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Why so cumbersome? 
Why not just compute values 
and optimal strategies? 
Three reasons…. 
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Above this line, the value of 
a game can be irrational, even 
if rewards and transition probabilities 
are rational. 
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Above this line, games may 
fail to have optimal strategies, so 
only approximately optimal 
stationary strategies can be computed. 
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Above this line, games may 
fail to have even approximately 
optimal stationary strategies. 
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None of these computational tasks 
are known to be polynomial time solvable. 
 None of these computational tasks 
are known to be NP-hard or PPAD-hard. 
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are known to be polynomial time solvable. 
 None of these computational tasks 
are known to be NP-hard or PPAD-hard. 
 

Tasks above the red line 
are ”SQRT-SUM hard”. 
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Also, we don’t 
know how to  
reverse any of 
the arrows! 
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Below this line there are algorithms 
that solve these games efficiently  
except on extremely carefully 
constructed instances  

Even for the microwave oven, the best such 
algorithms came from above  
(were devised first for Shapley’s model)  

engineering 
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Arrow of time 
of today. 



Computer aided design and analysis of 
embedded systems 
!  Embedded System =  

"  Hardware/software combination =  
"  Thing with microchips and bottons 

!  Methodology: Design formal models of these 
before production. Analyse the models for 
desired properties. 



Why? 

European Space Agency’s Ariane 5 rocket exploding 
due to software error. 
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Standard Model: Transition system 

”ON”-PRESSED 

STATE-OFF STATE-ON 

Finite set of states 

G 



Standard Model: Transition system 

”ON”-PRESSED 

STATE-OFF STATE-ON 

Named events linking states 

G 



Standard Model: Transition system 

”ON”-PRESSED 

STATE-OFF STATE-ON 

A fixed set of predicates 
on states. G 



The μ-calculus 

!  A modal logic for expressing properties of transition 
systems. 
"  The green light is on. 
"  If the user presses ”On”, the green light turns on. 
"  If the user keeps pressing ”On” over and over, the 

green light will eventually turn on. 
"  The Ariane rocket could explode…. 

!  Given a mu-calculus formula and a transition system, the 
formula may be true in some states and not in others. 
"  This is what makes the logic ”modal”. 
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Conjunctions and disjunctions 
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 Gp ”p kan happen in a way  

so that G becomes true” 

Mu-calculus formulae 



p 

 SLEEP ALERT 

R 

AWAKE 

R 
G p p 

p 

Modalities 
 
 [ ]Gp ”No matter how p happens 

G becomes true” 

Mu-calculus formulae 
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Mu-calculus formulae 

”If the user keeps on pressing the button, it is 
not impossible that the green light will 
eventually turn on” 

...∨∨∨ GppGpG

XpGX ∨.µ



μ-formulae 

!  Blurring the destinction between predicates 
and sets of states, the set of states that 
makes the formula true is by definition the 
least fixed point of  

[ ] [ ][ ] ...∨∨∨ GppGpG
[ ]XpGX ∨.µ

[ ]XpGX ∨→



μ-formulae vs. ν-formulae 

!  μ-formulae are least fixed points. 
"  Interesting μ-formulae are typically ”infinite ORs” 

expressing ”Something eventually has to happen” 

!  ν-formulae are greatest fixed points. 
"  Interesting ν-formulae are typically ”infinite ANDs” 

expressing ”Something is never allowed to 
happen”. 
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Mu-calculus formulae 

”The green light never goes off 
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Nested fixed points! 

!  The light is only green finitely many times in 
any infinite run of the system. 

!  ”a” is treated fairly: It is not enabled infinitely 
often but only invoked finitely often. 
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Computational problem 

!  MODEL-CHECKING-MU-CALCULUS 
"  Input: A transition system and a mu-calculus 

formula 
"  Ouput: For which states are the formula true? 

!  How important is this problem? 



A bibliographical experiment 



Moving to game theory…. 

!  MODEL-CHECKING-MU-CALCULUS 
"  Input: A transition system and a mu-calculus 

formula 
"  Ouput: For which states are the formula true? 

!  This problem can be captured by two-player 
zero-sum game. 



Intuition 

!  Propositional logic (Atomic formulas, 
conjunctions and disjunctions) can be 
captured by a game. 

 



Capturing propositional logic by a 
game 
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Capturing propositional logic by a 
game 

YGR ∨∧ )(

Min pays Max a dollar if  R true 
Max pays Min a dollar if  R is false 

Perfect information 
 extensive form game! 



Intuition 

!  Propositional logic (Atomic formulas, 
conjunctions and disjunctions) can be 
captured by a game. 

!  The mu-calculus can be captured by an 
extension of exactly the same game! 

 



Capturing propositional logic by a 
game 

YGR ∨∧ )(



The game capturing model checking 
the mu-calculus 
!  State space of the game =  

"  States of the transition system x Subformula of the 
formula 

!  Graphically, two pebbles 
"  one pebble on the system  
"  one in the formula. 
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!  When formula-pebble is on a greek letter it is moved inwards. 
!  When formula-pebble is on [a]F,  it is moved to F and Min moves 

system-pebble along a,  
!  When formula-peblle is on <a>F,  it is moved to F and Max moves 

system-pebble along a. 
!  If play is infinite, Max wins if the outermost greek letter visited 

infinitely often is ν.  
!  Max has a winning strategy if and only if the  formula is true for 

starting state of system-pebble. 

 



Parity games (the cleaned up model) 

!  Finite state space 1,2,…,N, start state is 1. 
!  Game is presented by directed graph on state 

space. Arcs are also called actions. 
!  Each state belongs to either Player 1 or Player 

2. That player determines which action to take. 
!  Actions have integer priorities. 
!  Play continues forever.  
!  If the largest priority seen infinitely often is odd, 

Player 1 wins (payoff 1), otherwise Player 2 wins 
(payoff -1). 



Facts about parity games                
(Emerson and Jutla 1991) 

!  Model checking the mu-calculus is polynomial time 
equivalent to computing the value of a given parity 
game. 

!  Any parity game has a value. 
!  The value is either -1 or 1. 
!  The players can guarantee the value with positional 

strategies = deterministic stationary strategies. 
!  Last three facts can also been obtained as corollaries of 

Martin’s theorem on Borel determinacy (1975). 
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Solving Shapley’s stochastic games 

!  No polynomial time algorithm known. 
!  The engineer does not mind because of 
    Howard’s algorithm! 

"  a.k.a. policy improvement, policy iteration, strategy improvement, 
stategy iteration.  

"  Howard is to Shapley’s stochastic games what the simplex algorithm is 
to linear programming, ”polynomial time in practice” 

"  Preferred algorithm for solving parity games is adaptation of Howard due 
to Jurdzinski and Voge (2000). 

"  Conjectured until 2009 that to be polynomial time for the perfect 
information case. Oliver Friedmann in 2009 found examples showing 
otherwise. 

"  The examples were obtained by looking at the parity game case!  
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Everett’s recursive games 

Howard – A panacea for stochastic 
game woes! 

While Howard only described 
his algorithm for Markov 
Decision Processes                
(1-player stochastic games) it 
applies to entire yellow area. 



Howard’s algorithm (1960) 
 



Recent results on the time complexity 
of Howard’s algorithm 

!  O. Friedmann, LICS’09 
!  J. Fearnley, ICALP’10 
!  Y. Ye, 2010 
!  T.D. Hansen, U. Zwick, ISAAC’10 
!  T.D. Hansen, P.B. Miltersen, U. Zwick, ICS’11 
!  K.A. Hansen, R. Ibsen-Jensen, P.B. Miltersen, 

2011. 



Howard (1960) 

!  Description of the algorithm for the case of 1-
player stochastic games = Markov Decision 
Process (MDP). 

!  We will describe it more generally. 



Howard’s algorithm for Shapley’s 
stochastic games. 
!   x := some stationary strategy for Player 1. 
!  Repeat forever 

!  Let y be a best reply to x by Player 2. 
!  Let w be the vector of expected payoffs when 

Player 1 plays x and Player 2 plays y. 
!  For each position k, do 

"  Let x at k be an optimal strategy to Ak(w)  



Correctness 



Howard’s algorithm 

!  The method of choice in practice for solving 
MDPs and perfect information stochastic 
games. 

!  For those, the strategies computed will 
stabilize and the algorithm runs in finite time. 

!  Complexity analysis? 







How many iterations before 
termination?  
(assuming fixed discount factor) 

!  Meister and Holzbaur, 1986:  O(n L)  
"  n =number of states, L = largest bitsize of reward. 
"  Not a strongly polynomial bound. 

!  Ye, 2010: O(m n log n) 
"  m = number of actions 
"  first strongly polynomial bound  

!  Hansen, Miltersen, Zwick, 2011: O(m log n)  



About the proof 

!  Identify an action that  
"  is played in the current policy 
"  will never be played again in any strategy that 

occurs after another O(log n) iterations.  
!  First derived for the MDP case using 

complementary slackness of the LP 
formulation. 

!  Then generalized to the 2-player case. 



How to find the action? 

Take action so that  
corresponding term#makes 
big contribution to this sum 



How many iterations before 
termination? (assuming fixed discount factor) 

!  Meister and Holzbaur, 1986:  O(n L)  
"  n =number of states, L = largest bitsize of reward. 
"  Not a strongly polynomial bound. 

!  Ye, 2010: O(m n log n) 
"  m = number of actions 
"  first strongly polynomial bound  

!  Hansen, Miltersen, Zwick, 2011: O(m log n)  



Even better bounds? 

!  O(m) iterations? 
!  O(n) iterations? 

"  No! Hansen and Zwick, ISAAC 2010. 



What if the discount factor is not 
fixed? 

!  Friedman, 2009:  Ω(2n) iterations for TBSGs. 
!  Fearnley, 2010:  Ω(2n) for MDPs 
!  Technique recently generalized by Friedman, 

Hansen and Zwick to show tight lower 
bounds for the Random Facet Algorithm  
"  for turn-based stochastic games (SODA’11)   
"  for linear programing! (upcoming) 



Random Facet Algorithm 

!  Randomized variant of Howard’s algorithm, 
defined for the perfect information case. 

!  Best known worst case (expected) complexity 
for solving these games:  Exponential in N1/2, 
when Player 1 has a binary choice in each 
position. 



RandomFacet Algorithm  
(Ludwig 1995)  
!  RandomFacet (G, π):#

"  If#mk#<#2#for#all#posi2ons,#return#π.#
"  Pick#at#random#a#posi2on#k#so#that#mk#=#2#
"  G’#:=#G#with#choice#of#π#at#k#frozen#
"  π’#:=#RandomFacet(G’,#π)#
"  #If#π’#is#op2mal#in#G#return#π’#
"  Switch#choice#of#π’#at#k#
"  Return(RandomFacet(G,#π’)#



Howard’s algorithm for Shapley’s 
games (not perfect information) 

!  Exponential time is needed in worst case 
before non-trivial approximation is achieved, 
even for games with only one non-absorbing 
position. 
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a.k.a. Concurrent Reachability Games 



Howard’s algorithm for CRGs 
Chatterjee, de Alfaro, Henzinger ’06 



Properties   

!  The valuations vt
i converge to the values vi (from 

below). 
!  The strategies xt guarantee the valuations vt

i for 
Dante. 

!   What is the number of iterations required to 
guarantee a good approximation? 



Hansen, Ibsen-Jensen, M., 2011 

!  Solving Concurrent Reachability Games using 
strategy iteration has worst case time complexity 
doubly exponential in size of the input. 

!   This is an upper and a lower bound. For games 
with N positions and m actions for each player in 
each position: 
"  (1/ε)mN/4 iterations are (sometimes) necessary to get ε-

approximation of value. 
"  (1/ε)231 m N iterations are always sufficient. 



Dante in Purgatory 
(Hansen, Koucky, Miltersen, LICS�09) 

1#

2#

3#

4#

5#

6#

7#

Dante#enters#Purgatory#
#at#terrace#1.#

Purgatory#has#7#terraces.#
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While#in#Purgatory,#once#a#
second,#Dante#must#play#
Matching#Pennies#
with#Lucifer#

Dante in Purgatory 
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If#Dante#loses#Matching#Pennies#
guessing'Tails…..#

….#he#loses#the#game#of#Purgatory!!!!#

Dante in Purgatory 
(Hansen, Koucky, Miltersen, LICS�09) 



Strategy iteration is slow on Purgatory 

   #iterations:  Valuation of lowest terrace: 
                         1   0.01347  

                  10   0.03542  
                100   0.06879  
              1000   0.10207  
            10000   0.13396  
          100000   0.16461  
        1000000   0.19415  
      10000000   0.22263  
    100000000   0.24828 

             > 2*1065   0.9 
              > 10128   0.99 
 



Generalized Purgatory P(N,m) 

!  Lucifer repeatedly hides a number between 1 
and m. 

!  Dante must try to guess the number. 
!  If he guesses correctly N times in a row, he 

wins the game. 
!  If he ever guesses incorrectly overshooting 

Lucifer’s number, he loses the game. 


