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Abstract
In this paper we focus on stochastic games with �nitely many states and actions. For this

setting we study the epistemic concept of common belief in future rationality, which is based
on the condition that players always believe that their opponents will choose rationally in
the future. We distinguish two di¤erent versions of the concept �one for the discounted case
with a �xed discount factor �; and one for the case of uniform optimality, where optimality
is required for �all discount factors close enough to 1�.
We show that both versions of common belief in future rationality always yield non-empty

predictions for every stochastic game. This is in sharp contrast with the non-existence
of subgame perfect equilibrium in many stochastic games under the uniform optimality
criterion. We also provide an epistemic characterization of subgame perfect equilibrium for
2-player stochastic games, showing that it is essentially equivalent to common belief in future
rationality together with some �correct beliefs assumption�. We �nally present a recursive
procedure to compute the set of stationary strategies that can be chosen by certain simple
types under common belief in future rationality.
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1 Introduction

The literature on stochastic games is massive, and has concentrated mostly on the question
whether Nash equilibria, subgame perfect equilibria, or other types of equilibria exist in such
games. To the best of our knowledge, this paper is the �rst to analyze stochastic games from
an epistemic point of view.

A distinctive feature of an equilibrium approach to games is the assumption that every player
believes that the opponents are correct about his beliefs (see Brandenburger and Dekel (1987,
1989), Tan and Werlang (1988), Aumann and Brandenburger (1995), Asheim (2006) and Perea
(2007)). Relaxing the assumption of correct beliefs leads to an epistemic view on game theory.
The main idea of this paper is to analyze stochastic games without imposing the correct beliefs
assumption, while at the same time preserving the spirit of subgame perfection. This leads us to
a concept called common belief in future rationality �an extension of the corresponding concept
by Perea (2014) which has been de�ned for dynamic games of �nite duration. Very similar
concepts have been introduced in Baltag, Smets and Zvesper (2009) and Penta (2009).

Common belief in future rationality states that, after every history, the players continue to
believe that their opponents will choose rationally in the future, that they believe that their
opponents believe that their opponents will choose rationally in the future, and so on, ad in�ni-
tum. The crucial feature that common belief in future rationality has in common with subgame
perfect equilibria is that the players uphold the belief that the opponents will be rational in the
future, even if this belief has been violated in the past. What distinguishes common belief in
future rationality from subgame perfect equilibrium is that the former allows the players to have
erroneous beliefs about their opponents, while the latter incorporates the condition of correct
beliefs in the sense that we make precise.

We introduce our solution concept using the language of epistemic models with types, fol-
lowing Harsanyi (1967�1968). An epistemic model speci�es, for each player, the set of possible
types, and for each type and each history of the game, the probability distribution over the op-
ponents�strategy�type combinations. An epistemic model succinctly describes the entire belief
hierarchy after each history of the game. This model is essentially the same as the epistemic
models used by Ben-Porath (1997), Battigalli and Siniscalchi (1999, 2002) and Perea (2014) to
encode conditional belief hierarchies in �nite dynamic games.

For a given discount factor �; we say that a type in the epistemic model believes in the
opponents�future ��rationality if, at every history, it assigns probability 1 to the set of opponents�
strategy�type combinations where the strategy is optimal for the type, given the discount factor
�; at every future history. We say that the type believes in the opponents� future uniform
rationality if it assigns probability 1 to the set of opponents�strategy�type combinations where
the strategy is uniformly optimal �that is, optimal for all � close to 1 �for the type at every
future history. Common belief in future �-rationality requires that the type not only believes in
the opponents�future �-rationality, but also believes, throughout the game, that his opponents
always believe in their opponents�future �-rationality, and so on, ad in�nitum. Similarly, we
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can de�ne common belief in future uniform rationality.
In this paper we show that common belief in future rationality is always possible in a sto-

chastic game with �nitely many states. More precisely, we prove in Theorem 4 that for every
discount factor � < 1, we can always construct an epistemic model in which all types express
common belief in future ��rationality. These types, moreover, can be constructed in such a
way that after every history, they assign probability 1 to exactly one stationary continuation
strategy and one type for every opponent. We call such types stationary. Common belief in
future �-rationality can thus be established by restricting attention solely to the simple class of
stationary types. A similar result holds for the uniform optimality case �see Theorem 5.

We also show in Lemma 1 that for each of the stationary types so designed, we can always
�nd a stationary strategy that is optimal at each of the histories. This holds both for the �-
discounted case and the uniform optimality case. The proof relies on the well known fact that
every Markov decision problem admits a optimal stationary strategy, both in the �-discounted
case and the uniform optimality case. The proof is otherwise elementary.

In Section 6 we develop a �nite recursive elimination procedure to compute the set of sta-
tionary strategies that can be optimally played by stationary types that express common belief
in future �- (and uniform) rationality. This procedure is very easy to use, and will be of great
practical help to �nd some strategies that are possible under common belief in future �- (and
uniform) rationality. In Theorem 7 we show that this procedure generates all stationary strate-
gies that can rationally be chosen by stationary types that express common belief in future �-
(and uniform) rationality. That is, if one is only interested in the simple class of stationary
types that express common belief in future �- (and uniform) rationality, then the procedure
characterizes all the stationary strategies that are possible in that setting.

A second objective of this paper is to relate common belief in future rationality in stochastic
games to the well-known concept of subgame perfect equilibrium (Selten (1965)). In Theorems
2 and 3 we provide an epistemic characterization of subgame perfect equilibrium for 2�player
stochastic games �both for the �-discounted case and the uniform optimality case. We show
that a behavioral strategy pro�le (�1; �2) is a subgame perfect equilibrium, if and only if, there
is an epistemic model and a type t1 for player 1 such that (a) t1 expresses common belief in
future rationality, (b) t1 believes at every history that player 2 will play �2 in the future, and
believes that player 2 believes, after every history, that player 1 will play �1 in the future, (c)
t1 satis�es Bayesian updating, and believes that player 2 satis�es Bayesian updating, and (d) t1
believes that player 2 is correct about 1�s beliefs, and believes that 2 believes that 1 is correct
about 2�s beliefs.

Item (d) expresses the correct beliefs assumption mentioned at the beginning of this intro-
duction, stating that player 1 believes that player 2 holds correct beliefs about 1�s entire belief
hierarchy, and that player 1 believes that player 2 believes that player 1 is correct about 2�s
entire belief hierarchy. This is the main condition that separates subgame perfect equilibrium
from common belief in future rationality, at least for the case of two players. Our characteriza-
tion result is analogous to the epistemic characterizations of Nash equilibrium as presented in
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Brandenburger and Dekel (1987, 1989), Tan and Werlang (1988), Aumann and Brandenburger
(1995), Asheim (2006) and Perea (2007).

Our existence results in Theorems 4 and 5, which guarantee that common belief in future
rationality is always possible in a stochastic game �even for the uniform optimility case �are
in sharp contrast with the fact that subgame perfect equilibria may fail to exist in stochastic
games with the limiting average reward criterion. Two well�known examples are the Big Match
(Gillette, 1957) and the quitting game in Solan and Vieille (2003). Theorem 5 states that
common belief in future uniform rationality is possible even for these two games. Since uniform
optimality implies optimality under the limiting average reward, it follows that common belief in
future rationality under the limiting average reward criterion is possible in both the Big Match
and the quitting game, although subgame perfect equilibria fail to exist for these games under
the limiting average reward criterion.

One possible interpretation of our epistemic characterization of subgame perfect equilibrium
is that the non�existence of subgame perfect equilibria in some stochastic games is due to the
correct beliefs assumption, and not to the conditions of common belief in future rationality.
Indeed, common belief in future rationality alone is always possible in every stochastic game
�even under the uniform optimality and the limiting average reward criterion �but in some
games, like the Big Match and the quitting game, it may simply be incompatible with the correct
beliefs assumption.

We formulate this as an impossibility result in Theorem 6: Whenever the game has no
uniform subgame perfect equilibrium (a strategy pro�le that is a subgame perfect equilibrium
for all discount factors su¢ ciently close to 1), there does not exist an epistemic model with a
type that expresses common belief in future uniform rationality, and that satis�es the correct
beliefs assumption. On the other hand, removing the correct beliefs assumption results in a
possibility result for all stochastic games.

Epistemic game theory has been developed largely within the realm of �nite games, i.e. games
with �nitely many stages. One notable exception is Battigalli (2003), who considers games with
in�nite duration and focuses on the concepts of weak and strong ��rationalizability. Some
important di¤erences between Battigalli�s approach and ours are that (a) Battigalli considers
games with incomplete information, whereas we stick to the case of complete information, (b)
Battigalli considers exogenous restrictions on the players��rst-order beliefs, whereas we do not,
and (c) Battigalli�s concepts of weak and strong �-rationalizability are both di¤erent from
common belief in future rationality.

More precisely, weak �-rationalizability states that players choose rationally after every
history, given their conditional beliefs, and that this event is commonly believed at the beginning
of the game (but not necessarily when the game is under way). It may be viewed as an extension
of Ben-Porath�s (1997) concept of common certainty of rationality at the beginning of the game
�which has been de�ned for �nite dynamic games with perfect and complete information �to
Battigalli�s framework of in�nite dynamic games with incomplete information and exogenous
restrictions on �rst-order beliefs. Strong �-rationalizability is a forward induction concept
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which requires a player to believe, whenever possible, that all opponents are choosing optimal
strategies. It is a generalization of Battigalli and Siniscalchi�s (2002) notion of common strong
belief in rationality �which has been de�ned for �nite dynamic games with complete information
�to Battigalli�s (2003) setting. In contrast, the notion of common belief in future rationality we
use is a backward induction concept, as it requires players to only reason about the opponents�
future moves, not about their past moves as in strong �-rationalizability. If we apply weak
and strong �-rationalizability to our setting of stochastic games with complete information and
no exogenous restrictions on the �rst-order beliefs, then both strong �-rationalizability and
common belief in future rationality are re�nements of weak �-rationalizability, whereas there is
no logical relationship �in terms of induced strategy choices �between the concepts of strong �-
rationalizability and common belief in future rationality. Indeed, even in �nite dynamic games
the concepts of common strong belief in rationality (which in such games is equivalent to strong
�-rationalizability) and common belief in future rationality may induce di¤erent sets of strategy
choices for a player (see, for instance, Perea (2010, 2014)).

The paper is structured as follows. In Section 2 we introduce Markov decision problems
and stochastic games. In Section 3 we introduce epistemic models and de�ne the concept of
common belief in future rationality. In Section 4 we present our epistemic characterization
of subgame perfect equilibrium. In Section 5 we prove that common belief in future �- (and
uniform) rationality is always possible in a stochastic game, whereas in Section 6 we develop a
recursive procedure to compute the set of stationary strategies that can be chosen by stationary
types under common belief in future �- (and uniform) rationality. All proofs are collected in
Section 7.

2 Model

In this section we �rst introduce (one person) Markov decision problems, and subsequently show
how stochastic games can be de�ned as a multi-person generalization of it.

2.1 Markov Decision Problems

A �nite Markov decision problem consists of (1) a �nite, non-empty set of states X; (2) a �nite,
non-empty set of actions A(x) for every state x 2 X; (3) an instantaneous utility u(x; a) for
every state x 2 X and action a 2 A(x); and (4) a transition probability p(yjx; a) 2 [0; 1] for
every two states x; y 2 X and every action a 2 A(x): Here, the transition probabilities should
be such that X

y2X
p(yjx; a) = 1

for every x 2 X and every a 2 A(x):
Suppose we start at some �xed state x1 2 X: Then, the decision maker chooses at period

1 some action a1 2 A(x1); which moves the system to some new state x2 2 X at period 2,
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according to the transition probabilities p(yjx1; a1). If the system is at state x2 in period 2, then
the decision maker chooses some action a2 2 A2(x2) at period 2, which moves the system to
some new state x3 2 X at period 3, according to the transition probabilities p(yjx2; a2); and so
on.

A history of length k is a sequence h = ((x1; a1); :::; (xk�1; ak�1); xk); where (1) xm 2 X for
all m 2 f1; :::; kg; (2) am 2 A(xm) for all m 2 f1; :::; k � 1g; and where (3) for every period
m 2 f2; :::; kg the state xm can be reached with positive probability given that at period m� 1
state xm�1 and action am�1 2 A(xm�1) have been realized. By x(h) := xk we denote the last
state that occurs in history h: Let Hk denote the set of all possible histories of length k: Let
H := [k2NHk be the set of all (�nite) histories.

A strategy s is a function that assigns to every history h 2 H some action s(h) 2 A(x(h)): The
strategy s is called stationary if s(h) = s(h0) for every two histories h; h0 2 H with x(h) = x(h0):
Hence, the prescribed action only depends on the state reached, not on the speci�c period or
history. In that case, we may write s = (s(x))x2X :

Consider a strategy s; a history h 2 Hk and a history h0 2 Hm with m � k: Then we denote
by pm(h0jh; s) the probability that history h0 will be realized, conditional on the event that h
has been realized and that the decision maker chooses according to s: By

Um(h; s) :=
X

h02Hm

p(h0jh; s) u(x(h0); s(h0))

we denote the expected utility achieved at period m by the decision maker, conditional on the
event that history h has been realized and that the decision maker uses strategy s.

For a given discount factor � 2 (0; 1); we denote by

U �(h; s) :=
X
m�k

�mUm(h; s)

the discounted expected utility for the decision maker. We say that a strategy s is �-optimal if

U �(h; s) � U �(h; s0)

for all histories h 2 H and all strategies s0:
The strategy s is said to be uniformly optimal if there is some �� 2 (0; 1) such that s is

�-optimal for all � 2 [��; 1): Every strategy which is uniformly optimal is also optimal under the
limiting average reward criterion, which is also often used in Markov decision problems. This
result can be found, for instance, in Filar and Vrieze (1997), Theorem 2.8.3.

The following classical results state that for every �nite Markov decision problem, we can
always �nd a stationary strategy that is optimal �both for the �-discounted and the uniform
optimality case.
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Theorem 1 (Optimal strategies in Markov decision problems) Consider a �nite Markov
decision problem.

(a) For every � 2 (0; 1); there is a �-optimal strategy which is stationary.

(b) There is a uniformly optimal strategy which is stationary.

Part (a) follows from Shapley (1953) and has later been shown in Howard (1960), but Black-
well (1962) provides a simpler proof. The proof for part (b) can be found in Blackwell (1962).

2.2 Stochastic Games

A �nite stochastic game � consists of the following ingredients: (1) a �nite set of players I;
(2) a �nite, non-empty set of states X; (3) for every state x and player i 2 I; there is a �nite,
non-empty set of actions Ai(x); (4) for every state x and every pro�le of actions a in �i2IAi(x);
there is an instantaneous utility ui(x; a) for every player i; and (5) a transition probability
p(yjx; a) 2 [0; 1] for every two states x; y 2 X and every action pro�le a in �i2IAi(x): Here, the
transition probabilities should be such thatX

y2X
p(yjx; a) = 1

for every x 2 X and every action pro�le a in �i2IAi(x):
At every state x; we write A(x) := �i2IAi(x). A history of length k is a sequence h =

((x1; a1); :::; (xk�1; ak�1); xk); where (1) xm 2 X for all m 2 f1; :::; kg; (2) am 2 A(xm) for all
m 2 f1; :::; k�1g; and where (3) for every period m 2 f2; :::; kg the state xm can be reached with
positive probability given that at period m � 1 state xm�1 and action pro�le am�1 2 A(xm�1)
have been realized. By x(h) := xk we denote the last state that occurs in history h: Let Hk

denote the set of all possible histories of length k: Let H := [k2NHk be the set of all (�nite)
histories.

A strategy for player i is a function si that assigns to every history h 2 H some action
si(h) 2 Ai(x(h)): By Si we denote the set of all strategies for player i: Note that the set
Si of strategies is typically uncountably in�nite. We say that the strategy si is stationary if
si(h) = si(h

0) for all h; h0 2 H with x(h) = x(h0): So, the prescribed action only depends on
the state, and not on the speci�c history. A stationary strategy can thus be summarized as
si = (si(x))x2X :

During the game, players always observe what their opponents have done in the past, but
face uncertainty about what the opponents will do now and in the future, and also about
what these opponents would have done at histories that are no longer possible. That is, after
every history h all players know that their opponents have chosen a combination of strate-
gies that could have resulted in this particular history h: To model this precisely, consider
a history hk = ((x1; a1); :::; (xk�1; ak�1); xk) of length k: For every m 2 f1; :::; k � 1g let
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hm := ((x1; a1); :::; (xm�1; am�1); xm)) be the induced history of length m: For every player i; we
denote by Si(h) the set of strategies si 2 Si such that si(hm) = ami for every m 2 f1; :::; k � 1g:
Here, ami is the action of player i in the action pro�le am 2 A(xm): Hence, Si(h) contains
precisely those strategies for player i that are compatible with the history h:

So, after every history h; every player i knows that each of his opponents j is implementing
a strategy from Sj(h); without knowing precisely which one. This uncertainty can be modelled
by conditional belief vectors. Formally, a conditional belief vector bi for player i speci�es for
every history h 2 H some probability distribution bi(h) 2 �(S�i(h)): Here, S�i(h) := �j 6=iSj(h)
denotes the set of opponents�strategy combinations that are compatible with the history h; and
�(S�i(h)) is the set of probability distributions on S�i(h):

To de�ne the space �(S�i(h)) formally we must �rst specify a �-algebra ��i(h) on S�i(h);
since S�i(h) is typically an uncountably in�nite set. Let h 2 Hk be a history of length k: For a
given player j; strategy sj 2 Sj(h); and m � k; let [sj ]m be the set of strategies that coincide
with sj at all histories of length at most m: As m � k; every strategy in [sj ]m must in particular
coincide with sj at all histories that precede h; and hence every strategy in [sj ]m will be in Sj(h)
as well. Let �j(h) be the �-algebra on Sj(h) generated by the sets [sj ]m; with sj 2 Sj(h) and
m � k: By ��i(h) we denote the product �-algebra generated by the �-algebras �j(h) with
j 6= i: Hence, ��i(h) is a �-algebra on S�i(h); and this is precisely the �-algebra we will use.
So, when we say �(S�i(h)) we mean the set of probability distributions on S�i(h) with respect
to this speci�c �-algebra ��i(h):

Suppose that the game has reached history h 2 Hk. Consider for every player i some strategy
si 2 Si(h) which is compatible with the history h: Let s = (si)i2I : Then, for every m � k; and
every history h0 2 Hm; we denote by pm(h0jh; s) the probability that history h0 2 Hm will be
realized, conditional on the event that the game has reached history h 2 Hk and the players
choose according to s: The corresponding expected utility for player i at period m � k would
be given by

Umi (h; s) :=
X

h02Hm

pm(h0jh; s) ui(x(h0); s(h0));

where s(h0) 2 A(x(h0)) is the combination of actions chosen by the players at state x(h0) after
history h0; if they choose according to the strategy pro�le s: The expected discounted utility for
player i would be

U �i (h; s) :=
X
m�k

�mUmi (h; s):

Suppose now that player i; after history h; holds the conditional belief bi(h) 2 �(S�i(h)):
Then, the expected discounted utility of choosing strategy si 2 Si(h) after history h; under the
belief bi(h); is given by

U �i (h; si; bi(h)) :=

Z
S�i(h)

U �i (h; (si; s�i)) dbi(h):
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The strategy si is �-optimal under the conditional belief vector bi if

U �i (h; si; bi(h)) � U �i (h; s0i; bi(h))

for every history h 2 H and every strategy s0i 2 Si(h):
The strategy si is said to be uniformly optimal under bi if there is some �� 2 (0; 1) such that

si is �-optimal under bi for every � 2 [��; 1). Note that every strategy si which is uniformly
optimal under the conditional belief vector bi; will also be optimal under bi with respect to the
limiting average reward criterion �an optimality criterion which is widely used in the literature
on stochastic games. This result can be found, for instance, in Filar and Vrieze (1997).

3 Common Belief in Future Rationality

In this section we de�ne the central notion in this paper �common belief in future rationality. In
words, the concept states that a player always believes, after every history, that his opponents
will choose rationally in the future, that his opponents always believe that their opponents will
choose rationally in the future, and so on. Before we de�ne this concept formally, we �rst
introduce epistemic models with types à la Harsanyi (1967�1968) as a possible way to encode
belief hierarchies.

3.1 Epistemic Model

We do not only wish to model the beliefs of players about the opponents�strategy choices, but
also the beliefs about the opponents�beliefs about the other players�strategy choices, and so
on. One way to do so is by means of an epistemic model with types à la Harsanyi (1967�1968).

De�nition 1 (Epistemic model) Consider a �nite stochastic game �: A �nite epistemic
model for � is a tuple M = (Ti; �i)i2I where

(a) Ti is a �nite set of types for player i; and

(b) �i is a mapping that assigns to every type ti 2 Ti; and every history h 2 H; some conditional
belief �i(ti; h) 2 �(S�i(h)� T�i):

Here, the �-algebra on S�i(h)�T�i that we use is the product �-algebra generated by the �-
algebra ��i(h) on S�i(h); and the discrete �-algebra on the �nite set T�i; containing all subsets.
The probability distribution �i(ti; h) encodes the belief that type ti holds, after history h; about
the opponents�strategies and the opponents�conditional beliefs. In particular, by taking the
marginal of �i(ti; h) on S�i(h); we obtain the �rst-order belief bi(ti; h) 2 �(S�i(h)) of type ti
about the opponents�strategies. As �i(ti; h) also speci�es a belief about the opponents�types,
and every opponent�s type holds conditional beliefs about his opponents�strategies, we can also
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derive, for every type ti and history h; the second-order belief that type ti holds, after history
h; about the opponents�conditional �rst-order beliefs.

By continuing in this fashion, we can derive for every type ti in the epistemic model his
�rst-order beliefs, second-order beliefs, third-order beliefs, and so on. That is, we can derive for
every type ti a complete belief hierarchy. The epistemic model just represents a very easy and
compact way to encode such belief hierarchies. The epistemic model above is very similar to
models used in Ben-Porath (1997), Battigalli and Siniscalchi (1999, 2002) and Perea (2014) for
�nite dynamic games.

In this paper, we will focus mostly on types with the easiest belief structure one can possibly
imagine. These are types that (a) only deem possible one type for every opponent, (b) after
every history only deem possible one stationary continuation strategy for every opponent, and
(c) whose conditional beliefs about the opponents�continuation strategies do not depend on the
speci�c history. We call such types stationary.

To formalize this, we need the following notation. For a given strategy si and history h; let
Si[si; h] be the set of strategies in Si(h) that coincide with si on histories that weakly follow h:
Here, when we say that h0 weakly follows h; we mean that either h0 = h; or history h0 follows
history h: Similarly, for a given combination of strategies s�i 2 S�i and history h; we denote by
S�i[s�i; h] := �j 6=iSj [sj ; h] the set of opponents�strategy combinations in S�i(h) that coincide
with s�i on histories that weakly follow h:

De�nition 2 (Stationary type) Consider a �nite epistemic model M = (Ti; �i)i2I : A type
ti 2 Ti is called stationary if there is a pro�le s�i 2 S�i of stationary opponents�strategies,
and a pro�le t�i 2 T�i of opponents�types, such that �i(ti; h)(S�i[s�i; h]�ft�ig) = 1 for every
history h 2 H:

That is, whatever happens in the game, type ti always believes that his opponents will choose
according to the pro�le s�i of stationary strategies in the future. At this stage, the reader may
wonder why we do not allow the type ti to assign positive probability to various stationary
strategies for the opponents. The reason is that this may lead to conditional beliefs that are
dependent on the history, provided the type revises his beliefs by Bayesian updating. That is,
this would lead to non-stationary beliefs under Bayesian updating. To see this, consider a two-
player stochastic game with only one state, where player 2 can choose between a and b: Let a1

denote the stationary strategy for player 2 that prescribes action a after every history. Let b1

be de�ned similarly. Suppose player 1 assigns, at the beginning of the game, equal probability to
player 2�s stationary strategies a1 and b1: If player 1 revises his beliefs by Bayesian updating,
then after observing action a in period 1, he must assign probability 1 to player 2�s strategy
a1; whereas after observing action b he must assign probability 1 to b1: Hence, if player 1 does
Bayesian updating, his conditional beliefs at period 2 would depend upon the history.

In order to avoid this from happening, we require that a stationary type always assigns
probability 1 to one particular pro�le of stationary opponents�continuation strategies. Then,
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Bayesian updating can never be in con�ict with the conditional beliefs being independent of the
history.

3.2 Belief in Future Rationality

Consider a type ti; and let bi(ti) be the induced �rst-order belief vector. That is, bi(ti) speci�es
for every history h the �rst-order belief bi(ti; h) 2 �(S�i(h)) that ti holds about the opponents�
strategies. Note that bi(ti) is a conditional belief vector as de�ned in the previous section. We
say that strategy si is �-optimal for type ti at history h if si is �-optimal at h for the conditional
belief bi(ti; h): More precisely, si is �-optimal for type ti at history h if

U �i (h; si; bi(ti; h)) � U �i (h; s0i; bi(ti; h))

for every s0i 2 Si(h):
We say that type ti believes in his opponents� future �-rationality if at every stage of the

game, type ti assigns probability 1 to the set of those opponents�strategy-type pairs where the
opponent�s strategy is �-optimal for the opponent�s type at all future stages. To formally de�ne
this, let

(Si � Ti)h;��opt := f(si; ti) 2 Si � Ti j si is �-optimal for ti at every h0 that weakly follows hg.

Moreover, let (S�i � T�i)h;��opt := �j 6=i(Sj � Tj)h;��opt be the set of opponents�strategy-type
combinations where the strategies are �-optimal for the types at all stages weakly following h.

Similar de�nitions can be given for the case of uniform optimality. We de�ne

(Si � Ti)h;u�opt : = f(si; ti) 2 Si � Ti j there is some �� 2 (0; 1) such that for all � 2 [��; 1);
si is �-optimal for ti at every h0 that weakly follows hg,

and let (S�i � T�i)h;u�opt := �j 6=i(Sj � Tj)h;u�opt:

De�nition 3 (Belief in future rationality) Consider a �nite epistemic modelM = (Ti; �i)i2I ;
and a type ti 2 Ti:
(a) Type ti believes in the opponents�future �-rationality if for every history h we have
that �i(ti; h)(S�i � T�i)h;��opt = 1:
(b) Type ti believes in the opponents�future uniform rationality if for every history h
we have that �i(ti; h)(S�i � T�i)h;u�opt = 1:

With this de�nition at hand, we can now de�ne �common belief in future �-rationality�,
which means that players do not only believe in their opponents�future �-rationality, but also
always believe that the other players believe in their opponents�future �-rationality, and so on.
We do so by recursively de�ning, for every player i; smaller and smaller sets of types T 1i ; T

2
i ; T

3
i ; :::
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De�nition 4 (Common belief in future rationality) Consider a �nite epistemic modelM =
(Ti; �i)i2I ; and some � 2 (0; 1): Let

T 1i := fti 2 Ti j ti believes in the opponents�future �-rationalityg

for every player i: For every m � 2; recursively de�ne

Tmi := fti 2 Tm�1i j �i(ti; h)(S�i � Tm�1�i ) = 1 for all h 2 Hg:

A type ti expresses common belief in future �-rationality if ti 2 Tmi for all m:

That is, T 2i contains those types that believe in the opponents� future �-rationality, and
which only deem possible opponents�types that believe in their opponents�future �-rationality.
Similarly for T 3i ; T

4
i ; and so on. This de�nition is based on the notion of �common belief in

future rationality�as presented in Perea (2014), which has been designed for dynamic games of
�nite duration. Baltag, Smets and Zvesper (2009) and Penta (2009) present concepts that are
very similar to �common belief in future rationality�. In the same way, we can de�ne �common
belief in future uniform rationality�for stochastic games.

4 Relation to Subgame Perfect Equilibrium

In the literature on stochastic games, the concepts which are most commonly used are Nash
equilibrium (Nash (1950, 1951)) and subgame perfect equilibrium (Selten (1965)). One drawback
of these concepts is that they fail to exist in many stochastic games if we use the uniform
optimality criterion, or even the limiting average reward criterion. In this section we will explore
the precise relation between common belief in future rationality on the one hand, and subgame
perfect equilibrium on the other hand. We will show that in two-person stochastic games,
subgame perfect equilibrium can be characterized by the conditions in common belief in future
rationality, together with Bayesian updating and some �correct beliefs conditions�. In particular,
it follows that subgame perfect equilibrium can be viewed as a re�nement of common belief in
future rationality, as it implicitly assumes each of its conditions.

In the next section we will show that common belief in future rationality (in combination
with Bayesian updating) is always possible in every �nite stochastic game, even if we use the
uniform optimality criterion. Hence, the reason that subgame perfect equilibrium fails to exist
in some of these games is that the conditions in common belief in future rationality and Bayesian
updating are logically inconsistent with the �correct beliefs conditions�in those games. We will
come back to this issue in the next section.

4.1 From Types to Behavioral Strategies

The concepts of common belief in future rationality and subgame perfect equilibrium are de�ned
within two di¤erent languages: The �rst concept is de�ned within an epistemic model with types,
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whereas the latter is de�ned by the use of behavioral strategies. How can we then formally relate
these two concepts? We will see that, under certain conditions, a type within an epistemic model
will naturally induce a pro�le of behavioral strategies.

From now on, we assume that there are only two players in the game. Formally, a behavioral
strategy for player i is a function �i that assigns to every history h some probability distribution
�i(h) 2 �(Ai(x(h))) on the set of actions available at state x(h): Now, consider an epistemic
modelM = (Ti; �i); and a type ti within that epistemic model. We de�ne the induced behavioral
strategy �tij for opponent j by

�tij (h)(aj) := �i(ti; h)(Sj(h; aj)� Tj)

for every history h and every action aj 2 Aj(x(h)): Here, Sj(h; aj) denotes the set of strategies
sj 2 Sj(h) with sj(h) = aj : Hence, �i(ti; h)(Sj(h; aj) � Tj) is the probability that type ti
assigns, after history h; to the event that player j will choose action aj after h: In this way,
every type ti naturally induces a behavioral strategy �

ti
j for his opponent j; where �

ti
j (h)(aj) is

to be interpreted as the probability that player i assigns after history h to the event that j will
choose aj after h: So, �

ti
j represents ti�s conditional beliefs about j�s future behavior.

But what does it mean that a type ti for player i induces a behavioral strategy �i for player i
himself? This is more subtle, as ti holds no belief about his own actions in the game, only about
the actions of his opponent. But ti does hold a belief about j�s beliefs about i�s actions, and this
second-order belief will constitute the link to �i: More precisely, we will say that type ti induces
a behavioral strategy �i for himself if, after any history, he only assigns positive probability to
opponent�s types tj where �

tj
i = �i: This naturally leads to the following de�nition.

De�nition 5 (From types to behavioral strategies) A type ti induces a behavioral strat-
egy pair (�i; �j) if

(1) �tij = �j ; and

(2) after every history h; the conditional belief �i(ti; h) 2 �(Sj(h) � Tj) only assigns positive
probability to types tj for which �

tj
i = �i:

Condition (2) thus states that, after every history h; type ti believes �with probability 1 �
that player j believes that i�s future behavior is given by �i:

With this de�nition at hand it is now clear what it means that a type induces a subgame
perfect equilibrium, since a subgame perfect equilibrium is just a behavioral strategy pair satis-
fying some special conditions. In order to de�ne a subgame perfect equilibrium formally, we need
some additional notation �rst. Take some behavioral strategy pair (�i; �j); and some history h:
We denote by U �i (h; (�i; �j)) the �-discounted expected utility for player i; if the game would
start after history h, and if the players choose according to (�i; �j) in the subgame that starts
after history h:
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De�nition 6 (Subgame perfect equilibrium) (a) A behavioral strategy pair (�1; �2) is a
�-subgame perfect equilibrium if after every history h; and for both players i; we have that
U �i (h; �i; �j) � U �i (h; �0i; �j) for every behavioral strategy �0i:
(b) A behavioral strategy pair (�1; �2) is a uniform subgame perfect equilibrium if there
is some �� 2 (0; 1) such that for every � 2 [��; 1); for every history h; and for both players i; we
have that U �i (h; �i; �j) � U �i (h; �0i; �j) for every behavioral strategy �0i:

Hence, a �-subgame perfect equilibrium constitutes a �-Nash equilibrium in each of the
subgames.

4.2 Epistemic Characterization of Subgame Perfect Equilibrium

We will now characterize those types ti within an epistemic model that induce a �-subgame
perfect equilibrium. We will see that these are precisely the types that satisfy all the conditions
in common belief in future rationality, together with Bayesian updating and some �correct beliefs
conditions�. Before we state this result formally, we must �rst de�ne what we mean by these
�correct beliefs conditions�and Bayesian updating.

We say that a type ti believes that opponent j is correct about i�s beliefs, if ti only assigns
positive probability to opponent�s types who are correct about his full belief hierachy. Similarly,
we say that ti believes that j believes that i is correct about j�s beliefs, if ti only assigns positive
probability to opponent�s types tj that believe that i is correct about j�s beliefs. Since ti�s belief
hierarchy is encoded by his type, this leads to the following two de�nitions.

De�nition 7 (Correct beliefs assumption) Consider a �nite epistemic modelM = (Ti; �i)i2I :

(1) Type ti believes that j is correct about i�s beliefs, if after every history h; the condi-
tional belief �i(ti; h) 2 �(Sj(h) � Tj) only assigns positive probability to types tj that, after
every history h0; assign probability 1 to type ti:

(2) Type ti believes that j believes that i is correct about j�s beliefs, if after every history
h; type ti only assigns positive probability to types tj that believe that i is correct about j�s
beliefs.

We next de�ne Bayesian updating.

De�nition 8 (Bayesian updating) A type ti satis�es Bayesian updating if for every his-
tory h; and every history h0 following h with �i(ti; h)(Sj(h

0)� Tj) > 0; we have that

�i(ti; h
0)(Ej � ftjg) =

�i(ti; h)(Ej � ftjg)
�i(ti; h)(Sj(h

0)� Tj)

for every set Ej 2 �j(h0) and every tj 2 Tj :
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Remember that �j(h0) is the �-algebra on Sj(h0) we have introduced in Section 2. We say
that type ti believes that j satis�es Bayesian updating if, after every history h; the conditional
belief �i(ti; h) only assigns positive probability to types tj that satisfy Bayesian updating.

We are now ready to state our epistemic characterization of �-subgame perfect equilibrium
in two-player stochastic games.

Theorem 2 (Characterization of �-subgame perfect equilibrium) Consider a �nite two-
player stochastic game �, and a behavioral strategy pair (�1; �2) in �: Then, (�1; �2) is a �-
subgame perfect equilibrium, if and only if, there is a �nite epistemic modelM = (Ti; �i)i2I and
for both players i a type ti 2 Ti; such that

(1) ti induces (�1; �2);

(2) ti expresses common belief in future �-rationality,

(3) ti believes that j is correct about i�s beliefs, and believes that j believes that i is correct
about j�s beliefs,

(4) ti satis�es Bayesian updating, and believes that j satis�es Bayesian updating.

This theorem thus states that subgame perfect equilibrium is essentially equivalent to the
notion of common belief in future rationality, together with the �correct beliefs assumption�in
(3). In a similar way we can prove the following characterization of uniform subgame perfect
equilibrium.

Theorem 3 (Characterization of uniform subgame perfect equilibrium) Consider a �-
nite two-player stochastic game �, and a behavioral strategy pair (�1; �2) in �: Then, (�1; �2)
is a uniform subgame perfect equilibrium, if and only, there is a �nite epistemic model M =
(Ti; �i)i2I and for both players i a type ti 2 Ti; such that

(1) ti induces (�1; �2);

(2) ti expresses common belief in future uniform rationality,

(3) ti believes that j is correct about i�s beliefs, and believes that j believes that i is correct
about j�s beliefs,

(4) ti satis�es Bayesian updating, and believes that j satis�es Bayesian updating.

The proof is almost identical to the proof of Theorem 2, and is therefore omitted.

5 Existence Result

In this section we will show that �common belief in future �-rationality� and �common belief
in future uniform rationality� is possible in every �nite stochastic game. In fact we will prove
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a little bit more. We will show that for every �nite stochastic game we can construct a �nite
epistemic model in which all types are stationary (see De�nition 2), all types express common
belief in future �- (or uniform) rationality, and all types satisfy Bayesian updating. The proof
will be constructive, as we will show how to construct such epistemic models.

5.1 Common Belief in Future Rationality is Always Possible

We �rst show the following important result. Remember that S�i[s�i; h] denotes the set of
opponents�strategy combinations s0�i that coincide with s�i at all histories that weakly follow
h:

Lemma 1 (Stationary strategies are optimal under stationary beliefs) Consider a �-
nite stochastic game �: Let s�i be a pro�le of stationary strategies for i�s opponents. Let
bi be a conditional belief vector that assigns, at every history h; probability 1 to S�i[s�i; h]:
Then,

(a) for every � 2 (0; 1) there is a stationary strategy for player i that is �-optimal under bi; and
(b) there is a stationary strategy for player i that is uniformly optimal under bi:

That is, if we always assign full probability to the same stationary continuation strategy
for each of our opponents, then there will be a stationary strategy for us that is optimal after
every history. We are now in a position to prove that common belief in future �-rationality is
always possible in every �nite stochastic game.

Theorem 4 (Common belief in future �-rationality is always possible) Consider a �-
nite stochastic game �; and some � 2 (0; 1): Then, there is a �nite epistemic model M =
(Ti; �i)i2I for � such that

(a) every type in M expresses common belief in future �-rationality,

(b) every type in M is stationary, and.

(c) every type in M satis�es Bayesian updating.

In fact, we show more than mere existence here. We prove that for every stochastic game
we can construct very simple �read �stationary��types that express common belief in future
�-rationality. That is, if our only aim is to design at least one belief hierarchy for a player that
expresses common belief in future �-rationality, then the above theorem ensures that we may
safely restrict to stationary types.

The critical reader may wonder whether a stationary type automatically satis�es Bayesian
updating. The answer is �almost�. To see this, consider a stationary type ti: By de�nition,
we can �nd a pro�le s�i of stationary opponents� strategies, and a pro�le t�i of opponents�
types, such that �i(ti; h)(S�i[s�i; h]�ft�ig) = 1 for all histories h: Recall that S�i[s�i; h] is the
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set of opponents�strategy pro�les that coincide with s�i at all histories that weakly follow h:
This implies that at all histories that are consistent with s�i; type ti will keep believing that his
opponents will choose according to s�i in the future. That is, type ti will appy Bayesian updating
to his beliefs about the opponents�future behavior. However, at histories h that are consistent
with s�i; type ti may change his beliefs about the opponents�behavior at counterfactual histories
h0 � that is, histories h0 that do not precede, nor weakly follow, h: Hence, the conditional
beliefs of type ti about the opponents�counterfactual behavior may violate Bayesian updating.
Consequently, condition (b) above does not imply condition (c) in a strict sense.

Similarly to Theorem 4, we can prove that common belief in future uniform rationality is
always possible as well.

Theorem 5 (Common belief in future uniform rationality is always possible) Consider
a �nite stochastic game �: Then, there is a �nite epistemic model M = (Ti; �i)i2I for � such
that

(a) every type in M expresses common belief in future uniform rationality,

(b) every type in M is stationary, and.

(c) every type in M satis�es Bayesian updating.

The proof for this theorem is almost identical to the proof of Theorem 4. The only di¤erence
is that we must use part (b), instead of part (a), in Lemma 1. For that reason, this proof is
omitted.

5.2 Two Examples

We will now illustrate the existence result by means of two well-known examples in the literature
on stochastic games: the Big Match by Gillette (1957) and a quitting game by Solan and Vieille
(2003). For both examples, it has been shown that subgame perfect equilibria fail to exist if
we use the limiting average reward criterion. As uniform optimality implies optimality under
the limiting average reward criterion, it follows that in both examples there is no uniform
subgame perfect equilibrium. Nevertheless, our Theorem 5 guarantees that common belief in
future uniform rationality is possible for both games. In fact, for both games we will explicitly
construct epistemic models where all types express common belief in future uniform rationality,
all types are stationary, and all types satisfy Bayesian updating.

Example 1. The Big Match.

The Big Match, introduced by Gillette (1957), has become a real classic in the literature on
stochastic games. It is a two-player zero-sum game with three states, two of which are absorbing.
Here, by �absorbing�we mean that if the game reaches this state, it will never leave this state
thereafter. In state 1 each player has only one action, and the instantaneous utilities are (1;�1).
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L R

C (0; 0) (1;�1)
S (1;�1)� (0; 0)�

Figure 1: The Big Match

From state 1 the transition to state 1 occurs with probability 1, so state 1 is absorbing. In state
2 each player has only one action, and the instantaneous utilities are (0; 0). From state 2 the
transition to state 2 occurs with probability 1, so also state 2 is absorbing. In state 0 player 1
can play C (continue) or S (stop), while player 2 can play L (left) or R (right), the instantaneous
utilities being given by the table in Figure 1. After actions (C;L) or (C;R), the transition to
state 0 occurs, after (S;L) transition to state 1 occurs, while after (S;R) transition to state 2
occurs. So, the � in the table above represents a situation where the game enters an absorbing
state.

In this zero-sum game, player 2 can guarantee �12 by always randomizing equally between
L and R: Blackwell and Ferguson (1968) have shown, however, that for the limiting average
reward the game has no value, and that player 1 has no max-min strategy. As a consequence,
there is no uniform subgame perfect equilibrium for this game. At the same time, Blackwell and
Ferguson (1968) construct for every " > 0 a strategy for player 1 that guarantees him at least
1
2 � ":

We will now construct an epistemic model in which all types express common belief in future
uniform rationality. With a slight abuse of notation we write C to denote player 1�s stationary
strategy in which he always plays action C in state 0, and similarly for S, L, and R. Now
consider the chain of stationary strategy pairs:

(S;R)! (C;R)! (C;L)! (S;L)! (S;R):

In this chain, each stationary strategy is �-optimal, for every � 2 (0; 1), under the belief that the
opponent will play the preceding strategy in the future. In particular, each of these strategies
is uniformly optimal as well for these beliefs. This chain leads to the following epistemic model
with types

T1 = ftC1 ; tS1 g; T2 = ftL2 ; tR2 g

and beliefs
b1(t

S
1 ; h) = (L; tL2 )

b1(t
C
1 ; h) = (R; tR2 )

b2(t
L
2 ; h) = (C; tC1 )

b2(t
R
2 ; h) = (S; tS1 )

:
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state 1
C
 ! state 2

S # # S
state 1� state 2�

(�1; 2) (�2; 1)

Figure 2: Quitting game

Here, b1(tS1 ; h) = (L; t
L
2 ) means that type t

S
1 ; after every possible history h; assigns probability

1 to player 2 choosing the stationary strategy L in the remainder of the game, and to player 2
having type tL2 : Similarly for the other types. The full beliefs of these types can be constructed
such that they all satisfy Bayesian updating.

Then, every type is stationary, every type satis�es Bayesian updating, and every type believes
in the opponent�s future �- (and uniform) rationality. As a consequence, every type expresses
common belief in future �- ( and uniform) rationality.

Example 2. A quitting game.

We consider a quitting game that has been introduced by Solan and Vieille (2003). It is
a two-player stochastic game with four states, denoted 1, 2, 1�, and 2�. The states 1� and 2�

are absorbing, and the players have only one action in both of these states. In state x 2 f1; 2g
player x can choose actions S or C (stop or continue), and the other player has only one action.
If player x plays S, the game moves to state x�, while if he plays C, the game moves to the state
3 � x. The instantaneous utilities in state 1� are (�1; 2), in state 2� they are (�2; 1), and in
states 1 and 2 they are (0; 0). See Figure 2. We write Ci to denote player i�s stationary strategy
in which he plays action C in state i, and similarly for Si. Now consider the chain of stationary
strategy pairs

(S1; S2)! (S1; C2)! (C1; C2)! (C1; S2)! (S1; S2):

In this chain, each stationary strategy is �-optimal, for every � 2 [12 ; 1); under the belief that
the opponent plays the preceding stationary strategy in the future. In particular, each of these
strategies is uniformly optimal under these beliefs. This leads to the following epistemic model
with types

T1 = ftC11 ; t
S1
1 g; T2 = ft

C2
2 ; t

S2
2 g

and beliefs
b1(t

C1
1 ; h) = (C2; t

C2
2 )

b1(t
S1
1 ; h) = (S2; t

S2
2 )

b2(t
C2
2 ; h) = (S1; t

S1
1 )

b2(t
S2
2 ; h) = (C1; t

C1
1 ):
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Again, the full beliefs of these types can be constructed in such a way that all types satisfy
Bayesian updating.

Then, by construction, every type is stationary and satis�es Bayesian updating. Moreover,
it may be veri�ed that all types believe in the opponents�future �-rationality for all � 2 [12 ; 1):
Consequently, all types express common belief in future �-rationality as well, for all � 2 [12 ; 1):
Similarly, it can be shown that all types express common belief in future uniform rationality,

5.3 An Impossibility Result

As we have mentioned above, the Big Match and the quitting game contain no uniform subgame
perfect equilibrium. At the same time, our Theorem 5 guarantees that we can always �nd a
�nite epistemic modelM in which all types express common belief in future uniform rationality,
all types are stationary, and all types satisfy Bayesian updating.

By construction, every type that is stationary in a two-player game always induces a be-
havioral strategy pair (�1; �2): To see this, consider a stationary type ti in a two-player game.
Then, type ti induces the behavioral strategy �j = �tij for his opponent, as we have seen. As
ti is stationary, it always assigns probability 1 to the same type for player j �say type tj : Let
�i = �

tj
i : Then, by construction, type ti induces the behavioral strategy pair (�1; �2):

Also, if all types in M satisfy Bayesian updating, then all types in M also believe that the
opponent satis�es Bayesian updating.

By combining all these insights, and using Theorem 5, we conclude that for every �nite
two-player stochastic game we can always �nd a �nite epistemic model M in which all types

(1) induce some behavioral strategy pair (�1; �2)
(2) express common belief in future uniform rationality, and
(4) satisfy Bayesian updating, and believe that the opponent satis�es Bayesian updating.
Note that these are precisely the conditions (1), (2) and (4) in Theorem 3.
Suppose now that some type ti in M would additionally satisfy condition (3), stating that

ti believes that j is correct about i�s beliefs, and believes that j believes that i is correct about
j�s beliefs. Then, by Theorem 3, the behavioral strategy pair (�1; �2) induced by ti must be a
uniform subgame perfect equilibrium. But we have seen that in some two-player games �like the
Big Match and the quitting game �there is no uniform subgame perfect equilibrium. For such
games, we must therefore conclude that there is no �nite epistemic model M in which a type
satis�es the conditions (1) �(4) above. This holds for every two-player stochastic game in which
a uniform subgame perfect equilibrium fails to exist. This leads to the following impossibility
result.

Theorem 6 (Impossibility Result) (a) Consider a �nite two-player stochastic game for which
a uniform subgame perfect equilibrium does not exist. Then, there is no �nite epistemic model
M in which some type ti
(1) induces a behavioral strategy pair (�1; �2);
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(2) expresses common belief in future uniform rationality,
(3) believes that j is correct about i�s beliefs, and believes that j believes that i is correct about
j�s beliefs, and
(4) satis�es Bayesian updating, and believes that j satis�es Bayesian updating.

(b) However, for every �nite two-player stochastic game there is a �nite epistemic model M in
which all types satisfy conditions (1), (2) and (4) above.

So, conditions (1), (2) and (4) are always possible in every �nite two-player stochastic game,
whereas these conditions may be logically inconsistent with the correct beliefs condition (3) in
some of these games. This actually reveals why a uniform subgame perfect equilibrium may
not exist in some two-player games: The reason is that in those games, common belief in future
uniform rationality, together with stationarity and Bayesian updating, is not compatible with the
correct beliefs condition in (3). However, if we no longer insist on the correct beliefs condition in
(3), then the existence problem vanishes even for such games, as part (b) of the theorem above
shows.

As an illustration, let us have a look at the epistemic models we have constructed above for
the Big Match and the quitting game. In both models, all types express common belief in future
uniform rationality, all types induce a behavioral strategy pair, and all types satisfy Bayesian
updating. At the same time, none of these types satis�es the correct beliefs condition (3).

Consider, for instance, type tC1 in the epistemic model for the Big Match. This type believes
that player 2 believes that player 1�s type is tS1 ; and not t

C
1 : So, type t

C
1 believes that player 2

is incorrect about 1�s beliefs, and hence does not satisfy the correct beliefs condition (3). The
same holds for all the other types in the two epistemic models.

So, indeed, no type in these two models satis�es the correct beliefs condition (3). This must
necessarily be so, since if any of these types would have satis�ed the correct beliefs condition
(3), then such type would have induced a uniform subgame perfect equilibrium. This is not
possible, however, as a uniform subgame perfect equilibrium does not exist in these two games.

6 Recursive Procedure

In Theorems 4 and 5 we have seen that for every �nite stochastic game, we can always construct
an epistemic model M in which all types are stationary, satisfy Bayesian updating, and express
common belief in future �- (or uniform) rationality. In this section we are interested in �nding
all stationary strategies that are optimal for some type in such epistemic model. We say that
these strategies can rationally be chosen by a stationary type under common belief in future �-
(or uniform) rationality.

De�nition 9 (Optimal strategies under common belief in future rationality ) We say
that a stationary strategy si for player i can rationally be chosen by a stationary type under
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common belief in future �- (or uniform) rationality, if there is some �nite epistemic model
M = (Ti; �i)i2I in which all types are stationary, satisfy Bayesian updating, and express com-
mon belief in future �- (or uniform) rationality, and if there is some type ti 2 Ti; such that si is
�- (or uniformly) optimal for ti:

The purpose of this section is to construct a recursive procedure that �nds all stationary
strategies that can rationally be chosen by a stationary type under common belief in future �-
(or uniform) rationality. For the sake of simplicity, we focus on the case of �-optimality in the
remainder of this section. However, everything we say can directly be translated to the case of
uniform optimality.

To introduce our recursive procedure, we �rst need some new notation. Choose a �xed
� 2 (0; 1): Consider some player i; and a pro�le s�i 2 S�i of stationary strategies for i�s
opponents. Let bi[s�i] be a conditional belief vector for player i that, after every history h,
assigns probability 1 to one particular strategy pro�le in S�i[s�i; h]. By S��i (s�i) we denote the
set of stationary strategies for player i that are �-optimal under the conditional belief vector
bi[s�i]: Note that S��i (s�i) only depends on s�i; not on the speci�c conditional belief vector
bi[s�i] we choose. By Lemma 1 we know that S��i (s�i) is non-empty. Our recursive procedure
consists of an iterated application of the �optimal strategy�operators S��i :

Algorithm 1 (Iterated elimination of non-optimal stationary strategies) Consider some
�nite stochastic game � and some discount factor � 2 (0; 1):

Induction start. For every player i; let S�;0i be the set of all stationary strategies for player i:

Induction step. Let k � 1; and suppose that S�;k�1i has already been de�ned for all players i:
Then, for every player i; let

S�;ki =
[

s�i2S�;k�1�i

S��i (s�i):

It is easily seen that this recursive procedure must terminate after �nitely many rounds, as
the set of stationary strategies is �nite for every player. For every player i; let S�;1i := \k�0S�;ki
be the set of stationary strategies that survive the procedure of iterated elimination of non-
optimal stationary strategies. It is clear that S�;1i must be non-empty for all players i:

We now arrive at the following characterization result.

Theorem 7 (Characterization Result) Consider some �nite stochastic game � and a dis-
count factor � 2 (0; 1): Then, a stationary strategy si can rationally be chosen by a stationary
type under common belief in future �-rationality, if and only if, si 2 S�;1i :
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Figure 3: Fishery game

That is, the procedure delivers all stationary strategies �and only those �that are optimal
for stationary types that express common belief in future �-rationality. We �nally illustrate our
recursive procedure by means of an example.

Example 3. Fishery Game.

Two �shery companies, 1 and 2, �sh from the same lake. In every period, the state of the lake
is either h (high amount of �sh) or l (low amount of �sh), and both companies must decide
whether to be greedy (G) or non-greedy (N): The instantaneous utilities for both companies at
the two possible states are given in Figure 3. If at state h at least one of the companies chooses
to be greedy, then the state of the lake will move to l with probability 1 (indicated by �!). If at
state h both companies are non-greedy, then the state of the lake will stay at h with probability
1 (indicated by �).

Similarly, if at state l at least one company chooses to be greedy, then the state of the lake
will stay at l with probability 1 (indicated by �). If at state l both companies are non-greedy,
then the state of the lake will move to state h with probability 1 (indicated by  �).

We �rst run the recursive procedure for the case of �-optimality, with � = 0:5: It may be
veri�ed that for both players i;

S��i (sj) = f(Gh; Gl)g

for all stationary strategies sj of opponent j: Here, (Gh; Gl) denotes the stationary strategy for
player i in which he always chooses G: That is, it is always optimal to be greedy at both states,
irrespective of which stationary strategy is chosen by the opponent. But then,

S�;1i = f(Gh; Gl)g

for both players i: So, for � = 0:5; under common belief in future �-rationality with a stationary
type, both players would always be greedy at both states.
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We next run the recursive procedure for the case of uniform optimality. Then, for both
players i;

S�i ((Gh; Gl)) = f(Gh; Gl)g;
S�i ((Gh; Nl)) = f(Gh; Gl)g;
S�i ((Nh; Gl)) = f(Nh; Gl)g;
S�i ((Nh; Nl)) = f(Gh; Gl)g:

This implies that S1i = f(Gh; Gl); (Nh; Gl)g for both players i:
So,

S2i =
[
sj2S1j

S�i (sj) = f(Gh; Gl); (Nh; Gl)g:

It then follows that Ski = f(Gh; Gl); (Nh; Gl)g for all k � 3; and hence

S1i = f(Gh; Gl); (Nh; Gl)g

for both players i: So, under common belief in future uniform rationality with a stationary type,
both players would always be greedy at state l; and could either be greedy or non-greedy at
state h:

7 Proofs

Proof of Theorem 2. (a) Take �rst a �-subgame perfect equilibrium (�1; �2):We will construct
an epistemic model M = (Ti; �i)i2I ; and choose for both players i a type ti 2 Ti within it, that
satis�es the conditions (1) �(4) above.

Let T1 = ft1g and T2 = ft2g; so we only consider one type for each player. Fix a player i:We
transform �j into a conditional belief vector b

�j
i for player i about j�s strategy choice, as follows.

Consider a history h = ((x1; a1); :::; (xk�1; ak�1); xk) of length k; and for every m � k � 1 let
hm = ((x1; a1); :::; (xm�1; am�1); xm) be the induced history of length m: Let �hj be a modi�ed
behavioral strategy such that

(i) �hj (h
m)(amj ) = 1 for every m � k � 1; and

(ii) �hj (h
0) = �j(h0) for all other histories h0:

Hence, �hj assigns probability 1 to all the player j actions leading to h; and coincides with
�j otherwise.

Remember that, for every strategy sj 2 Sj(h) and every m � k; we denote by [sj ]m the set
of strategies in Sj(h) that coincide with sj on histories up to length m: The �-algebra �j(h)
we use is generated by these sets [sj ]m; with sj 2 Sj(h) and m � k: Let H�m be the �nite
set of histories of length at most m. Then, let b�ji (h) 2 �(Sj(h)) be the unique probability
distribution on Sj(h) such that
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b
�j
i (h)([sj ]m) :=

Y
h02H�m

�hj (h
0)(sj(h

0)) (1)

for every strategy sj 2 Sj(h) and every m � k: Note that b
�j
i (h) is indeed a probability distrib-

ution on Sj(h) as, by construction, �hj assigns probability 1 to all player j actions leading to h:
In this way, the behavioral strategy �j induces a conditional belief vector b

�j
i = (b

�j
i (h))h2H for

player i about j�s strategy choices. Moreover, the conditional belief b�ji (h) 2 �(Sj(h)) has the
property that the induced belief about j�s future behavior is given by �j :

For both players i; we de�ne the conditional beliefs �i(ti; h) 2 �(Sj(h) � Tj) about the
opponent�s strategy-type pairs as follows. At every history h of length k; let �i(ti; h) 2 �(Sj(h)�
Tj) be the unique probability distribution such that

�i(ti; h)([sj ]m � ftjg) := b
�j
i (h)([sj ]m) (2)

for every strategy sj 2 Sj(h) and all m � k: So, type ti believes, after every history h, that
player j is of type tj ; and that player j will choose according to �j in the game that lies ahead.
This completes the construction of the epistemic model M = (Ti; �i)i2I :

Choose an arbitrary player i: We show that type ti satis�es the conditions (1) �(4) above.

(1) We �rst show that �tij = �j : Take some history h = ((x1; a1); :::; (xk�1; ak�1); xk) of
length k; and some action aj 2 Aj(xk): Let

[Sj(h; aj)]k := f[sj ]k j sj 2 Sj(h; aj)g

be the �nite collection of equivalence classes that partitions Sj(h; aj): Then,

�tij (h)(aj) = �i(ti; h)(Sj(h; aj)� Tj)
= b

�j
i (h)(Sj(h; aj))

=
X

[sj ]k2[Sj(h;aj)]k

b
�j
i (h)([sj ]k)

=
X

[sj ]k2[Sj(h;aj)]k

Y
h02H�k

�hj (h
0)(sj(h

0))

= �hj (h)(aj)

= �j(h)(aj);

which implies that �tij = �j : Here, the �rst equality follows from the de�nition of �
ti
j : The second

equality follows from (2). The third equality follows from the observation that [Sj(h; aj)]k
constitutes a �nite partition of the set Sj(h; a); and that each member of [Sj(h; aj)]k is in
the �-algebra �j(h): The fourth equality follows from (1). The �fth equality follows from

25



two observations: First, that sj 2 Sj(h; aj); if and only if, sj(hm) = amj for all m � k � 1
and sj(h) = aj ; where hm = ((x1; a1); :::; (xm�1; am�1); xm) for all m � k � 1: The second
observation is that �hj (h

m)(amj ) = 1 for all m � k � 1: The sixth equality follows from the
fact that �hj coincides with �j on histories that weakly follow h: In particular, this implies that
�hj (h) = �j(h):

In a similar way, we can show that �tji = �i: Since ti only assigns positive probability to type
tj ; it follows that type ti induces the behavioral strategy pair (�1; �2):

(2) We start by showing that type ti believes in j�s future �-rationality. Consider an arbitrary
history h: We show that �i(ti; h)(Sj � Tj)h;��opt = 1:

Since (�i; �j) is a subgame perfect equilibrium, we have at every history h0 weakly following
h that

U �j (h
0; �j ; �i) � U �j (h0; �0j ; �i)

for every behavioral strategy �0j : This implies that

U �j (h
0; �j ; �i) � U �j (h0; s0j ; �i)

for all s0j 2 Sj(h0): By (1), this is equivalent to stating that

U �j (h
0; b

�j
i (h); b

�i
j (h

0)) � U �j (h0; s0j ; b�ij (h
0)) (3)

for every history h0 weakly following h; and every s0j 2 Sj(h0): Let

Soptj (h0) := fsj 2 Sj j U �j (h0; sj ; b�ij (h
0)) � U �j (h0; s0j ; b�ij (h

0)) for all s0j 2 Sj(h0)g;

and let

Sh;optj := fsj 2 Sj(h) j sj 2 Soptj (h0) for every history h0 weakly following hg:

Then, by (3) it follows that b�ji (h)(S
h;opt
j ) = 1:

Since the conditional belief of type tj at h0 about i�s strategy is given by b
�i
j (h

0); it follows

that Sh;optj contains exactly those strategies sj 2 Sj(h) that are �-optimal for type tj at all
histories weakly following h: Moreover, the conditional belief that type ti has at h about j�s
strategy is given by b�ji (h); for which we have seen that b

�j
i (h)(S

h;opt
j ) = 1: By combining these

two insights, we obtain that

�i(ti; h)(Sj � Tj)h;��opt = �i(ti; h)(S
h;opt
j � ftjg) = b

�j
i (h)(S

h;opt
j ) = 1:

As this holds for every history h; we conclude that ti believes in j�s future �-rationality.
Since this holds for both players i; and since T1 = ft1g and T2 = ft2g; it follows that both

types t1 and t2 express common belief in future �-rationality, which was to show.
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(3) By the construction of our epistemic model M; type ti always assigns probability 1 to
type tj which, in turn, always assigns probability 1 to type ti: Hence, type ti believes that j is
correct about i�s beliefs, and believes that j believes that i is correct about j�s beliefs.

(4) Take some history hk = ((x1; a1); :::; (xk�1; ak�1); xk) in Hk; and some history hk+1 =
((x1; a1); :::; (xk�1; ak�1); (xk; ak); xk+1) in Hk+1 that immediately follows hk; and for which
�i(ti; h

k)(Sj(h
k+1)� ftjg) > 0: Consider some m � k + 1; and some sj 2 Sj(hk+1): Then,

�i(ti; h
k)([sj ]m � ftjg) = b

�j
i (h

k)([sj ]m)

=
Y

h2H�m

�h
k

j (h)(sj(h))

= �h
k

j (h
k)(sj(h

k))
Y

h2H�mnfhkg

�h
k+1

j (h)(sj(h))

= �h
k

j (h
k)(akj )

Y
h2H�mnfhkg

�h
k+1

j (h)(sj(h)): (4)

Here, the �rst equality follows from equation (2). The second equality follows from equation
(1). The third equality follows from the observation that �h

k

j and �h
k+1

j coincide on all histories
except hk: The fourth equality follows from the fact that sj(hk) = akj ; since sj 2 Sj(hk+1):

On the other hand,

�i(ti; h
k)(Sj(h

k+1)� ftjg) = �i(ti; h
k)(Sj(h

k; akj )� ftjg)
= �tij (h

k)(akj )

= �j(h
k)(akj )

= �h
k

j (h
k)(akj ): (5)

The �rst equality follows from the observation that Sj(hk+1) = Sj(hk; akj ): The second equality
follows from the de�nition of �tij : The third equality follows from the fact that �tij = �j ; as we

have shown above. The fourth equality follows from the observation that �h
k

j (h
k) = �j(h

k):

By equations (4) and (5) it follows, for every sj 2 Sj(hk+1);

�i(ti; h
k)([sj ]m � ftjg)

�i(ti; h
k)(Sj(hk+1)� ftjg)

=
Y

h2H�mnfhkg

�h
k+1

j (h)(sj(h))

=
Y

h2H�m

�h
k+1

j (h)(sj(h)):

= b
�j
i (h

k+1)([sj ]m)

= �i(ti; h
k+1)([sj ]m � ftjg):
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Here, the second equality follows from the fact that �h
k+1

j (hk)(sj(h
k)) = �h

k+1

j (hk)(akj ) = 1;

by construction of �h
k+1

j : The third and fourth equality follow from equations (1) and (2),
respectively.

Hence, we have shown that

�i(ti; h
k+1)([sj ]m � ftjg) =

�i(ti; h
k)([sj ]m � ftjg)

�i(ti; h
k)(Sj(hk+1)� ftjg)

for every sj 2 Sj(hk+1) and every m � k + 1: As the �-algebra �j(hk+1) is generated by these
sets [sj ]m; it follows that

�i(ti; h
k+1)(Ej � ftjg) =

�i(ti; h
k)(Ej � ftjg)

�i(ti; h
k)(Sj(hk+1)� ftjg)

for every history h 2 Hk; every history hk+1 2 Hk+1 following hk with �i(ti; h
k)(Sj(h

k+1) �
ftjg) > 0; and every set Ej 2 �j(hk+1): But then, it follows that this equality also holds for every
history h; every history h0 following h with �i(ti; h)(Sj(h

0)� ftjg) > 0; and every Ej 2 �j(h0):
So, type ti indeed satis�es Bayesian updating, as was to show. In the same way, it can be shown
that also tj satis�es Bayesian updating, so ti believes that j satis�es Bayesian updating too.

Summarizing, we have shown that both types ti and tj satisfy the conditions (1) �(4) above.

(b) Assume next that there is a �nite epistemic model M = (Ti; �i)i2I ; and for both players i
a type ti 2 Ti; such that ti induces (�i; �j); and satis�es conditions (2) �(4) above. We show
that (�i; �j) must be a �-subgame perfect equilibrium. We proceed in two steps.

Step 1: There is a type tj 2 Tj such that ti always assigns probability 1 to tj :
Proof of Step 1. Suppose that there are two di¤erent types, tj and t0j ; and two histories h; h

0;
such that �i(ti; h) assigns positive probability to tj ; and �i(ti; h

0) assigns positive probability to
t0j : Since, by the �rst part in condition (3), ti believes that j is correct about i�s beliefs, it must
be the case that tj always assigns probability 1 to type ti: But then, tj always believes with
probability 1 that player i; at history h0; assigns positive probability to type t0j 6= tj : This means
that type tj does not believe that i is correct about j�s beliefs: As a consequence, ti does not
believe that j believes that i is correct about j�s beliefs, which would contradict the second part
of condition (3). Hence, there must be single type tj such that ti always assigns probability 1
to tj : This completes the proof of step 1.

By Step 1, and the assumption that ti believes that j is correct about i�s beliefs, it follows
that there is a single type tj such that (i) ti always assigns probability 1 to tj ; and (ii) tj always
assigns probability 1 to ti: Since ti induces (�i; �j); it must then be that �

ti
j = �j and �

tj
i = �i:

Moreover, as ti satis�es Bayesian updating, and believes that j satis�es Bayesian updating, both
ti and tj must satisfy Bayesian updating.
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Step 2: The behavioral strategy pair (�i; �j) is a �-subgame perfect equilibrium.

Proof of Step 2. Take a player i and a history h: We must show that

U �i (h; �i; �j) � U �i (h; �0i; �j) (6)

for every behavioral strategy �0i: By (1) this is equivalent to showing that

U �i (h; b
�i
j (h); b

�j
i (h)) � U

�
i (h; s

0
i; b

�j
i (h)) (7)

for all s0i 2 Si(h): Let

Sopti (h) := fsi 2 Si(h) j U �i (h; si; b
�j
i (h)) � U

�
i (h; s

0
i; b

�j
i (h)) for all s

0
i 2 Si(h)g:

Then, (7) is equivalent to showing that

b�ij (h)(S
opt
i (h)) = 1: (8)

As �tij = �j and ti satis�es Bayesian updating, it follows that the conditional belief of type
ti at h about j�s continuation strategy is given by b

�j
i (h): But then,

Sopti (h) = fsi 2 Si(h) j si is �-optimal for ti at history hg:

As ti; by assumption, believes that j believes in i�s future �-rationality, it must be that tj believes
in i�s future �-rationality. In particular,

�j(tj ; h)(Si � Ti)h;��opt = 1:

As tj assigns probability 1 to ti; and every strategy si which is �-optimal for ti at all histories
weakly following h must be in Sopti (h); it follows that

�j(tj ; h)(S
opt
i (h)� ftig) = 1: (9)

Since �tji = �i and tj satis�es Bayesian updating, it follows that the conditional belief of
type tj at h about i�s continuation strategy is given by b

�i
j (h): So, (9) implies that

b�ij (h)(S
opt
i (h)) = 1;

which establishes (8). This, as we have seen, implies (6), stating that

U �i (h; �i; �j) � U �i (h; �0i; �j)

for every behavioral strategy �0i:
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Since this holds for both players i and every history h, it follows that (�i; �j) is a �-subgame
perfect equilibrium. This completes the proof of Step 2, and actually completes the proof of this
theorem. �

Proof of Lemma 1. We construct the following Markov decision problem MDP for player
i: The set of states X in MDP is simply the set of states in the stochastic game �; and for
every state x the set of actions A(x) in MDP is simply the set of actions Ai(x) for player i in
�: For every state x and action a 2 A(x); let the utility u(x; a) in MDP be the utility that
player i would obtain in � if the game reaches x; player i chooses a at x; and the opponents
choose according to s�i at x: Note that s�i is a pro�le of stationary strategies, and hence the
behavior induced by s�i at x is independent of the history. So, u(x; a) is well-de�ned. Finally,
we de�ne the transition probabilities q(yjx; a) in MDP . For every two states x; y and every
action a 2 A(x); let q(yjx; a) be the probability that state y will be reached in � next period if
the game is at x; player i chooses a at x; and i�s opponents choose according to s�i at x: Again,
q(yjx; a) is well-de�ned since, by stationarity of s�i; the behavior of s�i at x is independent of
the history. This completes the construction of MDP:

We will now prove part (a) of the theorem. Take some � 2 (0; 1): By part (a) in Theorem
1, we know that player i has a �-optimal strategy ŝi in MDP which is stationary. So, we can
write ŝi = (ŝi(x))x2X : Now, let si be the stationary strategy for player i in the game � which
prescribes, after every history h; the action ŝi(x(h)): Then, it may easily be veri�ed that the
stationary strategy si is �-optimal for player i in �; given the conditional belief vector bi:

Part (b) of the theorem can be shown in a similar way, by relying on part (b) in Theorem
1. �

Proof of Theorem 4. We start by recursively de�ning pro�les of stationary strategies, as
follows. Let s1 = (s1i )i2I be an arbitrary pro�le of stationary strategies for the players. Let
bi[s

1
�i] be a conditional belief vector for player i that assigns, after every history h; probability

1 to some strategy in S�i[s1�i; h]: We can choose bi[s
1
�i] in such a way that it satis�es Bayesian

updating. We know from Lemma 1 that for every player i there is a stationary strategy s2i which
is �-optimal, given the conditional belief vector bi[s1�i]: Let s

2 := (s2i )i2I be the new pro�le of
stationary strategies thus obtained. By recursively applying this step, we obtain an in�nite
sequence s1; s2; s3; :: of pro�les of stationary strategies.

As there are only �nitely many states in �; and �nitely many actions at every state, there are
also only �nitely many stationary strategies for the players in the game. Hence, there are also
only �nitely many pro�les of stationary strategies. Therefore, the in�nite sequence s1; s2; s3; :::
must go through a cycle

sm ! sm+1 ! sm+2 ! :::! sm+R ! sm+R+1

where sm+R+1 = sm: We will now transform this cycle into an epistemic model where (a) all
types express common belief in future �-rationality, (b) all types are stationary, and (c) all types
satisfy Bayesian updating.
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For every player i; we de�ne the set of types

Ti = ftmi ; tm+1i ; :::; tm+Ri g;

where tm+ri is a type that, after every history h; holds belief bi[sm+r�1�i ](h) about the opponents�
strategies, and assigns probability 1 to the event that every opponent j is of type tm+r�1j .

If r = 0; then type tmi , after every history h; holds belief bi[s
m+R
�i ](h) about the opponents�

strategies, and assigns probability 1 to the event that every opponent j is of type tm+Rj : This
completes the construction of the epistemic model M:

Then, by construction, every type in the epistemic model is stationary, and satis�es Bayesian
updating, since the conditional belief vectors bi[sk�i] are chosen such that they satisfy Bayesian
updating. Moreover, every type tm+ri holds the conditional belief vector bi[sm+r�1�i ] about the
opponents� strategies. By construction, the stationary strategy sm+ri is �-optimal under the
conditional belief vector bi[sm+r�1�i ]; and hence sm+ri is �-optimal for the type tm+ri ; for every
type tm+ri in the model.

By construction, every type tm+ri assigns, after every history h; and for every opponent j;
probability 1 to the set of opponents�strategy-type pairs Sj [sm+r�1j ; h] � ftm+r�1j g: As every
strategy s0j 2 Sj [sm+r�1j ; h] coincides with sm+r�1j at all histories weakly following h; and strategy
sm+r�1j is �-optimal for type tm+r�1i at all histories weakly following h; it follows that every
strategy s0j 2 Sj [sm+r�1j ; h] is �-optimal for type tm+r�1i at all histories weakly following h: That
is,

Sj [s
m+r�1
j ; h]� ftm+r�1j g � (Sj � Tj)h;��opt for all histories h:

Since �i(t
m+r
i ; h)(S�i[s

m+r�1
�i ; h]�ftm+r�1�i g) = 1 for all histories h; it follows that �i(tm+ri ; h)(S�i�

T�i)h;��opt = 1 for all histories h: This means, however, that tm+ri believes in the opponents�
future �-rationality.

As this holds for every type tm+ri in the model M; we conclude that all types in M believe
in the opponents�future �-rationality. Hence, as a consequence, all types in M express common
belief in future �-rationality. This completes the proof. �

Proof of Theorem 7. (a) We �rst show that every stationary strategy si which can rationally
be chosen by a stationary type under common belief in future �-rationality, must be in S�;1i : In
fact we will show, by induction on k; that such strategies si must be in S

�;k
i for every k � 0:

Induction start. For k = 0 this is automatically true, as S�;0i contains all stationary
strategies.

Induction step. Take some k � 1; and suppose that the statement is true for k� 1; for all
players i: Now, take some stationary strategy si that can rationally be chosen by a stationary
type under common belief in future �-rationality. Then, there is some �nite epistemic model
M = (Ti; �i)i2I ; where all types are stationary, satisfy Bayesian updating, and express common
belief in future �-rationality, and some type ti 2 Ti; such that si is �-optimal for ti: As type ti
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is stationary, there is a pro�le s�i = (sj)j 6=i of stationary opponents�strategies, and a pro�le
t�i = (tj)j 6=i of opponents�types, such that type ti; after every history h; assigns probability 1
to S�i[s�i; h]�ft�ig: Since ti expresses common belief in the opponents�future �-rationality, sj
must be �-optimal for tj at all histories, and tj must express common belief in the opponents�
future �-rationality, for all opponents j 6= i: Moreover, as M contains only types that are
stationary and satisfy Bayesian updating, tj is stationary and satis�es Bayesian updating for all
j 6= i: So, for every opponent j 6= i; the stationary strategy sj can rationally be chosen by a
stationary type under common belief in future �-rationality. By our induction assumption we
then know that sj 2 S�;k�1j for all j 6= i; and hence s�i 2 S�;k�1�i :

Let bi[s�i] be a conditional belief vector for player i that, after every history h, assigns
probability 1 to one particular strategy pro�le in S�i[s�i; h]. Since the stationary strategy si
is �-optimal for ti; and ti assigns, after every history h; probability 1 to S�i[s�i; h] � ft�ig;
it follows that si is �-optimal under the conditional belief vector bi[s�i]: We have seen that
s�i 2 S�;k�1�i ; and hence, by de�nition, si 2 S��i (s�i) � S

�;k
i . So, we have shown that si 2 S�;ki ;

which completes the induction step. By induction on k; it thus follows that every stationary
strategy si which can rationally be chosen by a stationary type under common belief in future
�-rationality, must be in S�;1i :

(b) We next show that every strategy si 2 S�;1i can rationally be chosen by a stationary type
under common belief in future �-rationality. For every s�i 2 S�;1�i ; let bi[s�i] be a conditional
belief vector for player i that, after every history h, assigns probability 1 to one particular
strategy pro�le in S�i[s�i; h]. Moreover, we can choose bi[s�i] in such a way that it satis�es
Bayesian updating. By construction,

S�;1i =
[

s�i2S�;1�i

S��i (s�i)

for every player i: That is, for every player i; and every stationary strategy si 2 S�;1i ; there is
some pro�le s�i(si) 2 S�;1�i of opponents�stationary strategies, such that si is �-optimal under
the conditional belief vector bi[s�i(si)]: Let s�i(si) = (sj(si))j 6=i for every player i; and every
si 2 S�;1i :

We now construct a �nite epistemic model M = (Ti; �i) with sets of types

Ti := ftsii j si 2 S
�;1
i g:

For every type tsii 2 Ti; and every history h; let bi(t
si
i ; h) have belief bi[s�i(si)](h) about the

opponents�strategies, and let bi(t
si
i ; h) assign probability 1 to the type combination (t

sj(si)
j )j 6=i:

Then, by construction, all types in M are stationary and satisfy Bayesian updating.
We next show that all types in M express common belief in the opponents� future �-

rationality. To show this, we �rst prove that, for every player i and every si 2 S�;1i ; strategy si
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is �-optimal for type tsii : By de�nition, type t
si
i holds the conditional belief vector bi[s�i(si)] over

the opponents�strategies. Since si is �-optimal under the conditional belief vector bi[s�i(si)]; it
follows that si is indeed �-optimal for type t

si
i :

We now show that every type in M believes in the opponents� future �-rationality. Take
some type tsii 2 Ti: Then, by construction,

�i(t
si
i ; h)(�j 6=iSj [sj(si); h]� ft

sj(si)
j g) = 1 (10)

after all histories h: This follows from the fact that �i(t
si
i ; h) induces the belief bi[s�i(si)](h) on

the opponents�strategies, for every history h:
We have just seen that for every opponent j; strategy sj(si) is �-optimal for the associated

type tsj(si)j at all histories: Since every strategy in Sj [sj(si); h] coincides with sj(si) at all histories

weakly following h; it follows that every strategy in Sj [sj(si); h] is �-optimal for t
sj(si)
j at all

histories weakly following h: Hence,

Sj [sj(si); h]� ft
sj(si)
j g � (Sj � Tj)h;��opt for all histories h: (11)

By combining (10) and (11) it follows that

�i(t
si
i ; h)(S�i � T�i)

h;��opt = 1

for all histories h; and hence, indeed, type tsii believes in the opponents�future �-rationality. So,
all types in M believe in the opponents�future �-rationality. But then, it immediately follows
that all types inM express common belief in the opponents�future �-rationality, as was to show.

So, we have constructed an epistemic model M = (Ti; �i)i2I such that (1) all types in M are
stationary and satisfy Bayesian updating, (2) all types in M express common belief in future
�-rationality, and (3) for every strategy si 2 S�;1i there is some type tsii 2 Ti for which si is
�-optimal. This implies that every strategy si 2 S�;1i can rationally be chosen by a stationary
type under common belief in future �-rationality. Our proof is hereby complete. �
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