Multidimensional Possible world models

Richard Bradley

MSI Tech Support (Institute)

æ

- < E ≻ < E ≻

Image: Image:

• Possible worlds

◆□ > ◆圖 > 《臣 > 《臣 >

MSI Tech Support (Institute)

2 / 14

3

- Possible worlds
- Counteractual worlds

2

イロト イヨト イヨト イヨト

- Possible worlds
- Counteractual worlds
- A small-world model of prospects

æ

- A B A A B A

Image: Image:

- Possible worlds
- Counteractual worlds
- A small-world model of prospects
 - Set of worlds: $W = \{w_1, w_2, w_3, w_4\}$

æ

• • = • • = •

- Possible worlds
- Counteractual worlds
- A small-world model of prospects
 - Set of worlds: $W = \{w_1, w_2, w_3, w_4\}$
 - Set of events: $\Omega = \wp(W)$ containing $A = \{w_1, w_2\}, B = \{w_1, w_3\},$ etc.

- Possible worlds
- Counteractual worlds
- A small-world model of prospects
 - Set of worlds: $W = \{w_1, w_2, w_3, w_4\}$
 - Set of events: $\Omega = \wp(W)$ containing $A = \{w_1, w_2\}, B = \{w_1, w_3\},$ etc.
 - Set of counter-actual A-worlds: $W_A = \{w_1, w_2\}$

- Possible worlds
- Counteractual worlds
- A small-world model of prospects
 - Set of worlds: $W = \{w_1, w_2, w_3, w_4\}$
 - Set of events: $\Omega = \wp(W)$ containing $A = \{w_1, w_2\}, B = \{w_1, w_3\},$ etc.
 - Set of counter-actual A-worlds: $W_A = \{w_1, w_2\}$
 - Set of conditional events: $\Omega_A = \wp(W_A)$ containing $B_A = \{w_1\}$, $B'_A = \{w_2\}$,etc.

- Possible worlds
- Counteractual worlds
- A small-world model of prospects
 - Set of worlds: $W = \{w_1, w_2, w_3, w_4\}$
 - Set of events: $\Omega = \wp(W)$ containing $A = \{w_1, w_2\}, B = \{w_1, w_3\},$ etc.
 - Set of counter-actual A-worlds: $W_A = \{w_1, w_2\}$
 - Set of conditional events: $\Omega_A = \wp(W_A)$ containing $B_A = \{w_1\}$, $B'_A = \{w_2\}$,etc.
 - Space of possibilities: $W imes W_A$

Conditional Events		
Events	B_A	B_A'
$A \cap B$	$\langle w_1, w_1 angle$	_
$A\cap B'$	_	$\langle w_2$, $w_2 angle$
$A' \cap B$	$\langle w_3, w_1 \rangle$	$\langle w_3$, $w_2 angle$
$A'\cap B'$	$\langle w_4, w_1 angle$	$\langle w_4$, $w_2 angle$

• Centring condition

_

æ

イロト イヨト イヨト イヨト

Conditional Events		
Events	B_A	B_A'
$A \cap B$	$\langle w_1, w_1 angle$	_
$A\cap B'$	—	$\langle w_2$, $w_2 angle$
$A'\cap B$	$\langle \textit{w}_3,\textit{w}_1 angle$	$\langle w_3$, $w_2 angle$
$A'\cap B'$	$\langle \textit{w}_4,\textit{w}_1 angle$	$\langle w_4$, $w_2 angle$

- Centring condition
- Prospects

æ

イロト イヨト イヨト イヨト

• Factuals: e.g. A has truth conditions $\{\langle w_1, w_1 \rangle, \langle w_2, w_2 \rangle\}$

• Conditionals: e.g. $A \rightarrow B$ has truth conditions $\{\langle w_1, w_1 \rangle, \langle w_3, w_1 \rangle, \langle w_4, w_1 \rangle\}$

• Two kinds of uncertainty

MSI Tech Support (Institute)

æ

メロト メポト メヨト メヨト

- Two kinds of uncertainty
- Measuring uncertainty of worlds

æ

・ロト ・聞ト ・ ほト ・ ほト

- Two kinds of uncertainty
- Measuring uncertainty of worlds

Factual: p_w

æ

・ロト ・聞ト ・ ほト ・ ほト

- Two kinds of uncertainty
- Measuring uncertainty of worlds
 - Factual: p_w
 - ⁽²⁾ Counterfactual: p_A

< m²

· · · · · · · · ·

- Two kinds of uncertainty
- Measuring uncertainty of worlds

- Joint: p

э

イロト イポト イヨト イヨト

- Two kinds of uncertainty
- Measuring uncertainty of worlds
 - 1 Factual: p_w
 - Counterfactual: p_A
 - Joint: p

• Corresponding measures of uncertainty on events: P_w , P_A and P

∃ ► < ∃ ►</p>

- Two kinds of uncertainty
- Measuring uncertainty of worlds
 - Factual: p_w
 Counterfactual: p_A
 Joint: p
- Corresponding measures of uncertainty on events: P_w , P_A and P
- (*Marginalisation*):

$$p_{A}(w_{j}) = \sum_{w_{i} \in W} p(\langle w_{i}, w_{j} \rangle)$$
$$p_{w}(w_{i}) = \sum_{w_{j} \in W_{A}} p(\langle w_{i}, w_{j} \rangle)$$

	Conditional Events	
Events	B_A	B_A'
$A \cap B$	$p(w_1)$	0
$A\cap B'$	0	$p(w_2)$
$A'\cap B$	$p(w_3, w_1)$	$p(w_3, w_2)$
$A'\cap B'$	$p(w_4, w_1)$	$p(w_4, w_2)$

• Confirm that:

æ

イロト イ理ト イヨト イヨト

	Conditional Events	
Events	B_A	B_A'
$A \cap B$	$p(w_1)$	0
$A\cap B'$	0	$p(w_2)$
$A'\cap B$	$p(w_3, w_1)$	$p(w_3, w_2)$
$A'\cap B'$	$p(w_4, w_1)$	$p(w_4, w_2)$

- Confirm that:

æ

イロト イ理ト イヨト イヨトー

	Conditional Events	
Events	B_A	B_A'
$A \cap B$	$p(w_1)$	0
$A\cap B'$	0	$p(w_2)$
$A'\cap B$	$p(w_3, w_1)$	$p(w_3, w_2)$
$A'\cap B'$	$p(w_4, w_1)$	$p(w_4, w_2)$

- Confirm that:
 - P is a probability function
 P^{*}_A is suppositional probability (P*3 in virtue of Centring)

イロト イ理ト イヨト イヨトー

	Conditional Events	
Events	B_A	B_A'
$A \cap B$	$p(w_1)$	0
$A\cap B'$	0	$p(w_2)$
$A'\cap B$	$p(w_3, w_1)$	$p(w_3, w_2)$
$A'\cap B'$	$p(w_4, w_1)$	$p(w_4, w_2)$

- Confirm that:
 - P is a probability function
 - 2 P_A^* is suppositional probability (P*3 in virtue of Centring)
 - Satisfaction of the Ramsey Test hypothesis i.e. $P(A \rightarrow B) = P_A^*(B)$

イロン イ理と イヨン イヨン

• Measuring desirability of worlds by normalised utility measures.

• Measuring desirability of worlds by normalised utility measures.

Factual: v_w

- Measuring desirability of worlds by normalised utility measures.
 - Factual: v_w
 Counterfactual: v_A

æ

・ロト ・聞ト ・ ほト ・ ほト

- Measuring desirability of worlds by normalised utility measures.
 - Factual: v_w
 Counterfactual: v_A
 - Ioint: v

æ

・ロト ・聞ト ・ ほト ・ ほト

- Measuring desirability of worlds by normalised utility measures.
 - Factual: v_w
 Counterfactual: v_A
 - 3 Joint: v
- Corresponding measures of desirability on events: V_w , V_A and V defined by:

$$V(\alpha) := \sum_{\omega_{ij} \in \alpha} \frac{v(\omega_{ij}) \cdot p(\omega_{ij})}{P(\alpha)}$$

3

イロト 不得下 イヨト イヨト

- Measuring desirability of worlds by normalised utility measures.
 - Factual: v_w
 Counterfactual: v_A
 - 3 Joint: v
- Corresponding measures of desirability on events: V_w , V_A and V defined by:

$$V(\alpha) := \sum_{\omega_{ij} \in \alpha} \frac{v(\omega_{ij}) \cdot p(\omega_{ij})}{P(\alpha)}$$

• Marginalisation implies that:

$$V_w(X) = j.V(X)$$

$$V_A(X) = k_A.V(A \to X)$$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

	Conditional Events		
Events	B _A	B_A'	
$A \cap B$	$p(w_1), v(w_1)$	_	
$A\cap B'$	—	$p(w_2)$, $v(w_2)$	
$A'\cap B$	$p(w_3, w_1), v(w_3, w_1)$	$p(w_3, w_2), v(w_3, w_2)$	
$A'\cap B'$	$p(w_4, w_1), v(w_4, w_1)$	$p(w_4, w_2), v(w_4, w_2)$	

3

イロト イ理ト イヨト イヨト

	Conditional Events		
Events	B_A	B_A'	
$A \cap B$	$p(w_1)$, $v(w_1)$	_	
$A\cap B'$	—	$p(w_2)$, $v(w_2)$	
$A'\cap B$	$p(w_3, w_1), v(w_3, w_1)$	$p(w_3, w_2), v(w_3, w_2)$	
$A'\cap B'$	$p(w_4, w_1), v(w_4, w_1)$	$p(w_4, w_2), v(w_4, w_2)$	

• Confirm that:

æ

メロト メポト メヨト メヨト

	Conditional Events		
Events	B _A	B_A'	
$A \cap B$	$p(w_1), v(w_1)$	_	
$A\cap B'$	—	$p(w_2), v(w_2)$	
$A'\cap B$	$p(w_3, w_1), v(w_3, w_1)$	$p(w_3, w_2), v(w_3, w_2)$	
$A'\cap B'$	$p(w_4, w_1), v(w_4, w_1)$	$p(w_4, w_2), v(w_4, w_2)$	

• Confirm that:

æ

イロト イヨト イヨト イヨト

	Conditional Events		
Events	B _A	B_A'	
$A \cap B$	$p(w_1), v(w_1)$	_	
$A\cap B'$	—	$p(w_2), v(w_2)$	
$A'\cap B$	$p(w_3, w_1), v(w_3, w_1)$	$p(w_3, w_2), v(w_3, w_2)$	
$A'\cap B'$	$p(w_4, w_1), v(w_4, w_1)$	$p(w_4, w_2), v(w_4, w_2)$	

• Confirm that:

V is a desirability function
 V^{*}_A is suppositional probability

æ

イロト イ理ト イヨト イヨトー

	Conditional Events		
Events	B _A	B_A'	
$A \cap B$	$p(w_1), v(w_1)$	_	
$A\cap B'$	—	$p(w_2)$, $v(w_2)$	
$A'\cap B$	$p(w_3, w_1), v(w_3, w_1)$	$p(w_3, w_2), v(w_3, w_2)$	
$A'\cap B'$	$p(w_4, w_1), v(w_4, w_1)$	$p(w_4, w_2), v(w_4, w_2)$	

• Confirm that:

V is a desirability function
 V^{*}_A is suppositional probability
 Satisfaction of the Ramsey Test for desire i.e. V(A→B) = k_A.V^{*}_A(B)

æ

イロン イ理と イヨン -

• Ethical Actualism: Given the true state of the world, it is a matter of indifference as to what might have been.

- ∢ ∃ ▶

- Ethical Actualism: Given the true state of the world, it is a matter of indifference as to what might have been.
- World Actualism: $\forall w_j \in W_A, \forall w_i \in A', v(\langle w_i, w_j \rangle) = v(w_i)$

- Ethical Actualism: Given the true state of the world, it is a matter of indifference as to what might have been.
- World Actualism: $\forall w_j \in W_A, \forall w_i \in A', v(\langle w_i, w_j \rangle) = v(w_i)$

		Conditional Events		
	Events	BA	B_A'	
	$A \cap B$	$p(w_1), v(w_1)$	_	
•	$A \cap B'$	_	$p(w_2)$, $v(w_2)$	
	$A' \cap B$	$p(w_3, w_1), v(w_3)$	$p(w_3, w_2), v(w_3)$	
	$A' \cap B'$	$p(w_4, w_1), v(w_4)$	$p(w_4, w_2), v(w_4)$	

- ∢ ∃ ▶

MSI Tech Support (Institute)

• Partition-independent versions of Ethical Actualism:

æ

- 4 3 6 4 3 6

• Partition-independent versions of Ethical Actualism:

9 Prospect Actualism: $\forall X \subseteq A', \forall Y_A \in W_A, V(X, \{w_j\}) = V(X)$

Image: Image:

- A B A A B A

- Partition-independent versions of Ethical Actualism:
 - Prospect Actualism: $\forall X \subseteq A', \forall Y_A \in W_A, V(X, \{w_j\}) = V(X)$ Restricted Actualism: $\forall w_j \in W_A, V(A', \{w_j\}) = V(A')$

イロト イポト イヨト イヨト

- Partition-independent versions of Ethical Actualism:
 - Prospect Actualism: $\forall X \subseteq A', \forall Y_A \in W_A, V(X, \{w_j\}) = V(X)$ Restricted Actualism: $\forall w_j \in W_A, V(A', \{w_j\}) = V(A')$
- From the assumption of Restricted Actualism it follows that:

- Partition-independent versions of Ethical Actualism:
 - **9** Prospect Actualism: $\forall X \subseteq A', \forall Y_A \in W_A, V(X, \{w_j\}) = V(X)$ **9** Restricted Actualism: $\forall w_j \in W_A, V(A', \{w_j\}) = V(A')$
- From the assumption of Restricted Actualism it follows that:
 V(W, X_A) = V(X|A).P(A)

イロト イポト イヨト イヨト

- Partition-independent versions of Ethical Actualism:
 - **9** Prospect Actualism: $\forall X \subseteq A', \forall Y_A \in W_A, V(X, \{w_j\}) = V(X)$ **9** Restricted Actualism: $\forall w_j \in W_A, V(A', \{w_j\}) = V(A')$
- From the assumption of Restricted Actualism it follows that:
 - $V(W, X_A) = V(X|A).P(A)$ • Bradley's Thesis: $V(A \mapsto X) = V(X|A).P(A)$

• Extend model to allow for supposition that $\neg A$.

- Extend model to allow for supposition that $\neg A$.
- Space of possibilities now given by $W \times W_A \times W_{A'}$.

Conditional A-Events		
B_A	B'_A	
$A:\langle w_1$, w_1 , $w_3 angle$	$A:\langle w_2, w_2, w_3\rangle$	
$\mathit{A}':\langle \mathit{w}_3, \mathit{w}_1, \mathit{w}_3 angle$	$A':\langle w_3,w_2,w_4 angle$	
$A:\langle w_1$, w_1 , $w_4 angle$	$A:\langle w_2, w_2, w_4\rangle$	
$A':\langle w_4$, w_1 , $w_4 angle$	$A':\langle w_4,w_3,w_4 angle$	

イロト イポト イヨト イヨト

- Extend model to allow for supposition that $\neg A$.
- Space of possibilities now given by $W \times W_A \times W_{A'}$.

Conditional A-Events	
B_A	B'_A
$A:\langle \mathit{w}_1, \mathit{w}_1, \mathit{w}_3 angle$	$A:\langle w_2, w_2, w_3\rangle$
$\mathit{A}':\langle \mathit{w}_3, \mathit{w}_1, \mathit{w}_3 angle$	$A':\langle w_3,w_2,w_4 angle$
$A:\langle w_1$, w_1 , $w_4 angle$	$A:\langle w_2, w_2, w_4\rangle$
$A':\langle w_4$, w_1 , $w_4 angle$	$A':\langle w_4,w_3,w_4 angle$

• From the assumption of Restricted Actualism and Prospect Actualism it follows that:

- Extend model to allow for supposition that $\neg A$.
- Space of possibilities now given by $W \times W_A \times W_{A'}$.

Conditional A-Events		
B_A	B'_A	
$A:\langle \mathit{w}_1, \mathit{w}_1, \mathit{w}_3 angle$	$A:\langle w_2, w_2, w_3\rangle$	
$\mathit{A}':\langle \mathit{w}_3, \mathit{w}_1, \mathit{w}_3 angle$	$A':\langle w_3,w_2,w_4 angle$	
$A:\langle \mathit{w}_1, \mathit{w}_1, \mathit{w}_4 angle$	$A:\langle w_2, w_2, w_4\rangle$	
$A':\langle w_4$, w_1 , $w_4 angle$	$A':\langle w_4,w_3,w_4 angle$	

• From the assumption of Restricted Actualism and Prospect Actualism it follows that:

• Additivity:
$$V(B_A, C_{A'}) = V(B_A) + V(C_{A'})$$

- Extend model to allow for supposition that $\neg A$.
- Space of possibilities now given by $W \times W_A \times W_{A'}$.

Conditional A-Events		
B_A	B'_A	
$A:\langle \mathit{w}_1, \mathit{w}_1, \mathit{w}_3 angle$	$A:\langle w_2, w_2, w_3 \rangle$	
$\mathit{A}':\langle \mathit{w}_3, \mathit{w}_1, \mathit{w}_3 angle$	$A':\langle w_3,w_2,w_4 angle$	
$A:\langle w_1$, w_1 , $w_4 angle$	$A:\langle w_2, w_2, w_4 \rangle$	
$A':\langle w_4$, w_1 , $w_4 angle$	$A':\langle w_4$, w_3 , $w_4 angle$	

• From the assumption of Restricted Actualism and Prospect Actualism it follows that:

• Additivity:
$$V(B_A, C_{A'}) = V(B_A) + V(C_{A'})$$

3 Independence: $V((A \mapsto B) | (\neg A \mapsto C)) = V(A \mapsto B)$

イロト 不得 トイヨト イヨト

• Three actions prescriptions

- Three actions prescriptions
 - Jeffrey: Maximise desirability

æ

・ロト ・聞ト ・ ほト ・ ほト

- Three actions prescriptions
 - Jeffrey: Maximise desirability
 - Savage: Maximise subjective expected utility

э

- ∢ ∃ ▶

- Three actions prescriptions
 - Jeffrey: Maximise desirability
 - Savage: Maximise subjective expected utility
 - Sausal Decision theory: Maximise causal expected utility

-∢∃>

- Three actions prescriptions
 - Jeffrey: Maximise desirability
 - 2 Savage: Maximise subjective expected utility
 - Sausal Decision theory: Maximise causal expected utility
- What relationship holds between them?

- Three actions prescriptions
 - Jeffrey: Maximise desirability
 - 2 Savage: Maximise subjective expected utility
 - Sausal Decision theory: Maximise causal expected utility
- What relationship holds between them?
- SEU Hypothesis: Let $\{\alpha_i\}$ be an n-fold partition. Then:

$$V((\alpha_1 \mapsto \beta_1)(\alpha_2 \mapsto \beta_2)...(\alpha_n \mapsto \beta_n)) = \sum_{i=1}^n V(\alpha_i \beta_i).P(\alpha_i)$$

- Three actions prescriptions
 - Jeffrey: Maximise desirability
 - 2 Savage: Maximise subjective expected utility
 - Sausal Decision theory: Maximise causal expected utility
- What relationship holds between them?
- SEU Hypothesis: Let $\{\alpha_i\}$ be an n-fold partition. Then:

$$V((\alpha_1 \mapsto \beta_1)(\alpha_2 \mapsto \beta_2)...(\alpha_n \mapsto \beta_n)) = \sum_{i=1}^n V(\alpha_i \beta_i).P(\alpha_i)$$

Theorem

Assume Desirabilism. Then the conjunction of Bradley's Thesis and the Independence condition is equivalent to the SEU hypothesis.

• Auspiciousness versus efficacy of acts

- Auspiciousness versus efficacy of acts
- Causal expected utility:

 $CU(A) = \sum v(w_i).P_A(w_i)$

イロト イポト イヨト イヨト

- Auspiciousness versus efficacy of acts
- Causal expected utility:

$$CU(A) = \sum v(w_i).P_A(w_i)$$

• Problem of partition independence

- Auspiciousness versus efficacy of acts
- Causal expected utility:

$$CU(A) = \sum v(w_i).P_A(w_i)$$

- Problem of partition independence
- Joyce: CU is desirability on the supposition of action's performance

$$V_A(X) = \sum_{w_i \in W} v(w_i) . P_A(w_i | X)$$
$$CU(A) = V_A(A)$$

- Auspiciousness versus efficacy of acts
- Causal expected utility:

$$CU(A) = \sum v(w_i).P_A(w_i)$$

- Problem of partition independence
- Joyce: CU is desirability on the supposition of action's performance

$$V_A(X) = \sum_{w_i \in W} v(w_i) P_A(w_i | X)$$
$$CU(A) = V_A(A)$$

• An alternative proposal: Maximise expected desirability gain, i.e.

$$V^{*A}(X) = \sum_{w_i \in X} v(w_i) . (\frac{p_A^*(w_i) - p(w_i)}{P_A^*(X)})$$