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Vou. 39, 1653 MATHEMATICS: L. S. SHAPLEY 10856

STOCHASTIC GAMES*
By L. S. SHAPLRY
Praxceron Univensiry
C icated by J. von N July 17, 1053

Introduction—In a stochastic game the play proceeds by steps from
position to position, according to transition probabilities controlled jointly
by the two players. We shall assume a finite number, N, of positions,
and finite numbers m,, », of choices at each position; nevertheless, the
game may not be bounded in length. If, when at pesition &, the players
choose their ith and jth alternatives, respectively, then with probability
543 > 0 the game stops, while with probability p¥ the game moves to
position ! Define

s = min s}
X%

Since 5 is positive, the game ends with probability 1 after a finite number
of steps, because, for any number ¢, the probability that it has no! stopped
after ¢ steps is not more than (1 — 5)%,

Payments accumulate throughout the course of play: the first player
takes a}; from the second whenever the pair 4,  is chosen at position k.
If we define the bound M-

M= max |alsl,

then we see that the expected total gam or loss is bounded by

M+(Q=-)M+ (1 —-sPM+ ... = M/s. (1)

The process therefore depends on N* 4 NV matrices

PYom (M 1,2, o= 1,2 )

A = (ahli = 1,2 . mgi= 1,2, .., m)
with &,/ = 1,2, ..., N, with elements satisfying

phzolal <a Ea=1-d<i-s<,

By specifying a starting position we obtain a particular game I'. The
term “stochastic game” will refer to the collection T' = [Tk = 1,2, ...,
N},

The full sets of pure and mixed strategies in these games are rather
cumbersome, since they take account of much information that tums out
to be irredevant. However, we shall have to introduce & notation only




‘ The algorithmic lens:
Polynomial time reductions
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Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Shapley’s stochastic games

Shapley’s stochastic games,
perfect information

Parity games



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Shapley’s stochastic games

Shapley’s stochastic games,
perfect information

Parity games

Our anchor....



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games The Big match

Everett’'s recursive games

Everett’'s recursive games,
all rewards positive, Purgatory
all transitions deterministic

Shapley’s stochastic games

Shapley’s stochastic games,
perfect information

Parity games -!

Backgammon



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

B means
Everett’s recursive games, solving A
all rewards positive polynomial time reduces to
all transitions deterministic A solving B

Shapley’s stochastic games

Shapley’s stochastic games,
perfect information

Parity games



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Shapley’s stochastic games

Shapley’s stochastic games,
perfect information

Parity games

actually means
"comparing the value

of instance of A to given
rational number
polynomial time reduces to
comparing the value of
instance of B to given
rational number”

Why so cumbersome?
Why not just compute values
and optimal strategies?
Three reasons....



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games actually means

B "comparing the value
of instance of A to given
rational number

A polynomial time reduces to
comparing the value of
Instance of B to given

Shapley’s stochastic games rational number

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Shapley’s stochastic games,

Above this line, the value of
perfect information

a game can be irrational, even

if rewards and transition probabilities
Parity games are rational.



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games actually means
B "comparing the value
of instance of A to given
rational number
A polynomial time reduces to
comparing the value of
Instance of B to given
rational number”

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Shapley’s stochastic games

Above this line, games may

fail to have optimal strategies, so

only approximately optimal

stationary strategies can be computed.

Shapley’s stochastic games
, perfect information

Parity games



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Shapley’s stochastic games

Shapley’s stochastic games
, perfect information

Parity games

actually means

B "comparing the value
of instance of A to given
rational number

A polynomial time reduces to
comparing the value of
Instance of B to given
rational number”

Above this line, games may
fail to have even approximately
optimal stationary strategies.



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games actually means

B "comparing the value
of instance of A to given
rational number

A polynomial time reduces to
comparing the value of
Instance of B to given
rational number”

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Shapley’s stochastic games

None of these computational tasks

Shapley’s stochastic games, 46 known to be polynomial time solvable.

perfect information
None of these computational tasks

Parity games are known to be NP-hard or PPAD-hard.



Finite stochastic games - the algorithmic lens

. , Tasks above the red line
Undiscounted stochastic games are "SQRT-SUM hard”.

Everett’'s recursive games means

B "comparing the value
of instance of A to given
rational number

A polynomial time reduces to
comparing the value of
Instance of B to given
rational number”

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Shapley’s stochastic games

None of these computational tasks

Shapley’s stochastic games, 46 known to be polynomial time solvable.

perfect information
None of these computational tasks

Parity games are known to be NP-hard or PPAD-hard.



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

Everett’'s recursive games,

all rewards positive, AISO, we don t
all transitions deterministic know hOW tO

reverse any of
the arrows!

Shapley’s stochastic games

Shapley’s stochastic games,
perfect information

Parity games



CMgINeerIn
Finite stochastic games - the Mlens

Undiscounted stochastic games

Everett’'s recursive games

Everett’'s recursive games,
all rewards positive,
all transitions deterministic

Below this line there are algorithms

Shapley’s stochastic games that solve these games efficiently
except on extremely carefully
Shapley’s stochastic games, constructed instances
perfect information Even for the microwave oven, the best such

_‘ algorithms came from above
Parity games .! (were devised first for Shapley’s model)



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

Everett’'s recursive games, Arrow of time
all rewards positive, of today.
all transitions deterministic

Shapley’s stochastic games

Shapley’s stochastic games,
perfect information

Parity games



Computer aided design and analysis of

embedded systems
Embedded System =

o Hardware/software combination =
o Thing with microchips and bottons

\I

Methodology: Design formal models of these
before production. Analyse the models for
desired properties.



European Space Agency’s Ariane 5 rocket exploding
due to software error.




Standard Model: Transition system

1]

STATE-OFF STATE-ON

Q ”ON”-PRESSED@




Standard Model: Transition system

Finite set of states

STATE-OFF STATE-ON

Q ”ON”-PRESSED@




Standard Model: Transition system

STATE-OFF STATE-ON

Q ”ON”-PRESSED@

Named events linking states




Standard Model: Transition system

STATE-OFF STATE-ON

Q A fixed set of predicates
"ON”-PRESSED on states.




The (-calculus

A modal logic for expressing properties of transition
systems.

a The green light is on.
a Ifthe user presses “On’, the green light turns on.

a If the user keeps pressing "On” over and over, the
green light will eventually turn on.

o The Ariane rocket could explode....

Given a mu-calculus formula and a transition system, the
formula may be true in some states and not in others.

o This is what makes the logic "modal”.



SLEEP ALERT AWAKE




Mu-calculus formulae

SILEEP ALERT




Mu-calculus formulae

SILEEP ACERT

Py

Atomic formulae

R



Mu-calculus formulae

SILEEP ALERT

p @ P

Py

Y

Conjunctions and disjunctions

RAG



Mu-calculus formulae

SLEEP ACERT W7
P

p @ P

Y

Py

Modalities

G "p kan happen in a way
p so that G becomes true”



Mu-calculus formulae

SILEEP

Modalities

"No matter how p happens
G becomes true”



Mu-calculus formulae

SLEEP ACERT AMAKE
p @ P ,9

"If the user keeps on pressing the button, it is
not impossible that the green light will
eventually turn on”

Gv<p>Gv<p><p>Gv...
,LLX.GV<p>X



L-formulae

Gv[plovplrlov..
wX.Gv|[plx

Blurring the destinction between predicates
and sets of states, the set of states that
makes the formula true is by definition the
least fixed point of

X%Gv[p]X



U-formulae vs. v-formulae

u-formulae are least fixed points.

o Interesting p-formulae are typically "infinite ORSs”
expressing "Something eventually has to happen”

v-formulae are greatest fixed points.

o Interesting v-formulae are typically "infinite ANDS”
expressing "Something is never allowed to

happen’.



Mu-calculus formulae

SLEEP ALERT AWAKE
p @ P ,9 P
P

"The green light never goes off

G Al AP ]PIG A
wX.Gv[plx




Nested fixed points!

The light is only green finitely many times in
any infinite run of the system.

WY VZ(GAlp)v (=G alp)

"a’ Is treated fairly: It is not enabled infinitely
often but only /invoked finitely often.

vX.puYvZla| X A ((a)tt = [—alY) A [—alZ.



Computational problem

MODEL-CHECKING-MU-CALCULUS

o Input: A transition system and a mu-calculus
formula

o Ouput: For which states are the formula true?

How important is this problem?



‘ A bibliographical experiment
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Moving to game theory....

MODEL-CHECKING-MU-CALCULUS

o Input: A transition system and a mu-calculus
formula

o Ouput: For which states are the formula true?

This problem can be captured by two-player
Zero-sum game.



Intuition

Propositional logic (Atomic formulas,
conjunctions and disjunctions) can be
captured by a game.



‘ Capturing propositional logic by a
game

(RAG)VY




Capturing propositional logic by a
game

( R N\ G ) V Y Perfect information

extensive form game!

Player 1: " ., Player 2:
Max, the %/ Min, the Y
Maximizer K el W Minimizer

’ . ~ s| ﬂy
Min pays Max a dollar if R true l { (]

Max pays Min a dollar if R is false



Intuition

Propositional logic (Atomic formulas,
conjunctions and disjunctions) can be
captured by a game.

The mu-calculus can be captured by an
extension of exactly the same game!



‘ Capturing propositional logic by a
game

(RAG)VY

Player 1.
Max, the
Maximizer K @@

" Player 2 :
2V Min, the , | Y

el ¥ Minimizer

R G




The game capturing model checking

the mu-calculus

State space of the game =

o States of the transition system x Subformula of the
formula

Graphically, two pebbles
0 one pebble on the system
o one in the formula.



vZ.(G A [p]Y) V(-GA [P]Z)

ofhiE

Y

When formula-pebble is on a greek letter it is moved inwards.

When formula-pebble is on [a]F, itis moved to F and Min moves
system-pebble along a,

When formula-peblle is on <a>F, it is moved to F and Max moves
system-pebble along a.

If play is infinite, Max wins if the outermost greek letter visited
infinitely often is v.

Max has a winning strategy if and only if the formula is true for
starting state of system-pebble.




Parity games (the cleaned up model)

Finite state space 1,2,...,N, start state is 1.

Game is presented by directed graph on state
space. Arcs are also called actions.

Each state belongs to either Player 1 or Player
2. That player determines which action to take.

Actions have integer priorities.
Play continues forever.

If the largest priority seen infinitely often is odd,
Player 1 wins (payoff 1), otherwise Player 2 wins
(payoff -1).



Facts about parity games
(Emerson and Jutla 1991)

Model checking the mu-calculus is polynomial time

equivalent to computing the value of a given parity
game.

Any parity game has a value.
The value is either -1 or 1.

The players can guarantee the value with positional
strategies = deterministic stationary strategies.

Last three facts can also been obtained as corollaries of
Martin's theorem on Borel determinacy (1975).



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

B means
Everett’s recursive games, solving A
all rewards positive polynomial time reduces to
all transitions deterministic A solving B

Shapley’s stochastic games

Shapley’s stochastic games,
perfect information

Parity games



Solving Shapley’s stochastic games

No polynomial time algorithm known.
The engineer does not mind because of

Howard’s algorithm!

o a.k.a. policy improvement, policy iteration, strategy improvement,
stategy iteration.

o Howard is to Shapley’s stochastic games what the simplex algorithm is
to linear programming, "polynomial time in practice”

o Preferred algorithm for solving parity games is adaptation of Howard due
to Jurdzinski and Voge (2000).

o Conjectured until 2009 that to be polynomial time for the perfect
information case. Oliver Friedmann in 2009 found examples showing
otherwise.

o The examples were obtained by looking at the parity game case!



Howard — A panacea for stochastic

game woes!

Undiscounted stochastic games

Everett’'s recursive games

Everett’s recursive games,
all rewards positive,

all transitions deterministic

Shapley’s stochastic games

Shapley’s stochastic games
, perfect information

Parity games

While Howard only described
his algorithm for Markov
Decision Processes
(1-player stochastic games) it
applies to entire yellow area.



‘ Howard’s algorithm (1960)




Recent results on the time complexity
ot Howard’s algorithm

O. Friedmann, LICS’09

J. Fearnley, ICALP’'10

Y. Ye, 2010

T.D. Hansen, U. Zwick, ISAAC’10

T.D. Hansen, P.B. Miltersen, U. Zwick, ICS’11

K.A. Hansen, R. Ibsen-Jensen, P.B. Miltersen,
2011.




Howard (1960)

Description of the algorithm for the case of 1-
player stochastic games = Markov Decision

Process (MDP).

We will describe it more generally.



Howard’s algorithm for Shapley’s
stochastic games.

X := some stationary strategy for Player 1.

Repeat forever

Let y be a best reply to x by Player 2.

Let w be the vector of expected payoffs when
Player 1 plays x and Player 2 plays .

For each position k, do
0 Let x at k be an optimal strategy to AX(w)



‘ Correctness




Howard’s algorithm

The method of choice in practice for solving
MDPs and perfect information stochastic
games.

For those, the strategies computed will
stabilize and the algorithm runs in finite time.

Complexity analysis?



Zeitschrift fiir Operations Research, Volume 29, page 315 — 316

Letter to the Editor:

How Good is Howard's Policy Improvement Algorithm?

By N. Schmirz'

Some standard algorithms of Operations Research are known to be very useful in prac-
tice, although they may show an extremely bad (“exponentially bad™) worst case be-
haviour. An important example is Dantzig’s simplex algorithm for linear programming
(see e.g. Klee/Minty [1972]).

From our experience the first property (good behaviour / small number of iterations
for real life problems) also applies to Howard's policy improvement algorithm for
Markovian decision processes (see Mine/Osaki [1970]). However, we could not find
any information as to the second aspect (bad worst cases). Therefore 1 would like to
ask the following

Question 1: What is the worst case behaviour of Howard's policy improvement algo-
rithm?

If the considered decision process concems a system with N “states™ 1,... N, where
in state { one has to choose among m1; “actions”, the usual proof of convergence for

the policy improvement algorithm yields the (trivial) bound

N



OR Spektrum (1986) 8:37-40

OR Spektrum

'C) Spnnger-Verlag 1986

A Polynomial Time Bound for Howard’s Policy Improvement Algorithm

U. Meister and U. Holzbaur

Universitit Ulm, Abtcilung Mathematik VII (OR), Oberer Eselsberg, D-7900 Ulm

Received March 18, 1985 / Accepted in revised form October 16, 1985

Summary. We consider a discounted Markovian Decision
Process (MDP) with finite state and action space. For a
fixed discount factor we derive a bound for the number
of steps, taken by Howard's policy improvement algo-
rithm (PIA) to determine an optimal policy for the
MDP, that is essentially polynomial in the number of
states and actions of the MDP. The main tools are the
contraction properties of the PIA and a lower bound
for the difference of the value functions of a MDP with

(cf. e.g. Klee and Minty [4]). A trivial bound for the
number of iterations in the PIA would be the number
of policies of the MDP. We give a bound for the number
of iterations in Howard's PIA, that is essentially poly-
nomial, i.e. the bound for the number of iterations in
the PIA is linear in the number of states, but depends
on the logarithms of the size of the data and of the
discount factor as well.



How many iterations before
termination?

(assuming fixed discount factor)

Meister and Holzbaur, 1986: O(n L)

o n =number of states, L = largest bitsize of reward.
o Not a strongly polynomial bound.

Ye, 2010: O(m n log n)
o m = number of actions
o first strongly polynomial bound

Hansen, Miltersen, Zwick, 2011: O(m log n)



About the proof

ldentify an action that
o Is played in the current policy

o will never be played again in any strategy that
occurs after another O(log n) iterations.

First derived for the MDP case using
complementary slackness of the LP
formulation.

Then generalized to the 2-player case.



How to find the action?

Primal:
min c’x Dual:

X

t. (J—~P) x= T
So . 'l X — e max e V

x>0
st. (J—7P)v+s=c

s >0

Complementary slackness: ¢/ x—e’v* = (s*)'x

Take action so that
corresponding term makes
big contribution to this sum



How many iterations before
termination? (assuming fixed discount factor)

Meister and Holzbaur, 1986: O(n L)

o n =number of states, L = largest bitsize of reward.
o Not a strongly polynomial bound.

Ye, 2010: O(m n log n)
o m = number of actions
o first strongly polynomial bound

Hansen, Miltersen, Zwick, 2011: O(m log n)



Even better bounds?

O(m) iterations?
O(n) iterations?
o No! Hansen and Zwick, ISAAC 2010.



What if the discount factor 1s not
fixed?

Friedman, 2009: Q(2") iterations for TBSGs.
Fearnley, 2010: Q(2") for MDPs

Technique recently generalized by Friedman,
Hansen and Zwick to show tight lower
bounds for the Random Facet Algorithm

o for turn-based stochastic games (SODA'11)
o for linear programing! (upcoming)



Random Facet Algorithm

Randomized variant of Howard's algorithm,
defined for the perfect information case.

Best known worst case (expected) complexity
for solving these games: Exponential in N2,
when Player 1 has a binary choice in each

position.



RandomFacet Algorithm
(Ludwig 1995)

RandomFacet (G, n):

a If m, <2 for all positions, return .

a Pick at random a position k so that m, = 2
G’ := G with choice of t at k frozen
r’ := RandomFacet(G’, m)

a
d
o Ifris optimal in G return v’
0 Switch choice of i’ at k

a

Return(RandomFacet(G, ')



Howard’s algorithm for Shapley’s

games (not pertect information)

Exponential time is needed in worst case
before non-trivial approximation is achieved,
even for games with only one non-absorbing

position.



Finite stochastic games - the algorithmic lens

Undiscounted stochastic games

Everett’'s recursive games

Everett’'s recursive games,

all rewards positive, a.k.a. Concurrent Reachability Games
all transitions deterministic

Shapley’s stochastic games

Shapley’s stochastic games
, perfect information

Parity games



‘ Howard’s algorithm for CRGs

Chatterjee, de Alfaro, Henzinger 06

1: t:=1

2: ¢! := the uniform distribution at each position
3: while true do

4: 3 := an optimal best reply to =*;
5. forie {0,1,2,..., NN+ 1} do
6

7

vl = (2t y")

. end for
8 t:=t+1
9. forie{l,2,....N} do
10: if val(A4;(v~1)) > vt‘_l then
11: r! := maximin( AZ(U )
12: else
13: ;l't-' = ;lt .
14: end if

15:  end for
16: end while




Properties

The valuations vt converge to the values v; (from
below).

The strategies xt guarantee the valuations vt for
Dante.

What is the number of iterations required to
guarantee a good approximation?



Hansen, Ibsen-Jensen, M., 2011

Solving Concurrent Reachability Games using
strategy iteration has worst case time complexity
doubly exponential in size of the input.

This is an upper and a lower bound. For games
with N positions and m actions for each player in
each position:

Q0 (1/8)”“'\"4 iterations are (sometimes) necessary to get ¢-
approximation of value.

o (1/€)2>' ™" iterations are always sufficient.



Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

/ \5 Purgatory has 7 terraces.

Dante enters Purgatory
at terrace 1.




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

2
/ B \ 1 While in Purgatory, once a
' second, Dante must play
: - Matching Pennies
with Lucifer




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

3
\ If Dante wins, he proceeds
/ \2 to the next terrace
, 1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

3
/ " , \ If Dante wins, he proceeds
; ; \2 to the next terrace
: 1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

3
\ If Dante wins, he proceeds
\2 to the next terrace
1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

- N 3
i \ If Dante wins, he proceeds
/ \2 to the next terrace
1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

N 3
i \ If Dante wins, he proceeds
/ \2 to the next terrace
1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

3
/ \ If Dante wins, he proceeds
/ \2 to the next terrace
1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

If Dante wins, he proceeds
to the next terrace




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

[ N

3
/ \ If Dante wins, he proceeds
/ \2 to the next terrace
1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

/

3
/ \ If Dante wins, he proceeds
/ \2 to the next terrace
1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

If Dante wins, he proceeds
to the next terrace



Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

3
/ \ If Dante wins, he proceeds
/ \2 to the next terrace
1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

3
/ \ If Dante wins, he proceeds
/ \2 to the next terrace
1




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

7 If Dante wins Matching Pennies
at terrace 7, he wins the game of
6 Purgatory.




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

If Dante wins Matching Pennies
at terrace 7, he wins the game of
Purgatory.




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

If Dante loses Matching Pennies
4 guessing Heads, he goes back to
terrace 1.




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

5

/ If Dante loses Matching Pennies

/ 4 guessing Heads, he goes back to
terrace 1.

/ X,
\




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

5

/ \ If Dante loses Matching Pennies

/ 4 guessing Heads, he goes back to
terrace 1.




Dante 1n Purgatory
(Hansen, Koucky, Miltersen, LICS’ 09)

If Dante loses Matching Pennies
4 guessing Tails.....

\ he loses the game of Purgatory!!!!




Strategy iteration is slow on Purgatory

#iterations: Valuation of lowest terrace:

1 0.01347

10 0.03542

100 0.06879

1000 0.10207

10000 0.13396

100000 0.16461

1000000 0.19415

10000000 0.22263

100000000 0.24828
> 2*106° 0.9

> 10128 0.99



Generalized Purgatory P(IN,m)

Lucifer repeatedly hides a number between 1
and m.

Dante must try to guess the number.

If he guesses correctly N times in a row, he
wins the game.

If he ever guesses incorrectly overshooting
Lucifer’'s number, he loses the game.



