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Abstract

In the literature on static and dynamic games, most rationalizability concepts have an
equilibrium counterpart. In two-player games, the equilibrium counterpart is obtained by
taking the associated rationalizability concept and adding the following correct beliefs as-
sumption: (a) a player believes that the opponent is correct about his beliefs, and (b) a
player believes that the opponent believes that he is correct about the opponent’s beliefs.
This paper shows that there is no equilibrium counterpart to the forward induction concept
of extensive-form rationalizability (Pearce (1984), Battigalli (1997)), epistemically character-
ized by common strong belief in rationality (Battigalli and Siniscalchi (2002)). The reason is
that there are games where the epistemic conditions of common strong belief in rationality
are logically inconsistent with the correct beliefs assumption. In fact, we show that this
inconsistency holds for “most” dynamic games of interest.
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1 Introduction

Roughly speaking, the concepts that are used nowadays to analyze games can be divided into
two categories: equilibrium concepts and rationalizability concepts. Historically, the equilibrium
concepts came first, starting with the concept of Nash equilibrium (Nash (1950, 1951)), and
followed by refinements such as perfect equilibrium (Selten (1975)) and proper equilibrium (My-
erson (1978)) for static games, and subgame perfect equilibrium (Selten (1965)) and sequential
equilibrium (Kreps and Wilson (1982)) for dynamic games, among others. It was only in the
early eighties when rationalizability concepts systematically entered the game-theoretic picture,
triggered by the pioneering work of Bernheim (1984), Pearce (1984) and Brandenburger and
Dekel (1987), who developed the concept of rationalizability. Later, various refinements of ratio-
nalizability have been proposed and studied, both for static and dynamic games. Table 1 below
gives an overview of these refinements.

But what precisely is it that distinguishes rationalizability concepts from equilibrium con-
cepts? FEpistemic game theory has given a formal answer to this question. Essentially, the dif-
ference is that equilibrium concepts make a “correct beliefs assumption”, stating that a player
believes that his opponents are correct about the beliefs he holds, and that a player believes
that every opponent ¢ believes that the other players are correct about ¢’s beliefs as well. Ra-
tionalizability concepts, on the other hand, do not make this correct beliefs assumption.

As an illustration, let us compare the concepts of rationalizability and Nash equilibrium.
For two-player games, rationalizability can be characterized epistemically by common belief
in rationality (Brandenburger and Dekel (1987), Tan and Werlang (1988)), stating that both
players believe that both players choose rationally, both players believe that both players believe
that both players choose rationally, and so on. On the other hand, Brandenburger and Dekel
(1987, 1989), Tan and Werlang (1988), Aumann and Brandenburger (1995), Asheim (2006)
and Perea (2007) have shown that Nash equilibrium in two-player games can be characterized
epistemically by common belief in rationality', together with the correct beliefs assumption
above. Hence, for two-player games it is the correct beliefs assumption — and nothing more
— that separates rationalizability from Nash equilibrium. For that reason, we may view Nash
equilibrium as the equilibrium counterpart to rationalizability. See Table 1. For games with
more than two players, additional conditions beyond the correct beliefs assumption are needed
to close the gap between rationalizability and Nash equilibrium. We refer to the above mentioned
papers, together with Barelli (2009) and Bach and Tsakas (2014), for the details.

In fact, a similar relationship holds between various other rationalizability and equilibrium
concepts. For instance, the equilibrium concept of perfect equilibrium is obtained in two-player
games if we assume the epistemic conditions underlying permissibility (Brandenburger (1992),

'In fact, for the epistemic characterization of Nash equilibrium not all the conditions in common belief in
rationality are needed. If we make the correct beliefs assumption, then mutual belief in rationality — stating that
both players believe that both players choose rationally — already implies common belief in rationality, and hence
is sufficient to characterize Nash equilibrium. See Polak (1999).



’ Rationalizability concept

‘ Equilibrium counterpart

’ Static games

Rationalizability

(Bernheim (1984), Pearce (1984),
Brandenburger and Dekel (1987))
Common belief in rationality
(Tan and Werlang (1988))

Nash equilibrium
(Nash (1950, 1951)))

Permissibility
(Brandenburger (1992), Borgers (1994))

Perfect equilibrium
(Selten (1975))

Proper rationalizability
(Schuhmacher (1999), Asheim (2001))

Proper equilibrium
(Myerson (1978))

Iterated elimination of weakly
dominated choices

Iterated assumption of rationality
(Brandenburger, Friedenberg and Keisler (2008))

?

’ Dynamic games

Common belief in future rationality
(Perea (2014), Baltag, Smets and Zvesper (2009),
Penta (2009))

Sequential rationalizability

(Dekel, Fudenberg and Levine (1999, 2002),
Asheim and Perea (2005))

(Selten (1965)
Sequential equilibrium
(Kreps and Wilson (1982))

Extensive-form rationalizability
(Pearce (1984), Battigalli (1997))
Common strong belief in rationality
(Battigalli and Siniscalchi (2002))

None
See this paper

Table 1: Rationalizability concepts and their equilibrium counterparts

Subgame perfect equilibrium
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Figure 1: Extensive-form rationalizability is inconsistent with equilibrium reasoning

Borgers (1994)), and on top of this impose the correct beliefs assumption. See Perea (2012,
Problem 5.9). As such, we may view perfect equilibrium as the equilibrium counterpart to
the rationalizability concept of permissibility. In Table 1 we give an overview of several other
rationalizability concepts together with their equilibrium counterparts.

One thing we learn from Table 1 is that there is an equilibrium counterpart to most of the
rationalizability concepts that have been studied in the literature. Indeed, if we choose any
rationalizability concept from rationalizability, permissibility, proper rationalizability (Schuh-
macher (1999), Asheim (2001)), common belief in future rationality (Perea (2014), Baltag,
Smets and Zvesper (2009), Penta (2009)) or sequential rationalizability (Dekel, Fudenberg and
Levine (1999, 2002), Asheim and Perea (2005)), and combine the underlying epistemic condi-
tions with the correct beliefs assumption, then we obtain a well-defined equilibrium concept in
the right-hand column of Table 1 (at least for two-player games).

But is this true for all rationalizability concepts in Table 17 The answer is “no”: For the
forward induction concept of extensive-form rationalizability (Pearce (1984), Battigalli (1997)),
epistemically characterized by common strong belief in rationality (Battigalli and Siniscalchi
(2002)), we show that there is no equilibrium counterpart to it.>2 This is actually the main
message of this paper. The reason, as we will see, is that the epistemic conditions of common
strong belief in rationality in a belief-complete type structure are logically inconsistent with the
correct beliefs assumption in some — in fact, most — dynamic games.

To obtain an informal understanding of this result, consider the dynamic game in Figure 1.
At the beginning of the game, (), player 1 can choose between a and b. If he chooses b, the game

2For iterated elimination of weakly dominated choices, epistemically characterized by iterated assumption of
rationality, we do not know whether an equilibrium conterpart exists. Our intuition suggests that it does not
exist, but this remains to be investigated. This, however, is beyond the scope of this paper.



ends and the utilities for players 1 and 2 would be 3 and 0, respectively. If he chooses a then
the game moves to history hi, where player 1 can choose between ¢ and d, and player 2 can
simultaneously choose between e, f and g.

The main condition in extensive-form rationalizability — and this is in fact the first layer
in common strong belief in rationality — is that a player, at each of his information sets, must
believe that his opponent is choosing rationally, whenever it is possible to believe so. We say that
players must strongly believe in the opponent’s rationality. This is a typical forward induction
argument, and hence the concept is generally viewed as a typical forward induction concept.
Moreover, every player ¢ must believe — whenever this is possible — that opponent j does not
only choose rationally, but also that j strongly believes in ¢’s rationality. This is the second layer
in common strong belief in rationality. We will now argue that these two conditions together
are incompatible with the correct beliefs assumption in the game above.

If player 1 strongly believes in 2’s rationality, then player 1 will certainly believe that player
2 will not choose g, as e and f are always better than g for player 2 at history hy. At the same
time, if player 2 strongly believes in 1’s rationality, then player 2 will believe at h; that choosing
a was actually a conscious, optimal choice for player 1. However, this would require player 2
to believe, at hi, that player 1 assigns a high probability to player 2’s irrational choice g, since
otherwise a can never be an optimal choice for player 1.

Consequently, if player 1 believes that player 2 strongly believes in 1’s rationality, as we
assume, then player 1 must believe that player 2 will believe, at h;, that player 1 assigns a high
probability to player 2’s choice g.

The first two layers in common strong belief in rationality thus imply that player 1, on
the one hand, assigns probability 0 to player 2’s irrational choice g, but that player 1, at the
same time, believes that player 2 will believe at hy that player 1 assigns a high probability to
player 2 choosing g. In other words, player 1 must believe that player 2, at hy, will be wrong
about player 1’s actual beliefs. But this means that the correct beliefs assumption cannot hold.
That is, common strong belief in rationality — and hence extensive-form rationalizability — is
logically inconsistent with the correct beliefs assumption in the game of Figure 1. In Section 6
we will actually show that the game in Figure 1 is not a coincidence: in “most” dynamic games,
extensive-form rationalizability will be inconsistent with the correct beliefs assumption.

Despite this inconsistency between the forward induction reasoning in common strong belief
in rationality on the one hand, and equilibrium reasoning on the other hand, there are forward
induction equilibrium concepts in the literature where equilibrium reasoning is imposed on the
players. Examples are justifiable sequential equilibrium (McLennan (1985)), Cho’s forward in-
duction equilibrium (Cho (1987)), stable sets of beliefs (Hillas (1994)), explicable equilibrium
(Reny (1992)), outcomes satisfying forward induction (Govindan and Wilson (2009)) and Man’s
forward induction equilibrium (Man (2012)). These concepts, in contrast to common strong
belief in rationality, impose the correct beliefs assumption as an exogenous restriction on the
players’ belief hierarchies. This means that players are not only assumed to hold belief hierar-
chies that satisfy the correct beliefs assumption, but are also restricted to attribute “unexpected”



moves by the opponent to opponent’s belief hierarchies that satisfy the correct beliefs assump-
tion. That is, players are restricted to reason entirely within the boundaries set by the correct
beliefs assumption. As an illustration, take the concept of justifiable sequential equilibrium
(McLennan (1985)), which is defined as a refinement of sequential equilibrium. Within this
concept, players are not only assumed to hold belief hierarchies that correspond to a sequential
equilibrium — and hence, in particular, satisfy the correct beliefs assumption — but in addition,
when players are trying to explain an opponent’s move they did not expect, they can only
attribute such moves to opponent’s belief hierarchies that also correspond to a sequential equi-
librium. In other words, the reasoning of players is assumed to take place entirely within the
context of sequential equilibrium. Unexpected moves cannot be explained by belief hierarchies
that fall outside the boundaries set by sequential equilibrium. Similar exogenous restrictions are
imposed by the other forward induction equilibrium concepts mentioned above. We refer the
reader to Section 7 for the details.

Imposing the correct beliefs assumption as an exogenous restriction on the players’ reasoning
comes at a cost, however. We show in Section 7 that none of the forward induction equilibrium
concepts above is able to uniquely select the intuitive forward induction strategy f for player
2 in the game of Figure 1. The reason is that, if player 2 at hi wishes to rationalize the “sur-
prising” move a by player 1, then player 2 must believe that player 1’s belief hierarchy wviolates
the correct beliefs assumption — something that is “not allowed” by the forward induction equi-
librium concepts above. Common strong belief in rationality, in contrast, does not impose such
exogenous restrictions, and is therefore able to uniquely select the intuitive forward induction
strategy f for player 2.

Such exogenous restrictions on the the players’ belief hierarchies in forward induction rea-
soning have been explicitly studied in Battigalli and Friedenberg (2012). They take the forward
induction concept of common strong belief in rationality, but do so relative to a type structure
that does not necessarily contain all belief hierarchies. By excluding some belief hierarchies from
the type structure, they thus impose some exogenous restriction on the players’ belief hierar-
chies, as players can only hold — and reason about — belief hierarchies that are within the type
structure. It would be interesting to see whether some of the forward induction equilibrium
concepts mentioned above, which do impose exogenous restrictions on the players’ belief hier-
archies, can be characterized within the Battigalli-Friedenberg framework by common strong
belief in rationality relative to a suitably restricted type structure. We leave this question for
future research.

The outline of this paper is as follows. In Section 2 we give a formal model of dynamic games.
In Section 3 we show how infinite hierarchies of conditional beliefs in dynamic games can be
encoded by means of epistemic models with types. Section 4 formally introduces the notion of
a reasoning contexrt, which assigns to every dynamic game a collection of belief hierarchies for
each of the players, and describes what it means for a reasoning context to be consistent with
equilibrium reasoning. In Section 5 we define the concept of common strong belief in rationality,
and show that in some dynamic games it is inconsistent with equilibrium reasoning. In Section



6 we provide a characterization of the class of two-player dynamic games for which common
strong belief in rationality s consistent with equilibrium reasoning, and show that this class
is actually very small. This is the content of Theorem 6.2. For this characterization we use a
specific version of extensive-form best response sets as developed by Battigalli and Friedenberg
(2012). In Section 7 we discuss some forward induction equilibrium concepts that have been
proposed in the literature, and explain why these concepts, in the game of Figure 1, fail to
uniquely select the intuitive forward induction strategy f for player 2. Section 8 contains the
proof of Theorem 6.2.

2 Dynamic Games

2.1 A Model of Dynamic Games

In this paper, we will restrict our attention to dynamic games with two players and observable
past choices. We assume moreover that the dynamic game is finite — that is, the game ends after
finitely many moves, and every player has finitely many choices available at every moment in time
where it is his turn to move. The first two restrictions are mainly for the ease of exposition. We
believe that all results can be extended to more general finite dynamic games. One should bear
in mind, however, that for games with more than two players the correct beliefs assumption
alone is not sufficient to characterize equilibrium reasoning. Hence, additional “equilibrium”
conditions are needed to turn a rationalizability concept into its equilibrium counterpart.

Formally, a finite dynamic game G with two players and observable past choices consists of
the following ingredients.

First, there is the set of players I = {1,2}. The instances where one or both players must
make a choice are given by a finite set H of non-terminal histories. The possible instances where
the game ends are described by a finite set Z of terminal histories. By () we denote the beginning
of the game.

Consider a non-terminal history h at which player ¢ must make a choice. We assume that
player ¢ observes precisely which choices have been made by his opponent in the past. That is,
we assume that the dynamic game is with observable past choices. By C;(h) we denote the finite
set of choices that are available to player ¢ at h.

We explicitly allow for simultaneous moves in the dynamic game. That is, we allow for
non-terminal histories h at which both players 1 and 2 make a choice. By I(h) we denote the
set of active players at h. That is, I(h) contains those players who must make a choice at h.
Every combination of choices (¢;);c I(h) at h is assumed to move the game from the non-terminal
history h to some other (terminal or non-terminal) history A’. These transitions can formally
be described by a move-function m, which assigns to every non-terminal history h, and every
combination of choices (¢;)icr(n), the (terminal or non-terminal) history m(h) that follows. By
H; we denote the collection of non-terminal histories where player ¢ is active.



Players are assumed to have preferences over the possible outcomes in the game, representable
by utility functions over the set of terminal histories Z. Formally, for every terminal history
z € Z and player i, we denote by u;(z) the utility for player ¢ at z, representing how desirable
he deems the outcome z.

In the remainder of this paper, we adopt the following conventions: Whenever we talk about
a dynamic game G we will always assume that it is a finite dynamic game with two players and
observable past choices. Moreover, whenever we mention a history h we will always assume that
it is a non-terminal history, unless explicitly stated otherwise. Finally, when we mention players
1 and j in the same sentence, we always assume that ¢ # j.

2.2 Strategies

Intuitively, a strategy for a player is a complete plan which describes what he will, or would, do
in every situation that could possibly arise in the game. By definition, the possible situations
in the game where player ¢ must make a choice are exactly the histories in H;. So, a possible
definition of a strategy for player ¢ — and this is in fact the traditional definition of a strategy in
game theory — would be a function that assigns an available choice to each history where player
1 is active. The problem with this definition, however, is that it may contain some redundant
information, as certain future histories where player ¢ is active can be excluded by choices of
player i at earlier histories. In that case, it is no longer relevant to specify what this player
would do at those excluded histories, as those histories will certainly not be reached if the player
implements the strategy correctly — as we suppose him to do. Consider, for instance, the game
in Figure 1. If player 1 decides to go for b at the beginning of the game, he is certain that the
history hi will not be reached. So in that case it is redundant to specify what player 1 would
do were hy to be reached, as hy is clearly avoided by the choice b. We may therefore view b as a
complete plan, although b is not a strategy in the traditional sense. In fact, we will accept b as
a full description of a strategy for player 1.

An argument that is often used in defense of the traditional definition of a strategy is that
the choices specified at precluded histories reflect the opponents’ counterfactual beliefs about
his future behavior if the player decides to deviate from his plan. See Rubinstein (1991) for a
discussion of this issue. But this would mean that the strategy represents both choices and beliefs
— something I consider highly undesirable. In my opinion, we should always clearly separate
objects of choice from beliefs, and to put them in the same object is likely to cause confusion.
After all, the term strategy suggests that it reflects only the plan of choices of a player. The
beliefs of the players will anyhow be modelled separately in the next section, so there is no need
to mix them with the players’ choices.

Having said this, we opt for a definition of a strategy that only prescribes choices at those
histories not precluded by earlier choices. To define this formally, consider two histories h and
h' where player i is active, and an available choice ¢ € C;(h) at h. We say that choice ¢ avoids
history A’ if h precedes h’, and choosing c at h can never lead to h'.



Definition 2.1 (Strategy) A strategy for player i is a function s; : H; — UhEHiCi(h) where
(1) H; C H;, (2) s;(h) € Ci(h) for all h € H;, (3) for every h € H; there is no preceding h' € H;
such that the prescribed choice s;(h') avoids h, and (4) for every h € H;, if h is not avoided by
any prescribed choice s;(h') with h' € H;, then h must be in H;.

Conditions (3) and (4) thus guarantee that H; contains exactly those histories in H; not
precluded by earlier choices — not more and not less. The definition of a strategy we use
corresponds to what Rubinstein (1991) calls a plan of action.

Let us denote by S; the set of all strategies for player ¢. Since the dynamic game G is finite,
the set S; will be finite as well. By S := 57 x Sz we denote the set of all strategy combinations.
For a given history h € H, let S(h) be the set of strategy combinations that reach h. By S;(h)
we denote the set of strategies s; for player  for which there is some opponent’s strategy s; € .S;
such that (s;,s;) € S(h). We say that strategies in S;(h) are consistent with h. It is not difficult
to see that S(h) = Si(h) x Sa(h) for every h € H.

3 Modelling Belief Hierarchies

We now wish to model the players’ beliefs in a dynamic game. There are at least two complica-
tions that we face here.

First, when players reason about their opponents in a dynamic game, they do not only
hold beliefs about what other players do (first-order beliefs), but also hold second-order beliefs
about the opponents’ first-order beliefs about what others do, and third-order beliefs about the
opponents’ second-order beliefs, and so on. So, players hold a full infinite belief hierarchy.

Secondly, a player in a dynamic game may have to revise his belief if the game moves from
one history to another. That is, a player will hold at each history where he is active a new
conditional belief about the opponent which is compatible with the event that this particular
history has been reached. Consider some player i who observes that history h € H; has been
reached. Then he knows that his opponent must be implementing some strategy in S;(h) —
the set of j’s strategies that make reaching h possible — and hence player i must at h restrict
his belief to opponents’ strategies in Sj(h). And this conditional belief may be — partially or
completely — contradicted at some later history, in which case he must change his belief there.

Summarizing, we see that we need to model conditional belief hierarchies for a player, which
specify at each history where he is active what he believes about the opponent’s strategy choices,
about the opponent’s first-order beliefs, about the opponent’s second-order beliefs, and so on.
But how can we model such complicated objects? One way to do so is by using a Harsanyi-style
model with types (Harsanyi (1967-1968)) and adapt it to dynamic games. To see how this
works, consider a player ¢ who at history A € H; holds a belief about the opponent’s strategies,
the opponent’s first-order beliefs, the opponent’s second-order beliefs, and so on. In other words,
this player holds at h a belief about the opponent’s strategies and the opponent’s conditional



belief hierarchies. So, a conditional belief hierarchy for player ¢ specifies at each history in H;
a conditional belief about the opponent’s strategy choices and the opponent’s conditional belief
hierarchies. If we substitute the word “belief hierarchy” by the word “type” then we obtain the
following definition.

Definition 3.1 (Epistemic model) Consider a dynamic game G. An epistemic model for G
is a tuple M = (T;,b;);e; where

(a) T; is a set of types for player i,

(b) b; is a function that assigns to every type t; € T;, and every history h € H;, a probability
distribution b;(t;, h) € A(S;(h) x T}).

Recall that S;(h) represents the set of opponent’s strategies that are consistent with h. For
every set X, we denote by A(X) the set of probability distributions on X with respect to some
appropriately chosen g-algebra on X. Clearly, player ¢ must at h only assign positive probability
to opponent’s strategies in S;(h), as these are the only strategies compatible with the event that
h is reached. This explains the condition in (b) that b;(¢;, h) € A(S;(h) x T}).

By construction, at every history h € H; type t; holds a conditional probabilistic belief
bi(ti, h) about j’s strategies and types. In particular, type ¢; holds conditional beliefs about
j’s strategies. As each of j’s types holds conditional beliefs about i’s strategies, every type t;
holds at every h € H; also a conditional belief about j’s conditional beliefs about i’s strategy
choices. And so on. Since a type may hold different beliefs at different histories, a type may,
during the game, revise his belief about the opponent’s strategies, but also about the opponent’s
conditional beliefs. In fact, for a given type t; within an epistemic model, we can derive the
complete belief hierarchy it induces.

4 Reasoning Contexts

4.1 Definition

A reasoning context imposes restrictions on the way a player reasons about his opponent in a
dynamic game. Remember from the previous section that we have summarized the reasoning
of a player by a conditional belief hierarchy, which describes at each history where he is active
what he believes about the opponent’s strategy choices, the opponent’s first-order beliefs, the
opponent’s second-order beliefs, and so on. In turn, such belief hierarchies have been modelled
by epistemic models with types, which may be seen as an easy way to encode such infinite belief
hierarchies.

But if this is true, then we could attempt to formalize a reasoning context as follows: Take
an arbitrary dynamic game G and an epistemic model M. Then, a reasoning context selects
for a given player a subset of types within M, representing those belief hierarchies that are

10



“allowed for” by the reasoning context. Although this may seem reasonable there is one major
problem with this attempt, namely that the epistemic model at hand may not contain all belief
hierarchies that we are interested in — some belief hierarchies that we would wish to select
are simply not present in the epistemic model. In order to avoid this problem we assume the
epistemic model to be belief-complete® (cf. Brandenburger (2003)).

Definition 4.1 (Belief complete epistemic model) Consider a dynamic game G and an
epistemic model M = (T;,b;);c; for G. The epistemic model M is belief-complete if for every
player i, and every possible conditional belief vector 5; = (8;(h))nemn, for player i, where 3;(h) €
A(Sj(h) x Tj) for every h € H;, there is some type t; € T; for which b;(t;,h) = B3;(h) for every
h € H;.

That is, for every possible conditional belief vector that we can construct there is a type
that has precisely this belief vector. It is not at all obvious that such models will always exist.
Battigalli and Siniscalchi (1999), however, have shown that for every finite dynamic game,
we can always construct a belief-complete epistemic model which assumes (common belief in)
Bayesian updating. A similar construction can be employed to build a belief-complete epistemic
model without Bayesian updating, as we use here. Formally speaking, there may be various
different belief-complete epistemic models for a given dynamic game. However, all such belief-
complete epistemic models may be viewed as “equivalent”, since each of these encodes all possible
conditional belief hierarchies we can think of.

So, if we work with a belief-complete epistemic model, then we are sure not to miss out on
any conditional belief vector we could possibly have constructed within our model. With this
definition at hand, we can now define a reasoning context as a mapping that selects a subset of
belief hierarchies within a belief-complete epistemic model.

Definition 4.2 (Reasoning context) A reasoning context is a mapping p that assigns to
every finite dynamic game G, every belief-complete epistemic model M = (T;,b;);er for G, and
every player i € I, some subset p;(G, M) C T; of types.

So, effectively, a reasoning context selects for every dynamic game a set of belief hierarchies
for every player. Examples of reasoning contexts for dynamic games are common belief in
future rationality (Perea (2014), Baltag, Smets and Zvesper (2009), Penta (2009)), sequential
rationalizability (Dekel, Fudenberg and Levine (1999, 2002), Asheim and Perea (2005)), and
common strong belief in rationality (Battigalli and Siniscalchi (2002)).

3Brandenburger (2003) uses the term complete. Following Amanda Friedenberg’s suggestion I use the term
belief complete instead, as it reveals more precisely its content. Moreover, it avoids a possible confusion with the
term complete as used in complete topological spaces.
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4.2 Equilibrium Reasoning

A common feature of all equilibrium concepts for static and dynamic games — such as Nash
equilibrium (Nash (1950, 1951)), perfect equilibrium (Selten (1975)), proper equilibrium (Myer-
son (1978)), subgame perfect equilibrium (Selten (1965)) and sequential equilibrium (Kreps and
Wilson (1982)) — is that they require each player to believe that his opponents are correct about
the actual beliefs he holds, and that he believes that all other players also believe that their
opponents are correct about the actual beliefs they have. In fact, for two-player games this is
exactly the condition that separates a rationalizability concept from its equilibrium counterpart,
as described in Table 1 in the introduction. See Brandenburger and Dekel (1987, 1989), Tan and
Werlang (1988), Aumann and Brandenburger (1995), Asheim (2006) and Perea (2007) for the
case of Nash equilibrium?, see Perea and Predtetchinski (2014) for the case of subgame perfect
equilibrium and sequential equilibrium®, and see Perea (2012, Problems 5.9 and 6.9) for the case
of perfect equilibrium and proper equilibrium®.

Within an epistemic model, the “correct beliefs assumption” can be formalized in the fol-
lowing way.

Definition 4.3 (Equilibrium reasoning) Consider a dynamic game G and an epistemic model
M = (Evbi)iEI for G.

a) For a given typet; € T;, let T;(t;) be the set of types t; for opponent j for which b;(t;, h)(.5; x
J J i\t

{t:}) =1 for every h € H;. We say that type t; € T; believes that j is correct about his actual

beliefs if b;(t;, h)(S; x Tj(t;)) = 1 for every h € H;.

(b) Let T be the set of types for j that believe that i is correct about j’s actual beliefs. We
say that type t; believes that opponent j believes that ¢ is correct about j’s actual beliefs if

“Note that Nash equilibrium is defined for static games, whereas we are dealing with dynamic games in this
paper. However, static games can be viewed as a special case of a dynamic game, where there is only one non-
terminal history — the beginning of the game — where all players are active. So, the analysis of Nash equilibrium
can be embedded in our framework.

’To be precise, Perea and Predtetchinski (2014) focus on the class of stochastic games with finitely many
states. Since this class encompasses all finite dynamic games with observable past choices, their analysis applies
in particular to the setting in this paper. Perea and Predtetchinski (2014) show, for the class of two-player
stochastic games with finitely many states, that the conditions which separate common belief in future rationality
from subgame perfect equilibrium and sequential equilibrium are the correct beliefs assumption as stated above,
together with the condition that both players satisfy Bayesian updating, and believe the opponent to satisfy
Bayesian updating as well.

Tn Perea (2012), perfect equilibrium, proper equilibrium, and the associated rationalizability counterparts, are
defined by means of lexicographic beliefs, rather than standard probabilistic beliefs. Hence, formally, the analysis
in Perea (2012) falls outside the scope of this paper. However, it can still be shown that if one takes the concept of
permissibility (Brandenburger (1992), Borgers (1994)) for two-player games, defines it by means of lexicographic
beliefs, and then adds the conditions that each player i believes that j is correct about i’s beliefs, and believes
that j believes that ¢ is correct about j’s beliefs (stated in terms of lexicographic beliefs), then one gets precisely
the concept of perfect equilibrium (Selten (1975)). A similar relationship holds between proper rationalizability
(Schuhmacher (1999), Asheim (2001)) and proper equilibrium (Myerson (1978)).
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bi(ti,thj X Tj*) =1 for all h € H;.

(c) Finally, we say that type t; exhibits equilibrium reasoning if t; believes that j is correct about

his actual beliefs, and if t; believes that opponent j believes that i is correct about j’s actual
beliefs.

Remember that a type in an epistemic model is an encoding of a conditional belief hierarchy.
Hence, condition (a) states that player i believes, at every history in H;, that opponent j is
correct, at every history in Hj, about his entire conditional belief hierarchy. In other words,
player ¢ believes that j is correct about his actual beliefs — precisely the condition we stated
verbally above. Similarly, condition (b) formalizes the statement that ¢ believes, throughout the
game, that j believes, throughout the game, that ¢ is always correct about j’s belief hierarchy.

For games with more than two players, the correct beliefs assumption would no longer
be sufficient to characterize equilibrium reasoning. Additional requirements would be needed,
such as the condition that a player believes that an opponent shares his beliefs about a third
player, or that the belief about one opponent must be stochastically independent from the belief
about another opponent. Various epistemic characterizations of Nash equilibrium for games
with more than two players have been given in Brandenburger and Dekel (1987), Aumann and
Brandenburger (1995), Perea (2007), Barelli (2009) and Bach and Tsakas (2014). But, as we
said, in this paper we restrict to two-player games, mainly for the ease of exposition.

4.3 Reasoning Context Consistent with Equilibrium Reasoning

With the above definitions at hand, we are now ready to define what it means for a reasoning
context to be consistent with equilibrium reasoning.

Definition 4.4 (Reasoning context consistent with equilibrium reasoning) We say that
a reasoning context p is consistent with equilibrium reasoning in a specific dynamic game G,
if for every belief-complete epistemic model M = (T;,b;);c; for G, and every player i, there is
some type t; € p;(G, M) that exhibits equilibrium reasoning.

Remember that a reasoning context p assigns to every dynamic game G, and every belief-
complete epistemic model M = (T, b;);cs for G, a subset of types p;(G, M) C T; for both players
1. The condition above thus states that for the dynamic game GG at hand there must be at least
one belief hierarchy for each player that exhibits equilibrium reasoning, and that simultaneously
satisfies the conditions imposed by the reasoning context p. In other words, the conditions
imposed by the reasoning context p must be logically consistent with the conditions imposed by
equilibrium reasoning.

In particular, Table 1 shows that the reasoning contexts of common belief in rationality,
permissibility and proper rationalizability for static games, and the reasoning context of common
belief in future rationality for dynamic games, are all consistent with equilibrium reasoning in
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every game. The second column in Table 1 describes, for each of these reasoning contexts, the
equilibrium concept one would obtain if we were to add the additional requirement that types
must exhibit equilibrium reasoning in every game. In the following section we will show that
the reasoning context of common strong belief in rationality — which represents a very natural
form of forward induction reasoning — is inconsistent with equilibrium reasoning in some (in
fact, most) dynamic games.

5 CSBR Can Be Inconsistent with Equilibrium Reasoning

In this section we formally define the reasoning context of common strong belief in rationality
(Battigalli and Siniscalchi (2002)), argue that it represents a very basic and pure form of forward
induction reasoning, and show that it is inconsistent with equilibrium reasoning in some dynamic
games. In the next section we will show that the class of dynamic games for which it 4s consistent
with equilibrium reasoning is in fact very small.

5.1 Common Strong Belief in Rationality

The reasoning context of “common strong belief in rationality” has been developed by Battigalli
and Siniscalchi (2002). They have shown that the strategies that can rationally be chosen by
players who reason in accordance with this concept correspond precisely to the extensive-form
rationalizable strategies as defined by Pearce (1984) and Battigalli (1997). The main idea behind
“common strong belief in rationality” is that a player must believe in the opponent’s rationality
whenever this is possible — a typical forward induction argument. More precisely, if player ¢ finds
himself at history h € H;, and concludes that h could be reached if j chooses rationally, then
player ¢ must believe at h that j chooses rationally. We say that player ¢ strongly believes in
j’s rationality. Moreover, if h could be reached if j chose rationally, then player ¢ asks a second
question: could h still be reached if j not only chooses rationally but also strongly believes in i’s
rationality? If the answer is yes, then player ¢ must believe at h that j chooses rationally and
strongly believes in ¢’s rationality. By iterating this argument, we arrive at “common strong
belief in rationality”.

In a sense, a player tries to find, at each history where is active, a “best possible explanation”
for the past opponent’s choices he has observed so far, and uses this explanation to form a belief
about the opponent’s current and future choices. Common strong belief in rationality can
therefore be viewed as a very basic and pure form of forward induction reasoning. To formalize
the notion of common strong belief in rationality, let us first define what we mean by rationality
and strong belief.

Consider a type t; for player i, a history h € H; and a strategy s; that is consistent with h.
By wu;(s;, bi(ti, h)) we denote the expected utility that player ¢ gets if the game is at h, player
i chooses s; there, and holds the conditional belief b;(¢;, h) about the opponent’s strategy-type
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combinations. Note that this expected utility does not depend on the full conditional belief that
t; holds at h, but only on the conditional belief about the opponent’s strategy choice.

Definition 5.1 (Rational choice) Consider a type t; for player i, a history h € H,; and
a strategy s; that is consistent with h. Strategy s; is rational for type t; at history h if
wi(si, bi(ti, h)) > u;i(s;, bi(t;, h)) for all alternative strategies s} that are consistent with h. Strat-
egy s; is rational for type t; if it is so at every history h € H; that s; is consistent with.

In words, a strategy is rational for a type if at every relevant history it yields the highest
possible expected utility, given the conditional belief held by the type at that history. We next
define the notion of strong belief.

Definition 5.2 (Strong belief) Consider a type t; within a belief-complete epistemic model
M = (T;,bi)icr, and an event E C S; xTj. Type t; strongly believes the event E if b;(t;, h)(E) =1
at every history h € H; where (S;(h) x Tj) N E is non-empty:.

That is, at every history h € H; where the event FE is consistent with the event of h being
reached, player ¢ must concentrate his belief fully on E. The reasoning context of “common
strong belief in rationality” can now be defined as follows.

Definition 5.3 (Common strong belief in rationality) Consider a dynamic game G and
a belief-complete epistemic model M = (T;,b;);ecs. For every player i we recursively define sets
TF and RF as follows.

Induction start. Define T := T; and R := {(s;,t;) € S; x T | s; rational for t;}.
Induction step. Let k > 1, and suppose Tikf1 and Rffl have been defined for all players 1.
Then, for both players 1,

TF . ={t; € T | t; strongly believes R;‘?_l}, and
RF + ={(si,t;) € Si x T | s; rational for t;}.

(2

Common strong belief in rationality selects for every player ¢ the set of types T;° := ﬂkeNTf .

We say that a type t; expresses common strong belief in rationality if t; € T>°. Battigalli
and Siniscalchi (2002) show that the sets of types T° are always non-empty for every finite
dynamic game, and that the strategies which are rational for a type in 7> are precisely the
extensive-form rationalizable strategies as defined in Pearce (1984) and Battigalli (1997).
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5.2 Example Revisited

Consider again the dynamic game G from Figure 1. We will now formally show that the reasoning
context of common strong belief in rationality is inconsistent with equilibrium reasoning in the
game G. To that purpose, take an arbitrary belief-complete epistemic model M = (T}, b;);es for
G, and let T° C T; be the set of types selected by common strong belief in rationality, for both
players 7. We will show that there is no type ¢; € T7° that exhibits equilibrium reasoning.

Take an arbitrary type t7 € 17°. Then, in particular, ¢] strongly believes Ré. This implies
that by(t],0)(R3) = 1, since (S2(0) x To) N R} = (S2 x T3) N RY # 0. As R} only contains
strategy-type pairs (sa,t2) where sy is rational for to at hy, it follows that RY C {e, f} x Tb.
Hence,

b1(t1, 0)({e, f} x T2) = 1. (1)

Now, take an arbitrary type to € Ty. Then, t5 strongly believes RY. Since the epistemic model
M is belief-complete, there is a type t1 € Th with by (t1,0)({g} x To) = b1(t1, h1)({g} x T2) = 1.
Since ((a,d),t1) € (S1(h1) x T1) N RY, it follows that (Si(h1) x T1) N RY # (). But then, as ty
strongly believes RY, we conclude that ba(t2, h1)(RY) = 1.

Since, by equation (1), type t] assigns probability 0 to choice g by player 2, there is no
strategy s1 € S1(h1) for which (s1,t}) € RY. To see this, note that Si(h1) = {(a,¢), (a,d)}, and
both (a,c) and (a,d) yield ¢ an expected utility less than 3 — the utility it can guarantee at ()
by choosing b. As ba(t2, h1)((S1(h1) x T1) N RY) = 1, this implies that by (t2, h1)(S1 x {ti}) = 0.
Hence, we see that

bo(ta, h1)(S1 x {ti}) = 0 for every type to € Ty. (2)

We have seen above that by (¢}, 0)(R2) = 1, and hence, in particular,
bi(t1,0)(S2 x Ty) =1, (3)

since R} C So x T

By combining (2) and (3) we see that ¢} assigns at () probability 1 to the set of types T4, but
that every type to € T. 21 assigns, at hi, probability 0 to player 1’s type t]. This means, however,
that type t] cannot exhibit equilibrium reasoning.

Since this holds for every type t] € 17°, we conclude that there is no type t] € T7° that
exhibits equilibrium reasoning. As such, the reasoning context of common strong belief in ra-
tionality is inconsistent with equilibrium reasoning in the game G from Figure 1. We therefore
obtain the following result.

Theorem 5.4 (Inconsistency with equilibrium reasoning) There are two-player dynamic
games with observable past choices for which common strong belief in rationality is inconsistent
with equilibrium reasoning.

This formally proves the entry in Table 1 which states that there is no equilibrium counterpart
to the reasoning context of common strong belief in rationality. The theorem above immediately
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raises the following question: Can we characterize those games for which common strong belief
in rationality #s consistent with equilibrium reasoning? That will be the purpose of the following
section.

6 When CSBR is Consistent with Equilibrium Reasoning

In this section we will characterize the class of dynamic games for which common strong belief in
rationality is consistent with equilibrium reasoning. For this characterization we will introduce
a new concept called extensive-form best response set with unique beliefs — a refinement of the
notion of extensive-form best response set as defined by Battigalli and Friedenberg (2012).

6.1 Extensive-form Best Response Set with Unique Beliefs

In order to formally introduce extensive-form best response sets with unique beliefs, we need the
following definitions. A conditional belief vector for player i is a tuple b; = (b;(h))nen, which
assigns to every history h € H; a probabilistic belief b;(h) € A(S;(h)) on the opponent’s strategy
choices that are consistent with h. Hence, the first-order belief of a type in some epistemic model
is a conditional belief vector in this sense. We say that the conditional belief vector b; strongly
believes an event D; C S; if b;(h)(D;) = 1 at every history h € H; where Sj(h)ND; # (). Finally,
a strategy s; is said to be rational for the conditional belief vector b; if

ui(si, bi(h)) > w;(s}, b;i(h)) for all s; € S;(h)
at every history h € H; that s; is consistent with.

Definition 6.1 (Extensive-form best response set with unique beliefs) A set D;xDsy C
S1 X Sy of strategy pairs is called an extensive-form best response set with unique beliefs, if for
both players i there is a conditional belief vector b; such that for all strategies s; € D;

(a) s; is rational for b;,
(b) b; strongly believes D;, and

(c) every strategy s, which is rational for b; is in D;.

An eztensive-form best response set as defined in Battigalli and Friedenberg (2012) is a pair
Dy x Dy C 51 x S5 such that for both players i and all strategies s; € D; there is a belief vector
b; that satisfies conditions (a), (b) and (c) above. Hence, our notion of an extensive-form best
response set with unique beliefs is a special case of an extensive-form best response set a la
Battigalli and Friedenberg. The difference is that in the former we choose a unique conditional
belief vector b; that satisfies the conditions (a), (b) and (c) for every strategy s; € D;, whereas
in the latter we may choose a different conditional belief vector b; for every strategy s; € D; we
consider.
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6.2 When is CSBR Consistent with Equilibrium Reasoning?

We will now characterize the class of dynamic games for which common strong belief in ratio-
nality is consistent with equilibrium reasoning. Before we state our result, we need a few more
definitions. We call a strategy s; € S; rational if there is a conditional belief vector b; for which
s; is rational. Say that a history h € H; is consistent with j’s rationality if there is a rational
strategy s; for opponent j that is consistent with h.

Theorem 6.2 (When CSBR is consistent with equilibrium reasoning) Consider a finite
two-player dynamic game G with observed past choices. Then, common strong belief in ratio-
nality is consistent with equilibrium reasoning at G, if and only if, there is an extensive-form
best response set D1 x Do with unique beliefs such that for every player ¢ and every history
h € H; that is consistent with j’s rationality there is a strategy s; € D; that is consistent with
h.

The proof of this theorem can be found in Section 8. This theorem implies that in “most”
two-player dynamic games with observable past choices, common strong belief in rationality is
inconsistent with equilibrium reasoning. Indeed, assume that in the game G common strong
belief in rationality is consistent with equilibrium reasoning. Then, according to Theorem 6.2,
there is an extensive-form best response set Dy x Dy with unique beliefs such that for every player
¢ and every history h € H; that is consistent with j’s rationality there is a strategy s; € D; that
is consistent with h. Hence, there must be a conditional belief vector b; for both players ¢ such
that (1) D; is the set of rational strategies for b;, (2) b; strongly believes D;, and (3) for every
history h € H; that is consistent with j’s rationality there is a strategy s; € D, that is consistent
with h. In particular, for both players ¢ there must be a unique conditional belief vector b; such
that every history h € H; that is consistent with i’s rationality must be reachable by a strategy
s; that is rational for b;. This, however, will typically not be the case, as the set of strategies that
are rational for a fixed conditional belief vector b; is typically very small, whereas the collection
of histories h € H; that is consistent with ¢’s rationality is typically very large, especially when
the game G is not too small. We may therefore conclude that “typically”, common strong belief
in rationality will be inconsistent with equilibrium reasoning.

7 Forward Induction Equilibrium Concepts

In Sections 5 and 6 we have shown that the reasoning context of common strong belief in
rationality is inconsistent with equilibrium reasoning in “most” dynamic games. At the same
time, the literature offers a broad spectrum of forward induction equilibrium concepts which — by
construction — are consistent with equilibrium reasoning, and which incorporate some particular
form of forward induction. In this section we will show, however, that none of these forward
induction equilibrium concepts can single out the intuitive forward induction choice f of player
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2 in the game of Figure 1. The reason for this is that each of these concepts imposes some
exogenous restrictions on the players’ reasoning which may substantially obscure, or weaken,
the forward induction reasoning.

Let us go back to the dynamic game in Figure 1. Why is f the intuitive forward induction
choice of player 2 here? If player 2 must make a choice at hy he knows that player 1 has chosen
a, and not b, at the beginning. But choosing a can only be optimal for player 1 at the beginning
if he subsequently chooses d, and believes that player 2, with high probability, will make the
irrational choice g. Hence, player 2 must conclude that player 1 will subsequently choose d. As
such, the only natural forward induction choice for player 2 is to choose f.

Note that, in order for player 2 to carry out this forward induction reasoning, he must
consider the possibility that player 1 may ascribe a high probability to his irrational choice g.
We will see that this is exactly where the forward induction equilibrium concepts fall short: in
each of the equilibrium concepts player 2 does not even consider the possibility that player 1 may
assign a positive probability to 2’s irrational choice g, and therefore none of these equilibrium
concepts is able to uniquely select the intuitive forward induction choice f of player 2.

Let us now be more precise about these claims. The forward induction equilibrium concepts
I am aware of consist of justifiable sequential equilibrium (McLennan (1985)), Cho’s forward
induction equilibrium (Cho (1987)), stable sets of beliefs (Hillas (1994)), explicable equilibrium
(Reny (1992)), outcomes satisfying forward induction (Govindan and Wilson (2009)) and Man’s
forward induction equilibrium (Man (2012)).” Of these concepts, the former three are formulated
as refinements of sequential equilibrium (Kreps and Wilson (1982))%, the fourth and fifth are
defined as refinements of weak sequential equilibrium (Reny (1992))?, whereas the last is a
refinement of normal-form perfect equilibrium (Selten (1975)).

It may be verified that the game of Figure 1 has a unique sequential equilibrium, in which
player 2 chooses e. Consequently, justifiable sequential equilibrium, Cho’s forward induction
equilibrium and stable sets of beliefs — being refinements of sequential equilibrium — will uniquely
select the choice e for player 2, which is not the intuitive forward induction choice, as we have
seen.

In every weak sequential equilibrium of the game in Figure 1, player 1 assigns probability 0 to
player 2 choosing g. As the reasoning of players in explicable equilibrium and outcomes satisfying
forward induction takes place entirely within the framework of weak sequential equilibria, player
2 — in these concepts — cannot even reason about the possibility that player 1 assigns a positive

"There are other forward induction equilibrium concepts that are only applicable to signaling games, such as
the intuitive criterion (Cho and Kreps (1987)), divine equilibrium (Banks and Sobel (1987)), perfect sequential
equilibrium (Grossman and Perry (1986)) and undefeated equilibrium (Mailath, Okuno-Fujiawara and Postlewaite
(1993)).

8Strictly speaking, Hillas’ concept of stable sets of beliefs imposes restrictions on sets of sequential equilibria,
rather than on individual sequential equilibria. However, it indirectly imposes restrictions on an individual
sequential equilibrium if we require it to be part of a set of sequential equilibria meeting Hillas’ conditions.

9More precisely, Govindan and Wilson (2009) impose restrictions on outcomes rather than weak sequential
equilibria. However, these restrictions may be translated into restrictions on weak sequential equilibria directly.
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probability to choice g. As such, in these concepts player 2 cannot give a plausible explanation at
hy for the event that player 1 has chosen a and not b. Consequently, both explicable equilibrium
and outcomes satisfying forward induction impose no restrictions on what player 2 believes at hy
about 1’s choice at hj. In particular, both explicable equilibrium and outcomes satisfying forward
induction allow for the choices e and f by player 2, and therefore fail to single out the intuitive
forward induction choice f for player 2.

Since every normal-form perfect equilibrium induces a weak sequential equilibrium (see Reny
(1992), Proposition 1), player 1 must also assign probability 0 to player 2’s irrational choice g in
every normal-form perfect equilibrium. As the reasoning of players in Man’s forward induction
equilibrium is restricted to the setting of normal-form perfect equilibria, it follows with the same
arguments as above that also Man’s forward induction equilibrium allows for the choices e and f
by player 2, and thus fails to uniquely select the intuitive forward induction choice f for player
2.

We thus conclude that none of the forward induction equilibrium concepts above uniquely
selects the intuitive forward induction choice f of player 2. What prevents these forward induc-
tion equilibrium concepts from uniquely selecting the intuitive forward induction choice f for
player 2 is that each of these concepts imposes some exogenous restrictions on the beliefs of the
players which interfere with — and in some situations are in conflict with — forward induction
reasoning. For instance, the first three concepts impose, as an exogenous restriction, that players
reason in accordance with sequential equilibrium, which is a backward induction concept. That
is, the first three concepts assume that players — above all — reason in accordance with backward
induction, and on top of this impose some forward induction restrictions. As a result we obtain
concepts that are a mix of backward induction and forward induction arguments. As backward
induction reasoning alone already singles out the backward induction choice e by player 2, the
forward induction arguments in the first three concepts have no bite in the game of Figure 1,
and still uniquely lead to the backward induction choice e for player 2.

The last three concepts impose, as an exogenous restriction, that player 1 will always assign
probability 0 to 2’s irrational choice g. As player 2, under these circumstances, cannot give a
rational explanation at hj for player 1 choosing a, the forward induction arguments in the last
three concepts have no bite either in the game of Figure 1.

In contrast, the “pure” forward induction concept of common strong belief in rationality
imposes no exogenous restrictions on the beliefs of the players, and therefore allows player 2
to reason about a scenario in which player 1 assigns a high probability to player 2’s irrational
choice g. This, eventually, makes it possible for common strong belief in rationality to uniquely
filter the intuitive forward induction choice f for player 2.

Recently, Battigalli and Friedenberg (2012) have started to study variants of the concept
of common strong belief in rationality in which they do impose exogenous restrictions on the
beliefs of the players. To achieve this, Battigalli and Friedenberg use epistemic models that
are not necessarily belief-complete. In other words, the epistemic model may not contain all
possible belief hierarchies for the players. As players can only hold belief hierarchies within the
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epistemic model, and can only reason about opponent’s belief hierarchies that are within that
same epistemic model, choosing a belief-incomplete epistemic model imposes some exogenous
restrictions on the players’ belief hierarchies, which may have drastic consequences for the type
of forward induction reasoning they use.

In the game of Figure 1, such an exogenous restriction could be that we only allow for types
of player 1 that assign probability 0 to 2’s irrational choice g. With such an exogenous restriction,
common strong belief in rationality loses all of its bite in the game of Figure 1, as player 2, at
h1, can no longer rationalize the event that player 1 has chosen a. Consequently, common strong
belief in rationality would allow player 2 to choose either e or f, and hence would no longer
uniquely select the intuitive forward induction choice for player 2.

It would be interesting to see whether some of the forward induction equilibrium concepts
above can be characterized in the spirit of Battigalli and Friedenberg (2012) by common strong
belief in rationality relative to a suitably restricted epistemic model. We leave this question for
future research.

8 Proof

Proof of Theorem 6.2. Let M = (T;,b;);c; be an arbitrary belief-complete epistemic model
for G, and let T7° be the set of types in T; that express common strong belief in rationality, for
both players 1.

(a) Suppose first that common strong belief in rationality is consistent with equilibrium reason-
ing at G. We will show that there is an extensive-form best response set D1 X Do with unique
beliefs such that for every player ¢ and every history h € H; that is consistent with j’s rationality
there is a strategy s; € D; that is consistent with h.

As common strong belief in rationality is consistent with equilibrium reasoning at G, there
is for both players i a type ¢} € T that exhibits equilibrium reasoning. Let 7 be a player who
is active at () — the beginning of the game.

Claim. There is a unique type t; € T7° such that b;(t], h)(S; x {t;}) = 1 for all h € H;, and
b;(£,h)(Si x {t:}) =1 for all h € H;,

Proof of claim. Since ¢t exhibits equilibrium reasoning, type ¢} believes that j is correct about
his actual beliefs. That is, b;(¢}, h)(S; x T;(t7)) = 1 for every h € H;, where

Tj(t7) = {t; € Tj | bj(t;, h)(Si(h) x {ti}) = 1 for all h € Hj}.

We first show that there is a single type t; € T}(¢]) such that b;(¢7, h)(S; x {tj}) = 1 for all
h € H;. Suppose not. Then, there are two disjoint sets T;,T; C T;(t;) with T, UT; = Tj(t})
such that b;(tf, h')(S; x T;) > 0 for some h! € H;, and b;(t;, h?)(S; x Tj) > 0 for some h* € H;.
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Take an arbitrary type t; € Tj(¢;) and assume, with loss of generality, that t; € Tj. As
tj € T;(t7) we know that

bj(tj, h)(SZ X {t:}) =1forall h e Hj. (4)
Moreover, we know from above that b;(t, h?)(S; x Tj) > 0. Since t; ¢ T}, it follows that
bi(t1 B2 (S; x {t5}) < 1. (5)

From (4) and (5) we conclude that type t; does not believe that ¢ is correct about j’s actual
beliefs. Since this holds for every t; € T;(t;), and b;(t}, h)(S; x Tj(t})) = 1 for every h € H;, it
follows that ¢; does not believe that j believes that 7 is correct about j’s actual beliefs. This,
however, is a contradiction, since ¢ exhibits equilibrium reasoning. We may thus conclude that
there is some ¢} € Tj(t7) such that b;(t], h)(S; x {tj}) =1 for all h € H;.

Since t} € T}(t}), it immediately follows that b;(¢7, h)(S; x {t;}) = 1 for all h € H;. Moreover,
as player ¢ is active at () and ¢7 € T7° expresses common strong belief in rationality, it follows
that b;(t7,0)(S; x T;°) = 1, which implies that ¢} € T5°.

Hence, there is a unique type ¢ € T7° such that bi(t7, h)(S; x {t;‘}) =1 for all h € H;, and
bj(t;, h)(S; x {t;}) = 1 for all h € Hj, which completes the proof of the claim.

Now, let D} be the set of strategies that are rational for ¢7, and let D be the set of strategies
that are rational for t7. We show that D x D7 is an extensive-form best response set with unique
beliefs such that for every player ¢ and every history h € H; that is consistent with j’s rationality
there is a strategy s; € D; that is consistent with h.

We first prove that D x D7 is an extensive-form best response set with unique beliefs. Let
b; be the first-order conditional belief vector of type t;, and b} the first-order conditional belief
vector of type t;f. Then, by construction, D} is the set of strategies that are rational for b;.
Moreover, as t} expresses common strong belief in rationality, we have in particular that ¢}
strongly believes

R? = {(sj,t;) € Sj x Tj | s; rational for ¢;}.

Together with the fact that b;(t;, h)(S; x {t;}) =1 for all h € H;, this implies that ¢} strongly
believes the event

R? N(S; x{t;}) = {(s5,t;) € Sj x {t;} | s; rational for ¢} }
= Di x{t;}.

Hence, ;s first-order conditional belief vector b} strongly believes D7. Summarizing, we see
that D7 is the set of strategies that are rational for b7, and that b} strongly believes D7. As the
same applies to D7 and b}, we may conclude that D} x D7 is an extensive-form best response
set with unique beliefs.

We finally show that for every player ¢ and every history h € H; that is consistent with j’s

rationality there is a strategy s; € D} that is consistent with h. For an arbitrary player ¢, take
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an arbitrary history h € H; that is consistent with j’s rationality. We must prove that there is
some s; € D7 that is consistent with h.
As history h is consistent with j’s rationality, we have that

R0\ (S;(h) x T;) # 0.

Since t7 expresses common strong belief in rationality, it strongly believes R?, and hence
bi(t;, h)(R)) = 1.
Moreover, as b;(t7, h)(S; x {tj}) = 1, it follows that

bi(t5, h)(RY N (S;(h) x {t}}))
= bi(tf,h)({(sj,t;-) €8x {t;‘} | s; rational for t;‘})
= bi(t7, h)(Dj x {tj}) =1,

which implies that there must be a strategy s; € D7 that is consistent with h. We thus conclude
that for every player ¢ and every history h € H; that is consistent with j’s rationality there is a
strategy s; € D7 that is consistent with h.

We have therefore shown that D} x D;‘ is an extensive-form best response set with unique
beliefs such that for every player ¢ and every history h € H; that is consistent with j’s rationality
there is a strategy s; € D} that is consistent with h. This concludes the proof of part (a).

(b) Suppose now that there is an extensive-form best response set D; x Dy with unique beliefs
such that for every player ¢ and every history h € H; that is consistent with j’s rationality there
is a strategy s; € D; that is consistent with h. We show that common strong belief in rationality
is consistent with equilibrium reasoning at G.

Take an extensive-form best response set D} x D3 with unique beliefs such that for every
player ¢+ and every history h € H; that is consistent with j’s rationality there is a strategy
s; € Dj that is consistent with h. Then, by definition, there is for both players ¢ a conditional
belief vector b} such that D is the set of strategies that are rational for b7, and b} strongly
believes D;‘-‘. Let t] € T1 and t5 € T3 be types such that for both players 7,

it ) ({(3.£))) = B (h)(s;) (6)

for all histories h € H; and all s; € S;(h). As M = (T3,b;)icr is a belief complete epistemic
model, such types t] and t3 exist. By (6) it immediately follows that

by(t1,h)(Sa x {t5}) = 1 for all h € Hy,

and
ba(ts, h)(S1 x {t1}) =1 for all h € Ho,
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and hence both types ¢7 and t3 exhibit equilibrium reasoning.

We will now show that ] and t5 also express common strong belief in rationality. To that
purpose we prove, by induction on k, that ¢} € le and ¢35 € T2k for all £ > 0.

For k = 0 the statement is trivial, since TZ-0 = T; for both players 1.

Take now some k > 1, and assume that ¢t € Tik_1 for both players i. Choose a player 7. In
order to show that t; € Tf , it only remains to prove that t; strongly believes R;?_l, ast; € Ti]’“_1
by the induction assumption.

Consider a history h € H; where R;?_l N(S;(h) xT;) # (. Then, in particular, h is consistent
with j’s rationality. By our assumption above, there is a strategy s; € D;-‘ that is consistent
with h. That is, S;j(h) N D} # 0. As b} strongly believes D7, it follows that bj(h)(D;) = 1. But
then, by (6) it follows that

bilt B)(D} x {£}) = 1. (7

By construction, D7 is the set of rational strategies for b}, and hence also the set of rational
strategies for ¢7, since b} is the first-order conditional belief vector of ¢7. Since, by the induction

assumption, ¢} € Tf&, it follows that
* * k—1
D x {tj} C R;™". (8)
If we combine (7) and (8), we obtain that
bi(t;, h)(Ry ™) = 1.

Hence, we have shown that b;(t}, h) (R;?_l) =1 for every h € H; where R?_l N (Sj(h) x Tj) # 0,
which means that ¢7 strongly believes R;‘?_l. Hence, by definition, it follows that ¢} € Tzk As
this holds for both players i, it follows by induction that ¢] € T and ¢35 € T5°, as was to show.

Overall, we see that there are types ¢t] € T7° and t5 € T5° that exhibit equilibrium reasoning.
Hence, common strong belief in rationality is consistent with equilibrium reasoning at G. This
completes the proof of the theorem. [ |
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