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Prospects

Possible worlds

Counteractual worlds

A small-world model of prospects

Set of worlds: W = {w1,w2,w3,w4}
Set of events: Ω = ℘(W ) containing A = {w1,w2}, B = {w1,w3},
etc.
Set of counter-actual A-worlds: WA = {w1,w2}
Set of conditional events: ΩA = ℘(WA) containing BA = {w1},
B ′A = {w2},etc.
Space of possibilities: W ×WA
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A Small-World Model

Conditional Events
Events BA B ′A
A∩ B 〈w1,w1〉 −
A∩ B ′ − 〈w2,w2〉
A′ ∩ B 〈w3,w1〉 〈w3,w2〉
A′ ∩ B ′ 〈w4,w1〉 〈w4,w2〉

Centring condition

Prospects
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A Small-World Model
Factuals

Conditional Events
Events BA B ′A
A∩ B 〈w1,w1〉 −
A∩ B ′ − 〈w2,w2〉
A′ ∩ B 〈w3,w1〉 〈w3,w2〉
A′ ∩ B ′ 〈w4,w1〉 〈w4,w2〉

Factuals: e.g. A has truth conditions {〈w1,w1〉, 〈w2,w2〉}
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A Small-World Model

Conditional Events
Events BA B ′A
A∩ B 〈w1,w1〉 −
A∩ B ′ − 〈w2,w2〉
A′ ∩ B 〈w3,w1〉 〈w3,w2〉
A′ ∩ B ′ 〈w4,w1〉 〈w4,w2〉

Conditionals: e.g. A→ B has truth conditions
{〈w1,w1〉, 〈w3,w1〉, 〈w4,w1〉}
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Probability

Two kinds of uncertainty

Measuring uncertainty of worlds

1 Factual: pw
2 Counterfactual: pA
3 Joint: p

Corresponding measures of uncertainty on events: Pw , PA and P

(Marginalisation):

pA(wj ) = ∑
wi∈W

p(〈wi ,wj 〉)

pw (wi ) = ∑
wj∈WA

p(〈wi ,wj 〉)
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Probability

Given Marginalisation we can write:

Conditional Events
Events BA B ′A
A∩ B p(w1) 0
A∩ B ′ 0 p(w2)
A′ ∩ B p(w3,w1) p(w3,w2)
A′ ∩ B ′ p(w4,w1) p(w4,w2)

Confirm that:

1 P is a probability function
2 P∗A is suppositional probability (P*3 in virtue of Centring)
3 Satisfaction of the Ramsey Test hypothesis i.e. P(A→ B) = P∗A(B)
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Desirability

Measuring desirability of worlds by normalised utility measures.

1 Factual: vw
2 Counterfactual: vA
3 Joint: v

Corresponding measures of desirability on events: Vw , VA and V
defined by:

V (α) := ∑
ωij∈α

v(ωij ).p(ωij )

P(α)

Marginalisation implies that:

Vw (X ) = j .V (X )

VA(X ) = kA.V (A→ X )
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Desirability 2

In view of Marginalisation:

Conditional Events
Events BA B ′A
A∩ B p(w1), v(w1) −
A∩ B ′ − p(w2), v(w2)
A′ ∩ B p(w3,w1), v(w3,w1) p(w3,w2), v(w3,w2)
A′ ∩ B ′ p(w4,w1), v(w4,w1) p(w4,w2), v(w4,w2)

Confirm that:

1 V is a desirability function
2 V ∗A is suppositional probability
3 Satisfaction of the Ramsey Test for desire i.e. V (A→ B) = kA.V ∗A(B)

MSI Tech Support (Institute) 9 / 14



Desirability 2

In view of Marginalisation:

Conditional Events
Events BA B ′A
A∩ B p(w1), v(w1) −
A∩ B ′ − p(w2), v(w2)
A′ ∩ B p(w3,w1), v(w3,w1) p(w3,w2), v(w3,w2)
A′ ∩ B ′ p(w4,w1), v(w4,w1) p(w4,w2), v(w4,w2)

Confirm that:

1 V is a desirability function
2 V ∗A is suppositional probability
3 Satisfaction of the Ramsey Test for desire i.e. V (A→ B) = kA.V ∗A(B)

MSI Tech Support (Institute) 9 / 14



Desirability 2

In view of Marginalisation:

Conditional Events
Events BA B ′A
A∩ B p(w1), v(w1) −
A∩ B ′ − p(w2), v(w2)
A′ ∩ B p(w3,w1), v(w3,w1) p(w3,w2), v(w3,w2)
A′ ∩ B ′ p(w4,w1), v(w4,w1) p(w4,w2), v(w4,w2)

Confirm that:

1 V is a desirability function

2 V ∗A is suppositional probability
3 Satisfaction of the Ramsey Test for desire i.e. V (A→ B) = kA.V ∗A(B)

MSI Tech Support (Institute) 9 / 14



Desirability 2

In view of Marginalisation:

Conditional Events
Events BA B ′A
A∩ B p(w1), v(w1) −
A∩ B ′ − p(w2), v(w2)
A′ ∩ B p(w3,w1), v(w3,w1) p(w3,w2), v(w3,w2)
A′ ∩ B ′ p(w4,w1), v(w4,w1) p(w4,w2), v(w4,w2)

Confirm that:

1 V is a desirability function
2 V ∗A is suppositional probability

3 Satisfaction of the Ramsey Test for desire i.e. V (A→ B) = kA.V ∗A(B)

MSI Tech Support (Institute) 9 / 14



Desirability 2

In view of Marginalisation:

Conditional Events
Events BA B ′A
A∩ B p(w1), v(w1) −
A∩ B ′ − p(w2), v(w2)
A′ ∩ B p(w3,w1), v(w3,w1) p(w3,w2), v(w3,w2)
A′ ∩ B ′ p(w4,w1), v(w4,w1) p(w4,w2), v(w4,w2)

Confirm that:

1 V is a desirability function
2 V ∗A is suppositional probability
3 Satisfaction of the Ramsey Test for desire i.e. V (A→ B) = kA.V ∗A(B)

MSI Tech Support (Institute) 9 / 14



Ethical Actualism

Ethical Actualism: Given the true state of the world, it is a matter
of indifference as to what might have been.

World Actualism: ∀wj ∈ WA, ∀wi ∈ A′, v(〈wi ,wj 〉) = v(wi )

Conditional Events
Events BA B ′A
A∩ B p(w1), v(w1) −
A∩ B ′ − p(w2), v(w2)
A′ ∩ B p(w3,w1), v(w3) p(w3,w2), v(w3)
A′ ∩ B ′ p(w4,w1), v(w4) p(w4,w2), v(w4)
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Ethical Actualism II

Partition-independent versions of Ethical Actualism:

1 Prospect Actualism: ∀X ⊆ A′, ∀YA ∈ WA , V (X , {wj}) = V (X )
2 Restricted Actualism: ∀wj ∈ WA, V (A′, {wj}) = V (A′)

From the assumption of Restricted Actualism it follows that:

1 V (W ,XA) = V (X |A).P(A)
2 Bradley’s Thesis: V (A 7→ X ) = V (X |A).P(A)
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Ethical Actualism III

Extend model to allow for supposition that ¬A.

Space of possibilities now given by W ×WA ×WA′ .

Conditional A-Events
BA B ′A

A : 〈w1,w1,w3〉
A′ : 〈w3,w1,w3〉

A : 〈w2,w2,w3〉
A′ : 〈w3,w2,w4〉

A : 〈w1,w1,w4〉
A′ : 〈w4,w1,w4〉

A : 〈w2,w2,w4〉
A′ : 〈w4,w3,w4〉

From the assumption of Restricted Actualism and Prospect Actualism
it follows that:

1 Additivity: V (BA,CA′) = V (BA) + V (CA′)
2 Independence: V ((A 7→ B)|(¬A 7→ C )) = V (A 7→ B)

MSI Tech Support (Institute) 12 / 14



Ethical Actualism III

Extend model to allow for supposition that ¬A.
Space of possibilities now given by W ×WA ×WA′ .

Conditional A-Events
BA B ′A

A : 〈w1,w1,w3〉
A′ : 〈w3,w1,w3〉

A : 〈w2,w2,w3〉
A′ : 〈w3,w2,w4〉

A : 〈w1,w1,w4〉
A′ : 〈w4,w1,w4〉

A : 〈w2,w2,w4〉
A′ : 〈w4,w3,w4〉

From the assumption of Restricted Actualism and Prospect Actualism
it follows that:

1 Additivity: V (BA,CA′) = V (BA) + V (CA′)
2 Independence: V ((A 7→ B)|(¬A 7→ C )) = V (A 7→ B)

MSI Tech Support (Institute) 12 / 14



Ethical Actualism III

Extend model to allow for supposition that ¬A.
Space of possibilities now given by W ×WA ×WA′ .

Conditional A-Events
BA B ′A

A : 〈w1,w1,w3〉
A′ : 〈w3,w1,w3〉

A : 〈w2,w2,w3〉
A′ : 〈w3,w2,w4〉

A : 〈w1,w1,w4〉
A′ : 〈w4,w1,w4〉

A : 〈w2,w2,w4〉
A′ : 〈w4,w3,w4〉

From the assumption of Restricted Actualism and Prospect Actualism
it follows that:

1 Additivity: V (BA,CA′) = V (BA) + V (CA′)
2 Independence: V ((A 7→ B)|(¬A 7→ C )) = V (A 7→ B)

MSI Tech Support (Institute) 12 / 14



Ethical Actualism III

Extend model to allow for supposition that ¬A.
Space of possibilities now given by W ×WA ×WA′ .

Conditional A-Events
BA B ′A

A : 〈w1,w1,w3〉
A′ : 〈w3,w1,w3〉

A : 〈w2,w2,w3〉
A′ : 〈w3,w2,w4〉

A : 〈w1,w1,w4〉
A′ : 〈w4,w1,w4〉

A : 〈w2,w2,w4〉
A′ : 〈w4,w3,w4〉

From the assumption of Restricted Actualism and Prospect Actualism
it follows that:

1 Additivity: V (BA,CA′) = V (BA) + V (CA′)

2 Independence: V ((A 7→ B)|(¬A 7→ C )) = V (A 7→ B)

MSI Tech Support (Institute) 12 / 14



Ethical Actualism III

Extend model to allow for supposition that ¬A.
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Actions

Three actions prescriptions

1 Jeffrey: Maximise desirability
2 Savage: Maximise subjective expected utility
3 Causal Decision theory: Maximise causal expected utility

What relationship holds between them?

SEU Hypothesis: Let {αi} be an n-fold partition. Then:

V ((α1 7→ β1)(α2 7→ β2)...(αn 7→ βn)) =
n

∑
i=1
V (αi βi ).P(αi )

Theorem
Assume Desirabilism. Then the conjunction of Bradley’s Thesis and the
Independence condition is equivalent to the SEU hypothesis.
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Causal Decision Theory

Auspiciousness versus effi cacy of acts

Causal expected utility:

CU(A) = ∑ v(wi ).PA(wi )

Problem of partition independence
Joyce: CU is desirability on the supposition of action’s performance

VA(X ) = ∑
wi∈W

v(wi ).PA(wi |X )

CU(A) = VA(A)

An alternative proposal: Maximise expected desirability gain, i.e.

V ∗A(X ) = ∑
wi∈X

v(wi ).(
p∗A(wi )− p(wi )

P∗A(X )
)
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