
Day 1:

1

Matrix games (a.k.a. finite two-player zero-sum games in strategic form)

Player 1:
Max, the
Maximizer

Player 2 :
Min, the
Minimizer

!  Game given by m x n real matrix A = (aij)
!  Strategy space for Max: 1,2,..,m.
!  Strategy space for Min: 1,2,..,n.
!  Max and Min each chooses a strategy without

information about the choice of the other player.
!  If Max plays i and Min plays j, Max earns aij and Min

earns –aij.

2

Matrix games (a.k.a. finite two-player zero-sum games in strategic form)

yxv
nymx ATminmax Δ∈Δ∈=

Player 1:
Max, the
Maximizer

Player 2 :
Min, the
Minimizer

Maxmin value

Minmax value

yxy
nxmy ATmaxminarg* Δ∈Δ∈=

yxx
nymx ATminmaxarg* Δ∈Δ∈= Max� optimal strategy

Min�s optimal strategy

yxv
nxmy ATmaxmin Δ∈Δ∈=

3

Von Neumann’s Minmax theorem

!  .

!  Vectors (x*,y*) are the Nash equilibria of the
game.

vv = value

4

Max hides a penny. If Min can guess if it is
heads up or heads up, he gets the penny.

Matching Pennies

 -1 0

 0 -1

Hide heads up

Hide tails up

Guess head up Guess tails up

1/2 1/2

1/2

1/2

Optimal strategies

Value: -1/2

!  Computational problem MATRIX-GAME:
"  Input: An m x n matrix A with rational entries.
"  Output: The value v of the game and one optimal

strategy profile (x*, y*).

Solving matrix games

????

6

Rules for computational problems
!  Input and output should be bit strings

"  Computer science models computation by digital
computers and bit strings are all digital computers can
store.

"  A large part of the power of the theory comes from
this fact.

!  The computational task is a specification of a
relation R between inputs and outputs.

!  There should be arbitrarily long inputs with some
legal output.
"  Otherwise the task can be trivially solved by lookup in

a finite table.

7

!  A computational task is polynomial time
solvable if there is a Turing machine T that
solves the task in polynomial time.

8

Polynomial time solvable problems

Turing machine

!  Turing machine = (Painfully) detailed clean formal model
of digital computer.

!  One computation step of Turing machine roughly
corresponds to atomic Boolean operation (AND of two
bits, OR of two bits, negation of a bit).

!  Details not important.

9

.. solves the computational task …

!  When a string x is placed on the input tape
and there is some legal output y
coresponding to input x, and the machine is
started,

!  the machine eventually halts and proeduces
a bit string y so that y is a legal output for x.

10

… in polynomial time

!  There is a polynomial p so that for any input
of bit length at most L the machine halts after
at most p(L) steps.

11

12

Important disclaimers

!  The details of the model of computation does not matter
for the notion of ”polynomial time solvable task.”
"  If we switch to another (reasonable) model of computation, we

can replace the polynomial with a faster growing one.
!  When we care about detailed running times of natural

algorithms, we do not use the Turing machine model -
nor do we measure running time as a function of bit
length.
"  We measure some natural quantity of the algorithm,

such as ”number of iterations”.
"  We measure this as a function of natural parameters

of the input.

13

14

Importance of Polynomial time

!  When a natural time complexity bound is not
polynomially bounded, it is usually exponential.

!  With 109 operations per second, how long does it take to
perform:

!  225 operations?
 0.03 seconds.
!  250 operations?
 13 days.
!  2100 operations?
 40000 billion years…..

!  Thesis: A polynomial time algorithm often
explains the ”fundamental nature” of a non-
trivial computational problem.

!  An exponential time algorithm often does not.

!  ”Polynomial time algorithm” is a reasonable
model of ”reasonable algorithm”

Real importance

15

!  Computational problem MATRIX-GAME:
"  Input: An m x n matrix A with rational entries.
"  Output: The value v of the game and one optimal

strategy profile (x*, y*).

Solving matrix games

16

Max hides a penny. If Min can guess if it is
heads up or tails up, he gets the penny.

Matching Pennies

 -1 0

 0 -1

Hide heads up

Hide tails up

Guess head up Guess tails up

1/2 1/2

1/2

1/2

Optimal strategies

Value: -1/2

Solving MATRIX-GAME

[[-1,0],[0,-1]]

[-1/2,[1/2,1/2],[1/2,1/2]]

18

Silly but correct algorithm solving
matrix games

!  If the input length is L, search through all strings of
length at most (10L)10.

!  For each such string, check if it parses correctly into a
number and two mixed strategies. Also check if these
two strategies is a Nash equilibrium and that the
equilibrium payoff is the number.

!  The first string passing all these checks is given as
output.

19

How to rule out the silly algorithm as
an algorithm worth considering?
!  Best way I know:

"  It is not a polynomial time algorithm, as number of
computational steps in the worst case is at least
2(10L)10.

20

!  The value v and optimal strategy x* for matrix
game A is given by the linear program:

 Find (v,x) maximizing v s.t.
 v en · xT A

 xT em = 1
 x ¸ 0

!  where em, en are ”all-one” vectors of appropriate
dimension.

How to really solve matrix games

21

!  LINEAR-PROGRAM:
"  Input: A linear program with rational coefficients.
"  Output: An optimal solution if one exists,

otherwise a report that no solution exists.

Linear programming

22

LINEAR-PROGRAM is polynomial
time solvable

!  Ellipsoid algorithm
"  Khachiyan (1974)

!  Interior point algorithms
"  Karmakar (1984),…

!  Not the simplex algorithm
"  Klee and Minty (1972)

23

How to solve MATRIX-GAME in
polynomial time

!  Since linear programming is polynomial time
solvable, we can easily take a Turing
machine for LINEAR-PROGRAMMING and
build a Turing machine for MATRIX-GAME by
doing some easy preprocessing.

 Formalization:
!  MATRIX-GAME polynomial time reduces to

LINEAR-PROGRAMMING

24

Oracle Turing Machine and
polynomial time reductions

!  ”Oracle Turing machine with oracle B” means:
"  Turing machine with access to ”magical box”

solving computational task B
instantaneously.

!  ”A polynomial time reduces to B” means:
"  There is an oracle Turing machine with oracle

B that solves A in polynomial time.

25

MATRIX-GAME polynomial time
reduces to LINEAR-PROGRAM

26

Lemma

!  If
"  A polynomial time reduces to B, and
"  B is polynomial time solvable,

!  then
"  A is polynomial time solvable.

27

CORRELATED-EQUILIBRIUM is
polynomial time solvable

!  CORRELATED-EQUILIBRIUM:
"  Input: finite multi-player game in strategic form

(i.e. as a table of payoffs)
"  Output: A correlated equilibrium (as an explicitly

given probability distribution on outcomes)

!  CORRELATED-EQUILIBRIUM polynomial
time reduces to LINEAR-PROGRAM

28

Polynomial time equivalence

!  If A polynomial time reduces to B and B
polynomial time reduces to A then A and B
are said to be polynomial time equivalent.

!  This notion induces an equivalence relation
on computational tasks.

!  One equivalence class is the class of
polynomial time solvable tasks.

29

The story so far
!  We defined and motivated the notions of polynomial

time solvable computational task and polynomial
time reduction.

!  We noted that solving matrix games and finding
correlated equilibria polynomial time reduces to solving
linear programs and that these tasks can therefore be
solved in polynomial time.

!  Next: Solving two-player zero-sum extensive form
games.

30

Extensive Form Game (2 player, 0-sum)

”Basic endgame of poker”

31

How to solve?

-3/2 1
0 -1/2
-2 1
-1/2 -1/2

b�b

b�c

C F

Textbook: Extensive form games can be converted into matrix games!

32

c�b

c�c

Why is this a silly conversion!?
Exponential blowup in size!
(100 inf.sets implies 2100 rows…)

Behavior strategies (Kuhn, 1952)

!  A behavior strategy for a player is a family of
probability distributions, one for each
information set, the distribution being over
the actions one can make there.

!  For games of perfect recall, behavior
strategies and mixed strategies are
behaviorally equivalent.

Behavior strategies (Kuhn, 1952)

34

Computational Task

!  EXTENSIVE:
"  Input: 2-player, zero-sum extensive form game with

perfect recall
"  Ouput: Its value, and optimal behavior strategies for

both players.
!  Can EXTENSIVE be solved in polynomial time?
!  Problem: The optimal strategies are not

described by a linear program in the behavior
strategies!

35

Non-linearities……

The product of the probability of betting and the
probability of calling is a variable in the obvious
mathematical program describing an optimal strategy

36

Realization plans (sequence form)
(Koller-Megiddo-von Stengel, 1994)

!  Given a behavior strategy for a player, the
realization weight of a sequence of moves
is the product of probabilities assigned by
the strategy to the moves in the sequence.

!  If we have the realization weights for all
sequences (a realization plan), we can
deduce the corresponding behavior strategy
(and vice versa).

Realization plans

2/3

1/3 1/6

1/6

1

0

0

1

(1,0,1,0,….) is a realization plan for Player I
(2/3, 1/3, 1/6, 1/6, …) is a realization plan for Player II

Crucial observation
(Koller-Megiddo-von Stengel 1994)

!  The set of valid realization plans for each of the two
players (for games of perfect recall) is definable by a set
of linear equations and positivity.

!  The expected outcome of the game if Player 1 playing
using realization plan x and Player 2 is playing using
realization plan y is given by a bilinear form xTAy.

!  This implies that minimax realization plans can be found
efficiently using linear programming!

Optimal response to fixed x.

!  If Max� plan is fixed to x, the best response by Min
is given by:

!  Minimize (xTA)y so that Fy = f, y ¸ 0.
 (Fx = f, y ¸ 0 expressing that y is a realization plan.)

!  The dual of this program is:
 Maximize fT q so that FT q · xT A.

What should Max do?

!  If Max plays x he should assume that Min plays a
best reply so that he obtains the value given by
Maximize fT q so that FT q · xT A.

!  Max wants to minimize this value, so his optimal
strategy y is given by
Maximize fTq so that FT q · xT A, Ex = e, x ¸ 0.

 (Ex = e, x ¸ 0 expressing that x is a realization plan)

42

KMvS linear program

x – Realization plan for Player 1

q – a �value� for each information set of Player 2

x is valid
realization plan

One constraint for each
action (sequence)

of player 2

Example

43

Variables:

Program:

Solving extensive form games

!  EXTENSIVE:
"  Input: 2-player, zero-sum, extensive form game with

perfect recall
"  Ouput: Its value, and optimal behavior strategies for

both players.
!  EXTENSIVE can be solved in polynomial time by

a reduction to linear programming.
!  Arguably, this method is a much more

intuitive way of solving these games than the
textbook method!

44

Basic endgame of poker revisited

Unique optimal strategies

24-card deck

Several optimal strategies,
some of them pure!

45

Finding pure optimal strategies

!  PURE-EXTENSIVE:
"  Input: A 2-player extensive form game with perfect

recall
"  Output: A pure optimal strategy if one exits.

!  We do not believe that this task has a
polynomial time algorithm.

!  No such algorithm, unless P=NP.

46

P and NP

!  P is the class of decision problems that can
be solved in polynomial time.

!  Decision problem: For all inputs, the desired
output is yes or no (but not both).

47

!  NP is the class of decision problems that can
be solved by any algorithm of the following
kind:

!  Let x be the input
!  For each string y of length p(|x|):

"  If A(x,y) returns ”yes” then return ”yes”
!  If no A(x,y) returns ”yes”, then return ”no”

NP

Any polynomial p

Any polynomial time algorithm

48

NP Examples

!  UCON: Given an undirected graph, is it
connected?

!  PEANO: Given a formal statement of Peano
arithmetic, and a proof with ”blanks”, can the
blanks be filled in to make the proof correct?

49

 PEANO

!  Input:
 ###############.....##############

!  Output: ?

)2:,,,(nnn cbancban +=∧>∃¬

50

NP Examples

!  UCON: Given an undirected graph, is it
connected?

!  PEANO: Given a formal statement of Peano
arithmetic, and a proof with ”blanks”, can the
blanks be filled in to make the proof correct?

!  PURE-EXTENSIVE (modifed to just telling it
a strategy exists).

51

P vs. NP

!  P is a subset of NP
!  Is P = NP?

"  Seems very unlikely.
"  We do not know how to prove it.

!  It is very useful to assume the statement
P is different from NP as it has great
explanatory power.
"  Like set theorists treat the continuum hypothesis

or physicists treat ”laws of nature”.

52

!  A computational task A is NP-hard if all
problems in NP polynomial time reduces to A.

!  If an NP-hard task is polynomial time
solvable, then P=NP

NP-hard computational tasks

A
Such a device can
solve all of NP
(e.g., PEANO)

53

NP-complete computational tasks

!  A decision problem A is NP-complete if
"  It is NP-hard
"  and itself in NP

!  All NP-complete problems are polynomial
time equivalent.

!  An NP-complete problem is in P if and only if
P=NP.

!  Sounds nice, but are there any NP-complete
problems?

54

!  NP is the class of decision problems that can
be solved by any algorithm of the following
kind:

!  Let x be the input
!  For each string y of length p(|x|):

"  If A(x,y) returns ”yes” then return ”yes”
!  If no A(x,y) returns ”yes”, then return ”no”

The mother of all NP-complete
problems

Any polynomial p

Any polynomial time algorithm

55

!  NP is the class of decision problems that can
be solved by any algorithm of the following
kind:

!  Let [x,z,A,q] be the input
!  For each string y of length |z|:

"  If A(x,y) returns ”yes” in |q| steps then return ”yes”
!  If no A(x,y) returns ”yes”, then return ”no”

The mother of all NP-complete
problems

GENERIC
GENERIC-NP …is NP-complete

E.g., as Turing machine, or C program..

56

Cook (1972) and Karp (1973)

!  Dozens of natural combinatorial problems are
NP-complete, hence polynomial time
equivalent to each other.

!  Proofs use the fact that if A is NP-hard
and A polynomial time reduces to B then B is
NP-hard.

!  Turing awards 1982, 1985.
!  Since 1973, dozens have become tens of

thousands…

57

58

Examples from Cook and Karp

!  PEANO (Cook)
!  GRAPH-COLORING (Karp)
!  INTEGER-LINEAR-PROGRAM (Karp)
!  PARTITION (Karp)

59

GRAPH-COLORING

!  Input: Finite undirected graph.
!  Output: Can the vertices be colored red, blue,

or green so that no adjacent vertices have
the same color?

60

PARTITION

!  Input: list of integers a1, a2, .., am

!  Output: Can the integers be partitioned in two
sets of same total sum?

!  Example:
"  Input : 45, 32, 1, 19, 8, 15.
"  Output: Yes!
"  45+15 = 32+1+19+8)

61

All being NP-complete, we have

!  INTEGER-LINEAR-PROGRAM, PEANO,
GRAPH-COLORING and PARTITION are
polynomial time equivalent!

62

And also…

!  PURE-EXTENSIVE:
"  Input: A 2-player extensive form game with perfect

recall
"  Output: Does a pure optimal strategy exist?

!  PURE-EXTENSIVE is NP-complete
"  Blair, Mutchler, van Lent 1996

!  We show that PURE-EXTENSIVE is NP-hard by

reducing a known NP-complete problem – PARTITION -
to it.

 63

PARTITION

!  Input: list of integers a1, a2, .., am

!  Output: Can the integers be partitioned in two
sets of same total sum?

64

Reducing PARTITION to PURE-
EXTENSIVE

!  Given 45, 32, 1, 19, 8, 15, I want to construct
an extensive form game so that the
maximizer has a pure optimal strategy if and
only if the list can be perfectly partitioned.

65

45,32,1,19,8,15

66

45,32,1,19,8,15

1

2 2

-1 -1 0 0

Matching Pennies

45,32,1,19,8,15

CHANCE

45/120
32/120

1/120
19/120 8/120

15/120

Player one has a pure optimal strategy if and only if the list has a
balanced partition.

68

And also…

!  PURE-EXTENSIVE:
"  Input: A 2-player extensive form game with perfect

recall
"  Output: Does a pure optimal strategy exist?

!  PURE-EXTENSIVE is NP-complete
"  Blair, Mutchler, van Lent 1996

!  We show that PURE-EXTENSIVE is NP-hard by

reducing a known NP-complete problem – PARTITION -
to it.

Conceptual signficance:
Finding pure optimal

strategies in extensive form
games captures generic

exhaustive search.

69

The computational complexity of
trembling hand perfection and
other equilibrium refinements

Kristoffer Arnsfelt Hansen, Aarhus U.
Peter Bro Miltersen, Aarhus U.
Troels Bjerre Sørensen, U. Warwick

70 SAGT, Athens, October 2010

Equilibrium refinements

•  Ideally, game theory, and the notion of Nash
equilibrium can be used to make predictions
about what will happen when a game is played.

•  Q: When there is more than one Nash
equilibrium in a game, how can we make
predictions about what will happen when
the game is played?

•  A: We can try to rule
out the more fishy ones…

71

How$o%en$haveIsaid$$
toyouthat$when$you$$
have$eliminated$the$$
impossible,$whatever$$
remains,$however$$
improbable,$must$be$$
the$truth?

72

Doomsday Game

2$

1$

(0,0)$

(>100,>100)$

(>1,1)$

Peaceful$$
co>existence$

Invasionand
surrender$

What$will$happen?$

73

Doomsday Game

2$

1$

(0,0)$

(>100,>100)$

(>1,1)$

Nash$Equilibrium$1$

Invasionand
surrender$

(0,0)$

Peaceful$$
co>existence$

74

Doomsday Game

2$

1$

(0,0)$

(>100,>100)$

(>1,1)$

Nash$Equilibrium$2$

Invasionand
surrender$

(0,0)$

Peaceful$$
co>existence$

75

Doomsday Game

1$

(>100,>100)$

(>1,1)$

Nash$Equilibrium$2$

Non>credible$threat$

76

Doomsday Game

2$

1$

(0,0)$

(>100,>100)$

(>1,1)$

Nash$Equilibrium$2$
isnotsubgame(perfect.(

Non>credible$threat$

Subgame perfection (Selten 1965)

•  An equilibrium of an extensive form game (a.k.a.
a game tree) is subgame perfect if it induces an
equilibrium in all subgames.

•  A subgame is a subtree that does not break any
information sets.

•  Nice for ruling out obviously bad behavior,
but very much tied to the tree representation

Doomsday game in normal form

 -1,1 0,0

 -100,-100 0,0

Surrender>if>aHacked$

Destroy>world>if>aHacked$

AHack$ Stayathome$

0

$$

1

0$ 1$

Doomsday game in normal form

 -1,1 0,0

 -100,-100 0,0

Surrender>if>aHacked$

Destroy>world>if>aHacked$

AHack$ Stayathome$

0$

No$maHer$how$small$ε$is,$row$player$mustputall$probability$
massonSurrender>if>aHackedtoplayabest$response$

1

ε$ 1>ε$Tremble$

Trembling hand perfection (Selten’75)

•  Perturbed game: For each available pure strategy i, associate a
parameter εi > 0 (a tremble). Disallow probabilities smaller than this
parameter for player i.

•  A limit point of equilibria of perturbed games as largest pertubation
parameter approaches 0 is an equilibrium of the original game and
called trembling hand perfect.

•  Intuition: Think of trembles as infinitisimally small numbers.
–  formalised using non-standard analysis by Joe Halpern.
–  Formalised using formal polynomials in ε a.k.a lexicographic belief structures

by Blume, Brandenburger, Dekel.

•  Rules out some bad equilibrium than subgame perfection does not.

81

Alternative explanation of why Destroy-
world-if-attacked is not played

 -1,1 0,0

 -100,-100 0,0

Surrender>if>aHacked$

Destroy>world>if>aHacked$

AHack$ Stayathome$

$$$

$$

$$

$$ $$

Destroy>world>if>aHackedisweakly(dominatedby
Surrender>if>aHacked$

Proposition (Selten ’75)

•  In a two-player game, a Nash equilibrium (s1, s2)
is trembling hand perfect if and only if neither s1
nor s2 are weakly dominated (by mixtures).

•  What about multi-player games?
–  No similar characterization known.
–  Game theorists tend to start from scratch constructing

tremble structures to argue that equilibria in 3-player
games are trembling hand perfect.

83

 It is NP-hard to decide if a given pure Nash
equilibrium for a given 3-player game in
normal form (i.e., as a table of payoffs) is trembling
hand perfect.

 Explains current practice in game theory
(start from scratch for 3-player games) and
discourages looking for a clean
characterization as in the 2-player case.

NP-hardness

84

 It is NP-hard to decide if a given pure Nash
equilibrium for a given 3-player game in
normal form (i.e., as a table of payoffs) is trembling
hand perfect.

 Also gives a ”computational critique” of the
solution concept. Is it really reasonable that it is
computationally intractable to check if a given
profile satisfies the equilibrium condition?

NP-hardness

85

 It is NP-hard to decide if a given pure Nash
equilibrium for a given 3-player game in
normal form (i.e., as a table of payoffs) is trembling
hand perfect.

 Proof arguably also sheds some doubts on the
validity of the trembling hand concepts – even
when applied to pure equilibria, some of the
”fishyness” of mixed Nash equilibria is inherited.

NP-hardness

86

Proof

!  GRAPH-COLORING
"  polynomial time reduces to

!  THREE-PLAYER-UPPER-VALUE
"  polynomial time reduces to

!  TREMBLING-HAND

87

Minmax of Three-player zero-sum games

),,(maxmin 1)()()(),(132
zyxuv SxSSzy Δ∈Δ×Δ∈=

),,(minmax 1)()(),()(321
zyxuv SSzySx Δ×Δ∈Δ∈=

Player$1:$
Max,the
Maximizer$

Players2and$3:$
MinandMiney,the
Minimizers$

Maxmin$value$(lower$value,$security$value):$

Minmax$value$(upper$value,$threat$value):$

Uncorrelated$mixed$
strategies.$

�honest'but'married�/

88

),,(maxmin 1)()()(),(132
zyxuv SxSSzy Δ∈Δ×Δ∈=

),,(minmax 1)()(),()(321
zyxuv SSzySx Δ×Δ∈Δ∈=

Player$1:$
Max,the
Maximizer$

Players2and$3:$
MinandMiney,the
Minimizers$

Maxmin$value$(lower$value,$security$value):$

Minmax$value$(upper$value,$threat$value):$

Bad/news://
• //Lower/value/·/upper/value/but/in/general/not/=/
• //Maxmin/Minmax/not/necessarily/Nash/
• //Minmax/value/may/be/irra?onal/

�honest'but'married�/

89

Minmax of Three-player zero-sum games

Why not equality?

),,(minmax 1)()(),()(321
zyxuv SSzySx Δ×Δ∈Δ∈=

),,(maxmin 1)()()(),(132
zyxuv SxSSzy Δ∈Δ×Δ∈=

),,(maxmin 1)()(),(132
zyxuSxSSzy Δ∈×Δ∈=

Maxmin$value$(lower$value,$security$value):$

Minmax$value$(upper$value,$threat$value):$

),,(minmax 1),()(321
zyxuSSzySx ×∈Δ∈=

Correlated$mixed$
strategy$(married>and>dishonest!)$

ComputableinP,$
given$table$of$u1/

Borgs/et(al.,/STOC/2008:/
NP'hard/to/approximate,/given/table/of/u1!/ 90

 It is NP-hard to approximate the minmax-
value of a 3-player n x n x n game with
payoffs 0,1 within inverse polynomial additive
error.

Borgs, Chayes, Immorlica, Kalai, Mirrokni,
Papadimitriou, 2008

91

Proof – Hide and seek game

MinandMiney$hide$inan
undirected$graph.$

92

Proof – Hide and seek game

MinandMiney$hide$inan
undirected$graph.$
Max,$blindfolded,$hastocall$
the$locaWon$ofoneof$them.$

Mineyisat$
….8

93

Analysis

!  Optimal strategy for Max?
"  Call arbitrary player at random vertex.

!  Optimal strategy for Min and Miney?
"  Hide at random vertex

!  Lower value = upper value = 1/n.

94

Hide and seek game with colors
MinandMiney$hide$inan
undirected$graph.$

..anddeclareacolor$in$$

Max,$blindfolded,$hastocall$
the$locaWon$ofoneof$them.$

Mineyisat$
….8

95

Hide and seek game with colors
AddiWonalwayin$which$
Maxmaywin:Minand$
Miney$make$declaraWons$
inconsistent$with$3>coloring.$

Ohno
you$don�t!$

96

Hide and seek game with colors
AddiWonalwayin$which$
Maxmaywin:Minand$
Miny$make$declaraWons$
inconsistent$with$3>coloring.$

Ohno
you$don�t!$

97

Analysis

!  If graph is 3-colorable, minmax value is 1/n:
Min and Miney can play as before.

!  If graph is not 3-colorable, minmax value is at
least 1/n + 1/(3n2).

98

Reduction to deciding trembling hand
perfection
!  Given a 3-player game G, consider the task of determining if the

minmax of Player 1 value is strictly bigger than ® or strictly smaller
than ® (we are promised that one of the two cases hold).

!  Define G* by augmenting the strategy space of each player with a
new strategy ABSTAIN.

!  Payoffs of G* :
"  Players 2 and 3 get 0, no matter what is played.
"  Player 1 gets ® if at least one player plays ABSTAIN, otherwise

he gets what he gets in G.
!  Claim: ALL-ABSTAIN is trembling hand perfect in G* if and

only if the minmax value of G is strickly smaller than ®.

Intuition
•  If the minmax value of G is strictly less than ®, ALL-

ABSTAIN is trembling hand perfect in G*. Why?
–  Player 2 and Player 3 are happy no matter what.
–  Player 1 may believe that when playing ALL-ABSTAIN, Players 2

and 3 may tremble and play exactly their minmax strategy.
–  He is currently playing a best response to this, since all his

replies in G are strictly worse.

•  If the minmax value is strictly greater than ®, ALL-
ABSTAIN is not trembling hand perfect. Why?
–  No matter which theory about how Players 2 and 3

independently tremble that Player 1 entertains, he is not
currently playing a best reply: He can achieve something
better than ® by playing in G rather than playing ABSTAIN.

Extensions
•  Proper equilbrium (Myerson’78) is NP-hard

–  Open: Is the case of two players easy?
•  Sequential equilibrium (Kreps and Wilson ’82) is

NP-hard
–  Only for ”strategy part” of sequential equilibrium.

Open: What if an entire assessment is given?
–  Open: Is the case of two players easy?

•  Quasi-perfect equilibrium (van Damme ’84) is
NP-hard
–  Is the case of two players easy?

101

Did we nail equivalence class of
TREMBLING-HAND yet?

102

Is deciding trembling hand perfection in
NP (and hence NP-complete)?

 -1,1 0,0

 -100,-100 0,0

Surrender>if>aHacked$

Destory>world>if>aHacked$

AHack$ Stayathome$

1$

What$kind$of$structure$would$verify$that$AHack>and>
Surrenderistrembling$hand$perfect?$

0
$

1$ 0$

Is deciding trembling hand perfection in
NP (and hence NP-complete)?

 -1,1 0,0

 -100,-100 0,0

Surrender>if>aHacked$

Destory>world>if>aHacked$

AHack$ Stayathome$

1>ε$

Wecanuse$formal$polynomials$that$describetherelaWve$
magnitudeoftrembles$(says$Blume,$Brandenburger$and$

Dekel)andverifythebest>repsonse$condiWons$

$ε$
$

1>ε$ ε$

But(can(we(keep(the(bitsize(under(control?(

SQRT-SUM hardness

•  The SQRT-SUM problem:
 Given a1, a2, …, an, k, is ∑ (ai)1/2 < k?
•  Not known to be in NP or even the polynomial

hierarchy.
–  Which is why we do not know Euclidean TSP to be

NP-complete
–  (we only know Euclidean TSP to be NP-hard).

•  Pioneered as hardness notion in computational
game theory by Etessami and Yannakakis ’05.
–  A problem is said to be SQRT-SUM hard if the SQRT-

SUM problem reduces to it.

105

Applying SQRT-SUM-hardness to
trembling hand perfection
•  Comparing the Minmax value of a 3-player

game in normal form to a given rational
number is SQRT-SUM hard.

•  Corollary: Deciding if a given pure strategy
Nash equilibrium in a 3-player game is
trembling hand perfect is SQRT-SUM hard
and hence not in NP unless SQRT-SUM is in
NP.

106

Minmax values in 3-player games are
SQRT-SUM hard

•  Max loses 1/ai if i=j=k

•  The minmax value is -1/(∑ (ai)1/2)2

Picksjin${1,2,..n}$ Pickskin${1,2,..n}$Picksiin${1,2,..n}$

107

The Story so far
!  Many tasks in computational game theory, solving matrix

games, solving 2-player 0-sum extensive form games, or
finding correlated equilibria can be solved in polynomial
time by reducing them to linear programming.

!  Others are NP-hard, such as checking if a 2-player 0-
sum game has a pure optimal strategy or checking if a
pure strategy profile is a trembling hand perfect
equilibrium. The first is NP-complete, the latter may be
even harder.

!  Rest of today: What about (mixed) Nash equilibria?

108

Finding Nash Equilibria

!  2P-NASH
"  Input: A finite 2-player game in strategic form with

rational payoffs.
"  Output: A Nash equilibrium of the game

109

Finding Nash Equilibria

!  NASH:
"  Input: A multi-player game in normal form with

rational payoffs.
"  Output: A Nash equilibrium of the game

!  The unique legal output may be irrational
valued!

110

Finding approximate Nash equilibria

!  APPROXIMATE-NASH:
"  Input: A multi-player game in normal form with

rational payoffs and ε.
"  Output: An ε>Nash equilibrium of the game

!  Fair substitute?
!  A rather unsatisfactory notion to people who

care about infinitisimals! As we do!
!  More discussion later!

111

!  Lemke and Howson (1964).
!  A reduction to a special case of linear complementarity

programming (LCP).
!  Linear complementarity program =

"  Linear program with non-negative variables x,y plus
"  A complementarity constaint xT y = 0

!  In this reduction, the complementarity constraint captures that
in equilibrium for each pure strategy j, either
"  j is played with 0 probability, or
"  j is a best reply, or equivalently, the loss from playing j

instead of a best reply is 0.

" 

Solving 2-player Nash:
The Lemke-Howson algorithm

112

The algorithm

!  No general good algorithm for solving LCPs
"  In fact, the general problem is NP-hard.

!  The Lemke-Howson algorithm solves the
special case that arises from the Nash
equillibrium problem by iterated pivoting
exactly as the simplex algorithm solves linear
programs.

113

Facts about Lemke-Howson

!  Important fact for later:
"  As in the case of the simplex algorithm, the Lemke-Howson

algorithm follows a piecewise linear path in Euclidean space.
"  Unlike the case of the simplex algorithm, the path can be ”locally

traced backwards” – the pivoting is reversible.
!  The Lemke-Howson algorithm is not polynomial time

(Savani and von Stengel, 2004)
!  Interesting fact just for now: We know that finite 2-player

games have rational equilibria because of the Lemke-
Howson algorithm.

114

Many-player approximate Nash:
Scarf’s algorithm (1967)
 !  Step 1: Finding approximate Nash equilibria

polynomial time reduces to finding
approximate Brouwer fixed points of
continuous maps.

!  Essentially shown by Nash!
!  But you should be suspicious!

How to input ”a continuous map” as a bit string?

115

Finding approximate Brouwer fixed
points
!  BROUWER-TURING

"  Input: ² > 0 and f: [0,1]n ! [0,1]n, given as a Turing
machine that maps rational approximations of x to
rational approximations of f(x).

"  Output: x*, so that |x* – f(x*)| · ².

116

Finding approximate Brouwer fixed
points
!  BROUWER-FORMULA

"  Input: ² > 0 and f: [0,1]n ! [0,1]n, given as an
expression involving +,-,*,/,max,min that
computes f.

"  Output: x*, so that |x* – f(x*)| · ².
!  Note that BROUWER-FORMULA seems

much less general.
"  Certainly, BROUWER-FORMULA polynomial

time reduces to BROUWER-TURING.

117

Solving BROUWER

Pictures stolen from talk by Paul Goldberg (thanks, Paul….)

118

Solving BROUWER

Pictures stolen from talk by Paul Goldberg (thanks, Paul….)

119

Solving BROUWER

Pictures stolen from talk by Paul Goldberg (thanks, Paul….)

120

Solving BROUWER

Pictures stolen from talk by Paul Goldberg (thanks, Paul….)

121

Solving BROUWER

Pictures stolen from talk by Paul Goldberg (thanks, Paul….)

122

Sperner’s lemma

!  If any Sperner colouring of the n-dimensional
complex has an odd number of
panchromatic simplices then any Sperner
colouring of the (n+1)-dimensional complex
has at least one panchromatic simplex.

123

Solving BROUWER

Pictures stolen from talk by Paul Goldberg (thanks, Paul….)

124

Sperner’s lemma

!  If any Sperner colouring of the n-dimensional
complex has an odd number of panchromatic
simplices then any Sperner colouring of the (n
+1)-dimensional complex has an odd number of
panchromatic simplices.

!  By induction, any Sperner colouring of the n-
dimensional complex has an odd number of
panchomatic simplices.

125

Scarf’s algorithm

!  Scarf’s algorithm: Do the Sperner walk!
!  A trick makes all the paths of the induction

(including failed paths) into a single path.
!  The path is ”locally reversible”.
!  Unfortunately, the path may be very long so

the algorithm is not polynomial time.

!  Deja-vu?

126

!  No polynomial time algorithm is known.

!  Could the problems be NP-hard?

!  We don’t think so!

!  Computing Nash equilibrium is not NP-hard
unless NP=coNP (Megiddo, 1988)

Finding exact or approximate Nash

127

!  NP is the class of decision problems that can
be solved by any algorithm of the following
kind (p polynomial, A polynomial time)

!  Let x be the input
!  For each string y of length p(|x|):

"  If A(x,y) returns ”yes” then return ”yes”
!  If no A(x,y) returns ”yes”, then return ”no”

NP

128

!  coNP is the class of decision problems that
can be solved by any algorithm of the
following kind (p polynomial, A poly. time)

!  Let x be the input
!  For each string y of length p(|x|):

"  If A(x,y) returns ”no” then return ”no”
!  If no A(x,y) returns ”no”, then return ”yes”

coNP

129

NP vs. coNP

!  A decision problem is in coNP is and only if its negation
is in NP.

!  We don’t know how to turn an NP-type program into a
co-NP type program so we do not known that NP=coNP.

!  If P=NP then NP=coNP, so it is a stonger assumption to
assume a separation of NP and coNP.

!  While there is no philosophical evidence that the classes
are different, it is still regarded a safe assumption.

130

Suppose Finding Nash in NP-hard

FIND NASH

Any problem in NP can
be solved by such an device

Then, so can any problem in coNP

Now, given such a problem A in coNP, let us show that it is in NP

131

NP-type algorithm solving A

!  Go through all possible computation traces of
the oracle machine solving A.

!  Trace = Full description of computation of
Turing-machine part, questions to the oracle,
and answers from the oracle.

!  For each trace outputting ”yes”, test that the
oracle answers correctly.

!  If some such trace passes the test, output ”yes”
!  Otherwise, output ”no”.

Same proof works for
any task involving

finding something that
is guaranteed to exist
ifyou can tell that you
have found once you

have found it.

132

!  No polynomial time algorithm is known.
!  If P=NP, then the problem is polynomial time

solvable (exercise).
!  Could the problems be NP-hard?
!  We don’t think so!

!  Computing Nash equilibrium is not NP-hard
unless NP=coNP (Megiddo, 1988)

Finding exact or approximate Nash

133

The story so far:

2P-NASH

Special-LCP

APPROXIMATE-NASH

BROUWER-FORMULA

BROUWER-TURING

Solvable (not in polynomial time)
by eerily similar reversible path
following algorithms.

So far, no contributions
from computer science..

134

Papadimitriou 1988

2P-NASH

Special-LCP

APPROXIMATE-NASH

BROUWER-FORMULA

BROUWER-TURING

PPAD

135

PPAD (some intuition)

!  PPAD is a class of search problems that
involve finding something that is known to
exists.

!  You can find it by following a reversible path.
!  You could also find it by other means, e.g. by

exhaustive search.
"  In particular, if P=NP, then all PPAD problems er

polynomial time solvable.

136

END-OF-A-LINE task

!  END-OF-A-LINE:
"  Input: Given a directed graph with all nodes of

indegree and outdegree at most 1 and a node v of
indegree 0.

"  Output: A node different from v for which the
indegree or the outdegree is 0.

137

138

Solving BROUWER

Pictures stolen from talk by Paul Goldberg (thanks, Paul….)

139

END-OF-A-LINE

!  If the graph is given explicitly, END-OF-A-
LINE is clearly polynomial time solvable.

!  In the actual definition, the graph is given
implicitly as two polynomial time subroutines:
"  S: On input y find successor of y or report that

none exists.
"  P: On input y find predecessor of y or report that

none exists.

140

(Almost) formal definition

!  A task is in PPAD is there are polynomial
time procedures S and P and a polynomial p,
so that for all strings x,
"  S(x,*) and P(x,*) with * running over all strings of

length p(|x|) defines a directed graph of indegree/
outdegree at most 1

"  000…000 is a vertex of indegree 0.
"  The task can be stated as solving the END-OF-A-

LINE on this graph, with input vertex 000…000.

141

!  NP is the class of decision problems that can
be solved by any algorithm of the following
kind (p polynomial, A polynomial time)

!  Let x be the input
!  For each string y of length p(|x|):

"  If A(x,y) returns ”yes” then return ”yes”
!  If no A(x,y) returns ”yes”, then return ”no”

NP

142

Papadimitriou 1988

2P-NASH

Special-LCP

APPROXIMATE-NASH

BROUWER-FORMULA

BROUWER-TURING

PPAD

143

Papadimitriou 1988

2P-NASH

Special-LCP

APPROXIMATE-NASH

BROUWER-FORMULA

BROUWER-TURING

GENERIC-PPAD

144

Daskalakis-Goldberg-Papadimitriou 2005,
Chen-Deng 2005

2P-NASH

Special-LCP

APPROXIMATE-NASH

BROUWER-FORMULA

BROUWER-TURING

GENERIC-PPAD

All these tasks are polynomial time equivalent !!

145

Brouwer-Turing vs. Brouwer-Formula
!  Brouwer-Turing looks like a much more general problem

that Brouwer-Formula
"  Finding a fixed point of a function given by a

procedure for numerically computing it, (e.g. in C) vs.
"  Finding a fixed point of a function given by a closed

formula.
!  We now know that Brouwer-Turing is polynomial time

equivalent to Brouwer-Formula.
!  Proved only because we studied Nash equilibrium

notion and used Nash’ Brouwer-based proof of the
existence of Nash equilibrium…..

146

Finding approximate Nash equilibria

!  APPROXIMATE-NASH:
"  Input: A multi-player game in normal form with

rational payoffs and ε.
"  Output: An ε>Nash equilibrium of the game

!  Fair substitute?
!  A rather unsatisfactory notion to people who

care about infinitisimals! As we do!
!  More discussion later!

147

Finding approximations of Nash
equilibria
!  APPROXIMATION-NASH:

"  Input: A multi-player game in normal form with
rational payoffs and ε.

"  Output: A strategy profile of Euclidean distance at
most ε$to an actual Nash equilibrium.

!  Etessami and Yanakakis 2007.
"  APPROXIMATE>NASH$polynomially$reducesto
APPROXIMATION>NASH.$

"  But$APPROXIMATION>NASH$seems$much$harder…

148

Generic task of numerical
computation
!  A straight line program, involving rational

numbers, additions, subtractions,
multiplications and divisions, and a positive
integer d.

!  Output: The result, to d significant digits.

!  We do not know that this task is polynomial time
solvable.

!  We also don’t know how (or if) it compares to the NP-
complete problems in terms of poly time reductions.

149

Etessami and Yanakakis, 2007

!  The generic task of numerical computation
polynomial time reduces to
APPROXMATION-NASH (which is ”approx-
FIXP”-complete).

!  Non-computational byproduct by passing
interesting computation through reduction:
"  Games with ε>approximate Nash equilibria for

very small ε$that are extremely far away from any
exact Nash equilibrium.

150

 It is NP-hard to decide if a given pure Nash
equilibrium for a given 3-player game in
normal form (i.e., as a table of payoffs) is trembling
hand perfect.

 How about finding a trembling hand perfect

equilibrium?

NP-hardness

151

How about finding a trembling hand
perfect equilibrium?
•  No notion of ”approximate trembling hand

perfect equilibrium”, so no analogy to PPAD-
completeness results for three or more players.

 With Kousha Etessami (in writing):
•  Approximating an actual trembling hand perfect

equilibrium in a multi-player game is polynomial
time equivalent to approximating an actual Nash
equilibrium in a multi-player game
–  both are ”approxFIXP”-complete

152

