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1. An informal introduction



“Awareness” in Natural Language

‘I was aware of the red traffic light.” (Just knowledge?)

“‘Be of aware of sexually transmitted diseases!"

(“generally taking into account”, “being present in mind", “paying
attention to")

Etymology: “aware” — “wary” «— “geweer” (old English) <« “gewahr”
(German)

Psychiatry: Lack of self-awareness means that a patient is oblivious to
aspects of an illness that is obvious to his/her social contacts. (Failure of
negative introspection.)



“Reports that say that something hasn't happened are
always interesting to me, because as we know, there are
known knowns; there are things we know we know. We
also know there are known unknowns; that is to say we
know there are some things we do not know. But there are
also unknown unknowns — the ones we don't know we
don't know. And if one looks throughout the history of our
country and other free countries, it is the latter category
that tend to be the difficult ones.”

(Former) United States Secretary of Defense, Donald Rumsfeld,
February 12, 2002



Unawareness as Lack of Conception

In most formal approaches:
Unawareness means the lack of conception.
(“not being present in the mind”)

Lack of information versus lack of conception:



We all know the homo oeconomicus.

But how did he look as a baby?
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Standard models allow for the lack of
information but not for the lack of conception.

In standard models, learning means shrinking
the relevant state space but never discovering
of new possibilities.



An agent may have lack of conception of an event
because:

* never thought about it (i.e., novelties)

* does not pay attention to it at the very moment
we model (different from rational inattention)



Relevance of unawareness

It is real phenomena

Incomplete contracting, incomplete markets
Speculation in financial markets

Disclosure of information

Strategic negotiations and bargaining
Modelling discoveries and innovations

Modeling games where the perception of the strategic
context is not necessarily “common” among players

Exploring robustness of decision theory to small changes
In assumptions on the primitives



Non-robustness of Decision Theory

In decision theory, the decision maker’'s perception of the
problem are captured in the primitives (state space, set of
consequences, acts etc.)

These primitives are assumed by the modeler and are not
revealed.

Preference are revealed given primitives.

How do we know that the decision maker views the
problem the same as the modeler?



Example: Non-robustness of the
Ellsberg Paradox

Bets Red Green Blue

C -

Balls # 30 60



Example: Non-robustness of the
Ellsberg Paradox

1 2 3

Bets £xp2Va. 4 Red s GreenBlde 10 11 12 13 14 15 16
Bets Exp.Vval. Red Green Blue

A 33.3

B 33.3?” 3%

C 66.67
D 66.67

Balls # C 3 606§67
D  66.67
Balls #




Example: Non-robustness of the
Ellsberg Paradox

1 2 3 4

Bets /Exp.Val. Red Green Blue
S0 S$100 $100 S0 1 $100 SO S10
SO SO $100 S100 ESyIe) SH008 S100 S10
SO SO S0 S100 SY[08 S100
SO SO SO SO $100 SO EI]

Rationalizes Ellsberg behavior with expected utility
on a slightly different state-space.
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Unawareness models allow us to analyze decisions
under varying primitives.



How to model unawareness?



2. Epistemic models of
unawareness



What's the problem with modeling unawareness?

Why not take a state-space model a la Aumann or a Kripke
frame?



What's the problem with modeling unawareness?

a state space S Properties:

K;(S) = S (Necessitation)
a knowledge operator

K;:2° —2°
an unawareness operator

U,:2° —2°



Digression: Necessitation of Belief



Digression: Necessitation of Belief



Digression: Necessitation of Belief



What's the problem with modeling unawareness?

a state space S Properties:

K;(S) = S (Necessitation)
a knowledge operator

K, :2° — 2° U;(F) C =K, (F) N —-K;-K;(FE) (Plausibility)
anl unawareness operator K;U;(E) C 0 (KU Introspection)
U,:2° = 2° U;(E) C U, U,(E) (AU Reflection)

Observation 1 (Dekel, Lipman, and Rustichini, 1998) If a state-space
model satisfies Plausibility, KU-introspection, AU-reflection, and Necessita-
tion, then U;(E) =0, for any event E € 2°.

AU—Refl. Plaus. KU —Intro.
ProOF.  Ui(E) C  U(Ui(E) C -Ki(-Ki(Uy(R)) = =
0.

_lK( )Nec []



Modeling Unawareness



Various approaches, interdisciplinary

Computer science Economics

 Modeling logical non-  Focused on modeling
omniscience and limited lack of conception while
reasoning keeping everything else

+ Inspired by Kripke standard
structures * |Inspired by Aumann

. Ana|yst’s description of structures and Harsanyi
agents’ reasoning type spaces

- Seminal work: Faginand  * Players’ descriptions of
Halpern (Al 1988) players’ reasoning



Unawareness Structures

Goals:

1.

Define a structure consistent with non-trivial
unawareness in the multi-agent case.

Prove all properties of awareness of Dekel,
Lipman, Rustichini (1998), Modica and
Rustichini (1999), Halpern (2001)

Prove unawareness is consistent with strong
notions of knowledge (like S4 or stronger).

Clear separation between syntax and
semantics to facilitate applications.



(S, <) nonempty complete lattice of nonempty disjoint spaces



Digression: Lattices

Let X is a set and < be a binary relation defined on X.

< is partial order if it is

reflexive: £ < x for all x € X

antisymmetric: for any z,y € X, £ < y and y < x implies x = y

transitive: for any z,y,z € X, x <y and y = z implies x < 2



Digression: Lattices

Let Y C X.
uw is an upper bound of Y if x <u forall x €Y
¢ is a lower bound of Y it ¢ < x forallx € Y

u is a least upper bound, join, or surpremum ot Y if u < x
for all upper bounds x of Y

¢ is a greatest lower bound, meet, or infimum of Y it x < /¥
for all lower bounds z of Y



Digression: Lattices

X is a lattice if for any x,y € X has a join and meet.
X is a complete lattice if any Y C X has a join and a meet.
Every nonempty finite lattice is complete.

For any set, the set of all subsets is a complete lattice ordered
by set inclusion.



(S, =) nonempty complete lattice of nonempty disjoint spaces

For 5,58 € S, S’ = S stands for “S’ is more expressive than S”
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(S, <) nonempty complete lattice of nonempty disjoint spaces

For S,S" € S, S’ = S stands for “S’ is more expressive than S”

Q= US@SS



(S, =) nonempty complete lattice of nonempty disjoint spaces
For S,S' € S, S’ = S stands for “S’ is more expressive than S”
Q:=Uges S

For S,5" € § with S = S, er/ : S’ — S surjective projection.
For any S € S, r2 = ids.

For any S,5',5" €8,8" =8 = 8,13 =r8 org,.



Digression: Surjection

A function f: X — Y is surjective or onto if for
every y € Y there exists an x € X such that f(z) =y.

Student 1
Thomas
Student 2

Student 3 ‘ Anna

Student 4 i




(S, =) nonempty complete lattice of nonempty disjoint spaces
For S,S' € S, S’ = S stands for “S’ is more expressive than S”
Q:=Uges S

For S,5" € § with S = S, er/ : S’ — S surjective projection.
For any S € S, r2 = ids.

For any S,5',5" €8,8" =8 = 8,13 =r8 org,.
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(S, =) nonempty complete lattice of nonempty disjoint spaces
For S,S8" € S, S’ = S stands for “S’ is more expressive than S”
Q:=Uges S

For S,S5" € § with S’ > S, rS/ : S’ — S surjective projection.
For any S € S, r3 = ids.

For any S,5',8" €S,8" =8 = 8,73 =r3 ors, .

For w € S, wsg =13 (w). For D ¢ §', Dg = {ws : w € D}.



N —1
For D C S, DT := Uses.sres (Tg ) (D).

E C Qis an event if E = DT for some base D C S
in some base space S € S. (S(F))
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N -1
For D C S, DT := Usresisizs (Tg ) (D).

E C Qis an event if E = D' for some base D C S
in some base space S € S. (S(F))

We write 0° for the vacuous event with base space S.

Not every subset of () is an event.
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A — 1
o D€ 5,01 = Usessns () 01

E C Qis an event if E = DT for some base D C S
in some base space S € S. (S(F))

We write 0° for the vacuous event with base space S.
Not every subset of {) is an event.

Negation: For D' an event,
N —1
D i=Ugresisns (1§)  (S\D).
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A — 1
o D€ 5,01 = Usessns () 01

E C Qis an event if E = DT for some base D C S
in some base space S € S. (S(F))

We write 0° for the vacuous event with base space S.
Not every subset of {) is an event.

Negation: For D' an event,
N —1
D i=Ugresisns (1§)  (S\D).



N —1
For D C S, DT := Uses:sies (rg ) (D).

E C Qis an event if E = DT for some base D C S
in some base space S € S. (S(F))

We write 0° for the vacuous event with base space S.
Not every subset of {2 is an event.

Negation: For DT an event,
N\ —1
D" :=Ugesisrss (rg ) (S\ D).

Typcially ~E & Q\ E.
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{E,} collection of events

Conjunction: A\, E; := (), Ej






{E;} collection of events

Conjunction: A; E; :=(); E;
Disjunction: \/, Ejj := - (/\J ﬂEj)

Typically \/j E; ; Uj E;






{E;} collection of events
Conjunction: A; Ej; := (), E}
Disjunction: \/; Ej; := — (/\J ﬂEj)
Typically \/; E; & U, E;

FE C F if and olny if E C F and S(F) = S(F).

Set of all events is not necessarily an algebra
(many vacuous events).



For each i € I, there is a possibility correspondence II; : Q — 2\ {(}
satisfying the following properties:

0. Confinedment: If w € S then II;(w) C S’ for some S’ < S.









For each i € I, there is a possibility correspondence II; : Q — 2%\ {0}
satisfying the following properties:

0.

1.

Confinedment: If w € S then II;(w) C S’ for some S’ < S.

Generalized Reflexivity: w € II| (w) for every w € €.

. Stationarity: w’ € II;(w) implies II;(w") = IL;(w).

Projections Preserve Awareness: If w € S/, w € II;(w) and § < 5’
then wg € I;(wg).

Projections Preserve Ignorance: If w € S’ and S < 5’
then II! (w) C II] (wg).

Projections Preserve Knowledge: If S < S' < §" we §”
and II;(w) € S’ then (II;(w)) ¢ = II;(ws).









For each i € I, there is a possibility correspondence II; : Q — 2%\ {0}
satisfying the following properties:

0. Confinedment: If w € S then II;(w) C S’ for some S’ < S.
1. Generalized Reflexivity: w € II] (w) for every w € €.

2. Stationarity: w’ € Il;(w) implies II; (') = II;(w).









For each i € I, there is a possibility correspondence II; : Q — 2\ {0}
satisfying the following properties:

0.

1.

Confinedment: If w € S then II;(w) C S’ for some S’ < S.

Generalized Reflexivity: w € II (w) for every w € Q.

. Stationarity: w’ € II;(w) implies IL;(w") = II;(w).

. Projections Preserve Awareness: If w € §', w € II;(w) and S < 5’

then wg € I, (wg).









For each i € I, there is a possibility correspondence II; : Q — 2\ {0}
satisfying the following properties:

0.

1.

Confinedment: If w € S then II;(w) C S’ for some S’ < S.

Generalized Reflexivity: w € II (w) for every w € Q.

. Stationarity: w’ € II;(w) implies II;(w") = II; (w).

. Projections Preserve Awareness: If w € S, w € II;(w) and S < 5’

then wg € II;(wg).

. Projections Preserve Ignorance: If w € S’ and § < 5’

then IT| (w) C I (wg).









For each i € I, there is a possibility correspondence II; : Q — 2%\ {0}
satisfying the following properties:

0.

1.

Confinedment: If w € S then II;(w) C S’ for some S’ < S.

Generalized Reflexivity: w € IT| (w) for every w € (.

. Stationarity: w’ € II;(w) implies II;(w") = IL;(w).

Projections Preserve Awareness: If w € S/, w € II;(w) and § < 5’
then wg € I;(wg).

Projections Preserve Ignorance: If w € S’ and S < 5’
then II! (w) C II} (wg).

Projections Preserve Knowledge: If S < S' < 5" we §”
and II;(w) € S’ then (II;(w)) ¢ = II;(ws).









For each i € I, there is a possibility correspondence II; : Q — 2%\ {0}
satisfying the following properties:

0.

1.

Confinedment: If w € S then II;(w) C S’ for some S’ < S.

Generalized Reflexivity: w € IT| (w) for every w € (.

. Stationarity: w’ € II;(w) implies II;(w") = IL;(w).

Projections Preserve Awareness: If w € S/, w € II;(w) and § < 5’
then wg € I;(wg).

Projections Preserve Ignorance: If w € S’ and S < 5’
then II! (w) C II} (wg).

Projections Preserve Knowledge: If S < S' < 5" we §”
and II;(w) € S’ then (II;(w)) ¢ = II;(ws).



Remark Generalized Reflexivity implies that if S' < S, w € S
and IT;(w) C S’, then 7%, (w) € II;(w). In particular, we have
I1;(w) # 0, for all w € Q.

Remark Property 5 and Confinement (Property 0) imply Property 3.



Remark Generalized Reflexivity implies that if S’ < S, w e S
and IT;(w) C S, then 7%, (w) € II;(w). In particular, we have
I1;(w) # 0, for all w € Q.

Remark Property 5 and Confinement (Property 0) imply Property 3.

<<S, =), (rg/)sjsz, (Hi)7;61> is an unawareness structure.



The knowledge operator of individual ¢ on events F is defined,

as usual, by
Kz<E) = {w c ): Hz(W) C E},

if there is a state w such that Il;(w) C E, and by
Ki(E) = 0°®)

otherwise.



The knowledge operator of individual 7z on events E is defined,

as usual, by
Kz(E) = {w c): HZ(W) g E},

if there is a state w such that II;(w) C FE, and by
Ki(E) = 0°®)

otherwise.

Proposition If F is an event, then K;(F) is an S(FE)-based event.



Proposition The knowledge operator K; has the following properties:
(i) Necessitation: K;(2) = €,

(ii) Conjunction: K; (ﬂj Ej) = ﬂj K; (Ej),

(iii) Truth: K;(F) C E,

)

(iv) Positive Introspection: K;(F) C K;K;(F),

(v) Monotonicity: £ C F implies K;(F) C K;(F),
) -

(vi



The awareness operator of individual ¢ is defined on events E by
Ai(F)={w e Q: I;(w) CS(E)},
if there is a state w € ) such that II;(w) C S(F), and by
Ay(E) = 58

otherwise.



The awareness operator of individual ¢ is defined on events E by
Aj(E)={we Q:1L;(w) C S(E)'},
if there is a state w € €2 such that II;(w) C S(F), and by
Ay(E) = (58
otherwise.

The unawareness operator is then naturally defined by



Proposition The following properties obtain:
1. KU Introspection: K;U;(E) = 0°5F),
2. AU Introspection: U;(F) = U;U;(F),
3. Plausibility: U;(F) = - K;(F) N —-K;~K;(F),
4. Strong Plausibility: U;(E) = (). —, (-K;)" (E),

n=1
5. Weak Necessitation: A;(F) = K; (S (E)T),
Weak Negative Introspection: —K;(F) N A;-~K;(F) = K;—-K;(F),
Symmetry: A;(F) = A;(—F),
A-Conjunction: (o Ai (Ex) = A; (Nyer Br),

© > N &

AK- Reflection: AZ(E) = AZKZ<E),
10. AA- Reflection: A,L(E) = AZAZ(E),
11. A-Introspection: A;(F) = K;A;(E).



lllustration

E ={w,}
Ab(E)z{wz}
Uy (E) = {wg}
l’ “KoUp(E) = {w.,, wg}
! ﬁKaAb(E) ={w,, w.}
! Ko "KaUp(E) = {w,}
,’ A K=K U(E) = {w,, wg}




The mutual knowledge operator on events is defined by

K(E)=()Ki(E).

el



The mutual knowledge operator on events is defined by

K(E)=()K(E).

el

The common knowledge operator is defined by

CK(E) = ﬁ K"(E).



The mutual knowledge operator on events is defined by

K(E) =) Ki(E).

el

The common knowledge operator is defined by

CK(E) = ﬁ K"(E).

The mutual awareness operator on events is defined by

A(E) =) Ai(B),
icl
and the common awareness operator by

CA(E) = [ (A)" (B).

n=1



Proposition The following multi-agent properties obtain:

1. A;(E) = A;A;(E),

Ot = W
N
CRE
| |||
Q =
= 5
3
2}

x P
Q
=
=



Logic of unawareness

Syntax versus semantics: What's the internal structure of
states? What's the interpretation of the lattice?

How comprehensive are unawareness structures? Can
the model itself be subject to agents’ uncertainties? Can
any minute detail of awareness, beliefs, mutual beliefs,
etc. of all individuals be described in some state of the
model?

Soundness: Is any theorem valid in all states?

Completeness: Is every formula that is valid in all states
also provable?



Given a nonempty set of agents ¢ € I, a nonempty set of
atomic formulae p € At as well as the special formula T,
the formulae ¢ of the language L];’G(At) are defined

by the grammar

pu=p| e | ANy | ke | aip.

atomic formula: “penicillium rubens has antibiotic properties”



Given a nonempty set of agents ¢« € I, a nonempty set of
atomic formulae p € At as well as the special formula T,
the formulae ¢ of the language L];’G(At) are defined

by the grammar

pu=p| @AY | k| aip.

atomic formula: “penicillium rubens has antibiotic properties”



Define inductively the set of primitive propositions At(¢p)
that appear in ¢

o At(T) :=

(

At(p) := p, for p € At,
o At(p) = At(p),
o At(

At(

p Np) = At(p) U At(),
kip) == At(p) =: At(a;p).



Define inductively the set of primitive propositions At(y)
that appear in ¢

Modica-Rustichini definition of awareness: a;p := k;p V k;—k; .



An aziom is a formula assumed.

An inference rule infers a formula (i.e., a conclusion) from
a collection of formulae (i.e., the hypothesis).

An azxiom system consists of a collection of axioms and
inferences rules.



Axiom system S 5’;’0’:

Prop. All substitutions instances of tautologies of propositional logic,
including the formula T.

AS. a;—¢ < a;p (Symmetry)
AC. a;(p NY) & a;0 A a;yp (Awareness Conjunction)
A K R. a9 & ak;p, for all j € I (Awareness Knowledge Reflection)
T. k;o = ¢ (Axiom of Truth)
4. kip = k;k;p (Positive Introspection Axiom)
MP. From ¢ and ¢ = 1 infer ¢ (modus ponens)

RK. For all natural numbers n > 1, if 1, @9, ..., ¢, and ¢ are such
that At(¢) C Uy_; At(pe), then o1 Apa A+ A, = ¢
implies k;pp1 A kjpa A -+ A kjon = kip. (RK-Inference)



A proof in an axiom system consists of a sequence of formulae,
where each formula is either an axiom in the axiom system or follows
by an application of an inference rule.

A proof is a proof of a formula ¢ if the last formula in the proof is .

A formula ¢ is provable in an axiom system if there is a proof of ¢
in the axiom system.

The set of theorems of an axiom system is the smallest set of
formulae that contain all axioms and that is closed under inference
rules of the axiom system.



Define u;p := —a; .

Remark The Modica and Rustichini definition of awareness
and axiom system S 5’;"1 implies:

K. ko Nki(o = ) = ko
ki Nkith = ki(p A1)
NNI. wip = —k;i—ki—kip
Al a;p = kja;p
AGPP. a0 & /\peAt(so) a;p

Gengy. If ¢ is a theorem, then a;o = k;p is a theorem.



Given a language L(At), a set of formulae I is consistent
with respect to an axiom system if and only if there is no
formula ¢ such that both ¢ and —¢ are provable from I'.

w is mazximally consistent of formulae if it is consistent and
for any formula ¢ € L(At) \ w, the set w U {¢} is not
consistent.

Every consistent subset of L(At) can be extended to a
maximally consistent subset w of L(At). Moreover,

[' C L(At) is a maximally consistent subset of L(At)
if and only if I' is consistent and for every ¢ € L(At),
el orpel.



Canonical construction:

For every At' C At, let Say be the set of maximally consistent
sets way of formulae in the sublanguage Lli’a(At’).



Canonical construction:

For every At C At, let Say be the set of maximally consistent
sets ways of formulae in the sublanguage LI;’a(At’).

({Sat }av'cat, =) is a complete lattice of disjoint spaces with the
order defined by Sas» = Say if and only if At” D At'.

Q= UAt'gAt Sar'-



Canonical construction:

For every At" C At, let Say be the set of maximally consistent
sets way of formulae in the sublanguage L?’G(At').

({Sat Farcat, X) is a complete lattice of disjoint spaces with the
order defined by Say» = Say if and only if At” D At'.

Q = UAt/gAt SAt/.

For any Say = Say, surjective projections rﬁjf : Sarr — Say
are defined by 4%, (w) := w N L} (At).



Theorem For every w and ¢ € I, the possibility correspondence defined
by IL;(w)

oy . (i) k;p implies ¢ € W', and
= {w € (2 : For every formula ¢, (i) a1 € w iff ¢ € W' or —p € W
satisfies Confinement, Generalized Reflexivity, Projections Preserve
Ignorance, and Projections Preserve Knowledge. Moreover, for every
formula ¢, the set of states [p] := {w € : ¢ € w} is a Sp¢(,)-based

event, and [—¢] = =[g], [p AY] = [p] N [Y], [kip] = Kil], laip] = Ailg],
and |u;p] = Us ).



Set of events in unawareness structures .

Valuation V : At — X



Set of events in unawareness structures .
Valuation V : At — X

Denote M = <<’57 j>7 (T§/>S’ﬁsa (H’i>i617 V>



Set of events in unawareness structures .
Valuation V : At — X
Denote M = ((S, =), (r2)sr<s, (I;)icr, V).

Define inductively the satisfaction relation on the structure of
. k,a
formulae in L;"(At)

M,w = T, for all w € €,
M,w = p if and only if w € V(p),
M,w E= ¢ A if and only if w € [p] N [¢],

M,w = - if and only if w € [—¢],

M, w = k;p if and only if w € K;[y],

where [p] :={w' € Q: M,w" E ¢}, for every formula .



In a Kripke structure, a formula is valid if it is true in every state.
In an unawareness structure, a formula may not be defined in
every state!



In a Kripke structure, a formula is valid if it is true in every state.
In an unawareness structure, a formula may not be defined in
every state!

A formula ¢ is defined in state w in M if
w € Npea(p) V(p) U=V (p)).

A formula ¢ is valid in M if M,w = ¢ for all w in which ¢ is
defined.

A formula ¢ is valid if it is valid in all M.



An axiom system is sound for a language L with respect to a
class of structures if every formula in L that is provable in the
axiom system is valid with respect to every structure M.

An axiom system is complete for a language L with respect to a
class of structures if every formula in L that is valid in every
structure M is provable in the axiom system.



An axiom system is sound for a language L with respect to a
class of structures if every formula in L that is provable in the
axiom system is valid with respect to every structure M.

An axiom system is complete for a language L with respect to a
class of structures if every formula in L that is valid in every
structure M is provable in the axiom system.

Theorem For the language L’;’G(At), the axiom system 551;’&
is a sound and complete axiomatization with respect to
unawareness structures.



An Example: Speculative Trade

How to model the following example?
Two agents: An owner o of a firm and a potential buyer b.

Status quo value of the firm is $100.

The owner is aware of a potential lawsuit [ that may cost the firm
$20. The buyer is unaware of it. The owner knows that the buyer is
unaware of it.

The buyer is aware of a potential innovation n that may enhance
the value of the firm by $20. The owner is unaware of it. The buyer
knows that the owner is unaware of it.

Suppose the buyer is offering to buy the firm for $100. Is the owner
going to sell to her?



An Example: Speculative Trade
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The First Approach: Awareness Structures
(Fagin and Halpern, Artificial Intelligence 1988)

Language L&L4(At) defined by

pu=plop oAt | Kp| Lip | Aip

An awareness structure consists of

e a set of states S,

e accessibility relations R; € S x S,
e awareness correspondences

Ay § — 20

e a valuation V : S x At — {true, false}



M,s = L;p if and only if M, ¢ |= ¢ for all £ € S such that (s,t) € R;
M,s = A;p if and only if p € A;(s)

M,s = K;p if and only if M,s = A;p and M,s = L

Fagin and Halpern (1988), Halpern
(2001), Halpern and Rego (2008)
provide sound and complete
axiomatizations of awareness
structures under various
assumptions on accessibility
relations and awareness
correspondences. (details)

The example models our story.




Buyer:

“I (implicitly) know that the
owner is aware of the lawsuit
but unfortunately | am
unaware of the lawsuit.”

It models reasoning of an
outside observer about the
knowledge and awareness of
agents but not the agents’
subjective reasoning that
economists, decision
theorists, and game theorists
are interested in.

Semantics is not syntax-free. What would
be the analogue to a Kripke frame?

Awareness structures are very flexible. For instance,

o AN e A;(s) but ¥ A

o & Ai(s)

Should be very useful to model various forms of framing.



The Second Approach: Generalized Standard Models
(Modica and Rustichini, GEB 1999)

Single-agent structure

-l ‘1 _n,l . S
/./‘ Modica-Rustichini definition

Ao =K,pV K,—~K;p

Modica and Rustichini (1999) prove a sound
and complete axiomatization.

Use “objective” validity.

Models reasoning of an outside observer
about knowledge and awareness of a single
agent.



A Fourth Approach: Product Models
(Li, 2008, JET 2009)

A product model consists of

e a set of questions )*

e a set of objective states

* L
QF = xqu*{lmoq}
® All awarlrcless C.orrespondence
A?f - (O — QQ*

e a possibility correspondence

Hfg_ O — QQ*




A Fourth Approach: Product Models
(Li, 2008, JET 2009)

{@@@@@@ @@]

A product model consists of

e a set of questions Q*

e a set of objective states

Q-* = quQ* {]‘Q? Oq}

) e an awareness correspondence

Aj (O — 26"

/e apossibility correspondence

(1n,1z) (1n,01) (0,,1;) (0
'/
Q*
4 N\
o ® o o
(1,)  (0,) (1,)  (0,)
\ VAN
Q,(€27) 0Q,(2)
4 )
o
\ _J
Q, (Q,(€27)) = Qp (€2,(€27))

II; : QO — 24

e subjective state-spaces

Qi(@“) = XgeA;(w {1 Oq}



A Fourth Approach: Product Models
(Li, 2008, JET 2009)

A product model consists of

[@ () () @ @ (1 @ @ ] e aset of questions Q*

(1n’1l) (1na01) (0 1)

e a set of objective states

Qr () = xqu*{lq;Oq}

(; @ . @ ' (/ @ @ \) e an awareness correspondence

[ ® . () Q"

[ (1) (o)J [ (1,) (on>] A {l =2
\ AN /e a possibility correspondence
2,(€27) Q,(€27)
II; : 0* — 28
(" \

e subjective state-spaces
o
Q-?j W) = XgeA( 1 O
\ ) (W) := Xgediw) i1y, Og}

0, (€2,(€27)) = €, (€2,(€27)) e “subjective” versions of A; and TI,




A Fourth Approach: Product Models
(Li, 2008, JET 2009)

l) (1n’ol) n’ l)

n’

[[@,@ 0,0 0,0 80

)

-

0, (€2,(€27)) = €, (€2,(€27))

Example models our story

Possiblility correspondence
models implicit knowledge.

Sublattices represent
subjective perceptions of
the situation, while the
objective state space
represents the outside
modeler’s view.

Li (2009) proves properties
of unawareness and
knowledge



Further Epistemic Approaches

Awareness of Unawareness:

« Awareness structures with propositional quantifiers:
Halpern and Rego (MSS 2013), Halpern and Rego (GEB
2009)

 First-order modal logic with unawareness of objects:
Board and Chung (2011)

 First-order modal logic with unawareness of objects and
properties: Quantified awareness neighborhood
structures: Sillari (RSL 2008)

* Awareness of unawareness without quantifiers: Agotnes
and Alechina (2007), Walker (MSS 2014)

Dynamic awareness:



“Evolution” of the literature on
epistemic models of unawareness

Survey:

Schipper, B.C. “Awareness”, in: Handbook of Epistemic Logic,
Chapter 3, H. van Ditmarsch, J.Y. Halpern, W. van der Hoek
and B. Kooi (Eds.), College Publications, London, 2015,
77-146.
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[Unawareness Bibliography - Burkhard C. Schipper, UC Davis http://www.econ.ucdavis.edw/faculty/schipper/unaw.htiny

The Unawareness Bibliography

Burkhard C. Schipper

If you want to have your work included or something needs updating, please email me.
Conferences

International Workshop on 'Unawareness', January 29-30, 2014, University of Queensland,
Organizer: Simon Grant, Jeff Kline, and John Quiggin

Unawareness: Conceptualization and Modeling, October 29, 2011, Johns Hopkins University,
Organizer: Edi Karni

Papers

Agotnes, T. and N. Alechina (2007). Full and relative awareness: A decidable logic for
reasoning about knowledge of unawareness, in: D. Samet (Ed.), Proceedings of the 11th
Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2007), Presses
Universitaires De Louvain, 6-14.

Auster, S. (2013). Asymmetric awareness and moral hazard, Games and Economic
Behavior, 82, 503-521.

van Benthem, J. and Velazquez-Quesada, F.R. (2010). The dynamic of awareness,
Synthese, 177, 5-27.

Board, O. and K.S. Chung (2011). Object-based unawareness: Axioms, an earlier version
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Returning to the speculative trade example:

Say that at a state s an agent is willing to trade at the price $z if either
she strictly prefers to trade at $x or she is indifferent between trading or
not at $z.

« At $100, both agents are willing
to trade (in every state).

« This is common knowledge
among the agents at all states.

* Yet, each agent has a strict
preference to trade in all in all
states except the lowest space.
Both are indifferent between
trading and not trading in the
lowest space. The states in the
lowest space are the “states of
mind” of an agent as viewed by
the other agent.




Returning to the speculative trade example:
Say that at a state s an agent is willing to trade at the price $z if either
she strictly prefers to trade at $x or she is indifferent between trading or

not at $z.

At $100, both agents are willing
to trade (in every state).

This is common knowledge
among the agents at all states.

Yet, each agent has a strict
preference to trade in all in all
states except the lowest space.
Both are indifferent between
trading and not trading in the
lowest space. The states in the
lowest space are the “states of
mind” of an agent as viewed by
the other agent.

This is in contrast to the “No-
speculative-trade-theorems” of
structures without unawareness
(e.g., Milgrom and Stokey, 1982):

If there is a nd

common knowledgg of willingness to
trade, then both must be indifferent
to trade.

v

Need to talk about probabilities.
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3. Type spaces with
unawareness



Type Spaces with Unawareness

« Economists frequently make use of
probabilistic notions of belief

* Quantified notions of belief are often
useful for applications (optimization under
uncertainty)

« How to model unawareness and
probabillistic beliefs?



Each § € § is now a measurable space with sigma-field Fg.

If S’ = S, we require a measurable surjective projection
rg : 8 — 8.

Y. denotes now the set of measurable events in the
unawareness structure.



Denote by A(S) is a set of probability measures on (S, Fg)
endowed with the sigma-field F (s) generated by
fue NS): u(D)>p}t, De Fs, pe|0,1].

For u € A(S’), the marginal pg of p on § =< S" is defined by

ps (D) == p ((frg,)l (D)) , D e Fs.

Denote by S, the space on which p is a probability measure.

Whenever S, = S(E), we abuse notation u(E) = u(ENS,).
If S, # S(E), then pu(FE) is undefined.



Definition For each individual ¢ € I there is a type mapping
ti Q= Uyea A (Sa), which is measurable in the sense that for
every S € § and @) € Fa(g) we have ti_l(Q) NS € Fg, for all
Ses.

We require the type mapping ¢; to satisty the following
properties:

(0) Confinement: If w € S’ then t;(w) € A(S) for some § < 5.









Definition For each individual ¢ € I there is a type mapping
ti: Q= U,ecq A (Sa), which is measurable in the sense that for

every S € S and Q € Fa(s) we have t;l(Q) NS € Fg, for all
Ses.

We require the type mapping ¢; to satisfy the following
properties:

(0) Confinement: If w € S’ then t;(w) € A (S) for some § < 5.

(1) IfS" =85 =S5, weS” and t;(w) € A(S) then
ti(wS/) — ti(W).









Definition For each individual ¢ € I there is a type mapping
ti: Q — U,eca A (Sa), which is measurable in the sense that for

every S € § and ) € Fa(s) we have t;l(Q) NS € Fg, tor all
S es.

We require the type mapping ¢; to satisty the following
properties:

(0) Confinement: If w € S’ then t;(w) € A(S) for some S < 5.

(1) IfS" = 85" =S5, weS” and t;(w) € A(S) then
ti(wS/) — tz(LU)

(2) IfS" =85 =S5, weS” and t;(w) € A(S’) then
ti(ws) = ti(w))s-









Definition For each individual ¢ € I there is a type mapping
ti: Q= Uyea A (Sa), which is measurable in the sense that for

every S € S and Q € Fa(g) we have ti_l(Q) NS € Fg, for all

S es.
We require the type mapping ¢; to satisty the following
properties:

(0) Confinement: If w € S’ then t;(w) € A(S) for some S < §’.

(1) IfS" =8 =S, weS” and t;(w) € A(S) then
ti(wS/) = ti(W).

(2) IfS" =8 =5, we S and t;(w) € A(S") then
ti(u)s) — tz’(w)|5-

3) HS"=8"=8, we ", and t;(ws) € A(S) then Sy, () = S.









Definition For each individual ¢ € I there is a type mapping
ti: Q= Uyea A (Sa), which is measurable in the sense that for

every S € S and Q € Fa(g) we have ti_l(Q) NS € Fg, for all

S es.
We require the type mapping ¢; to satisty the following
properties:

(0) Confinement: If w € S’ then t;(w) € A(S) for some S < §’.

(1) IfS" =8 =S, weS” and t;(w) € A(S) then
ti(wS/) = ti(W).

(2) IfS" =8 =5, we S and t;(w) € A(S") then
ti(u)s) — tz’(w)|5-

3) HS"=8"=8, we ", and t;(ws) € A(S) then Sy, () = S.



Remark Property 1 is implied by the other properties.

Assumption (Introspection) If
{w’ €Nt (W)s,. 0y = ti(w)} C E, F an event, then
ti(w)(F) =1.



Definition For ¢ € I and an event FE, define the awareness
operator

A(B)={weQ:t;(w) e A(S),S = S(E))

if there is a state w such that t;(w) € A(S) with S = S(F),

db

otherwise.
The unawareness operator of individual ¢ € I on events is now

defined by
U;(F) =-A;(F).

Lemma If F is a (not necessarily measurable) event, then
A;(FE) (and thus U;(F)) is an S (F)-based event.



Definition For i € I, p € [0,1] and an event F, the p-belief
operator is defined, as usual, by

BY(E) :={w € Q: t;(w)(F) > p},
if there is a state w such that t;(w)(E) > p, and by
BI(E) = 05

otherwise.

Proposition If F is an event, then B} (F) is an S (E)-based
event.



Proposition (Standard Properties) Let E and F' be events,
{Ei}1=12,. be an at most countable collection of events, and
p,q € [0,1]. The following properties of belief obtain:

(o
(i

) B (E) € B/(E), for ¢ <p,
)

(ii) Additivity: BY (E) C =B!(—FE), for p+ q > 1,
)
)

Necessitation: B; (Q2) = Q,

Bp (ﬂz 1El) C ﬂz 1Bp(El)

for any decreasing sequence of events {E;}°,
B} (ﬂlzl E) = ml:l B (E),

(liic) B (MiZ1 E1) = N2 B (B,
(iv) Monotonicity: F C F implies B; (E) C B} (F),

(iiia

(iiib

(v) Introspection: BY (E) C B; B? (E).



Proposition Let E be an event and p,q € [0,1]. The following properties of
awareness and belief obtain:

1. Plausibility: U;(E) C =B} (FE)N—-B;-B}(E),
2. Strong Plausibility: U;(E) C (°_, (=B?)" (E),
BPU Introspection: BYU;(E) = 0°E)for p € (0,1], BYU;(E) = A;(E),

> W

AU Introspection: U;(E) = U;U;(F),

5. Weak Necessitation: 4;(F) = B} (S(E)T),
BY(E) € Ay(E), BY(E) = Ai(E),

BY(E) C A;BY(E),

Symmetry: A;(E) = A;(~FE),

© © N o

A Conjunction: Nyop Ai (Ex) = A; (Naer EN),
10. ABP Self Reflection: A;B; (E) = A;(E),

11. AA Self Reflection: A;A4;(F) = A;(E),

12. B A;(E) = A;(E).



Belief

Awareness

mutual belief
Bp(E) - ﬂz-ef Bf(E)

common certainty

CB' (E) :=,=1(B")"(E)

mutual awareness

A(E) = (ies Ai(E)

COININOIl awareness

CA(E) := N, (4)" (E)

n=1



Proposition Let E be an event and p,q € [0,1]. The following multi-person
properties obtain:

3. BY(E) € A;BJ(E),
4 Bf(E) C AiAj(E)7
CA(E) = A(E),

CBl(E) C CA(E),
BP(E) C A(E), B’(E) = A(E),
BP(E) C CA(E), B°(E) = CA(E),

© 0 N o«

A(E) = BY(S(E)"),

10. CA(E) = BY(S(E)"),
11. CBY(S(E)T) C A(E),
12. CBY(S(E)T) C CA(E).



4. Speculation



Revisiting to the speculative trade example

« Status quo value of the firm depends on high
($100) or low ($80) sales, which is
equiprobable.

« Both whether or not there is a lawsuit and
whether or not there is a novelty are
equiprobably too.

* Moreover, all events are independent.
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Revisiting to the speculative trade example

* There is a common prior (i.e., a projective
system of probability measures with which
agents’ types are consistent) and common
certainty of willingness to trade but each
agent has a strict preference to trade.

* Counterexample to Milgrom and Stokey
(1982).

« Speculative trade is possible under
unawareness.

« Knife-edge case???



Prior in a standard type space S (Samet, 1998):

For every event E € Fg, P? (E) = [, t; (-) (E)dPf (-).

e convex combination of posteriors (types)

e a consistency condition on types instead of a belief
at a “prior stage”



Definition (Prior) A prior for player ¢ is a system of
probability measures P; = (P}) ses € llses A(S) such that

1

1. The system is projective: If S’ < S then the marginal
of PS on S’ is PS'. (That is, if E € ¥ is an event whose
base-space S (F) is lower or equal to S’, then
PP (E) = Pf (B).)

2. Each probability measure P;° is a convex combination

of 7’s beliefs in S: For every event F € X such that
S(E) =S,

PS(ENSNA; (E)) = / () (B)dPS ().
SNA;(E)

P = (PS)SGS € | lges A(S) is a common prior if P is a prior
for every player i € I.



®; O,
V18 2)18)!




i (w)] ={w € Q:t;(W) =t;(w)}

Definition (Prior) A common prior P = (PS)SGS € [lges A(S)
is positive if and only if for all ¢ € I and w € Q: If t; (w) € A (S'),
then [t;(w)] N S’ € Fgr and PS (([ti (W) N s) N s) > 0 for all

S =5

Let 1 and x5 be real numbers and v a random variable on ().
Define the sets E="! = {w cQ: [ oY ()d(t1 (w)) (+) < :1:1}
tq (w

and EZ7 = {w e [y, v()d(t(@)() > a;z}.

to(w
We say that at w, conditional on his information, player 1 (resp.
player 2) believes that the expectation of v is weakly below x;
(resp. weakly above ) if and only if w € E="" (resp. w € EZ™?).



Theorem Consider a finite unawareness belief structure with
a positive common prior P = (PS)Ses € [[ges A(S). Then
there is no state @ € () such that there are a random variable
v:Q — Rand 21,292 € R, 1 < x5, with the following
property: at w it is common certainty that conditional on

her information, player 1 believes that the expectation of v

is weakly below x; and, conditional on his information,

player 2 believes that the expectation of v is weakly above xs.

Arbitrary small transaction costs (like a Tobin tax) rule out
speculative trade under unawareness.

Converse to the theorem is false.



5. Bayesian games with
unawareness



Bayesian games with unawareness

 Unawareness of (payoff-)relevant events,
actions, and players.

* Replace type space with unawareness
type space.

* Digression: How do we model uncertainty
over action sets in standard games”?



Definition A Bayesian game with unawareness

0S) = (8,20 (%), _ ()iers Odier, (Moer, (w)ier )

consists of a finite unawareness type space
<<S,j> ( S )ngsa’(ti)i61> and

(i) a nonempty finite set of actions M;, for i € I, and a
correspondence M, : Q — 2M: \ I}, for ¢ € I, such that for
any nonempty subset of actions® M/ C M;,

(M| :={weQ: M C M;(w)} is an event (in the
unawareness type space), and w’,w” € [t;(w)] NSy, ()
implies M, (w') = M;(w"), for all w € €,

(ii) for every ¢ € I, a utility function

wi i Uyeq ((ITjer Ms(@)) x {w}) — R



A strategy of player ¢ in a Bayesian game with unawareness is a
function o; : © — A(M;) such that for all w € €,

(i) oi(w) € A (/\/li(wsti(w))), and

(ii) t;(w') = t;(w) implies 0;(w") = o;(w).



Example (Feinberg 2005)

Colin

bl

b;_)_

a1

0,2

Rowena
9

2 2

3

1.0

Unique Nash equilibrium (a,, b,)




Rowena

Rowena

MR(wl) — MR(CU’Q) - {(Llj a9, (1,3}j MR(wg) - {(Ll? (Lg}j
Mc(wl) — Mc(wfz) — Mc(w:3) — {blj 52} 53}-

An equilibrium (ag, bs) if w=w

((ng bg) if w= W
((1/1j bg) if w= W3

(0r(W), 0c(w)) =

aq

5)

as

Colin

b1

a1

0,2

a9

2.9




aq 02 33

Rowena

as 2,221

—» | U3 10 40

Rowena |a; | 0,23,
S’ (19 22 2

Mp(wi) = Mpg(ws) = {ay, as, a3}, Mg(ws) = {ay, as},
Me(wi) = Mo(ws) = Mo(ws) = {by, by, bs}.

An equilibrium (a5.by) if w=w <«
(O-R(w); U(?(W)) — ((LB; bz) if W= Wy €«

(a1,00) if w=w3<



Denote og, ,, = (<0j(w,))j€ I)w’ES . The expected utility of player-type
t;(w)

(¢,ti(w)) from the strategy profile og, ., is given by

Ui i (@) (054, 0)) 1=

> > [Tos(") ({ms}) | - s ((mg)ser, ') ta(w)({'}).

W/ESti(w) jel
HJEIM ( t (w /))



Definition Given a Bayesian game with unawareness I'(S), define the associ-
ated strategic game by

(i) {(¢,ti(w)) :w € Q and i € I} is the set of players,
and for each player (i,%;(w)),
(ii) the set of mixed strategies is A(M;(ws,, (v)), and
(iii) the utility function is given above.

A profile (0;);cs is an equilibrium of the Bayesian game with unawareness if and
only if the following is an equilibrium of the associated strategic game: (i,%;(w))
plays o;(w), for all i € I and w € €.

Proposition (Existence) Every finite Bayesian game with unawareness has
an equilibrium.



Sublattice with least upper bound S is I(S) :={5" € S:5 < S}
Given I'(S), the S-partial game is I'({(.5)).
At w € (, player i views the game as given by I'(I(S,(.)))-

Proposition Given a Bayesian game with unawareness I'(S), consider for
S, 8" € § with S’ < §” the S’'-partial (resp. S” -partial) Bayesian game with
unawareness. If I, ), and (M;);c; are finite, then for every equilibrium of the
S’-partial Bayesian game, there is an equilibrium of the S”-partial Bayesian
game in which equilibrium strategies of player-types in {(i,t;(w)) : w € Q' =
Useisy S and ¢ € I} are identical with the equilibrium strategies in the S'-
partial Bayesian game.

Remark Consider for S/, S” € § with S’ < §” the S’-partial (resp. S”-
partial) Bayesian game with unawareness of given game I'(S). Then for every
equilibrium of the S”-partial Bayesian game there is a unique equilibrium of
the S’-partial Bayesian game in which the equilibrium strategies of player-types
in {(4,t(w)) : w € Q" = Ugeys) S and ¢ € I} are identical to the equilibrium
strategies of the S”-partial Bayesian game.

(Peleg and Tijs, 1996, Peleg, Potters, and Tijs, 1996)
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Opponents could have any awareness level

Full support belief over types of opponent

Consider limit belief over opponent’s types close to him being fully
aware.

Limit Bayesian Nash equilibrium selects (U, L), the undominated Nash
equilibrium.



For each strategic game, construct a Bayesian game with
unawareness in which each player has a full support belief over
opponents’ having any awareness of action sets.

Each such Bayesian game with unawareness has a Bayesian Nash
equilibrium.

Definition An unawareness perfect equilibrium of a strategic game
iIs a Nash equilibrium for which there exists a sequence Bayesian
games with certainty of awareness at the limit and a corresponding
sequence of Bayesian Nash equilibria such that the limit of the
sequence at the true state converges to the Nash equilibrium.

Theorem For every finite strategic game, an unawareness perfect
equilibrium exist.

Theorem A Nash equilibrium is an unawareness perfect equilibrium
if and only if undominated (i.e., not weakly dominated).



Interpretation

Undominated Nash equilibrium: No opponents’ action may be
excluded from consideration.

Unawareness perfect equilibrium: Slight chance that any
opponents’ subset of action profiles may be excluded from
consideration.

(Increases the probability that other not excluded actions are
played.)

Comparison to Trembling Hand Perfection:
* Independence of opponents’ mistakes.
* Mutual belief in opponents’ mistakes.

* No assumption of irrational behavior / mistakes under
unawareness perfection. Instead beliefs are formed over
opponents’ perception of the game.



6. Revealed Unawareness



Revealed Unawareness

* What's the difference between a zero-
probability event and unawareness?

« Can we reveal unawareness?



Savage confined subjective expected utility theory
(SEU) to the decision maker’s small world.

The decision maker chooses among acts, i.e.,
mappings from states to outcomes.

Can the decision maker choose among acts
without being made aware of events by the
description of acts?

Yes, in reality we do it all the times.
No, in standard SEU models.



Proposal for resolution:

* Replace the state space in Savage by lattice of
spaces.

« Define acts on the union of spaces.

» Let preferences depend on the space (i.e., the
awareness level).

* The decision maker chooses among actions that
are “names” for acts that are not necessarily
understood by the decision maker. His
understanding depends on her awareness level.



1 =1 1 -1 1 -1
80 100 100 100 100 80

) () [

Contract 1 Contract 2 Contract 3

Choice behavior is inconsistent with either “lawsuit” or
“not lawsuit” being a Savage null event.

But it is consistent with unawareness of “lawsuit”.
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Outline

Informal introduction

Epistemic models of unawareness
Type spaces with unawareness
Speculation

Bayesian games with unawareness
Revealed unawareness

Dynamic games with unawareness
. (?77)



7. Dynamic games with
unawareness



* How to model dynamic interactions between
players with asymmetric awareness?

What are the problems:

O Players may be aware of different subsets
players, moves of nature, or actions (i.e.,
different “representations” of the game)

O Players may become aware of further
players, moves of nature or actions during
the play of the game (i.e., endogenous
changes of their “representations” of the
game)



* What is a sensible solution concept?
What are the problems:
O Players couldn’t learn equilibrium through
repeated play (because of “novel”
situations)

O Subgame perfection, sequential equilibrium
etc. ignore surprises but with unawareness
players could be surprised frequently

O Players may make others strategically
aware. Thus players should be able to
reason carefully when being surprised by
others rather than discarding surprising
actions of others as a mistake.



Introductory Example

* A glimpse of how we model unawareness
In dynamic games

* what solution concept we suggest to these
models

* Relevance: Show that outcomes under
unawareness of an action may differ from
outcomes under the unavailability of an
action



Example: Battle of the Sexes
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Example: Battle of the Sexes

B S M
3, 1 0,0 0,4
0,0 1,3 0,4
0,0 0,0 2,6




Example: A kind of “Battle of the Sexes”
|

not give car
to player Il

B N

B 3,1 1(10j0

I N 7~ o A o~
) U, U o

A 0n_N a¥l Wal

| U, U U U

S', = {any strategy except ones with “M” after not giving the car}

S, ={(B, M), (S, M)}
S?, = {(not give, B, M), (give, B, M)}
S2,={(B, M), (S, M)}
S3, = {not give, B, M), (give, B, M)}

S, = {(B, M)}
S4 = {not give, B, M)}
S4 = {(B, M)}

give gdr
to player lI

N G N

<P

Z O
ol |P

O|lP|P

N | D | P

Unique extensive-form rationalizable outcome




Example: A kind of “Battle of the Sexes”

0))

B S
3,110,0
0,0 [ 1,3
0,0 (0,0

not give car
to player Il

give car
to player lI

B S M
3,110,004
0,0 (1,3 (0,4
0,0 [ 0,0 2,6




Example: A kind of “Battle of the Sexes”

not tell player Il about tell player Il about
the Mozart concert the Mozart concert
I I )
B S B S M
| B | 31100 B |31]|00]04
S [00]1,3 | S | 00](13/|04
M | 0,0 |00 _ M | 0,0 |00 2,6/
Two novel features:
4 I .
- Forest of trees, partial order
B S - Information set at a history of a tree
, B[ 31]00 may be located in a less expressive tree
S 0,013
g =/




Example: A kind of “Battle of the Sexes”

not tell player Il about tell player Il about
the Mozart concert the Mozart concert
I I )
B S B S M
| B 3,110,0 B 3,1710,01]0,4
S 0,0 | 1,3 I S 0,0 (1,3 ]0,4
M 0,0 | 0,0 \ M 0,0 | 0,0 2,6)
4 I Notion of strategy
B S
| B 3,1 10,0
S 0,0 11,3
N\ ~/




Example: A kind of “Battle of the Sexes”

not tell player Il about tell player Il about
the Mozart concert the Mozart concert
I I )
B S B S M
- B 3,110,0 B 3,1 100/(0,4
! S 0,0 (1,3 | S 0,0 (1,3 (0,4
M | 00100 \"M 0,0 | 0,0 2,6/

B [31]0,0 Player |

Notion of strategy



Example: A kind of “Battle of the Sexes”

not tell player Il about
the Mozart concert

B S
| B 3,1 10,0
S 0,0 11,3
M 0,0 10,0
4 I
v [l
B S
| B 3,1 10,0
S 0,0 | 1,3
\§ —/

tell player Il about
the Mozart concert

v

B S M

B 3,110,004

| S 0,0 (1,3 (0,4
\ M 0,0 (0,0 2,6)

Notion of strategy

Player |

Player Il



Example: A kind of “Battle of the Sexes”

not tell player Il about tell player Il about
the Mozart concert the Mozart concert
I I T\
B S B S M
B 3,1100 B 3,17 10,01]0,4
I S 0,0 | 1,3 I S 0,0 |11,3]10,4
M 0,0 | 0,0 M 0,0 |0,0| 2,6
1 - ——

B| 3,1 | 0,0
S| 0,0 [1,3




not tell player Il about tell player Il about

3,1 10,0

S/ 0,013
_/

the Mozart concert the Mozart concert
I I T
B S B § M
B 3,1710,0 B H——6;10—16+4
S T4 [ S O 0—+H13—164
i 6660 \ M 0,0 | 0,0 | 2, 6/

ST, = {any strategy except ones with “M” after not tell}
S",={(M, B), (M, S)}
S?, = {don’t tell, B, M, B), (don’t tell, B, M, S),
(tell, B, M, B), (tell, B, M, S)}
$2,={(M, B), (M, S)}
S3, = {don’t tell, B, M, B), (don’t tell, B, M, S),
(tell, B, M, B), (tell, B, M, S)}
$3,={(M, B), (M, S)}

Different extensive-form rationalizable outcomes



Extensive Form Games with Unawareness

Initial building block: a standard extensive-form game with perfect
information:

Ny - decision nodes

I,, - active player(s) at node n € Ny

A! - actions available to player i € I at node n € Nj

Cy - chance nodes

Zy - terminal nodes

(p)icr € R - payoff vector for the players at terminal node = € Z;
?{} = Ny U CH U Zy - the set of nodes



Generalized Game

Consider now a family T of subtrees of Ny, partially ordered (=) by
inclusion.



Partially Ordered Set of Trees
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Generalized Game

Consider now a family T of subtrees of Ny, partially ordered (=) by
inclusion.

In each tree I" € T denote by ny the copy in 1" of the node n € N,
whenever the copy of n is part of the tree T

Each subtree has the following properties:

1. All the terminal nodes in each tree 1" € T are copies of nodes in

Z”+



1. All the terminal nodes in each tree 7' € T are copies of nodes in

Zy.



Generalized Game

Consider now a family T of subtrees of Ny, partially ordered (=) by
inclusion.

In each tree I" € T denote by ny the copy in 1" of the node n € N,
whenever the copy of n is part of the tree T

Each subtree has the following properties:

1. All the terminal nodes in each tree 1" € T are copies of nodes in

Z[i-

2. If for two decision nodes n, n’ in the subtree in which some player i
is active (i.e. i € I, M 1,1) we have A}, N A’, # (), then Al = A’ .



2. If for two decision nodes n, 7" in the subtree in which some player ¢
is active (i.e. i € [, N 1) we have A! N A!, (), then Al = A’




2. If for two decision nodes n,n’ in the subtree in which some player ¢
is active (i.e. ¢ € I, N 1;) we have A} N A', # (), then Al = A’




2. If for two decision nodes n,n’ in the subtree in which some player ¢
is active (i.e. ¢ € I, N 1;) we have A} N A', # (), then Al = A’




N - the union of all decision nodes in all subtrees

(' - the union of all chance nodes in all subtrees

Z - the union of all terminal nodes in all subtrees

N=NuCcuZz



Information sets in a generalized game

In each decision node n € N, define for each active player i € [, an
information set 7, (n) with the following properties:
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Confinement: m; (n) € 1T for some tree T'.
No delusion: If m;(n) C T;, then n € m(n).
Introspection: If n' € m; (n) then m (n') = m; (n) .

No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If n” € 7; (n) € T (where 7" € T is a tree) and there is a

path n'. .. .. n" € T" such that i € I, N I,» then m; (n") € T".

No imaginary actions: If n’ € m; (n) then A?, C A?.

Distinct action names in disjoint information sets: For a subtree T', if n.n' € T

and A’ = A, then m; (n') = m; (n) .

Perfect recall: Suppose that player i is active in two distinct nodes ny and ny,
and there is a path 1,19, ..., n; such that at ny player ¢ takes the action a;. If
n' € m;(ng), then there exists a node njy # n' and a path ny,ny, ....n, =n

such that m; (ny) = m; (n1) and at nj player i takes the action a;.



Standard

10 Confinement: m; (n) C T for some tree T
11 No delusion: If m;(n) € 1T, then n € m;(n).
12 Introspection: If n’ € m; (n) then 7; (n') = m; (n).

13 No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If " € m; (n) C T' (where T" € T is a tree) and there is a
path n', . ... n' e T" such that i € I,, M I then m; (n") CT".

14 No imaginary actions: If n' € m; (n) then A’, C A*.

|5 Distinct action names in disjoint information sets: For a subtree T', if n.n’ € T

and A = A!, then m; (n') = m; (n).

|6 Perfect recall: Suppose that player i is active in two distinct nodes 11 and ny,
and there is a path 1y, n9, ..., n; such that at ny player i takes the action a;. If
n' € m;(ng). then there exists a node ny # n' and a path nj.n5....n, = n'
such that m; (n}) = m; (ny) and at nj player i takes the action «;.



Standard

' n) C neraliz
10 Confinement: 7; (n) € T for some tree 1. Generalized

11 No delusion: If m;(n) € T,, then n € m;(n)

12 Introspection: If n' € m; (n) then m; (n") = m; (n).

13 No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If n’ € m;(n) € T’ (where T € T is a tree) and there is a
path n'.....n" € T' such that i € I,, N I» then 7; (n") C T".

14 No imaginary actions: If n' € m; (n) then A', C A"

15 Distinct action names in disjoint information sets: For a subtree T', if n,n' € T
and AY = A!, then m; (n') = m (n).

16 Perfect recall: Suppose that player i is active in two distinct nodes ny and ny,
and there is a path 1,19, ..., 1y such that at ny player i takes the action a;. If
n' € m;(ng), then there exists a node nj # n' and a path ni, nj, ...,n, =n'

such that m; (n}) = m; (n1) and at n} player i takes the action a;.



Standard
Generalized

10 Confinement: 7; (n) € T for some tree 1.
New

11 No delusion: If m;(n) C T), then n € m;(n).
12 Introspection: If n’ € m; (n) then m; (n') = m; (n).

I3 No divining of currently unimaginable paths, no expectation to forget currently

conceivable paths: If n’ € m; (n) € T" (where T" € T is a tree) and there is a
path n', .. .. n" € T' such that i € I,, N L» then m; (n") C T".

14 No imaginary actions: If n' € m; (n) then A’, C A*.

15 Distinct action names in disjoint information sets: For a subtree T', if n,n’ € T
and A = A, then m; (n') =7 (n).

|6 Perfect recall: Suppose that player i is active in two distinct nodes 1y and ny,
and there is a path 1,19, ..., 1y such that at nq player ¢ takes the action a;. If
n' € m;(ng) . then there exists a node ny # n' and a path nj, ng, ...n; = n'

such that m; (ny) = m; (n1) and at nj player i takes the action «;.
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Confinement: m; (n) € 1 for some tree 1.
No delusion: If m;(n) C T,, then n € m;(n).
Introspection: If n’ € m; (n) then m; (n') = m; (n) .

No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If n’ € m; (n) € T" (where 7" € T is a tree) and there is a

path n',....n" € T" such that i € I,, M I,;» then 7; (n") CT".
No imaginary actions: If n’ € m; (n) then A’, C A’

Distinct action names in disjoint information sets: For a subtree T', if n.n' € T

and A = A, then m; (n') = m; (n).

Perfect recall: Suppose that player 7 is active in two distinct nodes 1y and ng,
and there is a path nq,n9, ...,y such that at ny player i takes the action a;. If
n' € m;(ny), then there exists a node n}y # n' and a path ni, ny, ....n; = n’

such that m; (n3) = m; (n1) and at nj player i takes the action «;.



|0 Confinement: 7 (n) € 1 for some subtree 1.

T

T1



|0 Confinement: 7 (n) € 1 for some subtree 1.




|0 Confinement: =, (n) C 1" for some subtree 1.

Information set
across subtrees

T!
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Confinement: m; (n) € 1" for some tree 1.
No delusion: If m;(n) C 1, then n € m;(n).
Introspection: If n' € m; (n) then m; (n') = m; (n) .

No divining of currently unimaginable paths, no expectation to forget currently
cnnceiuable path5' If n" € m(n) €T (where 7" € T'is a tree) and there is a
path n'. . ... " T such that i € I, " L then m; (n") CT".

No imaginary actions: If n’ € m; (n) then A’, C A?.

Distinct action names in disjoint information sets: For a subtree T', if n.n’ € T

and A’ = A, then m; (n') = m; (n) .

Perfect recall: Suppose that player i is active in two distinct nodes ny and ny,
and there is a path nq,n9, ..., ny such that at ny player ¢ takes the action a;. If
n' € m;(ng), then there exists a node njy # n' and a path ny,ny, ....,n, =n
such hat m; (ny) = m; (ny) and at nj player i takes the action a;.



11 No delusion: If m(n) C T, then n € m;(n).




10

Confinement: m; (n) € T for some tree 1.
No delusion: If m;(n) € T,, then n € m;(n).
Introspection: If n’ € m; (n) then m; (n') =m; (n) .

No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If n" € m; (n) C T" (where 7" € T is a tree) and there is a
path n',....n" € T'" such that i € I,, N I,,» then w; (n") CT".

No imaginary actions: If n’ € m; (n) then A?, C A

n’

Distinct action names in disjoint information sets: For a subtree T', it n.n' € T

and A\ = A!, then m; (n) = m; (n).

Perfect recall: Suppose that player 7 is active in two distinct nodes 1y and ny,
and there is a path nq.n9, ..., n; such that at ny player i takes the action a;. If
n' € m;(ng). then there exists a node n}y # n' and a path ni.ns, ....ny, =n
such that m; (n}) = m; (ny) and at n} player i takes the action «;.



12 Introspection: If »' € ; (n) then m; (n') = =; (n).




12 Introspection: If n’ € m; (n) then m; (n') = =; (n).

Nested
information sets




12 Introspection: If n’ € m; (n) then m; (n') =

—

gy
1

().



10 Confinement: m; (n) C T for some tree 1.
11 No delusion: If m;(n) C T, then n € m;(n).
12 Introspection: If n’ € m; (n) then 7; (n') =m; (n).

I3 No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If n’ € m; (n) € 7" (where 7" € T is a tree) and there is a
path n'. . ... n' € T" such that i € I, M L,» then m; (n") € T".

14 No imaginary actions: If n' € m; (n) then A’, C A’

15 Distinct action names in disjoint information sets: For a subtree T', if n,n' € T
and A = A, then m; (n') = m; (n) .

16 Perfect recall: Suppose that player i is active in two distinct nodes ny and ny,
and there is a path nq,n9, ...,y such that at ny player i takes the action a;. If
n' € m; (ny), then there exists a node n§y # n’ and a path n{.n},...n), =n’
such that 7, (n}) = m; (ny) and at n player i takes the action «;.



13 No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If ' € m; (n) C T (where 7" € T is a tree) and there is a
path n',...,n" € T' such that i € I,,, 11 [,,» then m; (n") C T".




13 No divining of currently unimaginable paths, no expectation to forget currently

conceivable paths: If ' € m; (n) C T (where 7" € T is a tree) and there is a

path n',...,n" € T' such that i € I,,, 11 [,,» then m; (n") C T".
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Confinement: 7; (n) € T for some tree T'.
No delusion: If m;(n) € T;, then n € m;(n).
Introspection: If n’ € m; (n) then m; (n') = m; (n) .

No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If n’ € m; (n) € T" (where 7" € T is a tree) and there is a

path n'. .. .. n" € T" such that i € I, M L» then 7; (n") € T".

No imaginary actions: If n' € m; (n) then A', C A"

Distinct action names in disjoint information sets: For a subtree T', if n.n' € T

and A" = A, then m; (n') = m; (n).

Perfect recall: Suppose that player i is active in two distinct nodes ny and ny,
and there is a path 71,19, ..., 1y such that at ny player i takes the action a;. If
n' € m;(ng) . then there exists a node njy # n' and a path ny, ny, ....n; = n'

such that m; (ny) = m; (n1) and at nj player i takes the action a;.



14 No imaginary actions: If n’ € m; (n) then A!, C Al

— T




14 No imaginary actions: If n’ € m; (n) then AH C Al




10 Confinement: 7, (n) C T for some tree T
11 No delusion: If m;(n) € T, then n € m(n).
12 Introspection: If n’ € m; (n) then m; (n') =m; (n).

I3 No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If ' € m;(n) € T" (where T" € T is a tree) and there is a
path n’. . ... n" € T" such that i € I,, N I» then 7, (n") CT".

14 No imaginary actions: If n’ € m; (n) then A', C A’

15 Distinct action names in disjoint information sets: For a subtree 7', if n.n' € T

and A" = A!, then m; (n') = m; (n).

16 Perfect recall: Suppose that player i is active in two distinct nodes n{ and ny,
and there is a path 71,19, ..., 1y such that at ny player i takes the action a;. If
n' € m;(ng), then there exists a node n{ # n' and a path n{,n5, ... n), =n’
such that 7; (n}) = m; (ny) and at n player i takes the action ;.



|5 Distinct action names in disjoint information sets: For a subtree T, if n,n’ € T

and A! = A, then m; (n/) = m; (n) .




|5 Distinct action names in disjoint information sets: For a subtree T, if n,n’ € T

and A! = A, then m; (n/) = m; (n) .




10 Confinement: m; (n) C T for some tree T'.
11 No delusion: If m;(n) C T), then n € m;(n).
12 Introspection: If n’ € m; (n) then 7; (n') =m; (n).

13 No divining of currently unimaginable paths, no expectation to forget currently
conceivable paths: If n’ € m; (n) € T (where 7" € T is a tree) and there is a
path n’. .. .. n" €T such that i € I, N I,» then 7; (n") € T".

14 No imaginary actions: If n' € m; (n) then A’, C A?.

15 Distinct action names in disjoint information sets: For a subtree T', if n.n' € T
and A = A!, then m; (n') = m; (n).

|6 Perfect recall: Suppose that player i is active in two distinct nodes 11 and ny,
and there is a path nq, 19, ..., 1y such that at ny player i takes the action ;. If
n' € m;(ng) ., then there exists a node ny # n' and a path ni, ny, ....n; =n'

such that m; (ny) = m; (n1) and at nj player i takes the action «;.



16 Perfect recall: Suppose that player 7 is active in two distinct nodes ny and nyg,
and there is a path ny,na, ..., ni. such that at ny player 2 takes the action a;. If
n' € m; (ny), then there exists a node n| # n’ and a path n},n5,....nj, = n’
such that m; (n}) = m; (ny) and at n, player 7 takes the action a;.




Implied Property: If n’,n"” € h; where h; = m; (n) is an information
set, then A', = A’ .

Another Implied Property: Properties 10, I1, 12 and 16 imply no absent-
mindedness: No information set /; contains two distinct nodes n, n’ on
some path in some tree.




For two information sets h;, h; in a given tree T', we say that h;
precedes h; (denoted by h; ~~ h) if for every n' € h; there is a path
n,....,n' such that n € h;.

Denote by H; the set of i's information sets in all subtrees. For an
information set ; € H;, we denote by 7}, the tree containing h;.

The perfect recall properties (No Absentmindedness & No Forgetful-
ness) guarantee that with the precedence relation ~~ player i's informa-
tion sets H; form an arborescence: For every information set h; € H,
the information sets preceding it {h; € H; : h; ~» h!} are totally ordered
by ~-.

For trees 7,1 € T we denote 1" ~— 1" whenever for some node
n € 1" and some player i € I, it is the case that m; (n) € T". Denote by
— the transitive closure of — . Thatis, 1" < 1" iff there is a sequence
of subtrees T, 17, ..., 1" satistying T — 1" r— - — 1"



Generalized Extensive-Form Games

A generalized extensive-form game G consists of a partially ordered
set T of subtrees of a tree N satisfying properties 1-2above, along with
information sets 7; (n) forevery n € T, T € T and 7 € I,,, satisfying
properties 10-16 above.

For every tree 1° € T, the 1 '-partial game is the partially ordered
set of trees including 1" and all trees 1" in & satistying 1" — 1", with
information sets as defined in G. A 1-partial game is a generalized
game, i.e. it satisfies all properties 1-2 and 10-16.

We denote by H! the set of i's information sets in the T-partial game
1



Extensive-form Rationalizability

Pearce (1984) defined an algorithm for iterative elimination of strate-
gies in extensive-form games, which captures a notion of forward induc-

tion.

In generic perfect-information games, rationalizable strategy profiles
yield the backward induction outcome but not necessarily subgame-
perfect equilibrium strategies (Reny 1992, Battigalli, 1997).

We generalize extensive-form rationalizability to extensive games with

LUnawareness.



Strategies

A strategy s; of player % assigns to each information set H; an action.

In general, a strategy cannot be conceived as an ex ante plan of action.

Rather, it is a list of answers to the hypothetical questions “what would
the player do if h; were the set of nodes she considered as possible?” for
h;, € H,.

Such a question about the information set 2 € HI' may not even be

i
meaningful to the player if it were asked at a different information set

h; € H' when T 1",



Belief Systems

A belief system of player i
b= (b (h))per € ] A (Si%f)

. . Tg,- '
is a profile of beliefs - a belief b; (h;) € A (5’_;*‘) about the other players
strategies in the 1}, -partial game, for each information set h; € H;, with
the following properties

e b;(h;) reaches h;, i.e. b;(h;) assigns probability 1 to the set of
strategy profiles of the other players that reach h;.

o If h; precedes h; (h; ~» h}) then b; (h;) is derived from b; (h;) by
Bayes rule whenever possible.



We say that with the belief system b; and the strategy s; player :
rational at the information set h; € H; if there exists no action a-fﬁ__i c Ap,
such that only replacing the action s; (h;) by a.‘}li results in a new strategy
s. which yields player 7 a higher expected payoff in 1}, given the belief

Ty
b; (h;) on the other players' strategies S_':’".

This notion of rationality takes a local perspective:

e |t takes seriously the reasoning about rationality assuming that h;

has been reached, whether this assumption is realistic or counter-
factual.

e It considers alternative actions aj,. only at /; itself. (Motivation: no
way to commit to behavior distinct than the current one.)

One can still prove that our assumptions on the information sets imply
dynamic consistency.



Generalizing Extensive-form Rationalizability
(Pearce 1984, Battigalli 1997)
to Dynamic Unawareness

Inductive definition:
B} is the set of i's belief systems
S = {s; € 9;: there exists a belief system b; € B} with which for

every information set h; € H; player  is rational at h;}

B¥ = {b; € B! : for every information set h;, if there exists some

profile of the other players’ strategies s_; € Sil = H;__.:-’-:' :5:‘?_1 such

that %_’:‘* reaches h; in the tree 7}, , then b; (h;) assigns probability 1 to
th—1
S
SF = {s; € S;: there exists a belief system b; € B¥ with which for

every information set h; € H; player 7 is rational at h;}



Generalizing Extensive-form Rationalizability
(Pearce 1984, Battigalli 1997)
to Dynamic Unawareness

The set of player 2's correlated extensive-form rationalizable strategies

0
O ~
'Sl — m ASE -
rEf:].

IS

Remark. S C 5%~ forevery k > 1.
; Yy

7

Proposition 1 For every finite generalized extensive-form game, the
set of extensive-form rationalizable strategies is nonempty.



Prudent Rationalizability

Let
SY =5,

?

For k = 1 define inductively

( for every information set h;, if there exists some profile

B b e B S_i € Sifl — Hﬁéi Sfj?'_l of the other players’ strategies
S = VY% E P gich that s_; reaches h; in the tree 1}, then the support
o : _k—1.Tp,
of b; (h;) is the set of strategy profiles s_; € 5_, “i that reach h; )

gk _

L

-1y there exists b; € BF such that for all h; € H; player i
Sil {\__ : . ¢
would be rational at A;

The set of prudent rationalizable strategies of player i is

O L =k
S* =S

k=1

X0



Prudent Rationalizability

Proposition 2 For every finite generalized extensive-form game, the

set of prudent rationalizable strategies is nonempty.

Conjecture/Proposition:  For every finite generalized extensive-

form game, the set of outcomes of prudent rationalizable strategies is a
subset of outcomes of extensive-form rationalizable stategies.

Prudent rationalizability is not a refinement of extensive-form
rationalizability in terms of strategies.



Prudence vs. Rationalizability: Divining the
opponent's past behavior

| Prudent rationalizability
Extensive-form rationalizability




Application to Verifiable Information

1. With Full Awareness: a la Milgrom and Roberts (1986)

One seller, one buyer
One merchandise with quality L or H
For each quality, the seller is better off from selling a larger quantity.

The buyer’s utility is strictly concave in quantity with single peak 5(-)

and G(L) < 6(H).

Before a sale takes place, the seller can provide a certified signal
about the quality: can be imprecise but must be truthful

The buyer’s unique prudent rationalizable strategy is to buy G(L) if
presented with {L} or {L, H} and 5(H) if presented with {H}, while the
seller’s unique prudent rationalizable strategy is to certify {L, H} when
his quality is L and {H} when is quality is H. Full unraveling.



Application to Verifiable Information

2. With Unawareness of a Dimension of Quality

One merchandise with quality q € {L, H} x {0, *}

For instance, available certificates in state (L,0): {L, H} x {0, *}, {L} x {O, *},
{L, H} x {0}, and {L} x {0}

A(L,*) < B(L,0) < B(H,0) < B(H,).

If the buyer is fully aware of both dimensions of quality, we still obtain full
unraveling by previous arguments.

Assume now that the buyer is aware only of dimension {L, H} while being
unaware of dimension {0, *}. Assume (L) = 5(L,0) and 3(H) = G(H,0).



Seller

LO
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Application to Verifiable Information

2. With Unawareness of a Dimension of Quality

One merchandise with quality q € {L, H} x {0, *}

For instance, available certificates in state (L,0): {L, H} x {0, *}, {L} x {O, *},
{L, H} x {0}, and {L} x {0}

A(L,*) < B(L,0) < B(H,0) < B(H,).

If the buyer is fully aware of both dimensions of quality, we still obtain full
unraveling by previous arguments.

Assume now that the buyer is aware only of dimension {L, H} while being
unaware of dimension {0, *}. Assume (L) = 5(L,0) and 3(H,0) = 5(H).

In the verifiable information model in which the buyer is unaware of some
dimension of the the good's quality, the seller does not fully reveal the
quality in any prudent rationalizable outcome. E.g., (L, *).



Conditional Dominance

Can we capture these solution concepts In
“normal-form® games with unawareness?

How crucial is the “time-structure” for the
analysis of strategic interaction under
unawareness?



For standard extensive-form games, Shimoji
and Watson (JET 1998) show that
extensive-form rationalizability is
characterized by iterated elimination of
conditionally strictly dominated strategies.

Chen and Micali (TE 2012) show order-
independence of iterated elimination of
conditionally strictly dominated strategies.

How about dynamic games with
unawareness?



Example: A kind of “Battle of the Sexes”
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What is the associated normal-form game?



nBBB
nSBB
nMBB
nBSB
nSSB
nMSB
nBMB
nSMB
nMMB
nBBS
nSBS
nMBS
nBSS
nsss
nMSS
nBMS
nSMS
nMMS
tBBB
tSBB
tMBB
tBSB
tSSB
tMSB
tBMB
tSMB
tMMB
tBBS
tSBS
tMBS
tBSS
tSSS
tMSS
tBMS
tSMS

tMMS

BS B ss MB
3,1 0,0 3,1 0,0 3,1 0,0
0,1 1,0 0,1 1,0 0,1 1,0
4,0 2,3 4,0 2,3 4,0 2,3
3,1 0,0 3,1 0,0 3,1 0,0
0,1 1,0 0,1 1,0 0,1 1,0
4,0 2,3 4,0 2,3 4,0 2,3
3,1 0,0 3,1 0,0 3,1 0,0
0,1 1,0 0,1 1,0 0,1 1,0
4,0 2,3 4,0 2,3 4,0 2,3
3,1 0,0 3,1 0,0 3,1 0,0
0,1 1,0 0,1 1,0 0,1 1,0
4,0 2,3 4,0 2,3 4,0 2,3
3,1 0,0 3,1 0,0 3,1 0,0
0,1 1,0 0,1 1,0 0,1 1,0
4,0 2,3 4,0 2,3 4,0 2,3
3,1 0,0 3,1 0,0 3,1 0,0
0,1 1,0 0,1 1,0 0,1 1,0
4,0 2,3 4,0 2,3 4,0 2,3

>: 3,1 3,1 0,0 0,0 0,4 0,4 :<
3,1 3,1 0,0 0,0 0,4 0,4
3,1 3,1 0,0 0,0 0,4 0,4
0,1 0,1 1,0 1,0 0,4 0,4
0,1 0,1 1,0 1,0 0,4 0,4
0,1 0,1 1,0 1,0 0,4 0,4
4,0 4,0 2,3 2,3 2,6 2,6
4,0 4,0 2,3 2,3 2,6 2,6
4,0 4,0 2,3 2,3 2,6 2,6
3,1 3,1 0,0 0,0 0,4 0,4
3,1 3,1 0,0 0,0 0,4 0,4
3,1 3,1 0,0 0,0 0,4 0,4

0,1 1,0 1,0 0,4 0,4
0,1 1,0 1,0 0,4
0,1 1,0 1,0 0,4
4,0 2,3 2,3 2,6
4,0 2,3 2,3 2,6
4,0 2,3 2,3 2,6
T 1
B s
3,1 0,0
I 01 1,0
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lterated conditional dominance coincides with extensive-form rationalizability.



Iterated conditional dominance requires
normal-form information sets and thus
structure from the extensive-form. Can we
dispense with any extensive-form structure
entirely and obtain forward-induction
outcomes in the associated normal-form

game?

=> |terated admissibility?



lterated admissibility:

o
e

A naive approach would delete
MB in the second step, which is
the only extensive-form
rationalizable strategy (i.e., the
only strategy capturing forward
induction)!
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How about iterated admissibility?
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A naive approach would delete
MB in the second step, which is
the only extensive-form
rationalizable strategy (i.e., the
only strategy capturing forward
induction)!

Iterated admissibility must rely on information sets (i.e., extensive-form structures).



How about iterated admissibility?
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A naivetapproach would delete
MB in the second step, which is
the only extensive-form
rationalizable strategy (i.e., the
only strategy capturing forward

-2

induction)!

Iterated admissibility must rely on information sets (i.e., extensive-form structures).



We defined the normal form associated to dynamic
games with unawareness.

We characterize extensive-form rationalizability by
iterative conditional strict dominance and prudent
rationalizability by iterative conditional weak
dominance.

We show that iterative admissibility in the associated
normal form must depend on information sets.

We show that iterative conditional weak dominance
coincides with iterated admissibility in dynamic games
with unawareness.



Other approaches to extensive-form
games with unawareness



An Example: Unforeseen Roadwork (Feinberg 2012)

Alice (baker), Bob (coffee-shop owner), Carol (Alice’s
worker)

Alice has to deliver pastries to Bob on Monday or with
penalties on Tuesdays or Wednesdays unless unforeseen
contingencies occur

Bob notices unforeseen roadwork on Monday morning
that is likely to delay delivery; Bob thinks that Alice is
unaware of roadwork

Bob can decide to call Alice and renegotiate later delivery

Carol notices upcoming roadwork on Sunday and emails
Alice; Bob is unaware of Carol



F@ =F

Road Work noticed by Carol, e-mail, Not Call

Feinberg (2012) Natyre = FRoad Work Notice by Carol, e-mail, Call Alice

ST A /i

NI F Road Work — F Road Work noticed by Carol, No e-mail,

=1 Road Work noticed by Carol, E-mail =1 Road Work, Call Alice

=TI

Road Work noticed by Carol, No e-mail, Call Alice

M/ T
F No Road Work

=1 Road Work, Not Call

=TI

Road Work noticed by Carol, No e-mail, Not Call



Halpern and Rego (MSS 2014)
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Grant and Quiggin (ET 2013)
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Heifetz, Meier, Schipper (GEB 2013)
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In a Nutshell:

Similarity: Every approach uses a forest of game trees.

Main differences: How is dynamic awareness represented in the
forest of game trees:

* Feinberg: infinite sequences of views

* Halpern-Rego: awareness correspondence

* Grant-Quggin: perception correspondence
 Heifetz, Meier, and Schipper: information sets

Solution concepts:
* Feinberg, Halpern-Rego, Grant-Quiggin: Sequential equilibrium
* Heifetz, Meier, and Schipper: Extensive-form rationalizability



Self-confirming games



Self-confirming games

Questions:

* How do we arrive at our perceptions of strategic
contexts?

* How to model the process of discovering novel
features of “repeated” strategic contexts?

* |s there something like a “steady-state” of
perceptions and if there is do they necessarily
involve a common perception among players?

* |s there a notion of equilibrium that makes sense in
dynamic strategic interaction under unawareness?



Equilibrium under unawareness?

Problems:

* Although mathematical definitions of standard equilibrium
concepts can be extended to games with unawareness
(Halpern and Rego, 2014, Rego and Halpern, 2012, Feinberg,
2012, Li 2008, Grant and Quiggin, 2013, Ozbay, 2007, Meier
and Schipper, 2013), they cannot be interpreted as steady-
states of behavior.

* Players could not learn equilibrium through repeated play
because they become aware of novel features. The perception
of the game may “change” between “repetitions” and even
along the supposed equilibrium path of a given game with
unawareness.

* How to reconcile equilibrium notions and non-equilibrium
solutions (i.e., extensive-form rationalizability) in games with
unawareness?



Main ideas

* Formal model of rationalizable discoveries in games
with unawareness

* Explain endogenously how players perceive strategic
contexts.

e Existence of equilibrium of perceptions and behavior:
Show that for every game with unawareness there
exists a discovered version that can be viewed as a
steady-state of player’s perceptions and possess an
equilibrium that can be interpreted as a steady-state
of behavior.



Examples



10,5 0,10 5,6



10,5 0,10 5,6



10,5

10,5

~

2 r
Vs 2 \‘
\ /
\\_/ r2
ms
0,10 5, 6
(4
[ I
Vs 2 \‘
\ /
\\_/ r2
5,6

1,7

1,7



10,5

10,5

~

5,6

5,6

1,7

1,7



10,5

10,5

~

5,6

5,6

1,7

1,7





















* Does discovery always lead to common
awareness?

e Rationalizable discoveries versus non-
rationalizable discoveries: Does rational play
select among discoveries and thus
representations of the strategic context?

































* Consider extensive-form games with
unawarenes a la Heifetz, Meier, Schipper
(2013) with the stronger properties of
unawareness.

* Require additionally that the set of trees is a
attice.

e Devise information sets also at terminal
nodes.



Self-confirming equilibrium

Profile of behavioral strategies satisfying: For each
player

(0) awareness is self-confirming (i.e. constant) along
the path(s)

(i) is rational along the path(s)

(i) beliefs are self-confirming (constant and correct)
along the path(s)



Mutual knowledge of no changes of awareness?

Lemma: No change of awareness for each player
implies “mutual knowledge” of no change of
awareness.

Proof: Follows from complete lattice of trees
and conditions on info. sets.



Existence of self-confirming equilibrium

e exists in standard games

* often fails in games with unawareness (because of
changes of awareness implied by rational play)

A game is a self-confirming game if it possesses a self-
confirming equilibrium.

Remark: Every game with common constant awareness
is a self-confirming game. Converse is false.



Discovered version

Given an extensive-form game with
unawareness and a strategy profile, the
discovered version is defined by

* the same set of players, same lattice of trees,
the same player function, same payoffs

 “updated” information sets:












Discovered version

Discovered versions are well-defined:

Lemma: For any extensive-form game with
unawareness and strategy profile, the discovered
version is an extensive-form game with unawareness.

Lemma: Given an extensive-form game with
unawareness, any two strategy profiles that generate
the same path have identical discovered versions.



Discovery process

Finite state machine:

* Set of states: set of extensive-form games with
unawareness (with identical upmost tree)

* |nitial state/game

e QOutput function assigns strategy profile to each
game

* Transition function assigns the discovered version to
each game and strategy profile

* Final states/games (absorbing)



Discovery process

Proposition: For every discovery process, the final state exists
and is unique.

Remark: Final states may not have common constant awareness.

Proposition: For every extensive-form game with unawareness,
there exists a discovery process that leads to a self-confirming

game.

Remark: Typically extensive-form games with unawareness have
several self-confirming versions.



Extensive-form rationalizability

Inductive definition
Level O
e All belief systems

* Any strategy for which there exists a belief system such that the
strategy is optimal at every non-terminal info. set.

Level k

* All belief systems concentrated on k-1 level rationalizable strategies
of opponents if possible.

* Any strategy for which there exists a level-k belief system such that
the strategy is optimal at every non-terminal info. set.

Extensive-form rationalizable strategies: intersection of every level-k
rationalizable strategy sets.



Rationalizable discoveries

A discovery process is rationalizable if the
output function assignhs to each game an
extensive-form rationalizable strategy.

Proposition: For every extensive-form game
with unawareness, there exists a rationalizable
discovery process whose final state is a self-
confirming version. This refines the set of self-
confirming versions.



Rationalizable self-confirming
equilibrium

A self-confirming equilibrium is rationalizable if

non-rationalizable paths of play have zero
probability. (??7?)

Conjecture: For every extensive-form game with
unawareness, there exists a rationalizable
discovery process whose final state is a game
with a rationalizable self-confirming equilibrium.



Applications of unawareness

Dynamic games: Halpern and Rego (MSS 2014), Rego and Halpern (IJGT 2012),
Heifetz, Meier, and Schipper (GEB 2013), Feinberg (2004, 2005, 2012), Grant
and Quiggin (ET 2013), Li (2006), Ozbay (2008), Nielsen and Sebald (2013)

Bayesian games with unawareness: Meier and Schipper (ET 2014), Sadzik
(2006)

Value of information, value of awareness: Galanis (2013), Quiggin (2013)

Disclosure of information: Heifetz, Meier, and Schipper (2012), Li, Peitz, and
Zhao (MSS 2014), Schipper and Woo (2015)

Contract theory: Auster (GEB 2013), Filiz-Ozbay (GEB 2012), Grant, Kline, and
Quiggin (JEBO 2012), Lee (2008), Zhao and van Thadden (RES 2013)

Decision theory: Karni and Viero (AER 2013), Schipper (IJGT 2013), Li (2006)
Electoral Campaigning: Schipper and Woo (2015)

General equilibrium: Exchange economies: Modica, Rustichini, and Thallon
(ET 1998), Production economies: Kawamura (JET 2005)

Finance: Siddiqi (2014)
... (heed more)



| am looking forward to receiving your
paper on unawareness.



