies. Formally, we say that an outcome z 2 Z is reachable under rational
strategies if there is a combination (si)i2I of rational strategies that induces z:

Corollary 4.1 (Outcomes reachable under rational strategies) LetG be a �nite dynamic
game with perfect information and without relevant ties. Then, an outcome z 2 Z is reachable
under rational strategies, if and only if, for every player i the induced choice sequence �i[z] is
not strictly dominated.

Proof. (a) Assume �rst that outcome z is reachable under rational strategies. Then, there is a
combination of rational strategies (si)i2I that induces z: For every player i; the induced choice
sequence �i[z] is then part of the rational strategy si: Hence, by Theorem 4.1, we conclude that
for every player i; the choice sequence �i[z] is not strictly dominated.

(b) Suppose that the outcome z 2 Z is such that for every player i; the induced choice sequence
�i[z] is not strictly dominated. By Theorem 4.1 it follows that for every player i; the choice
sequence �i[z] is part of a rational strategy si: But then, the combination (si)i2I of rational
strategies induces z; and hence z is reachable under rational strategies. �

Hence, if we wish to verify whether a certain outcome can be reached if all players choose
rationally, it is su¢ cient to check whether the induced choice sequences for the players are
strictly dominated or not.

5 Iterated Elimination of Choice Sequences

In this section we will introduce an elimination procedure, called iterated elimination of all
strictly dominated choice sequences, that iteratedly removes choice sequences and terminal his-
tories from the game. Relying on Corollary 4.1 we can prove that this procedure characterizes,
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for every k; those terminal histories that are reachable under strategies that survive round k of
the extensive-form rationalizability procedure. Consequently, the terminal histories that survive
our procedure will be exactly the extensive-form rationalizable outcomes.

5.1 De�nition

We �rst present our procedure called iterated elimination of all strictly dominated choice se-
quences. Before doing so, we need some additional notation.

Fix a �nite dynamic game G with perfect information and without relevant ties. By �i(G)
we denote the set of all choice sequences for player i in G; and by �(G) := [i2I�i(G) the set of
all choice sequences of all players together. If �̂ � �(G); we say that outcome z 2 Z is reachable
under �̂ if for every player i; and every h 2 H [ Z weakly preceding z; it holds that �i[h] 2 �̂:
By Z(�̂) we denote the set of outcomes in G that are reachable under �̂: For a set of terminal
histories Ẑ � Z; let G\ Ẑ be the reduced game that is obtained if we restrict G to the terminal
histories in Ẑ; and to the non-terminal histories and choices that precede Ẑ:

De�nition 5.1 (Iterated elimination of all strictly dominated choice sequences) LetG
be a �nite dynamic game with perfect information and without relevant ties. We recursively
de�ne sets of choice sequences �k and reduced games Gk; as follows:

(Initial step) Set �0 := �(G) and G0 := G:

(Inductive step) Let k � 1; and assume that Gk�1 and �k�1 have already been de�ned. Then,

�k := f� 2 �(Gk�1) j � not strictly dominated in Gk�1g;

and
Gk := G \ Z(�k):

A choice sequence � 2 �(G) is said to survive iterated elimination of all strictly dominated
choice sequences if � 2 �k for all k:

Note that at every round k; a choice sequence � is either eliminated because it is no longer
feasible, that is, � =2 �(Gk�1); or because � is strictly dominated in Gk�1: It is easily seen
that for every k; the reduced game Gk is without relevant ties. By �1 := \k�0�k we denote
the set of choice sequences that survive the iterated elimination of all strictly dominated choice
sequences.

We illustrate the procedure by means of the game in Figure 1. Remember that the choice
sequences for player 1 in G are ;; a; b; (b; e) and (b; f) and that the choice sequences for player 2
are ;; c; d; (d; g) and (d; h): Hence,

�0 = f;; a; b; (b; e); (b; f); c; d; (d; g); (d; h)g and G0 = G:
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Figure 2: Reduced games G1 and G2

Also recall that the choice sequence (b; e) is strictly dominated for player 1 at ;; that the
choice sequence (d; h) is strictly dominated for player 2 at h1 and h3; and that all other choice
sequences are not strictly dominated in G: Therefore, we eliminate the choice sequences (b; e)
and (d; h) in round 1 and obtain

�1 = f;; a; b; (b; f); c; d; (d; g)g:

By de�nition, G1 = G\Z(�1): Note that the only terminal histories in Z(�1) are a; bc and bdfg:
For instance, terminal history bde is not in Z(�1) since �1[bde] = (b; e) =2 �1: Also, terminal
history bdfh is not in Z(�1) as �2[bdfh] = (d; h) =2 �1: We thus conclude that

G1 = G \ fa; bc; bdfgg;

which results in the game on the left-hand side of Figure 2.
Note that �(G1) contains the choice sequences ;; a; b and (b; f) for player 1, and contains

the choice sequences ;; c; d and (d; g) for player 2. Hence,

�(G1) = f;; a; b; (b; f); c; d; (d; g)g:

Within G1; the choice sequences b and (b; f) are clearly strictly dominated for player 1 at ;;
since u1(b; ;; G1) = u1((b; f); ;; G1) = 2; whereas u1(;; G1) = 3: Here, the entry G1 in u1(b; ;; G1)
indicates that we are referring to the game G1 (and not to G). Similarly for u1((b; f); ;; G1) and
u1(;; G1): In the sequel we will often add the game under consideration as an explicit entry in
the di¤erent variables that we explore, so as to avoid any possible confusion.

Also, within G1; the choice sequence c is strictly dominated for player 2 at h1 since
u2(c; h1; G

1) = 2; whereas u2(h1; G
1) = 4: We therefore eliminate the choice sequences b; (b; f)
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and c from �(G1) and arrive at
�2 = f;; a; d; (d; g)g:

By de�nition, G2 = G \ Z(�2): Note that the only terminal history in Z(�2) is a; which
implies that

G2 = G \ fag:

This game is depicted on the right-hand side of Figure 2.
We clearly have that

�(G2) = f;; ag;

since the choice sequences d and (d; g) for player 2 are no longer feasible in G2: This implies
immediately that

�3 = f;; ag;

after which the procedure terminates.
The iterated elimination of all strictly dominated choice sequences thus uniquely selects the

terminal history a; which is the unique extensive-form rationalizable outcome of the game G:

5.2 Characterization of Extensive-Form Rationalizable Outcomes

Remember from De�nition 3.1 that Ski is the set of strategies for player i that survive round k of
the extensive-form rationalizability procedure. We say that an outcome z 2 Z is reachable under
(Ski )i2I if there is a strategy combination (si)i2I in �i2ISki that induces z: Remember also, from
De�nition 5.1, that Gk is the reduced game obtained at round k of the iterated elimination of all
strictly dominated choice sequences. We now show that the iterated elimination of all strictly
dominated choice sequences characterizes, for every k; the set of outcomes that are reachable
under (Ski )i2I : As a consequence, it characterizes the extensive-form rationalizable outcomes in
every game.

Theorem 5.1 (Characterization of extensive-form rationalizable outcomes) Let G be
a �nite dynamic game with perfect information and without relevant ties. Then, for every k � 0;
an outcome z 2 Z is reachable under (Ski )i2I , if and only if, z is a terminal history in Gk:

The formal proof, which builds heavily on Corollary 4.1 and Theorem 3.1, can be found in
the appendix. Here is the main idea of the proof.

Consider �rst round 1 of the extensive-form rationalizability procedure, which selects by def-
inition the rational strategies for all players. Hence, the outcomes that a reachable under (S1i )i2I
are exactly the outcomes that are reachable under rational strategies, which �by Corollary 4.1
�are exactly the outcomes reachable under undominated choice sequences in G: These, in turn,
are precisely the outcomes in G1:

By de�nition, every conditional belief vector in B1i strongly believes the event that the
opponents choose rational strategies. That is, at every history h 2 Hi that is reachable under
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rational strategies, player i believes that his opponents indeed choose rational strategies. By our
argument above, a history h is reachable under rational strategies precisely when it is reachable
under undominated choice sequences, which is exactly the case when h is part of the reduced
game G1: Hence, a conditional belief vector in B1i believes at every player i history in G

1 that
his opponents will choose strategies that lead to terminal histories in G1:

We also know, by Theorem 3.1, that in order to test for optimality of player i�s strategy at
a given history, it is su¢ cient to restrict to strategies in S1i : By Corollary 4.1, these are exactly
the strategies for player i that lead to terminal histories in G1: Altogether we thus see that at
every history in G1; the beliefs of the player in round 1 of the extensive-form rationalizability
procedure, together with his own relevant strategies, can be described completely within the
reduced game G1:

Consider now round 2 of the extensive-form rationalizability procedure, which selects those
strategies for player i that are rational for conditional belief vectors in B1i : Since we have seen
above that, at every history in G1; the conditional belief vectors in B1i and the relevant strategies
for player i can be described entirely within the reduced game G1; we can apply the argument
above to the game G1 to conclude that the outcomes in G1 that are reachable under (S2i )i2I
are exactly the outcomes in G2: And so on. By continuing in this fashion we can prove this
statement for every further round k as well. The proof in the appendix is essentially a formal
implementation of this argument.

An immediate consequence of Theorem 5.1 is that the reduced game Gk is always nonempty.
Indeed, we know that for every k the sets Ski are always nonempty, and therefore there is always
at least one outcome z that is reachable under (Ski )i2I : But then, by the theorem above, there
is for every k always at least one outcome z in Gk: Hence, the game Gk generated in round k of
the iterated elimination of all strictly dominated choice sequences is always a �nonempty game�.

6 Order Independence

In this section we will prove that the procedure of iterated elimination of all strictly dominated
choice sequences is, in a speci�c sense, order independent. In order to explain what we mean by
this �speci�c sense�, let us call a choice sequence �i = (�i(h))h2Ĥi regular if at the last history h

�

in Ĥi there is at least one other choice available besides �i(h�): The type of order independence
we show is the following: If we �rst eliminate a regular strictly dominated choice sequence from
the game, and then apply the procedure to the reduced game, then the output will be the same
as when we would apply the procedure to the original game. That is, the output is insensitive
to the elimination of an arbitrary regular strictly dominated choice sequence. By applying
this order independence property repeatedly, it then follows that the output of the procedure
remains unchanged if we successively eliminate regular strictly dominated choice sequences, in
an arbitrary order, from the game.
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In the next section we will show that this speci�c form of order independence is su¢ cient to
prove Battigalli�s theorem. As we will see, the backward induction procedure can be mimicked
by the successive elimination of regular strictly dominated choice sequences, and hence the order
independence property above implies that the backward induction procedure must yield the same
outcome as the iterated elimination of all strictly dominated choice sequences. Together with
Theorem 5.1, which guarantees that the latter procedure yields the extensive-form rationalizable
outcomes, it follows that extensive-form rationalizability yields the same outcome as backward
induction. That is, Battigalli�s theorem follows.

In order to prove the order independence property above, we start by showing that a strictly
dominated choice sequence will remain strictly dominated if we eliminate another regular strictly
dominated choice sequence from the game. This monotonicity property is really the key to
proving the order independence. The intuitive reason is that, if we would �rst remove a regular
strictly dominated choice sequence from the game, and subsequently apply the procedure to the
reduced game, then �by the monotonicity property �every strictly dominated choice sequence in
the original game can still be removed in the reduced game because it remains strictly dominated
there. Therefore, it should not matter for the �nal output whether we apply the procedure to the
original game or to the reduced game. We show in this section that this informarmal argument
can be turned into a formal proof for the order independence.

At this stage the reader may wonder why in this proof we focus on regular, and not on
arbitrary, strictly dominated choice sequences. The reason is that the monotonicity property
above does not hold if we remove a non-regular strictly dominated choice sequence from the
game. To see this, consider the game G1 in Figure 2. Note that the non-regular choice sequence
(b; f) for player 1 is strictly dominated at ;; and that the choice sequence c for player 2 is strictly
dominated at h1: If we eliminate the choice sequence (b; f) from the game G1, the reduced game
G1n(b; f) only contains the terminal histories a and bc: Hence, in the reduced game G1n(b; f);
the choice sequence c is no longer strictly dominated for player 2, as c is the only choice for
player 2 remaining in that game. Therefore, the monotonicity property fails here.

6.1 Monotonicity

Consider a choice sequence �i = (�i(hi))h2Ĥi for player i in the game G; and let h
� be the

last history in Ĥi: We say that the choice sequence �i is regular in G if there are at least two
available choices at h� in G:

We will show in this subsection that the elimination of strictly dominated choice sequences is
monotonic in the following sense: A choice sequence that is strictly dominated in G will remain
strictly dominated if we eliminate from G a regular choice sequence that is strictly dominated.
Formally, for a choice sequence � 2 �(G) we denote by

Gn� := G \ Z(�(G)nf�g)
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the reduced game that results if we restrict to those histories that can be reached without �.
We informally refer to Gn� as the game that results if we �eliminate the choice sequence � from
the game�.

We will show the monotonicity property by the following sequence of results: We �rst char-
acterize the reduced game that remains after eliminating a regular choice sequence from the
game. On the basis of this characterization, we then prove that the max-min utility of a player
at a certain history can never decrease if we remove a regular strictly dominated choice sequence
from the game. This result is then the key to proving the monotonicity property mentioned
above.

We start by characterizing the reduced game that remains after eliminating a regular choice
sequence from the game.

Lemma 6.1 (Game after eliminating a regular choice sequence) Let G be a �nite dy-
namic game with perfect information and without relevant ties, let ��i = (�

�
i (h))h2Ĥi be a regular

choice sequence for player i in G; and let h� be the last history in Ĥi: Then, Gn��i is the game
obtained from G if we eliminate the choice ��i (h

�) and all histories that weakly follow h���i (h
�)):

Proof . Let Ĝ be the the game obtained fromG if we eliminate the choice ��i (h
�) and all histories

that weakly follow h���i (h
�)): Note that Ĝ is a well-de�ned game as there is another available

choice at h�; and hence we do not eliminate all choices at h�: We show that Z(Gn��i ) = Z(Ĝ);
by proving the following two set inclusions: (a) Z(Gn��i ) � Z(Ĝ); and (b) Z(Ĝ) � Z(Gn��i ):

(a) Take some z 2 Z(Gn��i ) = Z(�(G)nf��i g): Then, for every h 2 H [ Z weakly preceding
z; we have that �j [h] 2 �(G)nf��i g for every player j: In particular, it follows that �i[h] 6= ��i
for every h 2 H [ Z weakly preceding z: But then z cannot weakly follow h���i (h�); and hence
z 2 Z(Ĝ):

(b) Take some z 2 Z(Ĝ): Then, z does not weakly follow h��i(h�), and hence �i[h] 6= ��i for every
h 2 H [Z that weakly precedes z: Therefore we have, for every h 2 H [Z that weakly precedes
z; that �j [h] 2 �(G)nf��i g for every player j; which implies that z 2 Z(�(G)nf��i g) = Z(Gn��i ):
�

Hence, by the lemma above, the reduced game Gn��i is obtained by eliminating the last
choice in ��i ; together with all the histories that follow it, provided �

�
i is regular. We use this

result to prove that the max-min utility for a player at a given history can never decrease if we
eliminate a regular strictly dominated choice sequence from the game.

Lemma 6.2 (Monotonicity of max-min utility) Let G be a �nite dynamic game with per-
fect information and without relevant ties, and let �� be a regular strictly dominated choice
sequence in G: Then, for every h 2 H(Gn��) and every player i; it holds that ui(h;Gn��) �
ui(h;G):
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The proof can be found in the appendix. The main argument in the proof is the following.
Consider �rst the case that �� belongs to a player j 6= i: Then, by Lemma 6.1, the game
Gn�� is obtained by eliminating the last choice for player j in ��; and all of its subsequent
histories. Hence, i�s opponents have less opportunity to �punish�player i; which implies that
ui(h;Gn��) � ui(h;G):

Consider next the case that �� belongs to player i himself. Let �� = (��i (h))h2Ĥi and let
h� be the last history in ��: Then, by Lemma 6.1, the game Gn�� is obtained by eliminating
the choice ��i (h

�) at h�; and all of its subsequent histories. It can then be shown that player
i; by making the max-min choices in G everywhere, will certainly avoid the history h�: Indeed,
assume, on the contrary, that all choices in �� would be max-min choices in G. Then, at every
history h 2 Ĥi; the max-min utility ui(h;G) would be feasible under ��; and hence �� could not
be strictly dominated in G; which is a contradiction. We thus conclude that player i; by making
his max-min choices in G everywhere, will certainly avoid h�; and will therefore guarantee that
the play will stay within Gn��: As such, player i�s max-min strategy in G will also be feasible
in Gn��; and hence ui(h;Gn��) � ui(h;G):

On the basis of Lemma 6.2 we can easily establish the monotonicity property mentioned
above.

Corollary 6.1 (Monotonicity) Let G be a �nite dynamic game with perfect information and
without relevant ties, and let �� be a regular strictly dominated choice sequence in G. Then,
every choice sequence in �(Gn��) that is strictly dominated in G is also strictly dominated in
Gn��:

Proof. Suppose that the choice sequence �i = (�i(h))h2Ĥi for player i in �(Gn�
�) is strictly

dominated in G: Then, there is some h 2 Ĥi where

ui(�i; h;G) < ui(h;G):

Since it is clearly the case that ui(�i; h;Gn��) � ui(�i; h;G); and since ui(h;Gn��) � ui(h;G)
by Lemma 6.2, it follows that

ui(�i; h;Gn��) < ui(h;Gn��);

and hence �i is strictly dominated in Gn��: �
We will now show that this monotonicity property still holds if we successively eliminate a

series of regular strictly dominated choice sequences, instead of only one. Consider a reduced
game Ĝ = G\Z(�̂) where �̂ � �(G):We say that Ĝ is reachable from G by iterated elimination
of single regular strictly dominated choice sequences if there are choice sequences �1; :::; �M 2
�(G) such that, for every m 2 f1; :::;Mg;

�m 2 �((:::(Gn�1)n:::)n�m�1); (6.1)

�m is regular in (:::(Gn�1)n:::)n�m�1 and strictly dominated in G; (6.2)
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and such that
Ĝ = (:::(Gn�1)n:::)n�M : (6.3)

We show, by means of Corollary 6.1, that every choice sequence in Ĝ that is strictly domi-
nated in G is also strictly dominated in Ĝ:

Lemma 6.3 (Monotonicity under iterated elimination) Let G be a �nite dynamic game
with perfect information and without relevant ties, and let the reduced game Ĝ = G \ Z(�̂) be
reachable from G by iterated elimination of single regular strictly dominated choice sequences.
Then, every choice sequence in Ĝ that is strictly dominated in G is also strictly dominated in
Ĝ:

Proof. Let �1; :::; �M 2 �(G) be such that (6.1), (6.2) and (6.3) hold. Let � 2 �(Ĝ) be a choice
sequence that is strictly dominated in G: As, by (6.2), �1 is regular and strictly dominated in
G; it follows by Corollary 6.1 that � is strictly dominated in Gn�1 also.

Note that, by (6.1) and (6.2), �2 2 �(Gn�1); �2 is strictly dominated in G and �1 is
regular and strictly dominated in G: Hence, by Corollary 6.1, �2 is strictly dominated in Gn�1:
Together with (6.2), we conclude that �2 is regular and strictly dominated in Gn�1: As we
have seen that � 2 �(Ĝ) is strictly dominated in Gn�1; it follows from Corollary 6.1 that � is
strictly dominated in (Gn�1)n�2 also. By continuing in this fashion it follows that � is strictly
dominated in (:::(Gn�1)n:::)n�M = Ĝ: �

6.2 Order Independence

In this subsection we will prove the order independence property described at the beginning
of this section. That is, we will show that if we �rst eliminate an arbitrary regular strictly
dominated choice sequence from the game, and then apply the procedure to the reduced game,
we obtain the same output as when we would have applied the procedure to the original game.

We prove this order independence through the following sequence of results. We �rst show
that if at a given history h of player i all choice sequences with the last choice at h are strictly
dominated, then the shorter choice sequence �i[h] must be strictly dominated as well. Recall
that Gk is the reduced game at round k of the iterated elimination of all strictly dominated
choice sequences, and that it is obtained from Gk�1 by eliminating all strictly dominated choice
sequences in Gk�1: Our second result, which heavily relies on the �rst, shows that if a reduced
game Ĝ is obtained from Gk�1 by the successive elimination of some regular strictly dominated
choice sequences in Gk�1; then Gk is obtained from Ĝ by the successive elimination of some
regular strictly dominated choice sequences in Ĝ: On the basis of this result we then show
the following nestedness property of the procedure: Suppose we eliminate a regular strictly
dominated choice sequence � from the game G; and that we compare the procedure applied to
the original game G with the procedure applied to the reduced game Gn�. Then, we show that

24



the reduced game from round k of the �rst procedure always contains the reduced game from
round k of the second procedure which, in turn, contains the reduced game from round k + 1
of the �rst procedure. A consequence of this nestedness property is that both procedures must
yield the same output, and hence the independence property described above follows.

We start by showing that if at a given history h of player i all choice sequences with the
last choice at h are strictly dominated, then the shorter choice sequence �i[h] must be strictly
dominated as well.

Lemma 6.4 (If all choice sequences with the last choice at h are strictly dominated)
Let G be a �nite dynamic game with perfect information and without relevant ties, and let
h 2 Hi. Suppose that, for every ci 2 Ci(h); the choice sequence �i[hci] is strictly dominated.
Then, the reduced choice sequence �i[h] is strictly dominated as well.

Proof. Let z� be a terminal history following h that yields the highest utility for player i
among all terminal histories following h: Let c�i 2 Ci(h) be the choice at h that leads to z�:
Then, clearly, ui(�i[hc�i ]; h) � ui(h); and hence �i[hc�i ] cannot be strictly dominated at h: Since,
by assumption, �i[hc�i ] is strictly dominated, there must be some h

0 2 Hi preceding h such that
ui(�i[hc

�
i ]; h

0) < ui(h
0): As ui(�i[h]; h0) = ui(�i[hc

�
i ]; h

0); it follows that ui(�i[h]; h0) < ui(h
0);

and hence �i[h] is strictly dominated. �

Recall that Gk is the game obtained at round k of the iterated elimination of all strictly
dominated choice sequences. That is, Gk is obtained from Gk�1 by the elimination of all strictly
dominated choice sequences in Gk�1: Consider now some reduced game Ĝ that is reachable from
Gk�1 by iterated elimination of some, but not necessarily all, single regular strictly dominated
choice sequences in Gk�1: We show that Gk is then reachable from Ĝ by iterated elimination of
single regular strictly dominated choice sequences in Ĝ:

Lemma 6.5 (Zigzag Lemma) Let G be a �nite dynamic game with perfect information and
without relevant ties. For some k � 1; consider a reduced game Ĝ = G \ Z(�̂) with �̂ � �(G)
such that Ĝ is reachable from Gk�1 by iterated elimination of single regular strictly dominated
choice sequences: Then, Gk is reachable from Ĝ by iterated elimination of single regular strictly
dominated choice sequences.

The left-hand side of Figure 3 provides a visual representation of this result. Here, the arrow
from Gk�1 to Ĝ means that Ĝ is reachable from Gk�1 by iterated elimination of single regular
strictly dominated choice sequences. The same applies to the other arrow. The picture in Figure
3 explains the name �Zigzag Lemma�.

The proof can be found in the appendix. Here is the main idea: Choose �1; :::; �M to be
the minimal choice sequences in Ĝ that are strictly dominated in Gk�1: Since Ĝ is is obtained
from Gk�1 by the elimination of some strictly dominated choice sequences in Gk�1; and Gk is
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Ĝ1����

G2 HHHj
Ĝ2����

G3 ...

Figure 3: Visual representation of Lemma 6.5 and Lemma 6.6

obtained from Gk�1 by eliminating all choice sequences that are strictly dominated in Gk�1; it
follows that

Gk = (:::(Ĝn�1)n:::)n�M :

Moreover, since �1; :::; �M are minimal choice sequences in Ĝ that are strictly dominated
in Gk�1; it can be shown on the basis of Lemma 6.4 that there is no history h 2 H such that
f�1; :::; �Mg contains all choice sequences in �(Ĝ) with the last choice at h: As a consequence,
every choice sequence �m is regular in (:::(Ĝn�1)n:::)n�m�1:

To show that every �m is strictly dominated in Ĝ; note that Ĝ is reachable from Gk�1 by
iterated elimination of single regular strictly dominated choice sequences. As �m is strictly
dominated in Gk�1; it follows by Lemma 6.3 that �m is also strictly dominated in Ĝ:

Overall, we thus see that Gk = (:::(Ĝn�1)n:::)n�M is reachable from Ĝ by iterated elimination
of single regular strictly dominated choice sequences.

Suppose now that we eliminate a regular strictly dominated choice sequence � from the game
G; and that we compare the procedure applied to the original game with the procedure applied
to the reduced game Gn�: On the basis of Lemma 6.5, we can show that both procedures are
nested in the following sense.

Lemma 6.6 (Nestedness of procedures) Let G be a �nite dynamic game with perfect in-
formation and without relevant ties, and let � be a regular strictly dominated choice sequence in
G: Let (�k; Gk)k�0 and (�̂k; Ĝk)k�0 be the iterated elimination of all strictly dominated choice
sequences when applied to the original game G and to the reduced game Gn�, respectively.
Then, for every k � 0;
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(a) Ĝk is reachable from Gk by iterated elimination of single regular strictly dominated choice
sequences; and

(b) Gk+1 is reachable from Ĝk by iterated elimination of single regular strictly dominated choice
sequences.

Proof. We prove statements (a) and (b) by induction on k:

For k = 0; (a) is clear since Ĝ0 = Gn� = G0n�; and � is regular and strictly dominated in
G:

To show (b) for k = 0; note that Ĝ0 is reachable from G0 by iterated elimination of single
regular strictly dominated choice sequences. Hence, by Lemma 6.5 we know that G1 is reachable
from Ĝ0 by iterated elimination of single regular strictly dominated choice sequences.

Suppose now that k � 1; and that (a) and (b) hold for k � 1:
To show (a) for k; note that, by the induction assumption on (b), Gk is reachable from Ĝk�1

by iterated elimination of single regular strictly dominated choice sequences. Hence, it follows
from Lemma 6.5 that Ĝk is reachable from Gk by iterated elimination of single regular strictly
dominated choice sequences. Hence, (a) holds for k:

We now show that (b) holds for k: By (a) we know that Ĝk is reachable from Gk by iterated
elimination of single regular strictly dominated choice sequences. Hence, it follows by Lemma
6.5 that Gk+1 is reachable from Ĝk by iterated elimination of single regular strictly dominated
choice sequences. Hence, (b) holds for k: This completes the proof. �

Lemma 6.6 can be summarized visually by the the right-hand side of Figure 3. Here, the
arrow from Ĝ0 to G1 means that G1 is reachable from Ĝ0 by iterated elimination of single
regular strictly dominated choice sequences, and similarly for the other arrows. An immediate
consequence of Lemma 6.6 is that the �nal outputs of both procedures must be the same. Indeed,
suppose that both procedures terminate before round K: That is, Gk = GK and Ĝk = ĜK for
all k � K: Then, it follows from Lemma 6.6 that Gk = Ĝk for all k � K: We thus obtain the
following order independence property.

Theorem 6.1 (Order independence ) Let G be a �nite dynamic game with perfect infor-
mation and without relevant ties, and let � be a regular strictly dominated choice sequence in
G: Let (�k; Gk)k�0 and (�̂k; Ĝk)k�0 be the iterated elimination of all strictly dominated choice
sequences when applied to the original game G and to the reduced game Gn�, respectively.
Then, there is some K � 0 such that Ĝk = Gk for all k � K:

In the following subsection we will use this order independence property, together with
Theorem 5.1, to prove Battigalli�s theorem.
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7 Proof of Battigalli�s Theorem

With Theorems 5.1 and 6.1 at our disposal we are now ready to prove Battigalli�s theorem.

Theorem 7.1 (Battigalli�s theorem) Let G be a �nite dynamic game with perfect informa-
tion and without relevant ties. Then, the only extensive-form rationalizable outcome in G is the
backward induction outcome.

Proof. Let zbi 2 Z be the unique backward induction outcome in G; and let

Gbi := G \ fzbig

be the reduced game that results if we restrict the game G to the single terminal history zbi and
its preceding non-terminal histories.

Now, let (�k; Gk)k�0 be the iterated elimination of all strictly dominated choice sequences
applied to the game G: By Theorem 5.1 we know that the output of this procedure characterizes
exactly the extensive-form rationalizable outcomes in G: Hence, it is su¢ cient to show that there
is some K � 0 such that Gk = Gbi for all k � K:

To that purpose we will show that the backward induction procedure, leading to the game
Gbi; can be mimicked by iterated elimination of single regular strictly dominated choice sequences
from the game G:

We use the following notation. For a reduced game Ĝ; let H�(Ĝ) be the set of last histories
h in H(Ĝ) where there are at least two available choices in Ĝ: That is, there are at least two
choices at h; and every non-terminal history following h contains only one choice.

Consider the sequence (�̂k; Ĝk)k�0 of sets of choice sequences and reduced games given by

�̂0 := �(G) and Ĝ0 := G;

and where, for all k � 1;
�̂k := �(Ĝk�1)nf�kg (7.1)

for some �k in �(Ĝk�1) such that (a) �k = �i[hci] for some player i; some h 2 H�(Ĝk�1) \
Hi(Ĝ

k�1); and some ci 2 Ci(h; Ĝk�1) and (b) �k is strictly dominated at h: If H�(Ĝk�1) is
empty, we simply set

�̂k := �(Ĝk�1):

We then de�ne
Ĝk := G \ Z(�̂k): (7.2)

Note that (7.1), (7.2) and (a) and (b) above amount to eliminating, at every active round k;
a last choice in the game Ĝk�1 that is suboptimal, together with all histories that follow this
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choice. Since this is exactly what the backward induction procedure does, we conclude that
there is some K � 0 such that

Ĝk = Gbi for all k � K: (7.3)

Moreover, it is clear that every choice sequence �k above that is eliminated from the game
Ĝk�1 is, by construction, a regular choice in Ĝk�1: Since the choice sequence �1 is regular and
strictly dominated in G; we know from Theorem 6.1 that the iterated elimination of all strictly
dominated choice sequences applied to the game G yields the same output as when we would
apply the procedure to Ĝ1 = Gn�1: But then, since �2 is regular and strictly dominated in Ĝ1;
it follows from Theorem 6.1 that the procedure applied to the game Ĝ1 yields the same output
as when we would apply it to Ĝ2 = Ĝ1n�2: By continuing in this fashion, we conclude on the
basis of (7.3) that applying the iterated elimination of all strictly dominated choice sequences
to the game G yields the same output as when we would apply it to Gbi; which of course yields
the outcome zbi:

Together with Theorem 5.1 it follows that the unique extensive-form rationalizable outcome
is zbi; which completes the proof of Battigalli�s theorem. �

8 Concluding Remarks

8.1 Choice Sequences

The main methodological innovation of this paper is the use of choice sequences. Although the
concept itself is not new � it has already been used in von Stengel (1996) for computational
purposes �we believe this paper is the �rst to use it in the foundational branch of game theory.
In the context of this paper, choice sequences turn out to be a powerful tool for dealing with
outcomes, rather than strategies, in dynamic games. Based on this experience, we believe that
choice sequences can also become important in other areas where the focus is on outcomes.
Think, for instance, of implementation theory or mechanism design where the planner wishes
to design a dynamic game in which a given concept leads to certain desirable outcomes, rather
than strategies, in the game.

8.2 Reny�s Theorem

Proposition 3 in Reny (1992) is, in terms of content and proof, very similar to Battigalli�s theo-
rem. It shows that in every dynamic game with perfect information and without relevant ties,
the forward induction concept of explicable equilibrium yields a unique outcome: the backward
induction outcome. Like Battigalli (1997), also Reny (1992) proves this result by using proper-
ties of fully stable sets (Kohlberg and Mertens (1986)). It would be interesting to see whether
one can develop an alternative proof for this result similar to the proof for Battigalli�s theorem
in this paper.
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8.3 Games with Imperfect Information

In this paper we have restricted our attention to dynamic games with perfect information. We
believe, however, that the approach in this paper can be extended to games with imperfect
information as well. For instance, it would be interesting to see whether one can extend the
notion of a strictly dominated choice sequence in a meaningful way to games with imperfect
information, such that an equivalent to Theorem 4.1 would hold. And if this is possible, whether
one can use this result to develop a procedure, similar to the iterated elimination of all strictly
dominated choice sequences in this paper, that characterizes the extensive-form rationalizable
outcomes in general dynamic games. One could also look at other rationalizability concepts for
dynamic games, like common belief in future rationality (Perea (2014)), and see whether one
can develop a procedure that characterizes the outcomes induced by this concept. We leave
these problems for future research.

8.4 Computational E¢ ciency

From a computational point of view, the advantage of using choice sequences rather than strate-
gies is that the number of choice sequences is linear in the size of the game tree, whereas the
number of strategies is exponential. Hence, if the procedure in this paper could be extended
to one that characterizes the extensive-form rationalizable outcomes, or the outcomes induced
by common belief in future rationality, in general dynamic games, this would be an important
step forward for computational game theory. The reason is that such procedures would have
a much lower complexity than the original procedures, since they use choice sequences rather
than strategies.

9 Appendix

Proof of Theorem 3.1. The �only if�direction is trivially true, hence we only need to show
the �if�direction. Suppose that si is such that there is some bi 2 Bk�1i with

ui(si; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Sk�1i \ Si(h) (9.1)

at all h 2 Hi that are reachable under si: We show that si 2 Ski : Hence we must show that

ui(si; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Si(h) (9.2)

for all hi 2 Hi that are reachable under si:We prove (9.2) by induction on the number of player
i histories that precede h:

Suppose �rst that h 2 Hi is not preceded by any other h0 2 Hi: Hence, Si(h) = Si: Assume,
contrary to what we want to prove, that

ui(si; bi(h)) < ui(s
0
i; bi(h)) for some s

0
i 2 Si(h): (9.3)
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Since bi 2 Bk�1i satis�es Bayesian updating, it follows by Perea (2012, Lemma 8.14.1) that there
is some s00i 2 Si that is rational for bi: Since bi 2 Bk�1i ; it follows that s00i 2 Ski ; and hence, in
particular, s00i 2 Sk�1i : We thus have that s00i 2 Sk�1i \ Si(h): Since s00i is rational for bi(h); it
follows that

ui(s
00
i ; bi(h)) � ui(s0i; bi(h)): (9.4)

By combining (9.3) and (9.4) we obtain that

ui(si; bi(h)) < ui(s
0
i; bi(h)) � ui(s00i ; bi(h)) with s00i 2 Sk�1i \ Si(h);

which contradicts the assumption (9.1). Hence, we conclude that (9.2) must hold.

Suppose now that h 2 Hi is reachable under si; and that (9.2) holds for every h0 2 Hi that
precedes h: We distinguish two cases.

(i) Assume �rst that there is some h0 2 Hi preceding h with bi(h0)(S�i(h)) > 0: As bi satis�es
Bayesian updating and, by the induction assumption, si is rational for bi(h0) at h0; it follows by
Perea (2012, Lemma 8.14.9) that si is rational for bi(h) at h: Hence, (9.2) holds at h:

(ii) Assume next that bi(h0)(S�i(h)) = 0 for all h0 2 Hi preceding h: Suppose, contrary to
what we want to prove, that

ui(si; bi(h)) < ui(s
0
i; bi(h)) for some s

0
i 2 Si(h): (9.5)

Since bi satis�es Bayesian updating, it follows by Perea (2012, Lemma 8.14.1) that there is some
s00i 2 Si that is rational for bi: Let Ĥi be the set of histories h00 2 Hi for which there is some
h0 2 Hi preceding h with bi(h0)(S�i(h00)) > 0:

Let s�i be the unique strategy such that

s�i (h
0) =

�
si(h

0); if h0 2 Ĥi
s00i (h

0); if h0 =2 Ĥi

for all h0 2 Hi that are reachable under s�i : We show that s�i is rational for bi:
Take some arbitrary h0 2 Hi that is reachable under s�i : We distinguish three cases.

(a) Assume �rst that h0 precedes h: Then, h0 2 Ĥi and s�i coincides with si on Ĥi: Note that,
by de�nition, all histories h00 2 Hi with bi(h0)(S�i(h00)) > 0 are in Ĥi; and hence

ui(s
�
i ; bi(h

0)) = ui(si; bi(h
0)):

Since, by the induction assumption, (9.2) holds at h0; it follows that

ui(s
�
i ; bi(h

0)) = ui(si; bi(h
0)) � ui(s0i; bi(h0)) for all s0i 2 Si(h0):

Hence, s�i is rational for bi(h
0) at h0:
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(b) Assume next that h0 does not precede h but h0 2 Ĥi: Then, by de�nition of Ĥi; there is
some h00 2 Hi preceding h with bi(h00)(S�i(h0)) > 0: We have seen in (a) that s�i is rational for
bi(h

00) at h00: Since bi satis�es Bayesian updating, it follows from Perea (2012, Lemma 8.14.9)
that s�i is rational for bi(h

0) at h0:

(c) Assume �nally that h0 =2 Ĥi: Then, every h00 2 Hi following h0 will not be in Ĥi either.
Hence, s�i coincides with s

00
i at h

0 and all h00 2 Hi following h0: Therefore,

ui(s
�
i ; bi(h

0)) = ui(s
00
i ; bi(h

0)):

Since, by construction, s00i is rational for bi; it follows that s
�
i is rational for bi(h

0) at h0:

We thus conclude that s�i is rational for bi: Since bi 2 Bk�1i ; it follows that s�i 2 Ski ; and
hence, in particular, s�i 2 Sk�1i : Moreover, s�i coincides with si at Ĥi; and hence coincides in
particular with si at all player i histories preceding h: Therefore, s�i 2 Si(h): We have thus
constructed a strategy s�i 2 Sk�1i \ Si(h) that is rational for bi: In particular, s�i is rational for
bi(h) at h; and hence

ui(s
�
i ; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Si(h): (9.6)

Together with (9.5) this yields

ui(si; bi(h)) < ui(s
0
i; bi(h)) � ui(s�i ; bi(h)) for some s�i 2 Sk�1i \ Si(h);

which contradicts our assumption (9.1). Hence, we conclude that (9.2) must hold at h:

By induction, (9.2) will hold at every h 2 Hi that is reachable under si; which implies that
si is rational for the conditional belief vector bi 2 Bk�1i : Hence, we conclude that si 2 Ski ; which
was to show. �

Proof of Theorem 4.1. (a) Take an arbitrary choice sequence �i = (�i(h))h2Ĥi that is part
of a rational strategy si: We show that �i is not strictly dominated.

Consider an arbitrary history h 2 Ĥi: As �i is part of the strategy si; it follows in particular
that h is reachable under si: Since the strategy si is rational, there is a conditional belief
bi(h) 2 �(S�i(h)) such that

ui(si; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Si(h): (9.7)

As �i is part of the strategy si; it follows that

ui(�i; h) � ui(si; bi(h)): (9.8)

We also have, by (4.3) and (9.7), that

ui(si; bi(h)) = max
s0i2Si(h)

ui(s
0
i; bi(h)) � min

b0i(h)2�(S�i(h))
max

s0i2Si(h)
ui(s

0
i; b

0
i(h)) = ui(h): (9.9)
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By (9.8) and (9.9) it then follows that ui(�i; h) � ui(h): Since this holds for every h 2 Ĥi; the
choice sequence is not strictly dominated.

(b) Suppose now that the choice sequence �i = (�i(h))h2Ĥi is not strictly dominated. We show
that �i is part of some rational strategy si:

We �rst introduce some new de�nitions. Remember that for every history h 2 H; we denote
by Z(�i; h) the set of terminal histories that can be reached if the game starts at h and player i
chooses according to �i:We have de�ned ui(�i; h) := maxz2Z(�i;h) ui(z) as the maximum utility
that player i can achieve in Z(�i; h): Let zi(�i; h) be a terminal history in Z(�i; h) such that
ui(�i; h) = ui(zi(�i; h)): If player j is active at h; then let cij(�i; h) be the unique choice in Cj(h)
that leads to zi(�i; h): Moreover, for a given player i; we choose the terminal histories zi(�i; h)
in such a way that

zi(�i; h) = zi(�i; h
0) whenever h follows h0 and h precedes zi(�i; h0): (9.10)

Let si be the unique strategy such that

si(h) = cii(�i; h) (9.11)

for all h 2 Hi that is reachable under si:
We �rst show that �i is part of the strategy si: Take some h 2 Ĥi: Then, it must be that

cii(�i; h) = �i(h) since cii(�i; h) is the choice at h that leads to the terminal history zi(�i; h)
which, by de�nition, weakly follows h�i(h): This implies, by (9.11), that si(h) = �i(h) for all
h 2 Ĥi: Hence, �i is indeed part of si:

We will now construct a conditional belief vector bi = (bi(h))h2Hi satisfying Bayesian updat-
ing for which si is optimal. The conditional belief vector bi will be such that at every history
h 2 Hi; and for every opponent j; it assigns probability 1 to a strategy sj [h] which we will now
de�ne.

By H(�i) we denote the set of non-terminal histories that are reachable under �i: Fix a
history h 2 Hi and an opponent j 6= i: Remember that, for every h0 2 Hj ; we denote by cij(h0)
the punishment choice for player j at h0, viewed from player i�s perspective. Let sj [h] be the
unique strategy in Sj(h) such that

(sj [h])(h
0) =

�
cij(�i; h

0); if h0 2 H(�i)
cij(h

0); otherwise
(9.12)

for all h0 2 Hj that does not precede h and that is reachable under sj [h]:
Let bi = (bi(h))h2Hi be the conditional belief vector which at every h 2 Hi assigns probability

1 to the opponents�strategy combination (sj [h])j 6=i: Then, by construction, bi satis�es Bayesian
updating.
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It remains to show that strategy si is rational for the conditional belief vector bi: Fix a
history h 2 Hi that is reachable under si: We will show that

ui(si; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Si(h):

Suppose, contrary to what we want to prove, that ui(si; bi(h)) < ui(s0i; bi(h)) for some s
0
i 2 Si(h):

Then, there is some h0 2 Hi weakly following h such that (i) h0 is reachable under si and s0i; (ii)
the choices si(h0) and s0i(h

0) are di¤erent at h0; and (iii) ui(si; bi(h0)) < ui(s0i; bi(h
0)): Note that

h0 2 H(�i); as h0 is reachable under si and �i is part of si:
For every h00 2 Hi that weakly follows h0 and precedes zi(�i; h0) we have by (9.10) and (9.11)

that
si(h

00) = cii(�i; h
00) is the choice at h00 leading to zi(�i; h0): (9.13)

Recall that h0 2 H(�i): Then, for every opponent j and every h00 2 Hj that follows h0 and
precedes zi(�i; h0); it holds that h00 2 H(�i); and hence we have by (9.10) and (9.12) that

(sj [h
0])(h00) = cij(�i; h

00) is the choice at h00 leading to zi(�i; h0): (9.14)

By (9.13), (9.14) and the de�nition of bi(h0) it then follows that

ui(si; bi(h
0)) = ui(z(si; (sj [h

0])j 6=i)) = ui(zi(�i; h
0)) = ui(�i; h

0): (9.15)

We now distinguish two cases: h0 2 Ĥi and h0 =2 Ĥi; where Ĥi is the set of histories at which
�i is de�ned.

Assume �rst that h0 2 Ĥi: Since, by the assumption in (ii), s0i(h0) 6= si(h
0); and si(h0) =

�i(h
0); it follows that s0i(h

0) 6= �i(h0): Hence, the history h0s0i(h0); and all histories that follow,
are not in H(�i): By (9.12), the belief bi(h0) then assigns probability 1 to the event that every
opponent j will choose the punishment choice cij(h

00) at every h00 weakly following h0s0i(h
0): But

then,
ui(s

0
i; bi(h

0)) = ui(h
0si(h

0)) � ui(h0): (9.16)

By (9.15) and (9.16) and the assumption in (iii) that ui(si; bi(h0)) < ui(s0i; bi(h
0)); it follows that

ui(�i; h
0) = ui(si; bi(h

0)) < ui(s
0
i; bi(h

0)) � ui(h0);

which implies that
ui(�i; h

0) < ui(h
0):

This, however, contradicts our assumption that �i is not strictly dominated.
Assume next that h0 =2 Ĥi: Since h0 2 H(�i); as we have seen, and �i is not de�ned at

h0; nor at any h00 2 Hi following h0; we conclude that every h00 2 H following h0 will also
be in H(�i): Hence, by (9.12), the belief bi(h0) assigns probability 1 to the event that every
opponent j will choose the �rewarding� choice cij(�i; h00) at every h00 following h0: But then,
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the best possible strategy for player i at h0 is to always choose cii(�i; h00) at every h00 2 Hi
following h0; which, by (9.11), is exactly what si does. Hence, the assumption (iii) above that
ui(si; bi(h

0)) < ui(s0i; bi(h
0)) cannot be true.

We thus reach the conclusion that the assumption (iii), stating that
ui(si; bi(h

0)) < ui(s
0
i; bi(h

0)); cannot be true, and hence ui(si; bi(h)) � ui(s
0
i; bi(h)) for all s

0
i 2

Si(h). Since this holds for every h 2 Hi that is reachable under si; the strategy si is rational for
the conditional belief vector bi: As bi satis�es Bayesian updating, we conclude that strategy si
is rational. Since �i is part of si; we conclude that �i is part of a rational strategy, which was
to show. �

Proof of Theorem 5.1. For every k; let Z(Sk) and Z(Gk) be the sets of outcomes that are
reachable under (Ski )i2I and in G

k; respectively. Moreover, let H(Sk) and H(Gk) be the sets of
non-terminal histories in G that are reachable under (Ski )i2I and in G

k; respectively. Hence, we
must show that Z(Sk) = Z(Gk) for every k: We will prove this statement by induction on k:

For k = 0; the statement is trivially true, since Z(S0) = Z(G0) = Z:

Suppose now that k � 1; and assume that Z(Sk�1) = Z(Gk�1):We must show that Z(Sk) =
Z(Gk): Hence, we must prove two directions: (a) Z(Sk) � Z(Gk); and (b) Z(Gk) � Z(Sk):
(a)We show that Z(Sk) � Z(Gk): Remember that Z(�k) is the set of outcomes reachable under
�k: Since Z(Gk) = Z(�k); it is su¢ cient to show that Z(Sk) � Z(�k): Take some z 2 Z(Sk):
Then, there is some strategy combination (si)i2I in �i2ISki that induces z: We show that, for
every player i and every h 2 H [ Z weakly preceding z; the induced choice sequence �i[h] is in
�ki :

Fix a player i and some h� 2 H [ Z weakly preceding z; and let �i[h�] = (�i(h))h2Ĥi :

In order to show that �i[h�] 2 �ki ; we must show that �i[h�] 2 �(Gk�1); and that �i[h�] is
not strictly dominated in Gk�1: As z 2 Z(Sk) � Z(Sk�1) and, by the induction assumption,
Z(Sk�1) = Z(Gk�1); it follows that z 2 Z(Gk�1): Since h� weakly precedes z; it follows that
�i[h

�] 2 �(Gk�1):
It remains to show that �i[h�] = (�i(h))h2Ĥi is not strictly dominated in G

k�1: As z is
induced by (si)i2I in (Ski )i2I ; and h

� weakly precedes z; it follows that �i[h�] is part of the
strategy si: Since si 2 Ski ; strategy si is rational for some conditional belief vector bi 2 Bk�1i :

Now, take some arbitrary h 2 Ĥi: Then, si is optimal for the belief bi(h) at h; hence

ui(si; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Sk�1i \ Si(h): (9.17)

Since h 2 Ĥi and �i[h�] leads to z; the history h precedes the terminal history z 2 Z(Sk�1):
Hence, it follows that h 2 H(Sk�1); which implies that Sk�1�i \ S�i(h) 6= ;: As bi 2 Bk�1i ; the
conditional belief vector bi strongly believes Sk�1�i ; and hence bi(h)(S

k�1
�i ) = 1: This means that

bi(h) 2 �(Sk�1�i \ S�i(h)): (9.18)
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By the induction assumption, Z(Sk�1) = Z(Gk�1): As a consequence, the set of terminal histo-
ries in Gk�1 that follow h is

Z((Sk�1j \ Sj(h))j2I):

Since si 2 Sk�1i \ Si(h); and �i[h�] is part of the strategy si; it immediately follows from (9.18)
that

ui(�i[h
�]; h;Gk�1) � ui(si; bi(h)): (9.19)

We have seen above that the set of terminal histories in Gk�1 that follow h is
Z((Sk�1j \ Sj(h))j2I): Hence, by (4.3),

ui(h;G
k�1) = min

b0i(h)2�(S
k�1
�i \S�i(h))

max
s0i2S

k�1
i \Si(h)

ui(s
0
i; b

0
i(h)): (9.20)

By (9.17), (9.18) and (9.20) it then follows that

ui(si; bi(h)) = max
s0i2S

k�1
i \Si(h)

ui(s
0
i; bi(h))

� min
b0i(h)2�(S

k�1
�i \S�i(h))

max
s0i2S

k�1
i \Si(h)

ui(s
0
i; b

0
i(h)) = ui(h;G

k�1): (9.21)

By (9.19) and (9.21) we may then conclude that

ui(�i[h
�]; h;Gk�1) � ui(h;Gk�1);

which means that �i[h�] is not strictly dominated in Gk�1 at h: Since this holds for every hi 2 Ĥi;
the choice sequence �i[h�] is not strictly dominated in Gk�1; and hence �i[h�] 2 �k:

Since this holds for every player i; we conclude that �i[h�] 2 �k for every player i and every
h� 2 H[Z weakly preceding z; which implies that z 2 Z(�k): As this holds for every z 2 Z(Sk);
it follows that Z(Sk) � Z(�k) = Z(Gk); which was to show.

(b) We next show that Z(Gk) � Z(Sk): Take some z 2 Z(Gk): Then, z 2 Z(�k); as Z(Gk) =
Z(�k): Hence, �i[z] 2 �k for all players i: We show that �i[z] is part of a strategy si 2 Ski :

Fix a player i: Since �i[z] 2 �k it holds, by de�nition, that �i[z] 2 �(Gk�1) and that �i[z] is
not strictly dominated in Gk�1: By Theorem 4.1 we know that �i[z] is part of a rational strategy
~si in Gk�1:

Now, let ŝi be some arbitrary strategy in Ski : Let si be the unique strategy in G such that

si(h) =

�
~si(h); if h 2 H(Gk�1)
ŝi(h); if h =2 H(Gk�1) (9.22)

for all h 2 Hi that are reachable under si: Since �i[z] is part of ~si; it immediately follows that
�i[z] is part of si as well.
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We show that si 2 Ski : To that purpose, we construct a conditional belief vector bi 2 Bk�1i

for which si is rational. Consider an arbitrary history h 2 Hi. We distinguish three cases.
(i) Assume �rst that h 2 Hi(Gk�1); where Hi(Gk�1) = Hi \ H(Gk�1): Since ~si is rational

in Gk�1; there is a conditional belief vector ~bi = (~bi(h0))h02Hi(Gk�1) in G
k�1 satisfying Bayesian

updating for which ~si is rational. Suppose now that h is reachable under si: Then, ~si is rational
for the belief ~bi(h) at h in Gk�1: That is,

ui(~si;~bi(h)) � ui(~s0i;~bi(h)) for all ~s0i 2 Si(h;Gk�1): (9.23)

By the induction assumption, Z(Sk�1) = Z(Gk�1): This implies that the set of terminal histories
in Gk�1 following h is

Z((Sk�1j \ Sj(h))j2I):

As ~si coincides with si on H(Gk�1); it follows from (9.23) that there is some belief b�i (h) 2
�(Sk�1�i \ S�i(h)); such that

ui(~si;~bi(h)) = ui(si; b
�
i (h)) � ui(s0i; b�i (h)) for all s0i 2 Sk�1i \ Si(h): (9.24)

As b�i (h) 2 �(Sk�1�i \S�i(h)); the belief b�i (h) is part of some conditional belief vector bi 2 B
k�1
i

in G: Hence, it follows from (9.24) and Theorem 3.1 that

ui(si; b
�
i (h)) � ui(s0i; b�i (h)) for all s0i 2 Si(h) (9.25)

for all h 2 Hi(Gk�1) that are reachable under si: Moreover, as ~bi satis�es Bayesian updating
in Gk�1; we can choose the beliefs (b�i (h))h2Hi(Gk�1) in such a way that they satisfy Bayesian
updating as well.

Let Ĥi(Gk�1) be the set of histories h 2 Hi such that there is some h0 2 Hi(Gk�1) preceding
h with b�i (h

0)(S�i(h)) > 0:

(ii) Assume next that h =2 Hi(Gk�1) but h 2 Ĥi(Gk�1): Then, by de�nition, there is some
h0 2 Hi(Gk�1) preceding h with b�i (h0)(S�i(h)) > 0: Let b��i (h) be the Bayesian update of b�i (h0)
at h; that is,

b��i (h)(s�i) =
b�i (h

0)(s�i)

b�i (h
0)(S�i(h))

for all s�i 2 S�i(h):

Since, by (9.25), si is rational for b�i (h
0) at h0; it follows by Perea (2012, Lemma 8.14.9) that si

is rational for b��i (h) at h whenever h is reachable under si: That is,

ui(si; b
��
i (h)) � ui(s0i; b��i (h)) for all s0i 2 Si(h) (9.26)

for all h 2 Ĥi(Gk�1)nHi(Gk�1) that are reachable under si:
(iii) Assume �nally that h =2 Hi(Gk�1) and h =2 Ĥi(Gk�1): Then, all histories in Hi following

h are also not in Hi(Gk�1) nor in Ĥi(Gk�1): Hence, si coincides with ŝi 2 Ski at h and all h0 2 Hi
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following h: As ŝi is in Ski ; there is a conditional belief vector b̂i 2 Bk�1i ; satisfying Bayesian
updating, for which ŝi is rational. In particular, ŝi is optimal for b̂i(h) at h; which means that

ui(ŝi; b̂i(h)) � ui(s0i; b̂i(h)) for all s0i 2 Si(h):

As si coincides with ŝi at h and all h0 2 Hi following h; it follows that

ui(ŝi; b̂i(h)) = ui(si; b̂i(h)) � ui(s0i; b̂i(h)) for all s0i 2 Si(h): (9.27)

Now, de�ne the conditional belief vector bi by

bi(h) :=

8<:
b�i (h); if h 2 Hi(Gk�1)
b��i (h); if h =2 Hi(Gk�1); h 2 Ĥi(Gk�1)
b̂i(h); if h =2 Hi(Gk�1); h =2 Ĥi(Gk�1)

(9.28)

Then, it follows from (9.25), (9.26) and (9.27) that strategy si is rational for bi: Moreover, by
construction, bi satis�es Bayesian updating.

It remains to show that the conditional belief vector bi is in Bk�1i : Hence, we must show bi
strongly believes Sm�i for all m � k � 1:

Consider some m � k � 1 and some h 2 Hi with Sm�i \ S�i(h) 6= ;: We must show that
bi(h)(S

m
�i) = 1: We distinguish three cases.

(i) Assume �rst that h 2 Hi(Gk�1): Then, by construction, bi(h) = b�i (h) 2 �(Sk�1�i \S�i(h));
which implies that bi(h)(Sm�i) = 1 since m � k � 1:

(ii) Assume next that h 2 Ĥi(Gk�1)nHi(Gk�1): Then, by construction, bi(h) = b��i (h): Hence,
there is some h0 2 Hi(Gk�1) preceding h with b�i (h0)(S�i(h)) > 0; such that

b��i (h)(s�i) =
b�i (h

0)(s�i)

b�i (h
0)(S�i(h))

for all s�i 2 S�i(h): (9.29)

We know from case (i) that b�i (h
0)(Sm�i) = 1: But then, it follows from (9.29) that bi(h)(Sm�i) =

b��i (h)(S
m
�i) = 1:

(iii) Assume �nally that h =2 Hi(Gk�1) and h =2 Ĥi(Gk�1): Then, by construction, bi(h) =
b̂i(h): By assumption, b̂i 2 Bk�1i ; and hence b̂i strongly believes Sm�i: Hence, b̂i(S

m
�i) = 1:

Therefore, bi(h)(Sm�i) = b̂i(h)(S
m
�i) = 1:

We thus conclude that bi(h)(Sm�i) = 1 at all h 2 Hi where Sm�i \ S�i(h) 6= ;; and hence bi
strongly believes Sm�i: Since this holds for every m � k � 1; we conclude that bi 2 Bk�1i :

Summarizing, we see that strategy si is rational for the conditional belief vector bi 2 Bk�1i ;
which means, by de�nition, that si 2 Ski : Since, for every player i; the choice sequence �i[z]
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is part of si; it follows that z 2 Z(Sk): As this holds for every z 2 Z(Gk); we conclude that
Z(Gk) � Z(Sk); which was to show.

By combining (a) and (b), we have that Z(Sk) = Z(Gk): By induction on k; we thus conclude
that Z(Sk) = Z(Gk) for every k � 0; which was to show. �

Proof of Lemma 6.2. Suppose �rst that �� is a choice sequence for a player j 6= i: Let
�� = (��j (h

0))h02Ĥj and let h
� be the last history in Ĥj : Then, by Lemma 6.1, Gn�� is obtained

from G by eliminating the choice ��j (h
�) at h� and all histories that weakly follow h���j (h

�):
Hence we have, by de�nition, that ui(h

�; Gn��) � ui(h
�; G): Moreover, it clearly holds that

ui(h
0; Gn��) = ui(h0; G) for all h0 2 H(Gn��) that do not weakly precede h���j (h�): But then, it

must be the case that ui(h;Gn��) � ui(h;G); as was to show.

We next consider the case that �� is a choice sequence for player i: Let �� = (��i (h
0))h02Ĥi and

let h� be the last history in Ĥi: Again, by Lemma 6.1, Gn�� is obtained from G by eliminating
the choice ��i (h

�) at h� and all histories that weakly follow h���i (h
�): Since �� is, by assumption,

strictly dominated, there must be some h0 2 Ĥi such that �� is strictly dominated at h0 in G:
That is,

ui(�
�; h0; G) < ui(h

0; G): (9.30)

Recall that, for every ĥ 2 Hi; we denote by cii(ĥ; G) the max-min choice for player i at ĥ in G:

Claim. There must be some ĥ 2 Ĥi weakly following h0 such that ��i (ĥ) 6= cii(ĥ; G):

Proof of claim. Suppose, contrary to what we want to show, that ��i (ĥ) = cii(ĥ; G) for all ĥ 2 Ĥi
weakly following h0: Then, �� is part of the max-min strategy sii[h

0; G] for player i at h0 in G:
But then, for every s�i 2 S�i(h0; G) we have that

ui(�
�; h0; G) � ui(sii[h0; G]; s�i) � ui(h0; G);

where the last inequality follows from (4.1). Hence, we conclude that ui(��; h0; G) � ui(h0; G);
which contradicts (9.30). Hence, it must be the case that ��i (ĥ) 6= cii(ĥ; G) for some ĥ 2 Ĥi
weakly following h0; which was to show. This completes the proof of the claim.

By the claim it follows that player i; by playing his max-min strategy sii[h;G] at h in G;
guarantees that the history h���i (h

�) will not be reached. This implies, by Lemma 6.1, that
sii[h;G] is actually a strategy in Gn��; that is, sii[h;G] 2 Si(Gn��): Let s�i be an arbitrary
strategy combination in S�i(h;Gn��); and ŝ�i a strategy combination in S�i(h;G) that coincides
with s�i at H(Gn��): Since strategy sii[h;G] guarantees that only histories in H(Gn��) can be
reached, it follows that

ui(sii[h;G]; s�i) = ui(sii[h;G]; ŝ�i) � ui(h;G);
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where the last inequality follows from (4.1). Since this holds for every s�i 2 S�i(h;Gn��); it
follows by (4.3) that

ui(h;Gn��) = max
si2Si(h;Gn��)

min
s�i2S�i(h;Gn��)

ui(si; s�i)

� min
s�i2S�i(h;Gn��)

ui(sii[h;G]; s�i) � ui(h;G):

Hence, ui(h;Gn��) � ui(h;G); which was to show. �

Proof of Lemma 6.5. We will construct choice sequences �1; :::; �M 2 �(Ĝ) such that, for
every m 2 f1; :::;Mg;

�m 2 �((:::(Ĝn�1)n:::)n�m�1); (9.31)

�m is regular in (:::(Ĝn�1)n:::)n�m�1 and strictly dominated in Ĝ; (9.32)

and such that
Gk = (:::(Ĝn�1)n:::)n�M : (9.33)

Let �� = f�1; :::; �Mg be the minimal choice sequences in �(Ĝ) that are strictly dominated
in Gk�1: That is, every choice sequence in �� is strictly dominated in Gk�1; and for every choice
sequence � 2 �� with the last choice de�ned at h 2 Hi; the reduced choice sequence �i[h] 2 �(Ĝ)
is not strictly dominated in Gk�1: We will show that �1; ::; :�M satisfy (9.31), (9.32) and (9.33)
above.

Recall that Gk is obtained from Gk�1 by eliminating all strictly dominated choice sequences
in Gk�1; and that Ĝ is obtained from Gk�1 by the elimination of some strictly dominated choice
sequences in Gk�1: Therefore, �(Gk) � �(Ĝ); and hence it follows by construction that

Gk = Ĝ \ Z(�(Ĝ)n��): (9.34)

In order to prove (9.31), (9.32) and (9.33), we need to know more about the structure of the
set ��: For every � 2 ��; let h�(�) be the last history at which � is de�ned, and let

H� = fh�(�) j � 2 ��g

be the collection of such last histories. Since �� contains the minimal choice sequences in �(Ĝ)
that are strictly dominated in Gk�1; a history in H� cannot follow another history in H�:

Moreover, we can show that for every h 2 H� \ Hi there is some ci 2 Ci(h; Ĝ) such that
�i[hci] =2 ��: Suppose, contrary to what we want to show, that �i[hci] 2 �� for all ci 2 Ci(h; Ĝ):
Then, �i[hci] is strictly dominated in Gk�1 for all ci 2 Ci(h; Ĝ): By assumption, Ĝ is reachable
from Gk�1 by iterated elimination of single regular strictly dominated choice sequences. That
is, we obtain Ĝ from Gk�1 by eliminating choice sequences that are strictly dominated in Gk�1:
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Since h 2 H(Ĝ); this means that for every ci 2 Ci(h;Gk�1)nCi(h; Ĝ); the choice sequence �i[hci]
is strictly dominated in Gk�1: But then, it follows that, for every ci 2 Ci(h;Gk�1); the choice
sequence �i[hci] is strictly dominated in Gk�1: However, by Lemma 6.4, the reduced choice
sequence �i[h] 2 �(Ĝ) is then also strictly dominated in Gk�1: This contradicts, however, the
fact that for every ci 2 Ci(h; Ĝ); the choice sequence �i[hci] 2 �� is a minimal choice sequence
in �(Ĝ) that is strictly dominated in Gk�1: Hence, we conclude that, for every player i and
every h 2 H� \Hi; there is some ci 2 Ci(h; Ĝ) such that �i[hci] =2 ��: This implies that every
� 2 �� is a regular choice sequence in the reduced game Ĝ\Z(�(Ĝ)n��nf�g) obtained from Ĝ
by eliminating all choice sequences in �� except �:

Based on the two observations above, it follows by Lemma 6.1 that the game Ĝ\Z(�(Ĝ)n��)
is obtained by eliminating, for every player i and every h 2 H� \Hi; the choices ci 2 Ci(h) for
which �i[hci] 2 ��; together with all histories that follow.

Moreover, we conclude that for every m 2 f1; :::;Mg;

�m 2 �((:::(Ĝn�1)n:::)n�m�1); and (9.35)

�m is a regular choice sequence in �((:::(Ĝn�1)n:::)n�m�1): (9.36)

It also follows from the observations above that

Ĝ \ Z(�(Ĝ)n��) = (:::(Ĝn�1)n:::)n�M :

Together with (9.34) above we conclude that

Gk = (:::(Ĝn�1)n:::)n�M : (9.37)

It remains to show that, for every m 2 f1; :::;Mg; the choice sequence �m is strictly domi-
nated in Ĝ: By assumption, Ĝ is reachable from Gk�1 by iterated elimination of single regular
strictly dominated choice sequences. Since �m is strictly dominated in Gk�1; it follows from
Lemma 6.3 that �m is also strictly dominated in Ĝ:

Together with (9.35), (9.36) and (9.37), it follows that Gk is reachable from Ĝ by iterated
elimination of single regular strictly dominated choice sequences. This completes the proof. �
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