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Background

� The JA problem: How can/should we merge many individuals�
yes/no judgments on some interconnected propositions?

� Very general problem!



Example 1: Preference aggregation

� Propositions: of the form �option x is better than option y�.
� Interconnections: given by transitivity, etc.
� Propositionwise majority voting (= pairwise majority voting)
generates inconsistent collective judgment sets



Example 2: Jury example

� Propositions:
� p : the defendant has broken the contract;
� q : the contract is legally valid;
� r : the defendant is liable.

� Interconnections: Following legal doctrine, r (the �conclusion�)
is true if and only if both p and q (the �premises�) are true



Example 2 (cont.)

� Propositionwise majority rule may again generate inconsistent
collective judgments:

premise p premise q conclusion r (, p ^ q)
Juror 1 Yes Yes Yes
Juror 2 Yes No No
Juror 3 No Yes No
Majority Yes Yes No



Current stage of theory

� After all these impossibility theorems, time to construct con-
crete JA rules!
� An experimental, playful, �fun�phase.
�Much seems permitted: we can try out rules.



Paradigms on the market

� Premise- and conclusion-based rules (e.g., Kornhauser and Sager 1986,
Pettit 2001, List & Pettit 2002, Dietrich 2006, Dietrich and Mongin 2010)

� Sequential priority rules (e.g., List 2004, Dietrich and List 2007)
� Quota rules with �well-calibrated� thresholds/quota (e.g., Dietrich and
List 2007)

� Distance-based rules (e.g., Konieczny & Pino-Perez 2002, Pigozzi 2005,
Miller & Osherson 2008, Eckert & Klamler 2009, Hartmann , Pigozzi &
Sprenger 2010, Lang, Pigozzi, Slavkovik & van der Torre 2011, Duddy and
Piggins 2011)

� �Condorcet admissible�aggregation (Nehring, Pivato and Puppe 2011)
� An (incomplete) Borda-type proposal (Zwicker 2011)



New proposal: scoring rules

� Idea: the set of collective judgments should have highest total
�score�.

� Inspired from classical scoring rules in preference aggregation
theory, such as Borda rule (e.g., Smith 1973, Young 1975,
Myerson 1995, Zwicker 2008, Pivato 2011))



Strength of judgment?



Goals for today

� De�ne scoring rules.
� Explore various ways to de�ne scores
� some lead to (�rationalize�) existing aggregation rules,
� others to new rules

� ... such as a Borda rule for JA!
� �Generalizing Borda to JA�: a long-lasting open problem.
� Bill Zwicker (2011), and Conal Duddy and Ashley Piggins
(2013) have proposals.
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The agenda

� Set of n (� 2) individuals, denoted N = f1; :::; ng.
� Agenda of propositions on which judgments are needed. For-
mally, the agenda is any �nite set X (of �propositions�) en-
dowed with
� a partition into binary �issues�fp; p0g (whose members p
and p0 are the �negations�of each other, written :p = q

and q = :p),
� interconnections, i.e., a speci�cation of which judgment
sets J � X are rational, or formally, a set J of (�rational�)
sets J � X, each containing exactly one proposition from
each issue.



Notation

� A judgment set is often abbreviated by concatenating its mem-
bers:
�> p:q:r is short for fp;:q;:rg



Example 1: the �doctrinal paradox�agenda

� This agenda is

X = fp;:p; q;:q; r;:rg,

� where logical interconnections are de�ned relative to the exter-
nal constraint r $ (p^ q). So, there are 4 rational judgment
sets:

J = fpqr; p:q:r;:pq:r;:p:q:rg:



Example 2: the preference agenda

� For an arbitrary, �nite set of alternatives A, the preference
agenda is de�ned as

X = XA = fxPy : x; y 2 A; x 6= yg;

� where the negation of xPy is of course :xPy = yPx,
� and where interconnections are de�ned relative to the usual
conditions of transitivity, asymmetry and connectedness, which
de�ne a strict linear order.

� Formally, to each binary relation � over A uniquely corre-
sponds a judgment set, denoted J� = fxPy 2 X : x � yg,
and the set of all rational judgment sets is

J = fJ� : � is a strict linear order over Ag.



Aggregation rules

� A (multi-valued) aggregation rule is a correspondence F
which to every pro�le of �individual�judgment sets (J1; :::; Jn)
(from some domain, usually J n) assigns a set F (J1; :::; Jn)
of �collective�judgment sets.

� Typically, the output F (J1; :::; Jn) is a singleton set fCg, in
which case we identify this set withC and write F (J1; :::; Jn) =
C.



Aggregation rules

� A standard (single-valued) aggregation rule is majority rule,
given by

F (J1; :::; Jn) = fp 2 X : jfi : p 2 Jigj > n=2g.

� It generates inconsistent collective judgment sets for many
agendas and pro�les.

� If both individual and collective judgment sets are rational
(i.e., in J ), the aggregation rule de�nes a correspondences
J n � J , and in the case of single-valuedness a function
J n! J .
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De�nition

� Scoring rules are aggregation rules de�ned on the basis of a
scoring function (or �scoring�).

� A scoring is a function s : X � J ! R which to each
proposition p and rational judgment set J assigns a number
sJ(p), called the score of p given J and measuring how p

performs from the perspective of judgment set J .
� E.g., simple scoring is given by:

sJ(p) =

8<: 1 if p 2 J
0 if p 62 J ,

(1)



De�nition (cont.)

� For any scoring s, the scoring rule w.r.t. s is the aggregation
rule Fs : J n � J given by

Fs(J1; :::; Jn) = judgment set(s) in J with highest total score

= argmaxC2J
X

p2C;i2N
sJi(p).

� By a �scoring rule�simpliciter we of course mean an aggrega-
tion rule which is a scoring rule w.r.t. some scoring.
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Simple scoring illustrated

� For simple scoring (1), the scoring rule works as follows in the
face of the �doctrinal paradox�agenda and pro�le:

Score of...
Individual p :p q :q r :r pqr p:q:r :pq:r :p:q:r
1 (pqr) 1 0 1 0 1 0 3 1 1 0
2 (p:q:r) 1 0 0 1 0 1 1 3 1 2
3 (:pq:r) 0 1 1 0 0 1 1 1 3 2
Group 2 1 2 1 1 2 5* 5* 5* 4
� So: a tie between the premise-based outcome pqr and the
conclusion-based outcomes p:q:r and :pq:r. Formally:

F (J1; J2; J3) = fpqr; p:q:r;:pq:rg:



Distance-based rules

� Consider any distance function (�metric�) d over J .1
� Most common example: Kemeny distance d = dKemeny,
given by:

dKemeny(J;K) = number of judgment reversals

needed to transform J into K (2)

= jJnKj = jKnJ j = 1

2
jJ 4Kj .

E.g., the Kemeny-distance between pqr and p:q:r (for our
doctrinal paradox agenda) is 2.

1A distance function or metric over J is a function d : J � J ! [0;1) satisfying three
conditions: for all J;K;L 2 J , (i) d(J;K) = 0 ) J = K, (ii) d(J;K) = d(K; J)
(�symmetry�), and (iii) d(J; L) � d(J;K) + d(K;L) (�triangle inequality�).



Distance-based rules (cont.)

� The distance-based rule w.r.t. a distance d is the aggrega-
tion rule Fd which for any pro�le (J1; :::; Jn) 2 J n returns:

Fd(J1; :::; Jn) = judgment set(s) in J with minimal

sum-distance to the pro�le

= argminC2J
X
i2N

d(C; Ji).



Distance-based rules

� The most popular example, Kemeny rule FdKemeny, can be char-
acterized as a scoring rule:

Proposition 1 The simple scoring rule is the Kemeny rule.
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Classical scoring

� Consider the preference agenda X for a given set of alterna-
tives A of �nite size k.

� Classical scoring rules (such as Borda rule) are de�ned by as-
signing scores to alternatives in A, not to propositions xPy
in X.

� Given a strict linear order � over A �equivalently, a rational
judgment set J 2 J , each alternative x 2 A is assigned a
score SCOJ(x) 2 R.

� Borda scoring : the highest ranked alternative in A scores k,
the second-highest scores k � 1, ...



Classical scoring rules

� Given a pro�le (J1; :::; Jn) of rational judgment sets (equiva-
lently, strict linear orders), the collective ranks the alternatives
x 2 X according to their sum-total score

P
i2N SCOJi(x).

� Formally, a classical scoring is a function SCO : A�J ! R.
� The classical scoring rule w.r.t. SCO is the JA rule F �
FSCO for the preference agenda which for every pro�le (J1; :::; Jn) 2
J n returns:

F (J1; :::; Jn) = fC 2 J : C contains all xPy 2 X
s.t.

P
i2N SCOJi(x) >

P
i2N SCOJi(y)g:



Classical scoring and �our�scoring

� Any given classical (alternative-based) scoring SCO induces
a scoring s in our (proposition-based) sense.

� In fact, in two plausible (and as we�ll see, equivalent!) ways,
namely either by

sJ(xPy) = SCOJ(x)� SCOJ(y); (3)

or by

sJ(xPy) = maxfSCOJ(x)� SCOJ(y); 0g (4)

Proposition 2 In the case of the preference agenda, every clas-
sical scoring rule is a scoring rule, namely one with respect to a
scoring s derived from the classical scoring SCO via (3) or via
(4).
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Reversal scoring

� De�ne so-called reversal scoring by:

sJ(p) = nb. of judgment reversals needed to reject p (5)

= min
J 02J :p62J 0

dKemeny(J; J
0). (6)

� E.g., sJ(p) = 0 if p 62 J .



Reversal scoring

� Let�s try out reversal scoring for our doctrinal paradox agenda
and pro�le:

Score of...
Individual p :p q :q r :r pqr p:q:r :pq:r :p:q:r
1 (pqr) 2 0 2 0 2 0 6 2 2 0
2 (p:q:r) 1 0 0 2 0 2 1 5 2 4
3 (:pq:r) 0 2 1 0 0 2 1 2 5 4
Group 3 2 3 2 2 4 8 9* 9* 8
� E.g., individual 1�s judgment set pqr leads to a score of 2 for
p, since rejecting p requires negating not just p (as :pqr is
inconsistent), but also r (where :pq:r is consistent).

� Notice: a tie between the conclusion-based judgment sets
p:q:r and :pq:r!



Reversal scoring and classical Borda scoring

� The remarkable feature of reversal scoring is its link to classical
Borda scoring for the preference agenda:

Remark 1 In the case of the preference agenda (for any �nite set
of alternatives), reversal scoring s is given by

sJ(xPy) = maxfSCOJ(x)� SCOJ(y); 0g

where SCO is classical Borda scoring.



See why?



Reversal scoring rule and classical Borda rule

Remark 1 and Proposition 2 imply:

Proposition 3 The reversal scoring rule generalizes Borda rule,
i.e., matches it in the case of the preference agenda (for any �nite
set of alternatives).



Excursion: Zwicker�s and Duddy-Piggin�s
ways to generalize Borda rule



Zwicker�s approach

� Zwicker (2011) takes an interesting, very di¤erent strategy to
extending Borda rule.

� The motivation derives from a geometric characterization of
Borda preference aggregation obtained by Zwicker (1991).

� Write the agenda as X = fp1;:p1; p2;:p2; :::; pm;:pmg.
� Each pro�le gives rise to a vector v � (v1; :::; vm) in Rm

whose jth entry vj is the net support for pj.



Excursion (cont.)

� Zwicker writes the vector v as an orthogonal sum vconsistent+
vinconsistent.

� Intuitively, �vconsistent�contains the pro�le�s �consistent compo-
nent�.

� Zwicker�s Borda-type rule accepts all pj for which vconsistent;j >
0.

� Problem: the decomposition vconsistent+vinconsistent so far �works�
only for special agendas.



Excursion (cont.)

In summary, there seem to exist two quite di¤erent approaches to
generalizing Borda:
� Zwicker�s approach is geometric and seeks to �lter out the
pro�le�s �inconsistent component�.

� My approach
� retains the principle of score-maximization inherent in Borda
aggregation (with scoring now de�ned at the level of propo-
sitions, not alternatives)

� uses information about someone�s strength of accepting a
proposition (as measured by the score), just as classical
Borda rule uses information about strength of preference
(as measured by classical scores of alternatives).
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A generalization of reversal scoring

� For any given distance function d over J (not necessarily
Kemeny distance!), one might consider the scoring s de�ned
by

sJ(p) = distance by which one must (7)

depart from J to reject p (8)

= min
J 02J :p62J 0

d(J; J 0).

� This yields a whole class of scoring rules, all of which are
variants of our judgment-theoretic Borda rule. In the special
case of the preference agenda, we thus obtain new variants of
classical Borda rule.
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Score as �logical entrenchment�

� We now consider scoring rules which explicitly exploit the log-
ical structure of the agenda.

� Think of the score of a proposition p (2 X) given the judg-
ment set J (2 J ) as the degree to which p is logically en-
trenched in the belief system J , i.e., as the �strength�with
which J entails p.

� We measure this strength by the number of ways in which
p is entailed by J , where each �way� is given by a particular
judgment subset S � J which entails p, i.e., for which S [
f:pg is inconsistent.

� There are di¤erent ways to formalise this idea!



First (naive) attempt

� Let�s count each judgment subset which entails p as a sepa-
rate, full-�edged �way�in which p is entailed.

� This leads to so-called entailment scoring, de�ned by:

sJ(p) = number of judgment subsets entailing p (9)

= jfS � J : S entails pgj .

� Objection: lots of redundancies, i.e., �multiple counting�.



Second attempt

� To respond to the redundancy objection, let�s count two en-
tailments of p as di¤erent only if they have no premise in
common.

� Formally, de�ne disjoint-entailment scoring by:

sJ(p) = nb. of disjoint judgment subsets entailing p (10)

= maxfm : J has m disjoint subsets each entailing pg.



Example

� For our doctrinal paradox pro�le, we get the following disjoint-
entailment scores

Score of...
Individual p :p q :q r :r pqr p:q:r :pq:r :p:q:r
1 (pqr) 2 0 2 0 2 0 6 2 2 0
2 (p:q:r) 1 0 0 2 0 2 1 5 2 4
3 (:pq:r) 0 2 1 0 0 2 1 2 5 4
Group 3 2 3 2 2 4 8 9* 9* 8
� E.g., for individual 2 proposition :r scores 2 because :r is
entailed by f:rg and by fp;:qg.



Borda again

� Applied to the preference agenda, disjoint entailment scoring
matches reversal scoring.
(but the two come apart for other agendas)

� So we�ve another, di¤erent, Borda extension!



Another option

� Counting only minimal entailments:

sJ(p) = nb. of judgment subsets minimally entailing p

= jfS � J : S minimally entails pgj .



Yet another option

� Counting only irreducible entailments:

sJ(p) = nb. of judgment subsets irreducibly entailing p

= jfS � J : S irreducibly entails pgj .

� This again generalizes Borda!
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Premise-based rule as as as scoring rule

� Use a scoring which assigns far higher scores to accepted
premises than to accepted conclusions!



Conclusion-based rule as as as scoring rule

� Use a scoring which assigns far higher scores to accepted con-
clusions than to accepted premises!



Scoring rules to �repair�quota rules

� A quota rule: accepts each proposition p 2 X i¤ at least some
number mp of individuals accept p.

� Such a rule can generate irrational (e.g., inconsistent, or in-
complete, or not deductively closed) outputs!

� A suitable scoring rule can �repair�the quota rule:
� this scoring rule matches the quota rule whenever the quota
rule has a rational output, while rendering the output ra-
tional otherwise.
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Set scoring

� A set scoring function �or simply set scoring � is a function
� : J �J ! R which to every pair of rational judgment sets
C and J assigns a real number �J(C), the score of C given
J .

� Elementary example (�naive�set scoring):

�J(C) =

8<: 1 if C = J
0 if C 6= J .

(11)



Set scoring rules

� Given a set scoring �, the set scoring rule (or generalized
scoring rule) w.r.t. � is the aggregation rule F� : J n � J
given by:

F�(J1; :::; Jn) = argmaxC2J
X
i2N

�Ji(C).

� An aggregation rule is a set scoring rule simpliciter if it is the
set scoring rule w.r.t. to some set scoring �.



Set scoring rules generalize scoring rules

� To any ordinary scoring s corresponds a set scoring �, given
by

�J(C) �
X
p2C

sJ(p),

and the ordinary scoring rule w.r.t. s coincides with the set
scoring rule w.r.t. �.
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Plurality rule as a set scoring rule

� Plurality rule is the aggregation rule F which for every pro�le
(J1; :::; Jn) 2 J n returns:

F (J1; :::; Jn) = most frequently submitted judgment set(s)

= argmaxC2J jfi : Ji = Cgj .

� Normatively questionable!
� As one easily shows:

Remark 2 The naive set scoring rule is plurality rule.



Distance-based rule as a set scoring rule

� Given an arbitrary distance function d over J , consider distance-
based set scoring, de�ned by

�J(C) = �d(C; J). (12)

� This renders sum-score-maximization equivalent to sum-distance-
minimization:

Remark 3 For every given distance function over J , the distance-
based set scoring rule is the distance-based rule.

�> Conversely, not all set scoring rules are distance-based rules.
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Further set scoring rules

� Let�s take the epistemic or truth-tracking approach to JA.
� In a full probabilistic model of votes and the �unknown truth�,
one may de�ne:
� the maximum-likelihood rule, which returns collective judg-
ments whose truth would make the pro�le (the �data�) max-
imally likely;

� the maximum-posterior rule, which returns the collective
judgments whose posterior probability of truth given the
pro�le is maximal.

� See, e.g., work by Pivato (2011) (and Dietrich 2006).
� Under particular conditions, these �epistemic� rules can be
modelled as particular scoring rules.
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Figure 1: A map of judgment aggregation possibilities

Where do we stand?



Two possible extensions

Two plausible generalizations of (set) scoring rules:
� Allow scoring to depend on the individual i!
� This leads to non-anonymous rules.

� Maximize total score within a larger set than the set J of
fully rational judgment sets (such as the set of consistent but
possibly incomplete judgment sets)!
� This leads to �boundedly rational scoring rules�.


