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PLAN OF THIS COURSE

1. Standard (“Hard”) Dynamic-Epistemic Logics: Logics of

knowledge and belief. Epistemic models. Public and private

announcements. Event models. The Product Update.

2. Belief Revision: Plausibility Models. Conditional belief. Belief

Upgrades. Doxastic event models and the Action-Priority Rule.

3. Further Topics: Iterated Belief Revision. Belief Merge. Collective

Learning. Informational Cascades.
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1.1 Epistemic Puzzles: Muddy Children

Suppose there are 4 children, all of them being good logicians, exactly 3

of them having dirty faces. Each can see the faces of the others, but

doesn’t see his/her own face.

The father publicly announces:

“At least one of you is dirty”.

Then the father does another paradoxical thing: starts repeating over

and over the same question “Do you know if you are dirty or not,

and if so, which of the two?”
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After each question, the children have to answer publicly, sincerely and

simultaneously, based only on their knowledge, without taking any

guesses. No other communication is allowed and nobody can lie.

One can show that, after 2 rounds of questions and answers, all the

dirty children will come to know they are dirty! So they give

this answer in the 3rd round, after which the clean child also comes

to knows she’s clean, giving the correct answer at the 4th round.
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Muddy Children Puzzle continued

First Question: What’s the point of the father’s first announcement

(”At least one of you is dirty”)?

Apparently, this message is not informative to any of the children: the

statement was already known to everybody! But the puzzle wouldn’t

work without it: in fact this announcement adds information to the

system! The children implicitly learn some new fact, namely the fact

that what each of them used to know in private is now public knowledge.
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Second Question: What’s the point of the father’s repeated questions?

If the father knows that his children are good logicians, then at each

step the father knows already the answer to his question,

before even asking it! However, the puzzle wouldn’t work without these

questions. In a way, it seems the father’s questions are “abnormal”, in

that they don’t actually aim at filling a gap in father’s knowledge; but

instead they are part of a Socratic strategy of

teaching-through-questions.

Third Question: How can the children’s statements of ignorance lead

them to knowledge?
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Puzzle no 2: Sneaky Children

Let us modify the last example a bit.

Suppose the children are somehow rewarded for answering as quickly as

possible, but they are punished for incorrect answers; thus they are

interested in getting to the correct conclusion as fast as possible.

Suppose also that, after the second round of questions, two of

the dirty children “cheat” on the others by secretly announcing

each other that they’re dirty, while none of the others suspects this

can happen.
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Honest Children Always Suffer

One can easily see that the third dirty child will be totally

deceived, coming to the “logical” conclusion that... she is

clean!

So, after giving the wrong answer, she ends up by being punished for

her credulity, despite her impeccable logic.
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Clean Children Always Go Crazy

What happens to the clean child?

Well, assuming she doesn’t suspect any cheating, she is facing

a contradiction: two of the dirty children answered too quickly,

coming to know they’re dirty before they were supposed to know!

If the third child simply updates her knowledge monotonically with this

new information (and uses classical logic), then she ends up believing

everything : she goes crazy!
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1.2. Epistemic-Doxastic Models and Logics

Epistemic Logic was first formalized by Hintikka (1962), who also

sketched the first steps in formalizing doxastic logic.

They were further developed and studied by both philosophers (Parikh,

Stalnaker etc.), economists (Aumann) and computer-scientists

(Halpern, Vardi, Fagin etc.)
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Scenario 1: the concealed coin

Two players a, b and a referee c play a game. In front of everybody, the

referee throws a fair coin, catching it in his palm and fully covering it,

before anybody (including himself) can see on which side the coin has

landed. �� ��Ha,b,c 44
oo a,b,c //

�� ��T a,b,cjj
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Kripke Models

For a set Φ of facts and a finite set A of agents, a Φ-Kripke model is

a triple

S = (S,→A , ‖.‖ )

consisting of

1. a set S of “worlds”

2. a family of binary accessibility relations
a→⊆ S × S, one for each

agent a ∈ A

3. and a valuation ‖.‖ : Φ→ P(S), assigning to each p ∈ Φ a set ‖p‖S
of states
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The valuation is also called a truth map. It is meant to express the

factual content of a given world, while the arrows →A express the

agents’ uncertainty between various worlds.

A Kripke model is called a state model whenever we think of its

“worlds” as possible states. In this case, the elements p ∈ Φ are called

atomic sentences, being meant to represent basic “ontic”

(non-epistemic) facts, which may hold or not at a given state.
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Satisfaction Relation

Write s |=S ϕ for the satisfaction relation: ϕ is true at world s in

model S. This is defined inductively:

s |=S p iff s ∈ ‖p‖S

s |=S ¬ϕ iff s 6|=S ϕ

s |=S ϕ ∧ ψ iff s |=S ϕ and s |=S ψ
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Extending the Truth Map

Equivalently, this allows us to extend the truth map ‖ϕ‖S to all

propositional formulas, by putting:

‖ϕ‖S := {s ∈ S : s |=S ϕ}.

Obviously, this has the property that

‖¬ϕ‖S = S \ ‖ϕ‖S,

‖ϕ ∧ ψ‖S = ‖ϕ‖S ∩ ‖ψ‖S,

‖ϕ ∨ ψ‖S = ‖ϕ‖S ∪ ‖ψ‖S.

Any new propositional operator A(ϕ1, . . . , ϕn) is “defined” by extending

the truth map to define ‖A(ϕ1, . . . , ϕn)‖S, i.e. by giving a defining

inductive clause for satisfaction s |= A(ϕ1, . . . , ϕn).
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Modalities

For every sentence ϕ, we can define a sentence 2ϕ by (universally)

quantifying over accessible worlds:

s |=S 2aϕ iff t |=S ϕ for all t such that s
a→ t.

2ϕ may be interpreted as knowledge (in which case we use the

notation Kaϕ instead) or belief (in which case we use Baϕ instead),

depending on the context.

Its existential dual

3aϕ := ¬2a¬ϕ

denotes a sense of “epistemic/doxastic possibility”.
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“Common” Modalities

The sentence C2ϕ is obtained by quantifying over all worlds that are

accessible by any concatenations of arrows:

s |=S C2ϕ iff t |=S ϕ for every t and every a finite chain

(of length n ≥ 0) of the form s = s0
a1→ s1

a2→ s2 · · ·
an→ sn = t.

C2ϕ may be interpreted as common knowledge (in which case we

use the notation Ckϕ instead) or common belief (in which case we

use Cbϕ instead), depending on the context.
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The Problem of Common Knowledge

Note that common knowledge cannot be expressed in basic epistemic

logic:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 2aϕ

This means: there is no sentence in this syntax to fully capture the

meaning of “sentence ϕ is common knowledge”.

The obvious way to do this would be via the infinite sentence:

ϕ ∧
∧
a∈A

2aϕ ∧
∧

a,b∈A

2a2bϕ ∧ . . .

But this is not a correct sentence in this language: being infinite, it

cannot be constructed in finitely many steps using the logical operators

¬, ∧ and 2. This is true even if the set A of all agents is finite!
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So, to capture common knowledge, we have to extend our language to

“full” epistemic logic:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 2aϕ | C2ϕ
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Doxastic Models

A doxastic model (or KD45-model) is a Φ-Kripke model satisfying

the following properties:

• (D) Seriality: for every s there exists some t such that s
a→ t;

• (4) Transitivity: If s
a→ t and t

a→ w then s
a→ w

• (5) Euclideaness : If s
a→ t and s

a→ w then t
a→ w

In a doxastic model, 2a is interpreted as belief, and denoted by Ba.
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EXERCISE

The following are valid in every doxastic model:

1. Consistency of Beliefs:

¬Ba(ϕ ∧ ¬ϕ)

2. Positive Introspection of Beliefs:

Baϕ⇒ BaBaϕ

3. Negative Introspection of Beliefs:

¬Baϕ⇒ Ba¬Baϕ
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Epistemic (S5-) Models

An epistemic model (or S5-model) is a Kripke model in which all

the accessibility relations are equivalence relations, i.e. reflexive,

transitive and symmetric (or equivalently: reflexive, transitive

and Euclidean).

In an epistemic model, 2a is interpreted as knowledge, and denoted

by Ka.
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EXERCISE

The following are valid in every epistemic model:

1. Veracity of Knowledge:

Kaϕ⇒ ϕ

2. Positive Introspection of Knowledge:

Kaϕ⇒ KaKaϕ

3. Negative Introspection of Knowledge:

¬Kaϕ⇒ Ka¬Kaϕ
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S4 Models for weak types of knowledge

Many philosophers deny that knowledge is introspective, and in

particular deny that it is negatively introspective. Both common

usage and Platonic dialogues suggest that people may believe they

know things that they don’t actually know.

An S4-model for knowledge is a Kripke model satisfying only

reflexivity and transitivity (but not necessarily symmetry or

Euclideaness). This gives a model to a weaker notion of

“knowledge”, one that is truthful and positively introspective, but

not necessarily negatively introspective.

26



1.3. Logics of public and private announcements

PAL (the logic of public announcements) was first formalized

(including Reduction Laws) by Plaza (1989) and independently by

Gerbrandy and Groeneveld (1997).

The problem of completely axiomatizing PAL in the presence of

the common knowledge operator was first solved by Baltag, Moss

and Solecki (1998).

A logic for “secret (fully private) announcements” was first

proposed by Gerbrandy (1999).

A logic for “private, but legal, announcements” (what we will

call “fair-game announcements”) was developed by H. van Ditmarsch

(2000).
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Scenario 2: The coin revealed

The referee c opens his palm and shows the face of the coin to

everybody (to the public, composed of a and b, but also to himself):

they all see it’s Heads up, and they all see that the others see it

etc.

So this is a “public announcement” that the coin lies Heads up.

We denote this event by !H. Intuitively, after the announcement, we

have common knowledge of H, so the model of the new situation is:�� ��Ha,b,c 44
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Public Announcements are (Joint) Updates!

But this is just the result of updating with H: deleting all the

non-H-worlds.

So, in the multi-agent case, updating captures public

announcements.

From now on, we denote by !ϕ the operation of deleting the non-ϕ

worlds, and call it public announcement with ϕ, or joint update

with ϕ.
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Scenario 3: ‘Legal’ Private Viewing

Instead of Scenario 2: in front of everybody, the referee (c) uncovers the

coin, so that (they all see that) he, and only he, can see the upper

face. This changes the initial model to

�� ��Ha,b,c 44
oo a,b //

�� ��T a,b,cjj

Now, c knows the real state. E.g. if it’s Heads, he knows it, and

disregards the possibility of Tails. a and b don’t know the real state,

but they know that c knows it. c’s viewing of the coin is a “legal”,

non-deceitful action, although a private one.
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Fair-Game Announcements

Equivalently: in front of everybody, an announcement of the upper face

of the coin is made, but in such a way that (it is common knowledge

that) only c hears it.

Such announcements (first modeled by H. van Ditmarsch) are called

fair-game announcements, they can be thought of as “legal moves”

in a fair game: nobody is cheating, all players are aware of the

possibility of this move, but only some of the players (usually the one

who makes the move) can see the actual move. The others know the

range of possible moves at that moment, and they know that the

“insider” knows his move, but they don’t necessarily know the move.
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Scenario 4: Cheating

Suppose that, after Scenario 1, the referee c has taken a peek at the

coin, before covering it. Nobody has noticed this. Indeed, let’s

assume that c knows that a and b did not suspect anything.

This is an instance of cheating: a private viewing which is “illegal”, in

the sense that it is deceitful for a and b. Now, a and b think that

nobody knows on which side the coin is lying. But they are wrong!
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The Model after Cheating

�� ��
�� ��
�� ��
�� ��H

c
��

a,b

~~}}}}}}}
a,b

��@@@@@@@

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT

We indicated the real world here. In the actual world (above), a and b

think that the only possibilities are the worlds below. That is, they do

not even consider the “real” world as a possibility.

Such models in which we indicate the real world are called pointed

models.
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Scenario 5: Secret Communication

After cheating (Scenario 4), c engages in another ”illegal” action: he

secretely sends an email to his friend a, informing her that the

coin is Heads up. Suppose the delivery and the secrecy of the

message are guaranteed: so a and c have common knowledge that H,

and that b doesn’t know they know this.

Indeed, b is completely fooled: he doesn’t suspect that c could have

taken a peek, nor that he could have been engaged in secret

communication.
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The model is

�� ��
�� ��
�� ��
�� ��H

a,c
��

b

~~}}}}}}}
b

��@@@@@@@

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT
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Private Announcements

Both of the above actions were examples of completely private

announcements

!Gϕ

of a sentence ϕ to a group G of agents: in the first case G = {c}, in the

second case G = {a, c}.

The “insiders” (in G) know what’s going on, the “outsiders” don’t

suspect anything.
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Scenario 5’: Wiretapping?

In Scenario 5′, everything goes on as in Scenario 5, except that in the

meantime b is secretely breaking into c’s email account (or

wiretapping his phone) and reading c’s secret message. Nobody

suspects this illegal attack on c’s privacy. So both c and a think their

secret communication is really secret and unsuspected by b: the

deceivers are deceived.

What is the model of the situation after this action?! Things are getting

rather complicated!
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Scenario 6

This starts right after Scenario 2, when it was common knowledge that

c knew the face. c attempts to send a secret message to a announcing

that H is the case. c is convinced the communication channel is fully

secure and reliable; moreover, he thinks that b doesn’t even suspect this

secret communication is going on. But, in fact, unknown and

unsuspected by c, the message is intercepted, stopped and read by b. As

a result, it never makes it to a, and in fact a never knows or suspects

any of this. As for b, he knows all of the above: not only now he knows

the message, but he knows that he “fooled” everybody, in the way

described above.
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The Update Problem

We need to find a general method to solve all the above problems, i.e.

to compute all these different kinds of updates.
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1.4.“Standard DEL”

• studies the multi-agent information flow of “hard

information” (irrevocable, absolutely certain, fully introspective

“knowledge”) as well as “soft”, but essentially un-revisable,

information (“beliefs” that change monotonically, but are never

overturned);

• gives an answer to the Update Problem, based on the BMS (Baltag,

Moss and Solecki 98) setting: logics of epistemic actions;

• it arose from generalizing previous work on logics for public/private

announcements.

• this dynamics is essentially monotonic (no belief revision!),

though it can model very complex forms of communication.

40



Models for ‘Events’

Until now, our Kripke models capture only epistemic situations, i.e.

they only contain static information: they all are state models. We can

thus represent the result of each of our Scenarios, but not what is

actually going on.

Our scenarios involve various types of changes that may affect agents’

beliefs or state of knowledge: a public announcement, a ‘legal’

(non-deceitful) act of private learning, ‘illegal’ (unsuspected) private

learning etc.

We want to use now Kripke models to represent such types of epistemic

events, in a way that is similar to the representations we have for

epistemic states.
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Event Models

An event model (or “action model”)

Σ = (Σ,→A , pre)

is just like an Kripke model, except that its elements are now called

actions (or “simple events”) and instead of the valuation we have a

precondition map pre, associating a sentence preσ to each action σ.
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Epistemic/Doxastic Event Models

An event model is epistemic, or respectively a doxastic, event model

if it satisfies the S5, or respectively the KD45, conditions.
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Interpretation

We call of the simple events σ ∈ Σ as deterministic actions of a

particularly simple kind: they do not change the “facts” of the world,

but the agents’ beliefs. In other words, they are “purely epistemic”

actions.

For σ ∈ Σ, we interpret preσ as giving the precondition of the action

σ: this is a sentence that is true in a world iff σ can be performed. In a

sense, preσ gives the implicit information carried by σ.

Finally, the accessibility relations express the agents’

knowledge/beliefs about the current action taking place.
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The Product Update

Given a state model S = (S,→A , ‖.‖) and an action model

Σ = (Σ,→A , pre), we define their update product

S⊗Σ = (S ⊗ Σ,→A , ‖.‖)

to be a new state model, given by:

1. S ⊗ Σ is

{(s, σ) ∈ S × Σ : s |=S preσ) }.

2. (s, σ)→A (s′, σ′) iff s→A s′ and σ→A σ′.

3. ‖p‖S⊗Σ = {(s, σ) ∈ S ⊗ Σ : s ∈ ‖p‖S}.
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Product of Pointed Models

As before, we can consider pointed event models, if we want to

specify the actual event taking place.

Naturally, if initially the actual state was s and then the actual event is

σ, then the actual output-state is (s, σ).
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Interpretation

The product arrows encode the idea that: two output-states are

indistinguishable iff they are the result of indistinguishable

actions performed on indistinguishable input-states.

This comprises two intuitions:

1. “No Miracles”: knowledge can only gained from (the epistemic

appearance of) actions;

2. “Perfect Recall”: once gained, knowledge is never lost.

The fact that the valuation is the same as on the input-state tells us

that these actions are purely epistemic.
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Examples: Public Announcement

The event model Σ!ϕ for public announcement !ϕ consists of a single

action, with precondition ϕ and reflexive arrows:

�� ��
�� ��
�� ��
�� ��ϕ

a,b,c...
��

EXERCISE: Check that, for every state model S, S⊗Σ!ϕ is indeed the

result of deleting all non-ϕ worlds from S.
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More Examples: Taking a Peek

The action in Scenario 4: c takes a peek at the coin and sees the Head

is up, without anybody noticing.

�� ���� ��Hc
..

a,b //
�� ��true a,b,cxx

There are two actions in this model: the real event (on the left) is the

cheating action of c “taking a peek”. The action on the right is the

apparent action skip, having any tautological sentence true as its

precondition: this is the action in which nothing happens. This is

what the outsiders (a and b) think it is going on: nothing, really.
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The Product Update

We can now check that the product of�� ���� ��Ha,b,c
..

oo a,b,c //
�� ��T a,b,cjj

and �� ���� ��Hc
..

a,b //
�� ��true a,b,cxx

is indeed what intuitively should be:
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�� ��
�� ��
�� ��
�� ��H

c
��

a,b

~~}}}}}}}
a,b

��@@@@@@@

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT
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Private Announcements

More generally, a fully private announcement !Gϕ of ϕ to a

subgroup G is described by the action on the left in the event model

�� ���� ��ϕG ..
A\G //

�� ��true Axx

This subsumes both taking a peak (Example 4) and the secret

communication in Example 5.
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Fair-Game Announcements

The following event model represents the situation in which it is

common knowledge that an agent c privately learns whether ϕ or ¬ϕ is

the case:

�� ���� ��ϕA ..
oo A\{c} // �� ��¬ϕ App

This is a “fair-game announcement” Faircϕ.

The case ϕ := H represents the action in Example 3 (“legal viewing” of

the coin by c).
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Solving Scenario 5’: Wiretapping

Recall Scenario 5: the supposedly secret message from c to a is secretly

intercepted by b. This is an instance of a private announcements with

(secret) interception by a group of outsiders.

�� ���� ��H

b

PP

a,c //
�� ��H

a,c

VV
b //

�� ��true

a,b,c

VV
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Dynamic Modalities

For any action σ ∈ Σ, we can consider the corresponding dynamic

modality [σ]ϕ. This is a property of the original model, expressing the

fact that, if action σ happens, then ϕ will come to be true after that.

We can easily define the epistemic proposition [σ]ϕ by:

s |=S [σ]ϕ iff (s, σ) ∈ S⊗Σ implies (s, σ) |=S⊗Σ ϕ
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Appearance

For any agent a and any action σ ∈ Σ, we define the appearance of

action σ to a, denoted by σa, as:

σa = {σ′ ∈ Σ : σ
a→ σ′}

When σ happens, it appears to a as if either one of the actions σ′ ∈ σa
is happening.
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Examples

(!ϕ)a = {!ϕ} for all a ∈ A,

(!Gϕ)a = {!Gϕ} for all insiders a ∈ G,

(!Gϕ)a = {skip} = {!(true)} for all outsiders a 6∈ G,

(Fairaϕ)a = {Fairaϕ}

(Fairaϕ)b = {Fairaϕ, Faira¬ϕ} for b 6= a.
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Reduction Laws

If σ ∈ Σ is a simple epistemic action, then we have the following

properties (or “axioms”):

• Preservation of “Facts”. For all atomic p ∈ Φ :

[σ]p ⇐⇒ preσ ⇒ p

• Partial Functionality:

[σ]¬ϕ ⇐⇒ preσ ⇒ ¬[σ]ϕ

• Normality:

[σ] (ϕ ∧ ψ) ⇐⇒ [σ]ϕ ∧ [σ]ψ

Here, 2 can be either knowledge K or belief B, depending on whether

the model is doxastic or epistemic.
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• “Action-Knowledge Axiom”:

[σ]2aϕ ⇐⇒ preσ ⇒
∧

σ′∈σa

2a[σ′]ϕ

This Action-Knowledge Axiom helps us to compute the state of

knowledge/belief of an agent after an event, in terms of the agent’s

initial state of knowledge or belief and of the event’s appearance to the

agent.
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Instances of Action-Knowledge Axiom

If a ∈ G, b 6∈ G, c 6= a, then:

[!θ]Baϕ ⇐⇒ θ ⇒ Ba[!θ]ϕ

[!Gθ]Baϕ ⇐⇒ θ ⇒ Ba[!Gθ]ϕ

[!Gθ]Bbϕ ⇐⇒ θ ⇒ Bbϕ

[Fairaθ]Baϕ ⇐⇒ θ ⇒ Ba[Fairaθ]ϕ

[Fairaθ]Bcϕ ⇐⇒ θ ⇒ Bc([[Fairaθ]ϕ ∧ [Faira¬θ]ϕ)
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EXERCISES

• Solve Scenario 5’, by computing the update product of the state

model obtained in Scenario 4 with the event model that we saw.

• Solve Scenario 6 using update product.

• Solve the Muddy Children puzzle, using repeated updates. Encode

the conclusion of the puzzle in a DEL sentence.
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1.5. Cheating and the Failure of Standard DEL

Our update product works very well when dealing with “knowledge”, or

even with (possibly false) beliefs, as long as these false beliefs are

never contradicted by new information.

However, in the latest case, update product gives unintuitive results: if

an agent A is confronted with a contradiction between previous beliefs

and new information she starts to believe the contradiction, and so she

starts to believe everything!

In terms of epistemic models, this means that in the updated model,

there are no A-arrows originating in the real world.
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Counterexample

Recall the state model immediately after taking a peek, i.e. the output

of Scenario 4:

�� ��
�� ��
�� ��
�� ��H

c
��

a,b

~~}}}}}}}
a,b

��@@@@@@@

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT

So, now, c privately knows that the coin lies Heads up.
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Counterexample Continued

In Scenario 5 (happening after the cheating in Scenario 4), agent c

sends a secret announcement to his friend a (who has not suspected

any cheating till now!), saying:

“I know that H ”.

This is a fully private communication !a,cϕ (from c to a) of the

sentence

ϕ := KcH,

i.e. with event model

�� ���� ��ϕa,c
..

b //
�� ��true a,b,cxx
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Recall that, according to our intuition, the updated model for the

situation after this private announcement should be:

�� ��
�� ��
�� ��
�� ��H

a,c
��

b

~~}}}}}}}
b

��@@@@@@@

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT
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However, the update product gives us (something bisimilar to):

�� ��
�� ��
�� ��
�� ��H

c
��

b

~~}}}}}}}
b

��@@@@@@@

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT

There are no surviving a-arrows originating in the real world. According

to our semantics, a will believe everything after this communication:

encountering a contradiction, agent a simply gets crazy!

Fixing this problem requires modifying update product by

incorporating ideas from Belief Revision Theory.
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2.1. The Problem of Belief Revision

What happens if I learn a new fact ϕ that goes in con-

tradiction to my old beliefs?

If I accept the fact ϕ, I have to give up some of my old beliefs.

But which of them?

Maybe all of them?! No, I should maybe try to maintain as much

as possible of my old beliefs, while still accepting the new fact ϕ

(without arriving to a contradiction).
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Example

Suppose I believe two facts p and q and (by logical closure) their

conjunction p ∧ q. So my belief base is the following

{p, q, p ∧ q}.

Suppose now that I learn the last sentence was actually false.

Obviously, I have to revise my belief base, eliminating the sentence

p ∧ q, and replacing it with its negation: ¬(p ∧ q).
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But the base

{p, q,¬(p ∧ q)}

is inconsistent!

So I have to do more!

Obviously, to accommodate the new fact ¬(p ∧ q), I have to give up

either my belief in p or my belief in q.

But which one?
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Belief Revision Theory

Standard Belief Revision Theory, also called AGM theory (from

authors Alchourrón, Gärdenfors and Makinson) postulates as given:

• theories (“belief sets” or “belief bases”) T : logically closed

sets of sentences

• input: new information (a formula) ϕ

• a revision operator ∗: a map associating a theory T ∗ ϕ to

each pair (T, ϕ) of a theory and an input
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Interpretation

T ∗ϕ is supposed to represent the new belief base (“new theory”)

theory after learning ϕ:

the agent’s new set of beliefs, given that the initial set of beliefs

was T and that the agent has learned ϕ (and only ϕ).
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AGM Postulates: The “Success” Axiom

AGM authors impose a number of axioms on the operation ∗, which

may be called “rationality conditions”, since they are meant to

govern the way a rational agent should revise his/her beliefs.

EXAMPLE: The ‘AGM ‘Success” Postulate

ϕ ∈ T ∗ ϕ

“After revising with ϕ, the agent’s (revised) beliefs include (the belief

in) ϕ.”
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Higher-Order Beliefs: “No Success”

Take a Moore sentence:

ϕ := p ∧ ¬Bp

After ϕ is learned, ϕ obviously becomes false!

But the Success Postulate asks us to believe (after learning ϕ) that ϕ is

true! In other words, it forces us (as a principle of rationality!) to

acquire false beliefs!
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The usual way to deal with this: simply accept that AGM cannot deal

with higher-order beliefs, so limit the language L to formulas that

express only “factual”, non-doxastic properties of the world.
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Changing beliefs about an unchanging world

The assumption underlying AGM theory is that the “world” that our

beliefs are about is not changed by our changes of belief.

But the “world” the higher-order beliefs are about includes the beliefs

themselves.

So (as the example of Moore sentences shows) the “world”, in this

sense, is always changed by our changes of belief!
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“Saving” AGM

Nevertheless, we can reinterpret the AGM postulates to make them

applicable to doxastic sentences:

If T is the belief set at a given moment about the real state s at that

moment, then T ∗ ϕ should be understood as a belief set about the

same state s, as it was before the learning took place.

In other words, T ∗ ϕ captures the agent’s beliefs AFTER learning ϕ

about what was the case BEFORE the learning.
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Conditional Beliefs

Note that this expresses a feature of the agent’s belief revision

policy: if given information ϕ, the agent would come to believe that ψ

was the case.

Another way to express this is that T ∗ ϕ captures conditional beliefs

Bϕψ :

we write ψ ∈ T ∗ ϕ iff Bϕψ, i.e. if the agent believes ψ given ϕ.

We can think of conditional beliefs Bϕψ as “contingency” plans

for belief change: in case I will find out that ϕ was the

case, I will believe that ψ was the case.
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2.2. Multi-Agent Plausibility Models

A multi-agent plausibility model:

S = (S,≤a,∼a, ‖.‖)a∈A

• S a set of possible “worlds” (“states”)

• A a (finite) set of agents

• ≤a preorders on S “a’s plausibility” relation

• ∼a equivalence relations on S: a’s (“hard”) epistemic

possibility (indistinguishability)

• ‖.‖ : Φ→ P(S) a valuation map for a set Φ,

subject to a number of additional conditions.
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Explanation of terms

Recall:

Preorder means reflexive and transitive:

∀s ∈ S s ≤a s,

∀s, t, w ∈ S ( s ≤a t ∧ t ≤a w ⇒ s ≤a w ).

NOTE: Here, s <a t means that s ≤a t but t 6≤a s.
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Reading

We read s <a t as saying that:

world t is “better”, or “more typical”, or “more plausible”

than world s for agent a.

s ≤a t is the non-strict version:

world t is “at least as good”, “at least as typical”, or “at

least as plausible” as world s for agent a.
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The Conditions

The conditions are the following:

1. “plausibility implies possibility”:

s ≤a t implies s ∼a t.

2. the preorders are “locally connected” within each

information cell, i.e. indistinguishable states are comparable:

s ∼a t implies either s ≤a t or t ≤a s

3. We consider S to be finite (else we need to require also that ≤a is

converse well-founded).
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Plausibility encodes Possibility!

Given these conditions, it immediately follows that two states

are indistinguishable for an agent iff they are comparable

w.r.t. the corresponding plausibility relation:

s ∼a t iff either s ≤a t or t ≤a s.

But this means that it is enough to specify the plausibility

relations ≤a. The “possibility” (indistinguishability) relation can

simply be defined in terms of plausibility
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Simplified Presentation of Plausibility Models

So, from now on, we can identify a multi-agent plausibility model

with a structure

(S,≤a, ‖.‖)a∈A ,

satisfying the above conditions, for which we define ∼a as:

∼a:=≤a ∪ ≥a

In the same way as before, we define the satisfaction relation s |= ϕ, or

equivalently we extend the truth map ‖ϕ‖S to all propositional

formulas.
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Knowledge, Conditional Belief

To define modalities, we need to extend the truth map further.

First the notion of knowledge is defined for each agent as follows:

s |= Kaϕ iff t |= ϕ for all t such that s ∼a t

The notion of (conditional) belief at a world s is defined as

truth in all the most plausible worlds that are epistemi-

cally possible in s (and satisfy the given condition P ⊆ S):

s |= BPa ϕ iff t |= ϕ for all t ∈Max≤a
{t ∈ P : t ∼a s}.

84



Example of a Single Agent Model: Prof Winestein

Professor Albert Winestein feels that he is a genius. He knows that

there are only two possible explanations for this feeling: either he is a

genius or he’s drunk. He doesn’t feel drunk, so he believes that he is

a sober genius.

However, if he realized that he’s drunk, he’d think that his genius

feeling was just the effect of the drink; i.e. after learning he is drunk

he’d come to believe that he was just a drunk non-genius.

In reality though, he is both drunk and a genius.
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Formalizing the story

Our assumptions can be formalized as:

Ba genius

Ka(genius ∨ drunk)

Ba¬drunk

Bdrunka ¬genius

drunk ∧ genius

The first four assumptions concern Albert’s knowledge and

(conditional) beliefs, while the fifth concerns reality.
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The Model

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

Here, for precision, I included both positive and negative facts in the

description of the worlds. The actual world is (d, g).

Albert considers (d,¬g) as being more plausible than (d, g), and

(¬d, g) as more plausible than (d,¬g). But he knows (Ka) he’s

drunk or a genius, so we did NOT include any world (¬d,¬g).
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Full Introspection of Knowledge and Beliefs

It is easy to see that our definitions imply that:

Baϕ⇒ BaBaϕ, Baϕ⇒ KaBaϕ,

¬Baϕ⇒ Ba¬Baϕ, ¬Baϕ⇒ Ka¬Baϕ.

“Ideal” agents know what they believe and what they don’t: if

they believe something, then they believe, and in fact they know, that

they believe it.

Similarly, if they don’t believe something, then they believe, in fact

they know, that they don’t believe it.
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WARNING: Difference from Kripke semantics

Plausibility models ARE Kripke models, but the semantics of

belief in a plausibility model has NOT been given by the standard

Kripke semantics. So “belief” is NOT the Kripke modality for

the plausibility relation.
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2.3. The Logic of Knowledge and Conditional Beliefs

Necessitation Rule:

From ` ϕ infer ` Bψa ϕ and ` Kaϕ.

Normality: ` Bθa(ϕ⇒ ψ)⇒ (Bθaϕ⇒ Bθaψ)

Truthfulness of Knowledge: ` Kaϕ⇒ ϕ

Persistence of Knowledge: ` Kaϕ⇒ Bθaϕ

Full Introspection: ` Bθaϕ⇒ KBθaϕ

` ¬Bθaϕ⇒ Ka¬Bθaϕ
Hypotheses are (hypothetically) accepted:

` Bϕaϕ
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Proof System, continued

Consistency of Revision:

¬Ka¬ϕ⇒ ¬BϕaFalse
Inclusion:

` Bϕ∧ψa θ ⇒ Bϕa (ψ ⇒ θ)

Rational Monotonicity:

` Bϕa (ψ ⇒ θ) ∧ ¬Bϕa¬ψ ⇒ Bϕ∧ψa θ

If we add all the propositional validities and the Modus Ponens

rule, we obtain a complete logic for plausibility models.
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2.4. “Dynamic” Belief Revision

We saw that AGM revision, or (equivalently) conditional beliefs, are in

a sense “static”:

they capture the agent’s new (revised) beliefs about the OLD state of

the world (as it was BEFORE the revision).

BUT the important problem is: to compute the agent’s new beliefs

(after learning some new information ϕ) about the NEW state of

the world (as it is AFTER the learning)!

This is the subject of “Dynamic” Belief Revision theory.

From a semantical point of view, dynamic belief revision is about

“revising” the whole relational structure: changing the plausibility

relation (and/or its domain).
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Upgrades (on single-agent models)

A belief upgrade is a model transformer T , that takes any

plausibility model S = (S ≤, ‖ · ‖), and returns a new model

T (S) = (S′,≤′, ‖ · ‖ ∩ S′), having:

• as new set of worlds: some subset S′ ⊆ S,

• as new valuation: the restriction ‖ · ‖ ∩ S′ of the original valuation

to S′,

• as new plausibility relation: some converse-well-founded total

preorder ≤′ on S′.
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Hard and Soft Upgrades

An upgrade T is called soft if, for every model S, the map T : S → S is

total ; i.e. iff

S′ = S

for all S. A soft upgrade doesn’t add anything to the agent’s irrevocable

knowledge: it only conveys “soft information”, changing only the

agent’s beliefs or his belief-revision plans.

In contrast, a hard upgrade adds new knowledge, by shrinking the

state set to a proper subset S′ ⊂ S.
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Dynamic Operators

We can add to the language, in the usual way, dynamic operators [T ]ψ

to express the fact that ψ will surely be true (in the new model)

AFTER the upgrade T .
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Examples of Upgrades

(1) Update !ϕ (conditionalization with ϕ):

all the non-ϕ states are deleted and the same plausibility order is

kept between the remaining states.

(2) Radical upgrade ⇑ ϕ (Lexicographic upgrade with ϕ):

all ϕ-worlds become “better” (more plausible) than all

¬ϕ-worlds, and within the two zones, the old ordering remains.

(3) Conservative upgrade ↑ ϕ (minimal revision with ϕ):

the “best” ϕ-worlds become better than all other worlds, and

in rest the old order remains.
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Different attitudes towards the new information

These correspond to three different possible attitudes of the agent

towards the reliability of the source of the new information:

• Update: an infallible source. The source is “known” (guaranteed)

to be truthful.

• Radical (or Lexicographic) upgrade: the source is fallible,

but highly reliable, or at least very persuasive. The source is

strongly believed to be truthful.

• Conservative upgrade: the source is trusted, but only

“barely”. The source is (“simply”) believed to be truthful ; but this

belief can be easily given up later!
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Learning that you’re drunk

Suppose that Albert learns that he is definitely drunk (say, by

seeing the result of his blood test). By updating with the sentence d,

we obtain: �� ��
�� ��d, g

a //
�� ��
�� ��d,¬g

which correctly reflects Albert’s new belief that he is not a genius.
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Exercise

Update Albert’s original model with a Moore sentence:

Suppose an infallible source (the Pope) tells Albert:

“Albert, you are drunk but you don’t believe it!”

d ∧ ¬Bad.

Check that after learning the new information, Albert not only believes,

but he knows that the new information was true before he learnt it.
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Updates give you knowledge

After any update !ϕ, the agent comes to know that ϕ was true

before the update.

we have the validity

[!ϕ]Ka(BEFORE ϕ).

“Updates give you KNOWLEDGE, and not just BELIEF!”

The reason is that an update !ϕ is performed ONLY when the new

information ϕ is absolutely certain: when the source of the

information is infallible.
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Mary Curry Enters the Story

Suppose that there is no blood test. Instead, he learns that he’s drunk

from somebody who is trusted but not infallible: NOT the Pope,

but Albert’s good friend Prof Mary Curry (not be confused with the

famous Prof Marie Curie).

So Mary Curry tells Albert:

“Man, you’re drunk !”
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What to do with Professor Winestein?

Albert trusts Mary, so he believes she’s telling the truth, but he

doesn’t know for sure: maybe she’s pulling his leg, or maybe she’s

simply wrong.

How should we upgrade the model

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

to capture Albert’s new beliefs?

There are two drunk-worlds (d, g) and (d,¬g). Which one should we

promote ahead of all the others?
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Which is Best?

Maybe we should promote both drunk-worlds, making them more

plausible than the other world (¬d, g):

�� ��
�� ��¬d, g a //

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g

Or maybe we should promote only the most plausible of the two:

�� ��
�� ��d, g

a //
�� ��
�� ��¬d, g a //

�� ��
�� ��d,¬g

Which is the best, most natural option??
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How Strong is Your Trust

Actually, they are both natural, in different contexts and given

different assumptions.

It all depends on how strong is Albert’s belief that Mary tells the

truth!
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Strong Belief in single-agent models

A sentence ϕ is strongly believed in a single-agent plausibility model

S if the following two conditions hold

1. ϕ is consistent with the agent’s knowledge:

‖ϕ‖S 6= ∅,

2. all ϕ-worlds are strictly more plausible than all

non-ϕ-worlds:

s > t for every s ∈ ‖ϕ‖S and every t 6∈ ‖ϕ‖S.

It is easy to see that strong belief implies belief.
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Strong Belief is Believed Until Proven Wrong

Actually, strong belief is so strong that it will never be given up

except when one learns information that contradicts it!

More precisely:

ϕ is strongly believed iff ϕ is believed and is also conditionally

believed given any new evidence (truthful or not) EXCEPT if

the new information is known to contradict ϕ; i.e. if:

1. Baϕ holds, and

2. Bθaϕ holds for every θ such that ¬Ka(θ ⇒ ¬ϕ).
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Example

The “presumption of innocence” in a trial is a rule that asks the

jury to hold a strong belief in innocence at the start of the trial.

In our Winestein example

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

Albert’s belief that he is sober (¬d) is a strong belief (although

it is a false belief).
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Radical Upgrade

If Albert has a strong belief that Mary is telling the truth,

he will have to choose the first option: promote both d-worlds

(in which Mary’s statement is true), making them both more

plausible than the other worlds.

This corresponds to radical upgrade: it involves a rather radical

revision of the prior beliefs, based on a strong belief in the correctness

of the new information.
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Example of Radical Upgrade

By performing a radical upgrade ⇑ d on the original model

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

we obtain �� ��
�� ��¬d, g a //

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g

So we see that Albert’s strong belief that he was sober has been

reverted: now he has acquired a strong belief that he is drunk!
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Fragile Trust

What if Albert’s trust in Mary is more “fragile”?

Say, he believes she’s telling the truth, but he doesn’t

strongly believe it: instead, he “barely believes” it.

This means that, after hearing Mary’s statement, he acquires a very

“weak” belief in it: if later some of his beliefs are found to be wrong

and he will have to revise them, then the first one to give up will be

his belief in Mary’s statement.
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Conservative Upgrade

In this case, Albert will have to choose the second option: pro-

mote only the most plausible d-world, leaving the rest

the same.

The change of order in this case is minimal: while acquiring a (weak)

belief in d, Albert keeps as much as possible of his prior plausibility

ordering (as much as it is consistent with believing d).

This corresponds to conservative upgrade.
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Example of Conservative Upgrade

In the original Winestein situation

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

a conservative upgrade ↑ d produces the model

�� ��
�� ��d, g

a //
�� ��
�� ��¬d, g a //

�� ��
�� ��d,¬g

In this new model we have: Bad ∧Bga¬d.

So Albert’s new belief that he is drunk is not strong, and so is very

fragile: if later Mary tells him he’s a genius, he’ll immediately revert

to believing that he was sober!
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Upgrades induce belief

We already saw that updates induce knowledge (in the new

information):

[!ϕ]Ka(BEFORE ϕ).

In contrast, soft upgrades only induce belief (in the new

information), and even this is only conditional on consistency with

prior knowledge:

Indeed, after a conservative or a radical upgrade, the agent only

comes to believe that ϕ (was the case), UNLESS he already

knew (before the upgrade) that ϕ was false; i.e. we have the

validity

¬Ka¬ϕ⇒ [↑ ϕ]Ba(BEFORE ϕ)
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Truthful and Un-truthful Upgrades

An upgrade is truthful if the new information ϕ is true (in the

real world). The previous upgrades were all truthful.

But one can also upgrade with false information: if instead

Mary told Albert “You are not a genius” and Albert strongly

believed her, then the resulting model, obtained by the radical

upgrade ⇑ ¬g, would have been

�� ��
�� ��d, g

a //
�� ��
�� ��¬d, g a //

�� ��
�� ��d,¬g

This is an un-truthful upgrade: Albert acquires a strong (false)

belief that he’s not a genius.
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Adding Mary Curry to the Winestein story

Albert Winestein’s best friend is Prof. Mary Curry.

She’s pretty sure that Albert is drunk: she can see this with her

very own eyes. All the usual signs are there!

She’s completely indifferent with respect to Albert’s genius:

she considers the possibility of genius and the one of non-genius as

equally plausible.
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However, having a philosophical mind, Mary Curry is aware of the

possibility that the testimony of her eyes may in principle be

wrong: it is in principle possible that Albert is not drunk, despite the

presence of the usual symptoms.

The model for Mary alone:

�� ��
�� ��¬d,¬g oo m //

�� ��
�� ��¬d, g m //

�� ��
�� ��d, g oo

m //
�� ��
�� ��d,¬g
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Multi-agent Model for Albert and Mary

�� ��
�� ��¬d, g

m
22
�� ��
�� ��d,¬g

arr

KK

m

���� ��
�� ��¬d,¬g

��

m

OO

�� ��
�� ��d, g

a

SS
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Muddy Children Example

Two children played with mud, and they both have mud in their

hair. They stand in line, with child 1 looking at the back of child 2.

So 1 can see if 2’s hair is dirty or not, but not the other way around.

(And no child can see himself.)

Let’s assume that (it is common knowledge that) each of them thinks

that it is more plausible that he is clean than that he is dirty. Also, (it

is common knowledge that) child 2 thinks that it is more plausible that

he himself (child 2) is clean than that child 1 is clean.
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Plausibility Model

�� ��
�� ��dd 33

++e _ Y �� ��
�� ��cd 33

�� ��
�� ��dc 33

++e _ Y �� ���� ��cc

Dotted arrows: child 1’s plausibility.

Continuous arrows: child 2’s plausibility.

RED: the real world.
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Information Partitions

From this, we can extract the information partitions:

_ _ _ _ _ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _ _ _ _ _

�� ��
�� ��dd

�� ��
�� ��cd

_ _ _ _ _ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _ _ _ _ _

�� ��
�� ��dc

�� ���� ��cc

Squares around the worlds: children’s information cells.

Dotted squares: child 1.

Continuous squares: child 2.
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2.5. Joint Upgrades and Updates

We can now apply the update or upgrade operations simultane-

ously to all the relations.

This corresponds to joint upgrades or joint updates:

some information ϕ is publicly announced, and it is com-

mon knowledge that all agents have the same attitude

towards the announcement: they upgrade or update with

ϕ in the same way (all doing an update, or a radical upgrade

etc).

121



“Publicly Announced” Private Upgrades

Or the operation can be applied only to a single agent’s re-

lations (keeping the others unchanged), obtaining “publicly-

announced” private upgrades/updates:

it is common knowledge that a single agent a up-

grades/updates with ϕ, but also that the others do NOT

upgrade/update at all with ϕ.

For instance, imagine a publicly announces that he is

upgrading/updating with ϕ. It is commonly known that he is telling

the truth, but also that the others (not having direct access to the

evidence for ϕ) are not convinced of the reliability of the information ϕ.
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Different Attitudes

More generally, we can allow different agents to have dif-

ferent attitudes towards the new information, by applying dif-

ferent kinds of upgrade/update operations to different

agents’ relations.

NOTE though that this still assumes common knowledge of

every agent’s attitude towards the new information: the

agents commonly know what kind of upgrade/update is performed

by each of them.

To go beyond that, we’ll need event models!
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Muddy children example: A Joint Update

The Father announces:

“At least one of you is dirty”.

We take the Father to be an infallible source.

So this is an update !(d1 ∨ d2), yielding the updated model:

�� ��
�� ��dd 33

++e _ Y �� ��
�� ��cd 33

�� ��
�� ��dc
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Muddy children example : Joint Radical Upgrade

Alternatively, an older sister announces: “At least one of you is dirty”.

She is a highly trusted source, though not infallible:

This radical upgrade yields:

_____________
%%L

L�� ���� ��cc 33

s
s �� ��

�� ��dd 33
++e _ Y �� ��
�� ��cd 33

�� ��
�� ��dc
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Children example: “Publicly Announced” Private Upgrade

Alternatively, suppose that it is common knowledge that only child 2

highly trusts the sister; but that child 1 always disregards her

announcements, assuming they are just made-up stories. So sister’s

announcement will induce a publicly announced private upgrade by

child 2:

_____________
L

L�� ���� ��cc 33
yy

s
s �� ��

�� ��dd 33
++e _ Y �� ��
�� ��cd 33

�� ��
�� ��dc

126



Muddy children example: Joint Conservative Upgrade

Alternatively, children hear a rumor that at least one of them is dirty.

It is barely believable, so they perform a joint conservative upgrade:

�� ��
�� ��dd 33

++e _ Y �� ��
�� ��cd 33

�� ���� ��cc 33
++e _ Y �� ��
�� ��dc
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2.6. Doxastic Event Models

More general upgrades, will look very much like the DEL event

models.

There are some differences though: first, DEL event models were

multi-agent, while the upgrades we saw were single-agent.

BUT... this can be easily fixed:

generalize to multi-agent upgrades, by having plausibility rela-

tions ≤a labeled by agents!

This was done by G. Aucher (– though using a different, more

“quantitative way”, way to encode plausibility relations, in terms of

Spohn ordinals representing “degrees of belief”).
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Event Plausibility Models (G. Aucher)

A multi-agent event plausibility model

Σ = (Σ,≤a, pre)

is just like a multi-agent state plausibility model, except that

its elements are now called events (or actions), and instead of

the valuation we have a precondition map pre, associating a

sentence preσ to each action σ.

Now, the preorders σ ≤a σ′ capture the agent’s plausibility

relations on events: a considers it at least as plausible that σ′

is happening than that σ is happening.
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Looking for a General Update Rule

We would like to compose any initial state plausibility model with

any event plausibility model in order to compute the new state

plausibility model after the event.

We want to keep the old DEL setting while also doing belief re-

vision: when restricted to the “hard” epistemic relations

∼a, our construction should amount just to taking the Product

Update

(S,∼a, ‖.‖)a∈A ⊗ (Σ,∼a, pre)a∈A

But how should we define the new plausibility ≤a on

input-pairs (s, σ) ?
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Various Rules

The first such plausibility update rule was proposed by G. Aucher.

A number of other such rules were proposed and discussed by H. van

Ditmarsch.

The one that I present here is the so-called “Action-Priority Rule”, was

proposed in (Baltag and Smets 2006). It has the advantage that it has

purely relational, “qualitative” presentation (without the need of

performing arithmetic operations on degrees of belief).

To derive the rule, we consider a number of special cases.

131



First Case

Well, in case that the event models includes a strict plausibility order

between two events σ1, σ2 with precondition ϕ1, ϕ2

�� ��
�� ��σ1 : ϕ1

a //
�� ��
�� ��σ2 : ϕ2

then we kind of know the answer from the single-agent

upgrade: all the ϕ2-worlds (s2, σ2) should become strictly more

plausible than all the ϕ1-worlds (s1, σ1).
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The only problem is that, since we now have also worlds that are known

to be impossible by the agent, the above rule should NOT apply to those:

if the agent can already distinguish between s1 and s2, then he knows

which of the two is the case, so he doesn’t have to compare the outputs

(s1, σ1) and (s2, σ2).

So we get the following conditions:

s1 ∼a s2 and σ1 <a σ2 imply (s1, σ1) <a (s2, σ2),

and also

s1 6∼a s2 implies (s1, σ1) 6∼a (s2, σ2).
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Second Case

What if the event model includes two equally plausible events?

�� ��
�� ��σ1 : ϕ1

oo a //
�� ��
�� ��σ2 : ϕ2

We interpret this as lack of information: when the (unknown)

event happens, it doesn’t bring any information indicating which

is more plausible to be currently happening: σ1 or σ2. In this case

it is natural to expect the agents to keep unchanged their original

beliefs, or knowledge, about which of the two is more plausible.
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Let us denote by ∼= the equi-plausibility relation on events,

given by:

σ ∼=a σ
′ iff σ ≤a σ′ ≤a σ.

Then the last case gives us another condition:

s1 ≤a s2 and σ1 ∼=a σ2 implies (s1, σ1) ≤a (s2, σ2).
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Third Case

Finally, what if the two events are epistemically distinguishable:

σ 6∼a σ′ ?

Then, when one of them happens, the agent knows it is not the other

one.

By perfect recall, he can then distinguish the outputs of the events, and

hence the two outputs are not comparable. So

σ 6∼a σ′ implies (s1, σ1) 6≤a (s2, σ2).
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The Action-Priority Rule

Putting all these together, we get the following update rule, called

the Action-Priority Rule:

(s, σ) ≤a (s′, σ′) iff: either σ <a σ
′, s ∼a s

′ or σ ∼=a σ
′, s ≤a s

′.

This essentially says that we order the product space using the anti-

lexicographic preorder relation on comparable pairs (s, σ).
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The Action-Priority Update

As before, the set of states of the new model S⊗Σ is:

S ⊗ Σ := {(s, σ) : s |=S preσ}

The valuation is given by the original valuation: (s, σ) |= p iff

s |= p.

The plausibility relation is given by the Action-Priority Rule.
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Interpretation

The anti-lexicographic preorder gives “priority” to the action

plausibility relation. This is not an arbitrary choice: it is in the

spirit of AGM revision. The action plausibility relation captures

the agent’s current beliefs about the current event: what

the agents really believe is going on at the moment.

In contrast, the input-state plausibility relations only capture

past beliefs. The past beliefs need to be revised by

the current beliefs, and NOT the other way around! The

doxastic action is the one that “changes” the initial doxastic state,

and NOT vice-versa.
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EXAMPLE: joint update

The event model for a joint radical update !ϕ is essentially the same as

in standard DEL (the event model for a “public announcement”):

�� ��
�� ��ϕ

(As usual for plausibility models, we do NOT draw the loops, but they

are there.)
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EXAMPLE: joint radical upgrade

The event model for a joint upgrade ⇑ ϕ is:

�� ��
�� ��¬ϕ

a,b,c,··· //
�� ��
�� ��ϕ

EXERCISE: Check that, for every state model S, S⊗Σ!ϕ is indeed

(isomorphic to) the result of performing the joint radical upgrade ⇑ ϕ
on S.
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EXAMPLE: publicly-announced private upgrade

The event model for a publicly-announced private (radical) upgrade

with ϕ is:

�� ��
�� ��¬ϕ a ++

ll
b6=a

33
�� ��
�� ��ϕ
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Example: Secret (Fully Private) Announcement

Let us consider again the “cheating” Scenario from the beginning: the

referee (Charles, i.e. agent c) takes a peek at the coin and sees it’s

Heads up, when nobody looks. Alice (a) and Bob (b) don’t suspect

anything: they believe that nothing is really happening.

The DEL event model for this action was

�� ��
�� ��H

c
��

a,b

���� ��
�� ��true

a,b,c

TT
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By taking update product

�� ��
�� ��H

a,b,c
�� �� ��

�� ��T

a,b,c

TT
//a,b,coo

⊗

�� ��
�� ��H

c
��

a,b

���� ��
�� ��true

a,b,c

TT
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of the initial state and this DEL event model, we obtained a state

model of the situation after this action:

�� ��
�� ��
�� ��
�� ��H

c
��

a,b

~~}}}}}}}
a,b

��@@@@@@@

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT

This correctly reflected the agents’ BELIEFS after the cheating action.
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However, this is NOT the correct PLAUSIBILITY model for the new

situation: it does NOT correctly reflect the agents’ CONDITIONAL

beliefs after the cheating.

For instance, the above model (if seen as a plausibility model) would

suggest that, if later Charles tells Alice that he took a peek (without

telling her what face he saw), she will immediately start to believe that

he saw the coin Heads up!
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To compute the correct plausibility model, we need first to figure

the correct event plausibility for the above action. For this, we

still need to ask: what does this event tell Alice (a) and Bob (b)

about the face of the coin in case Charles (c) took a peek?

In other words, given this event, if Alice or Bob later learn that

Charles took a peek, what would they believe as more likely: that

he saw H or T?
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Clearly, this event doesn’t carry ANY new information for Alice and

Bob, so she should stick with whatever she believed before about the

coin. Hence, the event model is

�� ��
�� ��H

a,b,c

JJ

a,b !!DDDDDDDD

�� ��
�� ��T

a,b,c

TT

a,b}}zzzzzzzz
//a,boo

�� ��
�� ��true

a,b,c

TT
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The Action-Priority update of the original state (plausibility) model

with this event plausibility model (skipping the loops):

�� ��
�� ��H

�� ��
�� ��T//

a,b,coo

⊗
�� ��
�� ��H

a,b !!DDDDDDDD

�� ��
�� ��T

a,b}}zzzzzzzz
//a,boo

�� ��
�� ��true

gives us:
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�� ��
�� ��H

a,b

��????????????????

a,b

��

�� ��
�� ��T

a,b

��

a,b

������������������
//a,boo

�� ��
�� ��H

�� ��
�� ��T//

a,b,c
oo

So e.g. a still believes that c doesn’t know the face. However, if later

she’s given the information that he took a peek (without being told

what he saw), she’d know that he knows the face; but as for herself,

she’d still consider both faces equally plausible.
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Solving The Problem from the beginning

What if now Charles secretely tells Alice that he knows the face

of the coin is Heads up?

With the setting of standard DEL, this drove Alice crazy: she

started believing everything!

Now, things are better. The real world (in which Charles knows

H) is still epistemically possible for Alice. So after the fully pri-

vate announcement !a(KcH), the plausibility model simply be-

comes:
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�� ��
�� ��
�� ��
�� ��H

b

���������
b

��???????

�� ��
�� ��H

a,b

!!DDDDDDDDDDDDDDDDDD

a,b

��

�� ��
�� ��T

a,b

��

a,b

}}zzzzzzzzzzzzzzzzzz
//a,boo

�� ��
�� ��H

�� ��
�� ��T//

a,b,c
oo

Exercise: what is the event model that gave us this plausibility model?
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Solving the standard “Muddy Children”

Three children, child 1 and child 2 are dirty. Originally, assume each

child considers equally plausible that (s)he’s dirty and that (s)he’s

clean:

�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

��

kk
3

!!

�� ���� ��dcd==

1
ss

aa

3
++

�� ���� ��ddcOO

2

��

33
1

}}�� ���� ��ccd gg

3 ''OOOOOOOOOOOO
�� ���� ��cdcOO

2

��

�� ���� ��dcc77

1wwoooooooooooo

�� ���� ��ccc
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Father makes the announcement: “At least one of you is dirty”. If he’s

an infallible source (classical Muddy children), then this is an update

!(d1 ∨ d2 ∨ d3), producing:

�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

��

kk
3

!!

�� ���� ��dcd==

1
ss

aa

3
++

�� ���� ��ddcOO

2

��

33
1

}}�� ���� ��ccd
�� ���� ��cdc

�� ���� ��dcc

If the children answer “I don’t know I am dirty”, and they are

infallible, then the update !(
∧
i ¬Kidi) produces:
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�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cdd
�� ���� ��dcd

�� ���� ��ddc

Now, in the real world (d, d, c), children 1 and 2 know they are dirty.
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Soft version of the puzzle

What happens if the sources are not infallible? Father’s announcement

becomes either a radical upgrade ⇑ (d1 ∨ d2 ∨ d3) or a conservative one

↑ (d1 ∨ d2 ∨ d3), producing:

�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

��

kk
3

!!

�� ���� ��dcd==

1
ss

aa

3
++

�� ���� ��ddcOO

2

��

33
1

}}�� ���� ��ccd gg

3 OOOOOOOOOOOO
�� ���� ��cdcOO

2

�� ���� ��dcc77

1
oooooooooooo

�� ���� ��ccc
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Do you believe you’re dirty?

What if next the father only asks them if they believe they are dirty?

And what if they are not infallible agents either (i.e. don’t trust each

other, but not completely), so that their answers are also soft

announcements?

After a (radical or conservative) upgrade with the sentence
∧
i ¬Bidi,

we obtain:
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�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

kk
3

�� ���� ��dcd==

1

aa

3

�� ���� ��ddcOO

2

33
1

�� ���� ��ccd gg

3 OOOOOOOOOOOO
�� ���� ��cdcOO

2

�� ���� ��dcc77

1
oooooooooooo

�� ���� ��ccc

Now (in the real world ddc), children 1 and 2 believe they are dirty:

so they will answer “yes, I believe I’m dirty”.
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Cheating Muddy Children

Let’s get back to the original puzzle: assume again that it is common

knowledge that nobody lies, so we have infallible announcement

(updates). After Father’s announcement, we got

�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

��

kk
3

!!

�� ���� ��dcd==

1
ss

aa

3
++

�� ���� ��ddcOO

2

��

33
1

}}�� ���� ��ccd
�� ���� ��cdc

�� ���� ��dcc
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Secret Communication

Suppose now the dirty children cheat, telling each other that they

are dirty. This is a secret communication between 1 and 2, in

which 3 doesn’t suspect anything: he thinks nothing happened.

So it has the event model:

�� ��
�� ��d1 ∧ d2

3 //
�� ��
�� ��true
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EXERCISE

Taking the Action-Priority Update of the previous model with this

event model.

Then model the next announcement (in which the two children say “I

know I’m dirty”, while the third says “I don’t know”) as a joint update

!(K1d1 ∧K2d2 ∧K3d3).

Note that, after this, child 3 does NOT get crazy: unlike in the standard

DEL (with Product update), he simply realizes that the others cheated!
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3.1 Iterated Revision and the Learning Problem

Question 1. THE ITERATION PROBLEM: investigate the

long-term behavior of iterated learning of higher-level doxastic

information.

Learning: belief revision with new true information.

Long-term behavior: whether the learning process comes to an

end, stabilizing the doxastic structure, or keeps changing it

forever. In particular, do the agent’s beliefs stabilize, reaching a fixed

point? Do the conditional beliefs?

Question 2. THE LEARNING PROBLEM: Do the beliefs

stabilize on truth, converging to the real world?
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Iterating Upgrades

To study iterated belief revision, consider a finite model

S0 = (S,≤0, ‖ · ‖0, s0), and an (infinite) sequence of upgrades

α0, α1, . . . , αn, . . .

In particular, these can be updates

!ϕ0, !ϕ1, . . . , !ϕn, . . .

or conservative upgrades

↑ ϕ0, ↑ ϕ1, . . . , ↑ ϕn, . . .

or radical upgrades

⇑ ϕ0,⇑ ϕ1, . . . ,⇑ ϕn, . . ..
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The iteration leads to an infinite succession of upgraded models

S0,S1, . . . ,Sn, . . .

defined by:

Sn+1 = αn(Sn).
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Iterated Updates Always Stabilize

OBSERVATION: For every initial finite model S0, every infinite

sequence of updates

!ϕ0, . . . , !ϕn, . . .

stabilizes the model after finitely many steps.

I.e. there exists n such that

Sn = Sm for all m ≥ n.

The reason is this is a deflationary process: the model keeps

contracting until it eventually must reach a fixed point.
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Iterated Upgrades Do Not Necessarily Stabilize!

Iterated Updates always stabilize, but this is NOT the case for

arbitrary upgrades.

First, it is obvious that, if we allow for false upgrades, the revision may

oscilate forever: the sequence

⇑ p,⇑ ¬p,⇑ p,⇑ ¬p, . . .

will forever keep reverting back and forth the order between

the p-worlds and the non-p -worlds.
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Tracking the Truth

This is to be expected: such an “undirected” revision with mutually

inconsistent pieces of “information” is not real learning.

As Nozick put it, “knowledge” and “learning” have to do with

tracking the truth (in the real world).

SURPRISE: we may still get into an infinite belief-revision

cycle, even if the revision is “directed” towards the real world:

i.e. even if we allow only upgrades that are always truthful!
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BIGGER SURPRISE: This still holds even if we revise with the

same true sentence every time:

• Conservative case: ↑ ϕ, ↑ ϕ, . . . , ↑ ϕ, . . .
Simple beliefs never stabilize.

• Radical case: ⇑ ϕ,⇑ ϕ, . . . ,⇑ ϕ, . . ..
simple beliefs stabilize, but conditional beliefs don’t.

168



Example : Voting Case

Consider a pollster (Charles) with the following beliefs about how a

given voter (Mary) will vote:

He believes she will vote Democrat.

But in case this turns out wrong, he’d rather believe that she won’t

vote than accepting that she may vote Republican.

We assume that, in reality (unknown to Charles), Marry will vote

Republican!

�� ���� ��r //�� ���� ��n //
�� ��
�� ��d
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Iterating a Truthful Conservative Upgrade

Suppose a trusted informer tells Charles the following true statement ϕ:

r ∨ (d ∧ ¬Bd) ∨ (¬d ∧Bd)

“Either Mary will vote Republican or else your beliefs about whether or

not she votes Democrat are wrong”.

In the original model

�� ���� ��r //�� ���� ��n //
�� ��
�� ��d

the sentence ϕ is true in worlds r and n, but not in d.
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Infinite Oscillations by Truthful Upgrades

Let’s suppose that Charles conservatively upgrades his beliefs with

this new true information ϕ. The most plausible state satisfying ϕ was

n, so this becomes now the most plausible state overall:

�� ���� ��r //
�� ��
�� ��d //�� ���� ��n

Now ϕ is again true at the real world (r) and in world d. So this

sentence can again be truthfully announced.
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If Charles conservatively upgrades again with ϕ, he will promote d

on top, reverting to the original model!

Here, The whole model (the plausibility order) keeps changing,

and Charles’ (simple, un-conditional) beliefs keep oscillating

forever (between d and n)!
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Iterating Truthful Radical Upgrades

Consider the same original model:

�� ���� ��r //�� ���� ��n //
�� ��
�� ��d

But now consider the sentence ϕ:

r ∨ (d ∧ ¬B¬rd) ∨ (¬d ∧B¬rd)

“If you’d truthfully learn that Marry won’t vote Republican, then your

resulting belief about whether or not she votes Democrat would be

wrong”.

Sentence ϕ is true in the real world r and in n but not in d, so a

truthful radical upgrade will give us:
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�� ��
�� ��d //�� ���� ��r //�� ���� ��n

The same ϕ is again true in (the real world) r and in d, so it can again

be truthfully announced, resulting in:

�� ���� ��n //
�� ��
�� ��d //�� ���� ��r

Another truthful upgrade with ϕ:

�� ��
�� ��d //�� ���� ��n //�� ���� ��r

then another truthful upgrade with the same ϕ gets us back to

�� ���� ��n //
�� ��
�� ��d //�� ���� ��r
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Stable Beliefs in Oscillating Models

These last two models will keep reappearing, in an endless cycle:

as for conservative upgrades, the process never reaches a fixed point!

However, unlike in the conservative upgrade example, in this radical

example the simple (unconditional) beliefs eventually stabilize:

from some moment onwards, Charles correctly believes that the real

world is r (vote Republican) and he will never lose this belief again!

This is a symptom of a more general phenomenon:
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Beliefs Stabilize in Iterated Radical Upgrades

THEOREM:

In any infinite sequence of truthful radical upgrades {⇑ ϕi}i on

an initial (finite) model S0, the set of most plausible states

stabilizes eventually, after finitely many iterations.

From then onwards, the simple (un-conditional) beliefs stay

the same (despite the possibly infinite oscillations of the

plausibility order).
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Upgrades with Un-conditional Doxastic Sentences

Moreover, if the infinite sequence of lexicographic upgrades

{⇑ ϕi}i consists only of sentences belonging to the language of

basic doxastic logic (allowing only for simple, un-conditional

belief operators) then the model-changing process eventually

reaches a fixed point: after finitely many iterations, the model

will stay unchanged.

As we saw, this is not true for conservative upgrades.
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Intermediate Conclusions

Iterated upgrades may never reach a fixed point: conditional

beliefs may remain forever unsettled.

When iterating truthful lexicographic upgrades, simple

(non-conditional) beliefs converge to some stable belief.

Truthful conservative upgrades do not have this last property.
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Converging to the Truth?

So simple beliefs stabilize after an infinite series of truthful

lexicographic upgrades. But under what conditions do these

beliefs stabilize on the Truth?
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Strongly informative upgrade streams

An upgrade with ϕ is called “strongly informative” on a

pointed model S iff ϕ is not already believed at (the real world

of) S. I.e. S satisfies ¬Bϕ.

Now, an upgrade stream {⇑ ϕn}n is “strongly informative” if each of

the upgrades is strongly informative at the time when it is announced:

i.e. in the iteration, we have that

Sn |= ¬Bϕn
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Belief correcting upgrade and streams

Call an upgrade ⇑ ϕ “belief-correcting” on S iff ϕ is actually

believed to be FALSE at S. I.e.

S |= B¬ϕ.

Now, an upgrade stream is called “belief-correcting” if each of the

upgrades is belief-correcting at the time when it is announced:

Sn |= B¬ϕn.

NOTE: “belief correcting” ⇒ “strongly informative” (The converse

fails.)
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Maximal Strongly informative streams

An upgrade stream is a “maximally” strongly-informative

(OR “maximally belief-correcting”), truthful stream if:

• (1) it is strongly-informative (OR belief-correcting) and truth-

ful, and

•(2) it is maximal with respect to property (1): it cannot be

properly extended to any stream having property (1).

So a strongly informative truthful stream is “maximal” iff it is either

infinite or if, in case it is finite (say, of length n) then there exists

NO upgrade ⇑ ϕn+1 which would be truthful and strongly

informative on the last model Sn.
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The results

1. Every maximally belief-correcting lexicographic up-

grade stream {⇑ ϕn}n (starting on a given finite model S) is

finite and converges to true beliefs; i.e. in its final model

Sn, all the beliefs are true.

2. Every maximally strongly-informative lexicographic

upgrade stream {⇑ ϕn}n (starting on a given finite model S) is

finite and stabilizes the beliefs on FULL TRUTH; i.e. in

its final model Sn, all beliefs are true and all true sentences are

believed.
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Note

But note that the last conclusion is NOT necessarily equivalent to

saying that the set of most plausible worlds coincides in the end with

only the real world!

The reason is that the language may not be expressive enough to

distinguish the real world from some of other ones; and so the

conclusion of 2 can still hold if the most plausible worlds are these

other ones...

The above results do NOT hold for any other belief-revision methods

except lexicographic (and conditioning).
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Conclusions

• Iterated upgrades may never reach a fixed point: conditional beliefs

may remain forever unsettled.

• When iterating truthful lexicographic upgrades, the simple

(non-conditional) beliefs converge to some stable belief.

• If we repeatedly (lexicographically) upgrade with THE SAME

sentence in BASIC DOXASTIC logic, then all conditional beliefs

eventually stabilize.

• In iterated truthful radical upgrades that are maximal

strongly-informative, all believes converge to the truth and all true

sentences are believed.

Other types of upgrades do not have these last positive

properties.
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This is not the full story!

We can extend the above positive result regarding repeated up-

grades beyond basic doxastic logic, allowing various forms of

“knowledge” operators in the language.

Still, there exist important conditional-doxastic sentences lying

outside this fragment (e.g. “Surprise”-sentence in the Surprise

Examination Puzzle) for which repeated lexicographic upgrades

nevertheless stabilize the whole model!
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3.2 How can “Agreement” be reached by “Sharing”?

THE PROBLEM: we investigate the issue of reaching dox-

astic agreement among the agents of a group by “sharing”

information or beliefs.
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How can “Agreement” be reached by “Sharing”?

'

&

$

%

Example of a particular scenario:

Albert Mary

WVUTPQRSǒ . ǒ
_

WVUTPQRSô . ô
^

Albert knows (D or G), believes G Mary doesn’t know (D or G)

conditional on D he believes ¬G believes D

They share their information

⇓
Together they know the same: (D or G) and both believe D and ¬G
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Main Issues:

• Agents’ goal = to reach a total doxastic or epistemic agreement

(“merge”).

• Different types of agreements can be reached: agreement only on

the things they know, on some simple beliefs, strong beliefs etc.

• Depending on the type of agreement to be reached, what should be

the strategy? Which communication protocol ? (given that the agents

have some limited abilities in the way they communicate)

• We are interested in “sharing”: joint (group) belief revision induced

by sincere, persuasive public communication by either of the

agents (the “speaker”).
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Talk publicly, sincerely, persuasively!

Rules of the game for our agents:

• Public communication: common knowledge of what (the content) is

announced and of the fact that all agents adopt the same attitude

towards the announcement; i.e. they have the same opinion about

the reliability of this information (how plausible it is).

• Sincerity: the communicated information was already “accepted”

by the speaker (before sharing it).

• Persuasiveness: the new information becomes commonly

“accepted” by all agents; i.e. everybody comes to share the same

attitude as the speaker towards the communicated information.
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The Goal of Sharing is Total Agreement

After each act of sharing, all agents reach a partial agreement, namely

with respect to the piece of information that was communicated.

The natural end of the sharing process is when total agreement has

been reached: all the agents’ doxastic structures are exactly the same.

After this, nothing is left to share: any further sincere persuasive

communication is redundant from than on.

191



Dynamic Merge

When total agreement IS reached in this way, we say that the agents’

doxastic structures have been dynamically “merged” into one.

Connections to the problem of “preference aggregation” in Social

Choice Theory. “Aggregating beliefs” (or rather, belief structures).

Questions: What types of merge can be dynamically re-

alized by what type of “sharing”?

Do the communication agenda (order of the items announced,

allowing agents to interrupt the speaker) and the group’s hier-

archy make any difference?
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Preference Merge and Information Merge

In Social Choice Theory: the main issue is how to merge the agent’s

individual preferences.

A merge operation for a group G is a function
⊙

, taking

preference relations {Ri}i∈G into a “group preference” relation⊙
i∈I Ri (on the same state space).
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Merge Operations

So the problem is to find a “natural” merge operation (subject to

various fairness conditions), for merging the agents’ preference

relations.

Depending on the conditions, one can obtain either an Impossibility

Theorem (Arrow 1950) or a classification of the possible types of

merge operations (Andreka, Ryan & Schobbens 2002).
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Belief Merge and Information Merge

• If we want to merge the agents’ beliefs Bi, so that we get a notion of

“group belief”, then it is enough to merge the belief relations →i.

• To merge the agents’ knowledge (“hard information”) Ki, it is

enough to merge the epistemic indistinguishability relations
i∼.

• To merge the agents’ soft information (all their“strong beliefs” Sbi,

or equivalently all their “conditional beliefs” BPi Q), we have to merge

the plausibility relations ≤i.
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Merge by Intersection

The so-called parallel merge (or “merge by intersection”)

simply takes the merged relation to be⋂
i∈G

Ri.

In the case of two agents, it takes:

Ra
⊙

RB := Ra ∩Rb

This could be thought of as a “democratic” form of preference merge.
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Distributed Knowledge is Parallel Merge

This form of merge is particularly suited for “knowledge” K:

since this type of knowledge is absolutely certain, there is no danger of

inconsistency.

The agents can pool their information in a completely symmetric

manner, accepting the other’s bits without reservations.

In fact, parallel merge of the agents’ irrevocable knowl-

edge gives us the standard concept of “distributed knowl-

edge” DK:

DKGP = [
⋂
i∈G

i∼]P.
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Lexicographic Merge

In lexicographic merge, a “priority order” is given on agents, to

model the group’s hierarchy. The “lexicographic merge”

Ra/b gives priority to agent a over b:

The strict preference of a is adopted by the group; if a is

indifferent, then b’s preference (or lack of preference) is adopted;

finally, a-incomparability gives group incomparability.

Formally:

Ra/b := R>a ∪ (R
∼=
a ∩Rb) = R>a ∪ (Ra ∩Rb) = Ra ∩ (R>a ∪Rb).
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Lexicographic merge of soft information

Lexicographic merge is particularly suited for “soft

information”, given by either strong beliefs Sb or conditional beliefs

B, in the absence of any hard information:

since soft information is not fully reliable, some “screening” must be

applied (and so some hierarchy must be enforced) to ensure consistency

of merge.
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Relative Priority Merge

Note that, in lexicographic merge, the first agent’s priority is

“absolute”.

But in the presence of hard information, the lexicographic

merge of soft information must be modified: by first pool-

ing together all the hard information and then using it

to restrict the lexicographic merge of soft information.
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This leads us to a “more democratic” combination of Merge by

Intersection and Lexicographic Merge , called “(relative)

priority merge” Ra⊗b:

Ra⊗b := (R>a ∩R∼b ) ∪ (R
∼=
a ∩Rb) = Ra ∩R∼b ∩ (R>a ∪Rb).
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Essentially, this means that both agents have a “veto” with

respect to group incomparability:

The group can only compare options that both agents can compare;

and whenever the group can compare two options, everything

goes on as in the lexicographic merge: agent a’s strong

preferences are adopted, while b’s preferences are adopted only when a

is indifferent.
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Example: merging Marry’s beliefs with Albert’s

If we give priority to Marry (the more sober of the two!), the relative

priority merge Rm⊗a of Marry’s and Albert’s original plausibility orders

�� ��
�� ��¬D,¬G oo m //

�� ��
�� ��¬D,G m //

�� ��
�� ��D,G oo

m //
�� ��
�� ��D,¬G

�� ��
�� ��¬D,¬G

�� ��
�� ��D,G

a //
�� ��
�� ��D,¬G a //

�� ��
�� ��¬D,G

gives us:

�� ��
�� ��¬D,¬G

�� ��
�� ��¬D,G //

�� ��
�� ��D,G //

�� ��
�� ��D,¬G
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“Realizing” Preference Merge Dynamically

Intuitively, the purpose of “preference merge”
⊙

i∈GRi is to achieve a

state in which the G-agents’ preference relations are “merged”

accordingly, i.e.

to perform a sequence π of upgrades, transforming the initial

model (S,Ri)inG into a model (S,R′i)i∈G such that

R′j =
⊙
i∈G

Ri

for all j ∈ G.
Let

us call this a “realization” of the merge operation
⊙

.
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Realizing Distributed Knowledge

In the case of knowledge, it is easy to design a protocol to realize

it, as the parallel merge of agents’ knowledge, operation by a

sequence of joint updates, as follows:

PROTOCOL: in no particular order, the agents have to

publicly and sincerely announce (in an infallible manner)

“all that they know” .

More precisely, for each set of states P ⊆ S such that P is known to a

given agent a, an update !P is performed. This essentially is the

algorithm in van Benthem’s paper “One is a Lonely Number”.
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The Protocol

Formally, the protocol for realizing distributed knowledge

within group G is:

π :=
∏
i∈G

∏
{!P : P ⊆ S such that s |= KiP}

(where
∏

is sequential composition of a sequence of actions).

The order of the agents in the first
∏
i and the order in which the

announcements are made by each agent (in the second
∏

) are arbitrary.

206



Order-independence

The announcements may even be interleaving:

if the initial model is finite, then any “public” dialogue (of agents

announcing facts they know) will converge to the realization of

distributed knowledge,

as long as the agents keep announcing new things (i.e. that are not

already common knowledge).
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Realizing Lexicographic Merge

Assuming we have NO NON-TRIVIAL “HARD” INFORMATION (i.e.

that all knowledge is common knowledge):

then we can realize the lexicographic merge ≤a/b of SOFT

INFORMATION by joint radical upgrades, via a protocol very

similar to the one for distributed knowledge.

PROTOCOL: The agents have to publicly and sincerely

announce (via radical upgrades) “all that they strongly

believe”.
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Order-dependence

The main difference is that now the speakers’ order matters!

To realize lexicographic merge, the agents that have “priority” in

the merge has to be given priority in the protocol.

A lower-priority agent will be permitted to speak ONLY

after the higher-priority agents finished announcing “ALL

that they strongly believe”.
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Be Persuasive!

Note that simply announcing that they believe it, or that they strongly

believe it, won’t do: this will not in general be enough to achieve

preference merge (or even simple belief merge!).

Being informed of another’s beliefs is not enough to convince

you of their truth.

What is needed for belief merge is that the agents try to be

persuasive: to“convert” the other to their own beliefs by

persuasively announcing ϕ when they just strongly believe ϕ.
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The PROTOCOL

Formally, the protocol π′ for realizing lexicographic merge of plau-

sibility relations {≤i}i∈G is the following:

π′ :=
∏

(i1,...ik)∈G

∏
{⇑ P : P ⊆ S such that s |= SbiP}.

Here, the order (i1, . . . , ik) of the agents in the first
∏
i is the priority

order in the desired merge (while the order in which the announcements

are made by each agent in the second
∏

is still arbitrary).
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Realizing Priority Merge

Finally: we can realize the Priority Merge
⊗

i ≤i of the whole

PLAUSIBILITY ORDERS (encoding BOTH SOFT AND HARD

INFORMATION), by sequentially composing the two pro-

tocols above.

FIRST, the agents publicly announce “all they know”, via joint updates;

THEN, respecting the priority order, they take turns announcing “all

that they strong believe”, via joint radical upgrades.

212



Example

In the situation from Example 1

�� ��
�� ��¬D,¬G m //

�� ��
�� ��¬D,Goo

m
11
�� ��
�� ��D,¬G

aqq
22
�� ��
�� ��D,G

aqq

m
mm

the protocol to realize the Priority Merge Rm⊗a consists of:

Albert’s infallible announcement (of his “hard” knowledge that D ∨G);

then Mary’s sincere announcement (of her strong belief D); then

Albert’s sincere announcement (of ¬G, which he strongly believes after

Mary’s announcement):

!(D ∨G);⇑ D;⇑ ¬G

�� ��
�� ��¬D,¬G

�� ��
�� ��¬D,G m,a //

�� ��
�� ��D,G

m,a //
�� ��
�� ��D,¬G
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Order-dependence: counterexample

The priority merge of the ordering

a

##�� ���� ��s
a
44
�� ���� ��u

a
44
�� ���� ��w

with the ordering
m

##�� ���� ��w
m
44
�� ���� ��s

m
44
�� ���� ��u

is equal to either of the two orders (depending on which agent has

priority). But...
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... suppose we have the following public dialogue

⇑ u · ⇑ (u ∨ w)

This respects the “sincerity” rule of our protocol, since initially m

strongly believes u; then after the first upgrade a strongly believes

u ∨ w.

But this doesn’t respect the “order” rule: m lets a answer before she

finishes all she has to say. The resulting order is neither of two priority

merges:
a,m

##�� ���� ��s
a,m
44
�� ���� ��w

a,m
44
�� ���� ��u
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The Power of Agendas

All this illustrates the important role of the person who “sets the

agenda”:

the “Judge” who assigns priorities to witnesses’ stands;

Or the “Speaker of the House”, who determines the order of the

speakers as well as the the issues to be discussed and the relative

priority of each issue.
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